iVOD / 158042

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6c9ad41bd34b9fe18700494691005a50042f85579c7bbf09e95b4365c485bd1c20bd5877b075db005ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 12:13:34 - 12:24:11
影片長度 637
會議時間 2024-12-09T09:00:00+08:00
會議名稱 立法院第11屆第2會期社會福利及衛生環境委員會第13次全體委員會議(事由:一、邀請勞動部部長列席報告業務概況,並備質詢。 二、審查中華民國114年度中央政府總預算案關於勞動部主管預算。(公務及基金預算) 三、審查勞動部函送財團法人職業災害預防及重建中心114年度預算書案。 【所列預算案,僅詢答,113年12月9日下午5時截止收案】 【業務報告及討論事項綜合詢答】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 6.30846875
transcript.pyannote[0].end 8.35034375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 8.72159375
transcript.pyannote[1].end 9.61596875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 10.98284375
transcript.pyannote[2].end 11.74221875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 13.93596875
transcript.pyannote[3].end 14.08784375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 16.93971875
transcript.pyannote[4].end 19.65659375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 17.07471875
transcript.pyannote[5].end 18.96471875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 21.37784375
transcript.pyannote[6].end 21.98534375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 23.53784375
transcript.pyannote[7].end 26.64284375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 27.41909375
transcript.pyannote[8].end 29.51159375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 30.43971875
transcript.pyannote[9].end 33.93284375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 35.13096875
transcript.pyannote[10].end 39.61971875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 39.97409375
transcript.pyannote[11].end 40.98659375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 41.61096875
transcript.pyannote[12].end 42.08346875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 42.37034375
transcript.pyannote[13].end 44.80034375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 45.67784375
transcript.pyannote[14].end 48.79971875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 49.40721875
transcript.pyannote[15].end 51.26346875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 51.68534375
transcript.pyannote[16].end 53.33909375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 53.44034375
transcript.pyannote[17].end 55.06034375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 56.20784375
transcript.pyannote[18].end 63.59909375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 64.27409375
transcript.pyannote[19].end 73.55534375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 74.31471875
transcript.pyannote[20].end 75.54659375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 76.99784375
transcript.pyannote[21].end 84.57471875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 85.84034375
transcript.pyannote[22].end 89.35034375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 89.82284375
transcript.pyannote[23].end 90.56534375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 91.94909375
transcript.pyannote[24].end 94.48034375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 95.74596875
transcript.pyannote[25].end 96.62346875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 97.53471875
transcript.pyannote[26].end 98.86784375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 99.49221875
transcript.pyannote[27].end 102.36096875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 102.98534375
transcript.pyannote[28].end 106.52909375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 107.13659375
transcript.pyannote[29].end 108.72284375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 110.00534375
transcript.pyannote[30].end 111.35534375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 111.62534375
transcript.pyannote[31].end 114.35909375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 115.25346875
transcript.pyannote[32].end 116.87346875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 117.97034375
transcript.pyannote[33].end 120.56909375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 121.26096875
transcript.pyannote[34].end 123.40409375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 124.11284375
transcript.pyannote[35].end 126.07034375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 126.57659375
transcript.pyannote[36].end 127.36971875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 128.17971875
transcript.pyannote[37].end 128.80409375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 128.97284375
transcript.pyannote[38].end 130.23846875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 130.23846875
