iVOD / 158153

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/f7e4b646118ff6a158768692e62fc15d041ac1bd29e6d5ff049c5ec402f88f0f8d5162d7c243163e5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蔡其昌
委員發言時間 10:29:32 - 10:40:11
影片長度 639
會議時間 2024-12-16T09:00:00+08:00
會議名稱 立法院第11屆第2會期交通委員會第15次全體委員會議(事由:一、邀請國家運輸安全調查委員會主任委員林信得列席報告業務概況,並備質詢。 二、審查114年度中央政府總預算案關於國家運輸安全調查委員會單位預算。 三、審查114年度中央政府總預算案關於交通部運輸研究所單位預算。 四、審查114年度中央政府總預算案關於交通部鐵道局及所屬單位預算。 五、審查114年度中央政府總預算案附屬單位預算非營業部分關於交通部主管交通作業基金─鐵道發展基金分預算。 【僅進行詢答;委員預算提案於12月25日中午12時前截止收件】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 2.71409375
transcript.pyannote[0].end 5.32971875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 5.70096875
transcript.pyannote[1].end 6.96659375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 7.25346875
transcript.pyannote[2].end 7.82721875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 8.78909375
transcript.pyannote[3].end 9.37971875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 10.18971875
transcript.pyannote[4].end 11.37096875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 19.21784375
transcript.pyannote[5].end 21.10784375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 20.50034375
transcript.pyannote[6].end 20.75346875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 20.75346875
transcript.pyannote[7].end 20.77034375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 21.74909375
transcript.pyannote[8].end 29.61284375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 30.77721875
transcript.pyannote[9].end 35.14784375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 35.14784375
transcript.pyannote[10].end 35.46846875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 35.70471875
transcript.pyannote[11].end 57.28784375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 57.57471875
transcript.pyannote[12].end 59.09346875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 59.38034375
transcript.pyannote[13].end 66.04596875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 65.40471875
transcript.pyannote[14].end 66.33284375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 66.82221875
transcript.pyannote[15].end 70.51784375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 69.35346875
transcript.pyannote[16].end 69.65721875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 69.92721875
transcript.pyannote[17].end 78.19596875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 78.19596875
transcript.pyannote[18].end 83.73096875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 83.76471875
transcript.pyannote[19].end 87.73034375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 86.95409375
transcript.pyannote[20].end 87.91596875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 87.91596875
transcript.pyannote[21].end 92.60721875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 88.75971875
transcript.pyannote[22].end 90.31221875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 91.96596875
transcript.pyannote[23].end 92.21909375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 92.52284375
transcript.pyannote[24].end 99.55971875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 100.36971875
transcript.pyannote[25].end 101.09534375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 101.53409375
transcript.pyannote[26].end 110.52846875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 104.01471875
transcript.pyannote[27].end 104.97659375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 107.33909375
transcript.pyannote[28].end 108.40221875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 110.49471875
transcript.pyannote[29].end 110.51159375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 110.52846875
transcript.pyannote[30].end 110.84909375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 110.84909375
transcript.pyannote[31].end 114.86534375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 114.86534375
transcript.pyannote[32].end 122.64471875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 120.29909375
transcript.pyannote[33].end 132.63471875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 132.87096875
transcript.pyannote[34].end 135.82409375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 136.02659375
transcript.pyannote[35].end 136.90409375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 136.90409375
transcript.pyannote[36].end 136.92096875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 137.29221875
transcript.pyannote[37].end 148.39596875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 148.63221875
transcript.pyannote[38].end 153.93096875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 154.36971875
transcript.pyannote[39].end 157.99784375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 158.60534375
transcript.pyannote[40].end 170.99159375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 171.22784375
transcript.pyannote[41].end 171.56534375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 171.83534375
transcript.pyannote[42].end 172.83096875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 172.83096875
transcript.pyannote[43].end 173.13471875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 173.23596875
transcript.pyannote[44].end 180.74534375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 178.53471875
transcript.pyannote[45].end 178.92284375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 181.16721875
transcript.pyannote[46].end 193.21596875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 193.53659375
transcript.pyannote[47].end 195.00471875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 195.46034375
transcript.pyannote[48].end 199.61159375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 198.61596875
transcript.pyannote[49].end 200.11784375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 200.06721875
transcript.pyannote[50].end 204.21846875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 203.18909375
transcript.pyannote[51].end 203.89784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 204.21846875
transcript.pyannote[52].end 204.64034375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 204.64034375
transcript.pyannote[53].end 213.98909375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 211.13721875
