iVOD / 158257

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/377778736565467544ee1969ba54cf0f53481301b577a5e503b311b467971f731b51977d4a86bfe65ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 11:55:58 - 12:10:33
影片長度 875
會議時間 2024-12-19T09:00:00+08:00
會議名稱 立法院第11屆第2會期財政委員會第11次全體委員會議(事由:一、審查中華民國114年度中央政府總預算案有關金融監督管理委員會、銀行局、證券期貨局、保險局、檢查局收支部分。(僅詢答) 二、審查中華民國114年度中央政府總預算案附屬單位預算營業部分,有關金融監督管理委員會主管中央存款保險股份有限公司。(僅詢答) 三、審查中華民國114年度中央政府總預算案附屬單位預算非營業部分,有關金融監督管理委員會主管:(僅詢答) (一)特別收入基金-金融監督管理基金。 (二)信託基金-保險業務發展基金。 【預算提案截止時間:12月19日(四)中午12時】 【12月18日及19日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 2.39346875
transcript.pyannote[0].end 3.49034375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 2.52846875
transcript.pyannote[1].end 3.11909375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 4.26659375
transcript.pyannote[2].end 6.34221875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 6.74721875
transcript.pyannote[3].end 7.84409375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 8.13096875
transcript.pyannote[4].end 13.41284375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 13.41284375
transcript.pyannote[5].end 20.24721875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 20.48346875
transcript.pyannote[6].end 23.53784375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 23.99346875
transcript.pyannote[7].end 28.87034375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 29.27534375
transcript.pyannote[8].end 32.98784375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 33.30846875
transcript.pyannote[9].end 39.40034375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 39.46784375
transcript.pyannote[10].end 40.54784375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 40.90221875
transcript.pyannote[11].end 45.05346875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 45.32346875
transcript.pyannote[12].end 59.81909375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 60.44346875
transcript.pyannote[13].end 62.28284375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 62.75534375
transcript.pyannote[14].end 63.59909375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 64.00409375
transcript.pyannote[15].end 64.91534375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 65.52284375
transcript.pyannote[16].end 66.72096875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 66.87284375
transcript.pyannote[17].end 78.98909375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 79.19159375
transcript.pyannote[18].end 83.35971875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 84.10221875
transcript.pyannote[19].end 88.94534375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 89.75534375
transcript.pyannote[20].end 93.06284375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 93.88971875
transcript.pyannote[21].end 103.33971875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 103.62659375
transcript.pyannote[22].end 110.76471875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 111.28784375
transcript.pyannote[23].end 111.91221875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 112.03034375
transcript.pyannote[24].end 114.25784375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 114.46034375
transcript.pyannote[25].end 115.60784375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 116.16471875
transcript.pyannote[26].end 117.19409375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 117.90284375
transcript.pyannote[27].end 125.51346875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 126.01971875
transcript.pyannote[28].end 129.10784375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 129.81659375
transcript.pyannote[29].end 133.24221875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 133.37721875
transcript.pyannote[30].end 136.88721875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 137.25846875
transcript.pyannote[31].end 138.06846875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 138.65909375
transcript.pyannote[32].end 143.43471875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 143.70471875
transcript.pyannote[33].end 144.31221875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 144.48096875
transcript.pyannote[34].end 154.03221875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 154.63971875
transcript.pyannote[35].end 155.09534375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 155.95596875
transcript.pyannote[36].end 156.51284375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 156.91784375
transcript.pyannote[37].end 160.69784375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 161.00159375
transcript.pyannote[38].end 163.48221875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 164.25846875