transcript.pyannote[39].end 135.03096875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 135.03096875
transcript.pyannote[40].end 139.92471875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 140.17784375
transcript.pyannote[41].end 143.28284375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 140.24534375
transcript.pyannote[42].end 141.25784375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 143.48534375
transcript.pyannote[43].end 143.50221875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 143.50221875
transcript.pyannote[44].end 143.58659375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 143.58659375
transcript.pyannote[45].end 143.73846875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 143.73846875
transcript.pyannote[46].end 143.95784375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 143.95784375
transcript.pyannote[47].end 144.04221875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 144.04221875
transcript.pyannote[48].end 144.07596875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 144.07596875
transcript.pyannote[49].end 144.09284375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 144.09284375
transcript.pyannote[50].end 145.64534375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 146.72534375
transcript.pyannote[51].end 147.97409375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 147.97409375
transcript.pyannote[52].end 148.26096875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 148.26096875
transcript.pyannote[53].end 148.46346875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 148.46346875
transcript.pyannote[54].end 148.48034375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 148.73346875
transcript.pyannote[55].end 153.71159375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 149.76284375
transcript.pyannote[56].end 150.60659375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 153.49221875
transcript.pyannote[57].end 158.36909375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 158.94284375
transcript.pyannote[58].end 159.31409375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 159.51659375
transcript.pyannote[59].end 163.12784375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 160.69784375
transcript.pyannote[60].end 161.52471875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 162.01409375
transcript.pyannote[61].end 177.96096875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 176.69534375
transcript.pyannote[62].end 176.84721875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 177.55596875
transcript.pyannote[63].end 180.23909375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 178.38284375
transcript.pyannote[64].end 179.63159375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 180.28971875
transcript.pyannote[65].end 180.30659375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 180.30659375
transcript.pyannote[66].end 180.69471875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 180.69471875
transcript.pyannote[67].end 181.69034375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 181.11659375
transcript.pyannote[68].end 182.12909375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 182.28096875
transcript.pyannote[69].end 183.02346875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 183.56346875
transcript.pyannote[70].end 185.52096875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 186.14534375
transcript.pyannote[71].end 188.82846875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 189.41909375
transcript.pyannote[72].end 189.97596875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 189.97596875
transcript.pyannote[73].end 194.56596875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 191.07284375
transcript.pyannote[74].end 192.00096875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 194.97096875
transcript.pyannote[75].end 197.16471875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 197.58659375
transcript.pyannote[76].end 206.56409375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 201.40034375
transcript.pyannote[77].end 202.21034375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 206.81721875
transcript.pyannote[78].end 206.95221875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 206.95221875
transcript.pyannote[79].end 207.47534375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 207.47534375
transcript.pyannote[80].end 208.69034375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 207.66096875
transcript.pyannote[81].end 218.30909375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 217.95471875
transcript.pyannote[82].end 218.05596875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 218.07284375