transcript.pyannote[54].end 211.22159375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 211.67721875
transcript.pyannote[55].end 211.72784375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 211.72784375
transcript.pyannote[56].end 211.96409375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 211.96409375
transcript.pyannote[57].end 212.72346875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 214.34346875
transcript.pyannote[58].end 217.24596875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 217.63409375
transcript.pyannote[59].end 218.35971875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 220.94159375
transcript.pyannote[60].end 221.34659375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 224.55284375
transcript.pyannote[61].end 235.09971875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 235.63971875
transcript.pyannote[62].end 236.68596875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 237.09096875
transcript.pyannote[63].end 241.30971875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 242.17034375
transcript.pyannote[64].end 244.06034375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 244.66784375
transcript.pyannote[65].end 255.95721875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 256.42971875
transcript.pyannote[66].end 256.98659375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 257.47596875
transcript.pyannote[67].end 269.52471875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 269.99721875
transcript.pyannote[68].end 283.24409375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 283.59846875
transcript.pyannote[69].end 285.75846875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 286.11284375
transcript.pyannote[70].end 287.05784375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 287.96909375
transcript.pyannote[71].end 291.00659375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 291.41159375
transcript.pyannote[72].end 292.55909375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 293.40284375
transcript.pyannote[73].end 294.34784375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 294.66846875
transcript.pyannote[74].end 297.23346875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 297.94221875
transcript.pyannote[75].end 302.78534375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 303.12284375
transcript.pyannote[76].end 303.61221875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 304.06784375
transcript.pyannote[77].end 308.99534375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 309.41721875
transcript.pyannote[78].end 315.69471875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 315.54284375
transcript.pyannote[79].end 320.77409375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 316.84221875
transcript.pyannote[80].end 317.58471875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 317.63534375
transcript.pyannote[81].end 318.44534375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 319.22159375
transcript.pyannote[82].end 319.64346875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 320.30159375
transcript.pyannote[83].end 327.30471875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 326.98409375
transcript.pyannote[84].end 327.16971875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 327.30471875
transcript.pyannote[85].end 330.08909375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 329.04284375
transcript.pyannote[86].end 329.70096875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 330.49409375
transcript.pyannote[87].end 339.45471875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 339.47159375
transcript.pyannote[88].end 339.48846875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 339.48846875
transcript.pyannote[89].end 344.63534375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 340.11284375
transcript.pyannote[90].end 341.02409375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 341.37846875
transcript.pyannote[91].end 343.03221875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 343.99409375
transcript.pyannote[92].end 348.19596875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 348.61784375
transcript.pyannote[93].end 352.49909375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 352.98846875
transcript.pyannote[94].end 355.16534375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 355.19909375
transcript.pyannote[95].end 355.30034375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 355.30034375
transcript.pyannote[96].end 355.62096875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 355.62096875
transcript.pyannote[97].end 358.87784375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 355.63784375
transcript.pyannote[98].end 356.02596875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 356.02596875
transcript.pyannote[99].end 356.04284375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 356.32971875
transcript.pyannote[100].end 357.22409375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 359.45159375
transcript.pyannote[101].end 361.35846875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 362.42159375
transcript.pyannote[102].end 366.21846875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 365.69534375
transcript.pyannote[103].end 378.43596875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 377.91284375
transcript.pyannote[104].end 395.26034375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 381.10221875
transcript.pyannote[105].end 382.77284375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 386.65409375
transcript.pyannote[106].end 387.41346875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 393.01596875
transcript.pyannote[107].end 393.97784375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 394.55159375
transcript.pyannote[108].end 396.15471875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 395.36159375
transcript.pyannote[109].end 409.63784375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 403.98471875
transcript.pyannote[110].end 404.92971875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 410.49846875
transcript.pyannote[111].end 416.97846875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 417.51846875
transcript.pyannote[112].end 421.72034375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 423.15471875