transcript.pyannote[39].end 164.42721875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 164.83221875
transcript.pyannote[40].end 165.57471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 165.89534375
transcript.pyannote[41].end 166.72221875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 168.34221875
transcript.pyannote[42].end 168.74721875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 169.43909375
transcript.pyannote[43].end 170.41784375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 170.99159375
transcript.pyannote[44].end 171.86909375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 172.66221875
transcript.pyannote[45].end 173.84346875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 173.99534375
transcript.pyannote[46].end 174.94034375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 175.59846875
transcript.pyannote[47].end 177.89346875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 179.36159375
transcript.pyannote[48].end 181.97721875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 180.62721875
transcript.pyannote[49].end 181.45409375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 181.97721875
transcript.pyannote[50].end 183.39471875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 182.12909375
transcript.pyannote[51].end 183.46221875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 183.46221875
transcript.pyannote[52].end 183.47909375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 184.10346875
transcript.pyannote[53].end 184.45784375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 184.89659375
transcript.pyannote[54].end 188.96346875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 189.41909375
transcript.pyannote[55].end 192.01784375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 192.81096875
transcript.pyannote[56].end 205.43346875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 205.92284375
transcript.pyannote[57].end 211.98096875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 212.80784375
transcript.pyannote[58].end 213.41534375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 213.95534375
transcript.pyannote[59].end 214.54596875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 215.28846875
transcript.pyannote[60].end 217.63409375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 217.97159375
transcript.pyannote[61].end 220.14846875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 220.58721875
transcript.pyannote[62].end 228.09659375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 229.19346875
transcript.pyannote[63].end 230.93159375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 231.28596875
transcript.pyannote[64].end 232.92284375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 233.39534375
transcript.pyannote[65].end 239.06534375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 239.18346875
transcript.pyannote[66].end 240.06096875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 240.06096875
transcript.pyannote[67].end 243.33471875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 243.87471875
transcript.pyannote[68].end 244.98846875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 244.97159375
transcript.pyannote[69].end 248.51534375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 248.53221875
transcript.pyannote[70].end 253.44284375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 253.56096875
transcript.pyannote[71].end 259.23096875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 259.72034375
transcript.pyannote[72].end 286.01159375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 275.00909375
transcript.pyannote[73].end 275.04284375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 286.01159375
transcript.pyannote[74].end 286.70346875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 287.12534375
transcript.pyannote[75].end 287.73284375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 288.12096875
transcript.pyannote[76].end 290.26409375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 290.71971875
transcript.pyannote[77].end 293.80784375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 294.28034375
transcript.pyannote[78].end 298.85346875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 299.20784375
transcript.pyannote[79].end 305.94096875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 306.37971875
transcript.pyannote[80].end 308.59034375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 309.06284375
transcript.pyannote[81].end 312.26909375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 312.99471875