transcript.pyannote[83].end 218.10659375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 218.20784375
transcript.pyannote[84].end 220.78971875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 218.96721875
transcript.pyannote[85].end 219.60846875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 219.99659375
transcript.pyannote[86].end 225.26159375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 225.26159375
transcript.pyannote[87].end 248.26221875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 225.41346875
transcript.pyannote[88].end 225.44721875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 225.46409375
transcript.pyannote[89].end 225.58221875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 238.98096875
transcript.pyannote[90].end 239.43659375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 248.26221875
transcript.pyannote[91].end 248.31284375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 248.31284375
transcript.pyannote[92].end 248.66721875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 248.66721875
transcript.pyannote[93].end 248.86971875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 248.86971875
transcript.pyannote[94].end 248.97096875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 248.97096875
transcript.pyannote[95].end 250.81034375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 252.19409375
transcript.pyannote[96].end 259.93971875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 258.13409375
transcript.pyannote[97].end 259.01159375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 259.93971875
transcript.pyannote[98].end 266.04846875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 260.58096875
transcript.pyannote[99].end 261.54284375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 266.04846875
transcript.pyannote[100].end 266.90909375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 267.34784375
transcript.pyannote[101].end 267.55034375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 267.55034375
transcript.pyannote[102].end 301.28346875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 286.28159375
transcript.pyannote[103].end 286.70346875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 287.29409375
transcript.pyannote[104].end 289.60596875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 301.28346875
transcript.pyannote[105].end 310.17659375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 310.73346875
transcript.pyannote[106].end 314.36159375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 315.03659375
transcript.pyannote[107].end 318.22596875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 318.68159375
transcript.pyannote[108].end 319.59284375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 319.77846875
transcript.pyannote[109].end 322.25909375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 323.45721875
transcript.pyannote[110].end 329.75159375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 329.97096875
transcript.pyannote[111].end 337.53096875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 338.37471875
transcript.pyannote[112].end 340.31534375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 341.47971875
transcript.pyannote[113].end 341.56409375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 341.56409375
transcript.pyannote[114].end 342.32346875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 341.58096875
transcript.pyannote[115].end 343.33596875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 342.50909375
transcript.pyannote[116].end 356.29596875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 344.56784375
transcript.pyannote[117].end 345.69846875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 356.29596875
transcript.pyannote[118].end 363.90659375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 360.00846875
transcript.pyannote[119].end 360.64971875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 361.03784375
transcript.pyannote[120].end 362.42159375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 362.91096875
transcript.pyannote[121].end 363.87284375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 363.90659375
transcript.pyannote[122].end 368.86784375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 364.37909375
transcript.pyannote[123].end 364.93596875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 368.96909375
transcript.pyannote[124].end 377.55846875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 376.93409375
transcript.pyannote[125].end 378.13221875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 378.13221875