transcript.pyannote[113].end 425.87159375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 426.37784375
transcript.pyannote[114].end 427.84596875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 429.01034375
transcript.pyannote[115].end 435.52409375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 436.04721875
transcript.pyannote[116].end 441.73409375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 441.93659375
transcript.pyannote[117].end 444.80534375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 445.21034375
transcript.pyannote[118].end 446.89784375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 447.64034375
transcript.pyannote[119].end 449.86784375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 450.52596875
transcript.pyannote[120].end 464.54909375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 464.54909375
transcript.pyannote[121].end 464.56596875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 464.90346875
transcript.pyannote[122].end 471.61971875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 471.85596875
transcript.pyannote[123].end 486.25034375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 486.25034375
transcript.pyannote[124].end 486.68909375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 486.68909375
transcript.pyannote[125].end 486.73971875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 486.73971875
transcript.pyannote[126].end 490.08096875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 490.65471875
transcript.pyannote[127].end 493.10159375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 493.52346875
transcript.pyannote[128].end 494.75534375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 495.10971875
transcript.pyannote[129].end 502.38284375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 502.77096875
transcript.pyannote[130].end 506.85471875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 507.27659375
transcript.pyannote[131].end 508.25534375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 508.49159375
transcript.pyannote[132].end 514.46534375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 515.03909375
transcript.pyannote[133].end 515.30909375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 515.68034375
transcript.pyannote[134].end 534.59721875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 535.06971875
transcript.pyannote[135].end 540.35159375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 539.40659375
transcript.pyannote[136].end 550.45971875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 541.61721875
transcript.pyannote[137].end 542.20784375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 546.84846875
transcript.pyannote[138].end 547.74284375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 550.47659375
transcript.pyannote[139].end 555.33659375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 555.64034375
transcript.pyannote[140].end 557.63159375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 558.00284375
transcript.pyannote[141].end 560.02784375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 560.39909375
transcript.pyannote[142].end 571.94159375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 572.26221875
transcript.pyannote[143].end 588.31034375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 588.56346875
transcript.pyannote[144].end 591.44909375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 591.78659375
transcript.pyannote[145].end 597.40596875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 596.83221875
transcript.pyannote[146].end 599.51534375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 598.77284375
transcript.pyannote[147].end 613.25159375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 600.24096875
transcript.pyannote[148].end 600.44346875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 601.08471875
transcript.pyannote[149].end 602.53596875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 604.15596875
transcript.pyannote[150].end 605.03346875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 605.03346875
transcript.pyannote[151].end 605.05034375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 610.18034375
transcript.pyannote[152].end 610.95659375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 613.42034375
transcript.pyannote[153].end 621.43596875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 621.80721875
transcript.pyannote[154].end 631.93221875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 623.35971875
transcript.pyannote[155].end 624.49034375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 632.06721875
transcript.pyannote[156].end 633.55221875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 632.42159375
transcript.pyannote[157].end 635.56034375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 635.20596875
transcript.pyannote[158].end 635.61096875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 635.61096875
transcript.pyannote[159].end 637.23096875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 636.72471875
transcript.pyannote[160].end 637.75409375
transcript.whisperx[0].start 3.302
transcript.whisperx[0].end 11.426
transcript.whisperx[0].text 謝謝主席先請交通部陳部長陳部長林所長好林居國所長部長早所長早這個今天本席就教幾個問題第一個就是我們那個ADS先進駕駛輔助系統
transcript.whisperx[1].start 31.096
transcript.whisperx[1].end 58.646
transcript.whisperx[1].text 所長執行的成果怎麼樣過去在國道上面執行嗎是跟委員報告一下我們前兩年在國道執行當然就是幫業者去開發出來一個所謂的一個分析的一個平台工具也就是說後續他們業者可以直接就是利用ADAS還有這個一些行車影像的資料直接就可以去找出到底他所寫的哪些駕駛員他在什麼樣的一些
transcript.whisperx[2].start 59.426
transcript.whisperx[2].end 75.773
transcript.whisperx[2].text 道路的一個情況之下比較會有一些不適當的駕駛行為那可以作為教育訓練的一個工具那進度上面我們實際在運用了嗎?國道的客運業國道客運我們那個114年度我們準備就是要實際找一家業者來輔導他們來移轉給他們做使用
transcript.whisperx[3].start 78.274
transcript.whisperx[3].end 99.28
transcript.whisperx[3].text 好,所以國道,你要從國道跟市區道路是同時做還是分開做?前兩年是先開發國道的這個分區平台。對,明年開始做市區。然後明年同時做市區跟福島。那這個福島的計畫好了之後,對於這個ADAS系統在行車安全上面,
transcript.whisperx[4].start 101.845
transcript.whisperx[4].end 123.597
transcript.whisperx[4].text 你先會讓他們熟悉嘛然後也讓AI辨識度data多了他的辨識精準度就高嘛那實際在運用上面你覺得時間時程會落在什麼時候我想明年我們實際就是會找業者來做這一個示範嘛到時候就可以從這個過程當中我知道示範我知道但你覺得這個
transcript.whisperx[5].start 125.058
transcript.whisperx[5].end 132.498
transcript.whisperx[5].text 這樣的系統普遍的運用在國道的客運跟市區的公車上面時間大概還要多久?