transcript.pyannote[82].end 315.93096875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 316.26846875
transcript.pyannote[83].end 329.66721875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 330.08909375
transcript.pyannote[84].end 343.42034375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 343.79159375
transcript.pyannote[85].end 348.78659375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 348.97221875
transcript.pyannote[86].end 355.57034375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 355.78971875
transcript.pyannote[87].end 360.46409375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 360.93659375
transcript.pyannote[88].end 369.39096875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 369.62721875
transcript.pyannote[89].end 370.45409375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 370.97721875
transcript.pyannote[90].end 373.35659375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 374.25096875
transcript.pyannote[91].end 374.75721875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 375.19596875
transcript.pyannote[92].end 376.14096875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 376.63034375
transcript.pyannote[93].end 377.10284375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 377.54159375
transcript.pyannote[94].end 379.44846875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 379.93784375
transcript.pyannote[95].end 380.84909375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 380.74784375
transcript.pyannote[96].end 381.89534375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 382.28346875
transcript.pyannote[97].end 382.90784375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 383.34659375
transcript.pyannote[98].end 383.65034375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 384.15659375
transcript.pyannote[99].end 385.79346875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 385.86096875
transcript.pyannote[100].end 386.95784375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 387.46409375
transcript.pyannote[101].end 399.74909375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 400.23846875
transcript.pyannote[102].end 401.31846875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 401.70659375
transcript.pyannote[103].end 403.25909375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 403.25909375
transcript.pyannote[104].end 404.10284375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 404.60909375
transcript.pyannote[105].end 409.58721875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 409.85721875
transcript.pyannote[106].end 414.24471875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 414.95346875
transcript.pyannote[107].end 416.23596875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 416.79284375
transcript.pyannote[108].end 421.14659375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 421.60221875
transcript.pyannote[109].end 425.23034375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 425.66909375
transcript.pyannote[110].end 426.44534375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 427.28909375
transcript.pyannote[111].end 431.10284375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 431.10284375
transcript.pyannote[112].end 432.09846875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 432.38534375
transcript.pyannote[113].end 434.14034375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 434.14034375
transcript.pyannote[114].end 435.91221875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 434.22471875
transcript.pyannote[115].end 434.46096875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 438.12284375
transcript.pyannote[116].end 440.06346875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 439.64159375
transcript.pyannote[117].end 450.15471875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 451.50471875
transcript.pyannote[118].end 454.62659375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 451.52159375
transcript.pyannote[119].end 451.90971875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 454.87971875
transcript.pyannote[120].end 463.90784375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 464.83596875
transcript.pyannote[121].end 471.06284375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 471.43409375
transcript.pyannote[122].end 475.53471875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 476.80034375
transcript.pyannote[123].end 485.94659375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 486.65534375
transcript.pyannote[124].end 488.27534375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 488.96721875
transcript.pyannote[125].end 489.42284375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 490.35096875