transcript.pyannote[126].end 378.97596875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 378.97596875
transcript.pyannote[127].end 380.81534375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 380.81534375
transcript.pyannote[128].end 380.96721875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 380.96721875
transcript.pyannote[129].end 384.27471875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 385.11846875
transcript.pyannote[130].end 387.02534375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 387.02534375
transcript.pyannote[131].end 389.45534375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 387.86909375
transcript.pyannote[132].end 389.70846875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 389.70846875
transcript.pyannote[133].end 402.80346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 402.53346875
transcript.pyannote[134].end 405.03096875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 405.30096875
transcript.pyannote[135].end 408.76034375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 409.08096875
transcript.pyannote[136].end 410.59971875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 410.70096875
transcript.pyannote[137].end 425.75346875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 426.41159375
transcript.pyannote[138].end 429.09471875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 429.85409375
transcript.pyannote[139].end 430.86659375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 431.06909375
transcript.pyannote[140].end 439.52346875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 439.59096875
transcript.pyannote[141].end 447.62346875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 448.09596875
transcript.pyannote[142].end 448.21409375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 448.73721875
transcript.pyannote[143].end 456.56721875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 457.59659375
transcript.pyannote[144].end 458.54159375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 458.96346875
transcript.pyannote[145].end 460.12784375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 460.80284375
transcript.pyannote[146].end 461.51159375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 462.47346875
transcript.pyannote[147].end 463.23284375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 463.40159375
transcript.pyannote[148].end 463.75596875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 464.12721875
transcript.pyannote[149].end 465.13971875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 465.20721875
transcript.pyannote[150].end 466.32096875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 466.99596875
transcript.pyannote[151].end 467.95784375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 468.27846875
transcript.pyannote[152].end 468.97034375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 469.72971875
transcript.pyannote[153].end 470.50596875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 470.62409375
transcript.pyannote[154].end 472.56471875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 472.56471875
transcript.pyannote[155].end 472.58159375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 472.86846875
transcript.pyannote[156].end 477.77909375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 477.96471875
transcript.pyannote[157].end 480.83346875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 480.83346875
transcript.pyannote[158].end 486.72284375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 487.02659375
transcript.pyannote[159].end 492.78096875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 493.30409375
transcript.pyannote[160].end 496.27409375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 496.96596875
transcript.pyannote[161].end 508.18784375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 508.59284375
transcript.pyannote[162].end 512.08596875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 512.55846875
transcript.pyannote[163].end 512.99721875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 513.67221875
transcript.pyannote[164].end 524.03346875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 524.42159375
transcript.pyannote[165].end 525.63659375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 525.75471875
transcript.pyannote[166].end 529.63596875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 529.04534375
transcript.pyannote[167].end 529.56846875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 529.97346875
transcript.pyannote[168].end 563.68971875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 530.00721875