transcript.whisperx[6].start 133.592
transcript.whisperx[6].end 157.801
transcript.whisperx[6].text 我預估大概三到五年十成盡量掌握啦如果這是一個有用的技術因為我們都知道這個系統裝上去如果成效好的話事實上對於國道客運特別在市區啦你看市區很多的這種車禍對行人公車去撞到行人等等
transcript.whisperx[7].start 158.681
transcript.whisperx[7].end 179.46
transcript.whisperx[7].text 如果這個系統你們經過測試、教育訓練都可以成功,那未來勢必對於行人受到公車、大型巴士傷害的機率就下降。人民關天啦,這有好的事情,要早一點做、快一點做。我們加速。對,這都講實際的啦,除了有的,我聽都覺得那個就...
transcript.whisperx[8].start 182.502
transcript.whisperx[8].end 200.257
transcript.whisperx[8].text 但是這次馬上可以立即改善我們很多你看這種死角啦公車在開在過程裡面司機沒有去注意到科技的發展協助這個公車的駕駛讓保障行人的安全這個很重要好不好首長114年度這預算要趕快去執行怎麼去縮短
transcript.whisperx[9].start 204.74
transcript.whisperx[9].end 204.92
transcript.whisperx[9].text 總議長請回,請我們主委。
transcript.whisperx[10].start 224.602
transcript.whisperx[10].end 240.839
transcript.whisperx[10].text 各位有關那個運安會我想多次我們在我辦公室我們有協調過有瞭解過那我其實有些數據趁著今天部長也在這個運安會第一個在事故調查暫期暫期率高達
transcript.whisperx[11].start 242.216
transcript.whisperx[11].end 255.59
transcript.whisperx[11].text 高達65%這個很多的研究都顯示這個時間過長這個我也曾經跟你就教過那你也跟我提出包括這個運安會人力不足啦等等的問題你們要
transcript.whisperx[12].start 257.574
transcript.whisperx[12].end 282.601
transcript.whisperx[12].text 不是像其他單位不是說其他單位隨便調查意思是說運安會非常認真調查所以你覺得時程都會久但是這個數字看起來並不好看你看這個運安會運輸事故調查的暫期情形你看這個暫期的比率從航空的23水路的76道路的63公路的13然後合計平均大概65這時間大家感覺很長所以那個
transcript.whisperx[13].start 288.015
transcript.whisperx[13].end 312.343
transcript.whisperx[13].text 主委,這個有沒有可能可以縮短的這種可能性存在嗎?各位報告齁,這個展期率的統計它是從一開始成立的時候,它就算一直算到去年底。對,沒錯。那,因為我們這個院會成立的時候有三個主要因素是這樣子。我們成立的時候是要用人嘛,招考人來。
transcript.whisperx[14].start 313.243
transcript.whisperx[14].end 317.205
transcript.whisperx[14].text 五、審查114年度中央政府總預算案關於交通部運輸安全調查委員會單位預算
transcript.whisperx[15].start 330.592
transcript.whisperx[15].end 333.934
transcript.whisperx[15].text 三、審查114年度三、審查114年度三、審查114年度三、審查114年度
transcript.whisperx[16].start 359.531
transcript.whisperx[16].end 360.572
transcript.whisperx[16].text 二、審查114年度中央政府總預算案關於
transcript.whisperx[17].start 383.229
transcript.whisperx[17].end 383.589
transcript.whisperx[17].text 第三個問題呢這個齁
transcript.whisperx[18].start 410.56
transcript.whisperx[18].end 421.824
transcript.whisperx[18].text 我們提的因為運安會的調查報告結果就是要求行政單位來改善那我看一下這個要求要改善建立的事項在所謂分項執行計畫列管情形這個列管比例
transcript.whisperx[19].start 429.679
transcript.whisperx[19].end 449.591
transcript.whisperx[19].text 這個列管比例都還有20幾%、10幾%甚至列管年限還有三年以上的一個事情要列管三年像我不知道三年以上哪一個案子像航空三年以上的就有五件嘛鐵道就有九件都是列管三年以上
transcript.whisperx[20].start 450.52
transcript.whisperx[20].end 452.082
transcript.whisperx[20].text 為什麼會列管這麼久?是你列管的有問題還是交通部執行的有問題?