transcript.pyannote[126].end 491.27909375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 492.30846875
transcript.pyannote[127].end 493.21971875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 493.67534375
transcript.pyannote[128].end 494.51909375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 494.55284375
transcript.pyannote[129].end 500.39159375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 500.88096875
transcript.pyannote[130].end 506.95596875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 507.27659375
transcript.pyannote[131].end 517.87409375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 518.19471875
transcript.pyannote[132].end 519.76409375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 519.89909375
transcript.pyannote[133].end 521.35034375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 521.67096875
transcript.pyannote[134].end 532.99409375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 532.31909375
transcript.pyannote[135].end 533.68596875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 533.65221875
transcript.pyannote[136].end 537.95534375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 538.02284375
transcript.pyannote[137].end 546.91596875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 541.09409375
transcript.pyannote[138].end 541.80284375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 546.00471875
transcript.pyannote[139].end 548.43471875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 549.05909375
transcript.pyannote[140].end 549.54846875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 550.24034375
transcript.pyannote[141].end 551.94471875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 552.90659375
transcript.pyannote[142].end 555.57284375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 555.87659375
transcript.pyannote[143].end 556.85534375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 557.46284375
transcript.pyannote[144].end 558.05346875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 558.69471875
transcript.pyannote[145].end 559.82534375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 560.78721875
transcript.pyannote[146].end 562.69409375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 562.69409375
transcript.pyannote[147].end 567.23346875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 567.23346875
transcript.pyannote[148].end 568.14471875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 568.14471875
transcript.pyannote[149].end 568.16159375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 568.16159375
transcript.pyannote[150].end 568.17846875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 568.43159375
transcript.pyannote[151].end 570.00096875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 570.54096875
transcript.pyannote[152].end 580.78409375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 581.05409375
transcript.pyannote[153].end 582.23534375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 582.45471875
transcript.pyannote[154].end 590.40284375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 591.29721875
transcript.pyannote[155].end 604.10534375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 597.47346875
transcript.pyannote[156].end 598.04721875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 604.27409375
transcript.pyannote[157].end 614.31471875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 614.31471875
transcript.pyannote[158].end 616.93034375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 614.61846875
transcript.pyannote[159].end 621.65534375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 622.76909375
transcript.pyannote[160].end 627.86534375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 628.42221875
transcript.pyannote[161].end 640.11659375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 640.72409375
transcript.pyannote[162].end 644.47034375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 644.31846875
transcript.pyannote[163].end 649.21221875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 649.58346875
transcript.pyannote[164].end 653.46471875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 653.85284375
transcript.pyannote[165].end 655.60784375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 655.94534375
transcript.pyannote[166].end 672.83721875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 672.44909375
transcript.pyannote[167].end 675.75659375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 676.02659375
transcript.pyannote[168].end 685.03784375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 680.58284375