transcript.pyannote[169].end 530.69909375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 563.94284375
transcript.pyannote[170].end 566.08596875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 566.49096875
transcript.pyannote[171].end 577.30784375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 574.38846875
transcript.pyannote[172].end 579.01221875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 577.42596875
transcript.pyannote[173].end 578.15159375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 579.38346875
transcript.pyannote[174].end 580.21034375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 581.61096875
transcript.pyannote[175].end 582.74159375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 583.55159375
transcript.pyannote[176].end 586.99409375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 587.56784375
transcript.pyannote[177].end 588.95159375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 590.26784375
transcript.pyannote[178].end 591.21284375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 591.56721875
transcript.pyannote[179].end 592.73159375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 593.27159375
transcript.pyannote[180].end 593.92971875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 594.92534375
transcript.pyannote[181].end 596.25846875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 596.41034375
transcript.pyannote[182].end 597.20346875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 598.33409375
transcript.pyannote[183].end 598.65471875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 599.61659375
transcript.pyannote[184].end 601.08471875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 601.23659375
transcript.pyannote[185].end 601.27034375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 601.27034375
transcript.pyannote[186].end 603.41346875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 601.64159375
transcript.pyannote[187].end 602.73846875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 603.41346875
transcript.pyannote[188].end 604.93221875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 603.43034375
transcript.pyannote[189].end 606.02909375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 606.02909375
transcript.pyannote[190].end 606.94034375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 606.94034375
transcript.pyannote[191].end 606.95721875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 606.95721875
transcript.pyannote[192].end 607.04159375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 607.26096875
transcript.pyannote[193].end 619.05659375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 615.86721875
transcript.pyannote[194].end 615.96846875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 618.83721875
transcript.pyannote[195].end 621.94221875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 621.75659375
transcript.pyannote[196].end 624.84471875
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 622.38096875
transcript.pyannote[197].end 622.81971875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 623.14034375
transcript.pyannote[198].end 626.97096875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 626.12721875
transcript.pyannote[199].end 626.19471875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 626.76846875
transcript.pyannote[200].end 630.07596875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 631.47659375
transcript.pyannote[201].end 631.74659375
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 632.99534375
transcript.pyannote[202].end 636.79221875
transcript.whisperx[0].start 6.311
transcript.whisperx[0].end 9.432
transcript.whisperx[0].text 謝謝主席一哥先進了有請紅部長有請紅部長來紅部長請你看兩張啊這個勞保基金啊收不抵資啊從2017年開始他的保費收入3500多億支出3800多億
transcript.whisperx[1].start 35.182
transcript.whisperx[1].end 47.195
transcript.whisperx[1].text 那個點是276億一路到2023年就去年的時候這個虧的是446億然後今年預估要虧605億2025年預估虧849億就是你們資料所給的啦
transcript.whisperx[2].start 56.243
transcript.whisperx[2].end 66.528
transcript.whisperx[2].text 而勞保的全程負債有人講十幾兆所以一個人平均要備56萬你可以看2017年到2025年累計的收不抵資3818億我們看下一張從2020年開始政府博補200億2021 220億一直到2024
transcript.whisperx[3].start 85.902
transcript.whisperx[3].end 114.089
transcript.whisperx[3].text 一千兩百億一號特別條例呢分三年三百億合計已經撥補了兩千六百七十億加上你們現在已經送出來的預算了明年要撥補一千三百億加起來剛好就三千八百七十億來回到前一張啊收不抵之三八一八再回到第二張
transcript.whisperx[4].start 115.31
transcript.whisperx[4].end 142.882
transcript.whisperx[4].text 政府給了3870這兩張圖講得很清楚就是如果沒有政府撥補勞保是不是破產請問部長是不是?撥補當然非常重要是不是撥補我就請你回答如果沒有這3870億勞保是不是目前數字算起來可能還沒啦但是因為那個危險的線越來越近啦這樣子
transcript.whisperx[5].start 143.53
transcript.whisperx[5].end 172.552
transcript.whisperx[5].text 你什麼叫危險的現業額已經聽不完這聽不完這是什麼事啊我跟委員報告現在我們的餘額有1兆900多億是啊但是很多人沒有來申請啊那些人全部來的話你就病了啊對吧是是是是吧對不對對我們就是有些人沒有有條件來申請但是他沒有申請所以你還有1兆多否則如果今天那些有資格拖來今天病了啊