transcript.whisperx[21].start 465.64
transcript.whisperx[21].end 489.969
transcript.whisperx[21].text 那個完成率的這個數字的顯示,最主要被幾個大數字拉下,譬如說,譬如說高雄機場他的那個跑法道的安全區他要改善,他要編列預算要編好幾年。譬如說台中機場那個區前干擾,也是一樣他跑法道需要檢查,要改善的話國防部編預算也是編了很多年,他就掛在那邊。好OK,你如果說他就在做了,
transcript.whisperx[22].start 490.689
transcript.whisperx[22].end 514.247
transcript.whisperx[22].text 它已經在執行了預算也照年度編列了你們這個列管的方法要不要調整一下這很難看嘛這個事情一直在列管三年以上還在列管三年以上列管如果你沒有告訴我我認為他就是不做三年都不做那第二種解釋方式是不對他已經在做了他已經做三年了但還沒有做完所以我還在列管
transcript.whisperx[23].start 515.764
transcript.whisperx[23].end 533.776
transcript.whisperx[23].text 對,委員你講的是重點,確實沒有錯。我們在行政院開會的時候,我們也跟政委報告說,譬如說台鐵,他已經有編了預算,那我們也看得到他的進入往前在走,那我們就會建議說這個就不要列關了。可是,像剛剛講的,台中青年康國防部編預算、明昌市高雄機場編預算、買土地
transcript.whisperx[24].start 535.077
transcript.whisperx[24].end 535.938
transcript.whisperx[24].text 單位預算案關於交通部運輸安全調查委員會單位預算
transcript.whisperx[25].start 558.123
transcript.whisperx[25].end 582.68
transcript.whisperx[25].text 我持續關注你的進度你沒有我就把你放到列管你沒有按照你的進度走我就回到列管但你只要按照進度走我應該是另外一種列管方式這樣我們立委在監督齁才不會每天看到這種看到這種三年以上我都會覺得懷疑是現在是怎樣交通部沒要理他就對了完全不鳥你運安會嗎不是嘛所以你要讓我們知道什麼事情他不鳥你的
transcript.whisperx[26].start 583.16
transcript.whisperx[26].end 608.785
transcript.whisperx[26].text 那我們該冤有頭再有主就要該怎麼監督那有一些是人家已經只著手在進行案子他就一定要做5年那你簡單講明年還有那個列管4年的因為他要做5年嘛我的意思是這樣你懂我意思嗎我們來檢討一個其實如果他進行中看得見了你應該有另外一種追蹤列管的方法而不是通通統合在一個好像都沒有做的那種列管裡面
transcript.whisperx[27].start 609.685
transcript.whisperx[27].end 634.962
transcript.whisperx[27].text 這樣好不好?這樣我們才有辦法監督嘛,不然這個數字看了我都覺得很離譜的,三年以上還有五件,還有鐵道還有九件,要怕死人啊,現在是怎樣?運安會說的話都沒人要聽就對了。這個不行啊,這個運安會的報告要改善的就是要確保我們交通載具的安全,這是維護人民生命財產的重大事情。是這樣好不好?這樣我們才有能力去監督嘛。好,謝謝,謝謝委員。
IVOD_ID 158153
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/158153
日期 2024-12-16
會議資料.會議代碼 委員會-11-2-23-15
會議資料.屆 11
會議資料.會期 2
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 23
會議資料.標題 第11屆第2會期交通委員會第15次全體委員會議
影片種類 Clip
開始時間 2024-12-16T10:29:32+08:00
結束時間 2024-12-16T10:40:11+08:00
支援功能[0] ai-transcript