transcript.pyannote[169].end 681.03846875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 682.99596875
transcript.pyannote[170].end 684.44721875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 685.03784375
transcript.pyannote[171].end 686.52284375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 686.52284375
transcript.pyannote[172].end 687.07971875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 687.07971875
transcript.pyannote[173].end 694.20096875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 687.83909375
transcript.pyannote[174].end 689.10471875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 694.33596875
transcript.pyannote[175].end 694.94346875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 694.94346875
transcript.pyannote[176].end 699.98909375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 695.09534375
transcript.pyannote[177].end 695.66909375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 696.71534375
transcript.pyannote[178].end 697.64346875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 698.43659375
transcript.pyannote[179].end 710.06346875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 710.06346875
transcript.pyannote[180].end 710.08034375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 710.08034375
transcript.pyannote[181].end 710.63721875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 710.63721875
transcript.pyannote[182].end 710.70471875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 710.70471875
transcript.pyannote[183].end 715.32846875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 710.99159375
transcript.pyannote[184].end 711.26159375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 711.66659375
transcript.pyannote[185].end 711.81846875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 715.75034375
transcript.pyannote[186].end 720.82971875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 721.26846875
transcript.pyannote[187].end 723.61409375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 721.28534375
transcript.pyannote[188].end 722.09534375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 723.79971875
transcript.pyannote[189].end 729.73971875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 729.73971875
transcript.pyannote[190].end 735.42659375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 735.69659375
transcript.pyannote[191].end 739.83096875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 739.10534375
transcript.pyannote[192].end 741.51846875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 742.09221875
transcript.pyannote[193].end 751.03596875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 751.03596875
transcript.pyannote[194].end 752.92596875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 752.21721875
transcript.pyannote[195].end 752.95971875
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 752.95971875
transcript.pyannote[196].end 760.19909375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 753.98909375
transcript.pyannote[197].end 754.44471875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 760.19909375
transcript.pyannote[198].end 760.36784375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 760.36784375
transcript.pyannote[199].end 760.40159375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 760.40159375
transcript.pyannote[200].end 765.76784375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 763.99596875
transcript.pyannote[201].end 765.41346875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 765.95346875
transcript.pyannote[202].end 771.74159375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 772.39971875
transcript.pyannote[203].end 776.24721875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 776.41596875
transcript.pyannote[204].end 798.87659375
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 797.77971875
transcript.pyannote[205].end 803.09534375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 803.31471875
transcript.pyannote[206].end 806.03159375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 806.03159375
transcript.pyannote[207].end 812.81534375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 809.38971875
transcript.pyannote[208].end 810.41909375
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 812.07284375
transcript.pyannote[209].end 815.09346875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 813.18659375
transcript.pyannote[210].end 822.34971875
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 822.34971875
transcript.pyannote[211].end 824.71221875
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 823.78409375
transcript.pyannote[212].end 826.18034375