transcript.whisperx[6].start 174.033
transcript.whisperx[6].end 188.205
transcript.whisperx[6].text 我這樣講我對吧那位這位長官這位長官是不好意思我保險司保險司司長是是是跟委員報告我這樣講對吧如果可以申請的人就是今天來申請今天就破產對吧
transcript.whisperx[7].start 189.606
transcript.whisperx[7].end 206.28
transcript.whisperx[7].text 當然是有很多是這樣子嘛沒錯啊大家都清楚因為有些條件夠了但是他沒有來申請是不是這樣是但是當然還是要符合資格要離職退保啦才可以要離職退保如果還在工作的人也是不能來申請啦
transcript.whisperx[8].start 207
transcript.whisperx[8].end 209.402
transcript.whisperx[8].text 對啦那麼我講的那個就是說如果符合條件的就來跟你申請就破產那麼就不夠了我們的水庫的錢水庫的水不夠嘛可不可以這樣是是是是嘛因為你說一兆多可是我們的負債十幾兆啊這黨的金量
transcript.whisperx[9].start 224.29
transcript.whisperx[9].end 250.086
transcript.whisperx[9].text 這帳號算嘛對不對那個那個賴委員當然這個潛藏負債的這個部分是說如果當然一次大家都來提領的話會會有這樣子這個我覺得它比較是一個極端情境的啊你這賭他不會一次提領啊我們當然不是賭他啦但是所以我說撥補當然現在還是一個重要的手段之一是對所以你如果按照這位市長講的
transcript.whisperx[10].start 252.21
transcript.whisperx[10].end 253.15
transcript.whisperx[10].text 二、審查中華民國114年度中央政府總預算案關於勞動部主管預算:僅
transcript.whisperx[11].start 267.475
transcript.whisperx[11].end 267.996
transcript.whisperx[11].text 三、審查勞動部長列席報告業務概況.
transcript.whisperx[12].start 289.659
transcript.whisperx[12].end 313.576
transcript.whisperx[12].text 原本大家對於勞保基金的警報的實現往後再拉一點一段時間而已但我們不會說這樣子勞保基金就全然是不用擔心的也不是這個意思啊你有沒有想過怎麼樣讓他因為你剛剛講一兆那你現在潛財務部長十幾兆有人講十五兆打個七折也有十兆你你你你這部長要總是要想一個比較長期的
transcript.whisperx[13].start 315.117
transcript.whisperx[13].end 334.783
transcript.whisperx[13].text 我所了解的以前的以前叫勞保局的齁勞保局長第一件事情上來看他信什麼宗教他幾乎都是要禱告啦或者要念什麼的說讓他任內不要破產幾乎都這個樣子anytime都會破產啦這是很嚴重的問題你現在可以看嘛這個數字講的2020到2025如果不是政府撥補啊你就
transcript.whisperx[14].start 342.076
transcript.whisperx[14].end 362.202
transcript.whisperx[14].text 對,很辛苦了啦!很辛苦了啦!我們非常非常審慎的在看待這個問題,絕對沒有隨隨便便。那也因為很審慎所以才覺得這時候政府的撥補在這個過程裡面是有很高的必要性的。你們剛才那個市長講的根本就不需要撥補的啊!不是不是!因為你們有一兆多啊!這麼多錢在那裡啊!
transcript.whisperx[15].start 364.563
transcript.whisperx[15].end 382.243
transcript.whisperx[15].text 大人我們並不是不是這個不需要的意思一兆元其實是現在這是事實事實上面這個是現在的事實即便有一兆元現在來講一個很重要的原因就是因為少子化嘛是不是只有一個來講你水庫政府撥補或者是
transcript.whisperx[16].start 385.154
transcript.whisperx[16].end 392.337
transcript.whisperx[16].text 寶貴提高有沒有可能寶貴提高即便現在我已經問你時間到了有沒有可能包括寶貴提高或者是砍脊腹這兩件事確實很大程度會影響勞工的權益所以這個事情我們認為要非常非常謹慎而為或者是謹慎的來思量陳建仁前副總統在推動年改的時候他是連勞工都要砍的後來勞工都沒有砍也沒有人反對了保障勞工勞工相對比較弱勢
transcript.whisperx[17].start 414.767
transcript.whisperx[17].end 418.309
transcript.whisperx[17].text 但是用這個理由但是用軍公交給砍了兇巴巴的然後勞工都不砍還給他這個兩千兩千兩千兩千多億啊這個給他3870億啊就老實講這是安廢的但是但是就是這樣子啊
transcript.whisperx[18].start 431.304
transcript.whisperx[18].end 454.47
transcript.whisperx[18].text 對,所以剛剛跟大人說明是說不管是增加保費或者是砍幾副這確實是對整體的勞工來說這是攸關非常非常大的原因所以我們在這很謹慎思考下面才會覺得說現在這個政府的撥補很重要也很關鍵啦那那那這樣講的話這樣講的話這個退府基金撥補也就可以了啊如果這樣講的話對不對那個部長啊
transcript.whisperx[19].start 457.659
transcript.whisperx[19].end 476.947
transcript.whisperx[19].text 你在這裡是不是重申一句話剛剛你講的確定這樣就是最少在你任內你當部長任內不會提高保費勞保保費不會砍勞保的給付一毛錢可以嗎目前政策上面就是沒有要提高保費也沒有要砍給付
transcript.whisperx[20].start 478.047
transcript.whisperx[20].end 483.353
transcript.whisperx[20].text 就是在你任內嘛是吧?至少至少就目前好最後一個小問題很重要的問題喔我們來看喔薪資佔GDP的比例啊現在都說華佔多華佔GDP成長4%啦當地都4%結果給勞工的只有43%台灣
transcript.whisperx[21].start 497.029
transcript.whisperx[21].end 501.716
transcript.whisperx[21].text 美國給勞工的53%日本53.5%韓國超過50%這個嚴重的讓臺灣的勞工的薪資都長期偏低我們有7成的勞工領不到平均薪資部長
transcript.whisperx[22].start 513.712
transcript.whisperx[22].end 519.698
transcript.whisperx[22].text 你有什麼作為說可以讓企業主願意賺的錢多扶你的勞工這是你該做的事情啊讓勞工生活不要那麼的辛苦可以嗎我很同意你現在說的齁
transcript.whisperx[23].start 530.529
transcript.whisperx[23].end 550.955
transcript.whisperx[23].text 怎麼樣拉高薪資?第一個事情是現在包括我們現在在推動包括薪資的透明化明年可能是就你只要是5萬以下的薪資你其實在招聘過程中你其實都要揭露那這部分過去來看的話是有一定的效果的這是第一個第二個當然就像這幾年我們對基本工資的部分也持續的在做調整
transcript.whisperx[24].start 551.875
transcript.whisperx[24].end 579.743
transcript.whisperx[24].text 那接下來我自己也在思考我也跟同仁在討論說有沒有可能透過像這個跟金管會合作那對於他在這個相關的ESG相關他可能怎麼樣提出一個能夠提高薪資或者是讓勞工有更多的分潤甚至包括降減低工時的具體的策略或者是行動的方案在這裡面能不能放入我加一點你可以跟金管會談啦我時間到了主席站起來了我尊重喔加一條
transcript.whisperx[25].start 581.67
transcript.whisperx[25].end 597.216
transcript.whisperx[25].text 你告訴金管委說應該推一個現在不是很流行ETF嗎?加薪100ETF就加薪最前面的100加就放在ETF加薪100現在有個指數了
transcript.whisperx[26].start 601.597
transcript.whisperx[26].end 629.067
transcript.whisperx[26].text 現在沒有這個指數沒有這個指數沒有加薪100或者加薪50都可以沒有這個指數我想因為讓人在對於這個金融相關的部分當然比我專業很多我覺得我們這些相關的做法我們可以來持續討論我們願意跟金管會來做用多方法的討論我們立委人文言輕啊你部長比較有分量當然當然我是說我們我剛才就跟金管會講了N次他不理我你就跟他解啊有可能有可能性的我們當然願意跟金管會來做討論啊對
transcript.whisperx[27].start 631.519
transcript.whisperx[27].end 635.863
transcript.whisperx[27].text 一、審查中華民國114年度中央政府總預算案關於勞動部中心114年度中央政府總預算案。
IVOD_ID 158042
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/158042
日期 2024-12-09
會議資料.會議代碼 委員會-11-2-26-13
會議資料.屆 11
會議資料.會期 2
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.標題 第11屆第2會期社會福利及衛生環境委員會第13次全體委員會議
影片種類 Clip
開始時間 2024-12-09T12:13:34+08:00
結束時間 2024-12-09T12:24:11+08:00
支援功能[0] ai-transcript