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 825.55596875
transcript.pyannote[213].end 832.64346875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 831.61409375
transcript.pyannote[214].end 837.50346875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 837.90846875
transcript.pyannote[215].end 842.38034375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 838.21221875
transcript.pyannote[216].end 838.31346875
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 842.92034375
transcript.pyannote[217].end 843.59534375
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 843.79784375
transcript.pyannote[218].end 857.65221875
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 858.19221875
transcript.pyannote[219].end 861.41534375
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 861.70221875
transcript.pyannote[220].end 862.69784375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 861.78659375
transcript.pyannote[221].end 865.33034375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 863.05221875
transcript.pyannote[222].end 863.62596875
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 864.36846875
transcript.pyannote[223].end 865.29659375
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 865.33034375
transcript.pyannote[224].end 865.34721875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 865.92096875
transcript.pyannote[225].end 866.47784375
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 866.68034375
transcript.pyannote[226].end 866.73096875
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 866.73096875
transcript.pyannote[227].end 870.32534375
transcript.whisperx[0].start 2.423
transcript.whisperx[0].end 22.524
transcript.whisperx[0].text 你一直在推動台灣成為亞太的資產管理中心,現在進度不小了,怎麼樣?現在其實我們第一階段推出的五大策略、十六項措施都依序在進行中比如說我們現在有具體的一些做法,跟委員簡單報告一下
transcript.whisperx[1].start 24.065
transcript.whisperx[1].end 25.166
transcript.whisperx[1].text 中央政府總預算案有關金融監督管理委員會有
transcript.whisperx[2].start 40.962
transcript.whisperx[2].end 66.46
transcript.whisperx[2].text 那我想再來就是我們在那個壯大股市計畫裡面還有就是雙掛牌的部分日方已經具體的回應我們大概今年第三季就可以看到我們的ETF雙掛牌跟日本雙掛牌還有就是我們的兆元投資計畫就是擴大國內的資金投入公建增加相關的這些金融商品的部分也都在依序推動那這個比特幣的ETF什麼時候會推出
transcript.whisperx[3].start 67.172
transcript.whisperx[3].end 92.515
transcript.whisperx[3].text 我們現在是開放專業投資人用付委託的方式去購買這個比特幣ETF我們上次有答應我們這個立法院是我們觀察期6個月以後再來看他執行成效接下來看看要怎麼樣去進行下一步所以金管會對於虛擬貨幣現在的態度比較開放比較友善的我們是謹慎友善
transcript.whisperx[4].start 93.936
transcript.whisperx[4].end 116.916
transcript.whisperx[4].text 警慎、友善那會支持嗎?就警慎友善警慎友善我記得有多次在這邊談過當初如果有聽我的建議央行那時候6千塊美金現在已經超過10萬塊然後所有聽央行講話的全部都翻車全部都翻船
transcript.whisperx[5].start 117.967
transcript.whisperx[5].end 143.817
transcript.whisperx[5].text 所以其實另外一個表徵就是扼殺了很多年輕人他賺錢的機會因為在整個資源上來講這個傳統或者是一些電子業這些產業已經被這些老人全部都佔據了年輕人是沒有出頭的機會所以這幾年出現了航海王 對不對
transcript.whisperx[6].start 144.687
transcript.whisperx[6].end 171.539
transcript.whisperx[6].text 因為老人說的投信這些老傢伙沒有人會去看好這個東西嘛這年輕人他願意去嘗試去拼所以當初如果說我們主管機關的態度是謹慎又開放又小心又建議他只要投資一萬就可以變成多少主委你知道嗎
transcript.whisperx[7].start 172.971
transcript.whisperx[7].end 191.45
transcript.whisperx[7].text 看什麼時候投資最早到最近十幾萬一顆獲利是多少是萬倍一萬倍以上那大家都想說那怎麼有這些傻瓜會去買這個東西以前我們比較
transcript.whisperx[8].start 192.867
transcript.whisperx[8].end 199.513
transcript.whisperx[8].text 有關金融監督管理委員會主管中央存款保險股份有關金融監督管理委員會主管中央存款保險股份有關金融監督管理委員會主管中央存款保險
transcript.whisperx[9].start 215.339
transcript.whisperx[9].end 236.867
transcript.whisperx[9].text 比較久了大概6年前如果台灣是採取開放的態度我相信台灣有很多年輕人在這一波虛擬貨幣的發展他們是跟上潮流的那你看川普上去了以後他改變他的思維美國會不會把虛擬貨幣、虛擬資產成為他外匯準備的一個儲備因為我看那個鮑爾是說他們現在沒有這個計畫
transcript.whisperx[10].start 243.939
transcript.whisperx[10].end 258.866
transcript.whisperx[10].text 有在討論對,他們說那個他們的FED現在沒有是,我希望說主委是用比較開闊的心態因為香港現在比較勢微的那新加坡就是一直搶搶滾
transcript.whisperx[11].start 262.188
transcript.whisperx[11].end 276.524
transcript.whisperx[11].text 替代了很多的這個Private Banking很多的一些資產管理的很多資金、金流都跑到新加坡去川普時代來臨了以後大概會面臨改變主委你大概會怎麼判斷
transcript.whisperx[12].start 277.425
transcript.whisperx[12].end 293.523
transcript.whisperx[12].text 未來整個亞洲金融的交易中心會怎麼樣的移轉?台灣應該要掌握什麼契機?我想資金有很多面向有不同的資金他會駐足在不同的地方
transcript.whisperx[13].start 296.347
transcript.whisperx[13].end 308.361
transcript.whisperx[13].text 臺灣是具有投資機會還有很多新創潛力有深度的市場所以我們是希望吸引這樣的資金在臺灣來進行管理這部分我覺得臺灣的努力
transcript.whisperx[14].start 316.834
transcript.whisperx[14].end 329.363
transcript.whisperx[14].text 以10年5年以來的發展臺灣確實深度跟廣度上已經有很大的改變所以我覺得未來臺灣是有可能在整個亞洲的資產管理在有一席之地
transcript.whisperx[15].start 330.134
transcript.whisperx[15].end 348.272
transcript.whisperx[15].text 我們希望說一棒接一棒各個是好棒在場有我們黃天牧前主委也在這個地方過去黃主委他奠定了一個基礎大概金融圈的感覺就是穩擦穩打很保守那也不是說不好啦
transcript.whisperx[16].start 349.173
transcript.whisperx[16].end 369.644
transcript.whisperx[16].text 有好比如說金融銀行的這個獲利以及證券相關這個今年大概都已經破紀錄了接近要上兆表示這個金融圈大家都是過得快樂的日子那過去穩定的基礎現在銀行的預放大概多少0.160.16保險的部分
transcript.whisperx[17].start 375.265
transcript.whisperx[17].end 386.822
transcript.whisperx[17].text 這個保險的部分這個低於資本市儲率的現在還有幾家現在目前一家就一家有沒有機會救起來他們在努力中
transcript.whisperx[18].start 388.404
transcript.whisperx[18].end 415.163
transcript.whisperx[18].text 銀行證券,證券也不錯啊在過去的努力也破了兩萬點所以這個基礎都已經打好了現在接棒就需要更多的開放更多的點子那彭主席你是點子王啊沒有所以我想說你穩健是穩健希望可以積極那你現在看韓國韓國最近的資金大幅的外商大竄頭是為什麼
transcript.whisperx[19].start 416.843
transcript.whisperx[19].end 435.557
transcript.whisperx[19].text 我也看到就是我們亞洲股市裡面大部分都是上漲比如說像台灣跟日本是大概是兩個那接下來後來香港那個韓國是下跌的我想這個他有很比較複雜的這樣一個結構因為他戒嚴啊那可能有一段長的趨勢台灣有沒有可能會搞戒嚴
transcript.whisperx[20].start 438.171
transcript.whisperx[20].end 463.816
transcript.whisperx[20].text 抱歉我沒辦法回答沒辦法回答好那萬一萬一我們當然是不希望看到戒嚴可是如果有人心存歹念想要戒嚴的話一搞戒嚴的話對於金融機構會有什麼影響我們所有的企業所有民眾的資金會被凍結這個看我想如果說以韓國的經驗不管它時間多短但是產生這個資本市場波動已經大家都看到了
transcript.whisperx[21].start 464.946
transcript.whisperx[21].end 487.985
transcript.whisperx[21].text 如果這個戒嚴發生在臺灣的話對於這些金融業產生的影響是什麼這個我不做預期不過我想我們從韓國的經驗看到一定會有一些影響好啦我們希望說不要看到戒嚴啦因為你的資金可能就限制外匯管制整個就是大概金融就封掉了另外剛剛講到證券這個當沖降稅來得及來不及
transcript.whisperx[22].start 493.997
transcript.whisperx[22].end 520.947
transcript.whisperx[22].text 我們當然我們現在所有都準備如果說真的能夠當中降稅通過的話那就現況當然問題沒有完全沒有我也期待說我們還有幾次大會的時間如果能夠通過的話對台灣的經濟的穩定還是非常非常有幫助因為我們過去經驗曾經有一次有討論到這個問題就市場產生一些不安的波動那實際上我想這部分我們有過去的經驗我們還是期待能夠
transcript.whisperx[23].start 521.707
transcript.whisperx[23].end 547.476
transcript.whisperx[23].text 我們大家能夠在這個會期比如在今年12月、13月、14月能夠通過這個部分那順利當然前面有委員質詢我們該做的準備我們一個也不會少萬一來不及怎麼辦那就按照回到我們法規的法律的狀態就沒有減半科增我們就開始要花入一些一些的人力時間成本去改變這些我看那個張局長很緊張
transcript.whisperx[24].start 549.093
transcript.whisperx[24].end 559.284
transcript.whisperx[24].text 因為你這一把熱火很熱的一個股市熱絡的情況突然啪降溫那萬一降溫的話
transcript.whisperx[25].start 560.836
transcript.whisperx[25].end 590.037
transcript.whisperx[25].text 想要再恢復會不會很困難所以說希望委員能夠多多多多那個支持讓他趕快通過現在日均量多少現在大概4200多億4000多那當沖的部分占了多少4成4成啊對你4000多欸4624如果怕掉下來的話剩2000多億那影響是很大的啊那確實當沖降稅在很多我們在審查這時候呢他對於我們的成交量的增加是非常明顯的
transcript.whisperx[26].start 591.764
transcript.whisperx[26].end 603.457
transcript.whisperx[26].text 我們希望說迎向未來台灣成為亞洲的資產管理中心勢必要參考一下臨近國家的情況
transcript.whisperx[27].start 604.52
transcript.whisperx[27].end 617.346
transcript.whisperx[27].text 把韓國的一些資源他們的一些流向給導入台灣香港金融地位看我們台灣能不能取代謝謝謝謝委員最後一句現在討論的租賃公司租賃公司現在的糾紛案件到底有幾件
transcript.whisperx[28].start 628.887
transcript.whisperx[28].end 655.304
transcript.whisperx[28].text 因為現在我們沒有在受理這一塊因為那個現在的消費糾紛還是回到原來的我們的消保體制假設未來納入金保法以後呢我們在平益中心就會有明確的統計那你不曉得幾件你為什麼要急著要去管理這些公司這倒不是因為我們看到社會上很多的紛爭而且我們過去一直相信相同的行為要受到相同的類似的管理我們已經看到就是說
transcript.whisperx[29].start 656.024
transcript.whisperx[29].end 675.486
transcript.whisperx[29].text 他們在做很多這些融資待放的時候我覺得這是社會關注的一題其實這本來不是金管會的所俠業務我們覺得說社會對這個期待我們認為說假設能夠以現在金融消保法這樣來管理說不定是一個解決現在對行為所以你如果要管的話請問駐林公司有幾千
transcript.whisperx[30].start 676.247
transcript.whisperx[30].end 693.708
transcript.whisperx[30].text 現在我剛剛講他界限是模糊的但是我們租賃公會裡面大概40家40家租賃公司一共有七、八千家就看你看剛剛的數字你如果要管的話那你應該全部都要那樣管啊你怎麼就管幾家現在說管三家
transcript.whisperx[31].start 695.389
transcript.whisperx[31].end 717.398
transcript.whisperx[31].text 上市的一共有幾家?上市4家我們是分階段因為這是一個試行的過程沒辦法一下子這樣第一階段管3家第二階段什麼時候實施會管7000家我們原本第二階段是半年後半年後是針對我們金融機構轉投資的這些14家
transcript.whisperx[32].start 721.38
transcript.whisperx[32].end 741.231
transcript.whisperx[32].text 十四家所以每一家都要列管不是 它其實上就是只針對它的有金融消費者的爭議那一塊納管不是 我們一直都說金融有消費嘛我就問你說那金融消費有爭議的有幾件我剛才跟委員報告過因為它現在不是我們納管我們沒有去統計這個我跟工會 工會說剩不到三、四件
transcript.whisperx[33].start 742.511
transcript.whisperx[33].end 744.313
transcript.whisperx[33].text 有關金融監督管理委員會主管中央存款保險股份有
transcript.whisperx[34].start 772.432
transcript.whisperx[34].end 788.693
transcript.whisperx[34].text 你要管你要管得有意義而且是一致性的對 當然剛剛講我剛剛也跟委員也就前面也報告過只要這個產業是一個非常非常明確的界限那當然是但是剛剛講我們從早上到現在有人說一千家有人說六千家有人講
transcript.whisperx[35].start 789.534
transcript.whisperx[35].end 802.37
transcript.whisperx[35].text 其實各位就知道那個是現在沒有一個成型的一個產業我們只能是從他那個業務登記上面去推你可能是主委那你這個管完以後下一個你要再管的就是那個地下錢莊
transcript.whisperx[36].start 803.556
transcript.whisperx[36].end 825.677
transcript.whisperx[36].text 沒有 這個不是 我們金融監管有它一定的界限地下錢裝在下面也好 當鋪因為它是一個生態的關係啦如果一般企業它借得到 它直接就跟銀行借啊就是因為銀行借不到 它才會跑去刺激市場對 所以我們才會差異化去處理這個會有它的道理存在
transcript.whisperx[37].start 826.778
transcript.whisperx[37].end 841.993
transcript.whisperx[37].text 委員非常內行就是說我們對他的管理是比較低度只做行為管理就是消費行為管理就做一件事情我還是提醒你就是說不要用大炮打小鳥也不會我們剛剛跟委員報了這差異化已經我們不是用銀行的角度去管理他
transcript.whisperx[38].start 842.964
transcript.whisperx[38].end 870.084
transcript.whisperx[38].text 不是我們是用差異銀行是有機構管理跟消費行為管理他只針對那個部分的個人的消費金融要滿足那幾個要件比如契約公平那個廣告核實然後像比如說KYC那個就是很很基本的這樣而已啊所以我覺得時間關係是是是資料在後補好了是沒問題謝謝謝謝委員謝謝盧文才委員謝謝接著我們請葉元之委員
IVOD_ID 158257
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/158257
日期 2024-12-19
會議資料.會議代碼 委員會-11-2-20-11
會議資料.屆 11
會議資料.會期 2
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.標題 第11屆第2會期財政委員會第11次全體委員會議
影片種類 Clip
開始時間 2024-12-19T11:55:58+08:00
結束時間 2024-12-19T12:10:33+08:00
支援功能[0] ai-transcript