IVOD_ID |
15804 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Full/1M/15804 |
日期 |
2024-04-12 |
影片種類 |
Full |
開始時間 |
2024-04-12T11:39:59+08:00 |
結束時間 |
2024-04-12T13:32:00+08:00 |
影片長度 |
01:52:01 |
支援功能[0] |
ai-transcript |
video_url |
https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/b73ade72829c64ed5b011568f53a92070101cafb4a798c283be8d109af184be4fad3411e3f61a1695ea18f28b6918d91.mp4/playlist.m3u8 |
會議時間 |
2024-04-12T12:10:00+08:00 |
會議名稱 |
國會助理研習活動(事由:質詢稿寫作) |
委員名稱 |
完整會議 |
委員發言時間 |
11:39:59 - 13:32:00 |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
1908.49221875 |
transcript.pyannote[0].end |
1909.21784375 |
transcript.pyannote[1].speaker |
SPEAKER_05 |
transcript.pyannote[1].start |
1909.30221875 |
transcript.pyannote[1].end |
1910.02784375 |
transcript.pyannote[2].speaker |
SPEAKER_05 |
transcript.pyannote[2].start |
1910.19659375 |
transcript.pyannote[2].end |
1910.26409375 |
transcript.pyannote[3].speaker |
SPEAKER_05 |
transcript.pyannote[3].start |
1910.31471875 |
transcript.pyannote[3].end |
1910.41596875 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
1916.60909375 |
transcript.pyannote[4].end |
1923.44346875 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
1923.71346875 |
transcript.pyannote[5].end |
1924.59096875 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
1924.94534375 |
transcript.pyannote[6].end |
1932.96096875 |
transcript.pyannote[7].speaker |
SPEAKER_02 |
transcript.pyannote[7].start |
1935.01971875 |
transcript.pyannote[7].end |
1937.33159375 |
transcript.pyannote[8].speaker |
SPEAKER_02 |
transcript.pyannote[8].start |
1938.32721875 |
transcript.pyannote[8].end |
1947.69284375 |
transcript.pyannote[9].speaker |
SPEAKER_02 |
transcript.pyannote[9].start |
1949.38034375 |
transcript.pyannote[9].end |
1956.87284375 |
transcript.pyannote[10].speaker |
SPEAKER_02 |
transcript.pyannote[10].start |
1958.40846875 |
transcript.pyannote[10].end |
1983.53534375 |
transcript.pyannote[11].speaker |
SPEAKER_03 |
transcript.pyannote[11].start |
1989.17159375 |
transcript.pyannote[11].end |
1989.62721875 |
transcript.pyannote[12].speaker |
SPEAKER_03 |
transcript.pyannote[12].start |
1990.25159375 |
transcript.pyannote[12].end |
1991.55096875 |
transcript.pyannote[13].speaker |
SPEAKER_02 |
transcript.pyannote[13].start |
1991.88846875 |
transcript.pyannote[13].end |
1992.63096875 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
1993.81221875 |
transcript.pyannote[14].end |
1994.67284375 |
transcript.pyannote[15].speaker |
SPEAKER_03 |
transcript.pyannote[15].start |
1994.97659375 |
transcript.pyannote[15].end |
1995.02721875 |
transcript.pyannote[16].speaker |
SPEAKER_03 |
transcript.pyannote[16].start |
1997.42346875 |
transcript.pyannote[16].end |
2005.57409375 |
transcript.pyannote[17].speaker |
SPEAKER_03 |
transcript.pyannote[17].start |
2005.92846875 |
transcript.pyannote[17].end |
2012.35784375 |
transcript.pyannote[18].speaker |
SPEAKER_03 |
transcript.pyannote[18].start |
2012.45909375 |
transcript.pyannote[18].end |
2042.66534375 |
transcript.pyannote[19].speaker |
SPEAKER_03 |
transcript.pyannote[19].start |
2045.46659375 |
transcript.pyannote[19].end |
2072.38221875 |
transcript.pyannote[20].speaker |
SPEAKER_03 |
transcript.pyannote[20].start |
2073.42846875 |
transcript.pyannote[20].end |
2074.28909375 |
transcript.pyannote[21].speaker |
SPEAKER_03 |
transcript.pyannote[21].start |
2077.10721875 |
transcript.pyannote[21].end |
2081.17409375 |
transcript.pyannote[22].speaker |
SPEAKER_03 |
transcript.pyannote[22].start |
2086.60784375 |
transcript.pyannote[22].end |
2087.51909375 |
transcript.pyannote[23].speaker |
SPEAKER_03 |
transcript.pyannote[23].start |
2088.32909375 |
transcript.pyannote[23].end |
2128.30596875 |
transcript.pyannote[24].speaker |
SPEAKER_03 |
transcript.pyannote[24].start |
2130.24659375 |
transcript.pyannote[24].end |
2151.86346875 |
transcript.pyannote[25].speaker |
SPEAKER_03 |
transcript.pyannote[25].start |
2153.75346875 |
transcript.pyannote[25].end |
2156.03159375 |
transcript.pyannote[26].speaker |
SPEAKER_03 |
transcript.pyannote[26].start |
2156.85846875 |
transcript.pyannote[26].end |
2157.53346875 |
transcript.pyannote[27].speaker |
SPEAKER_05 |
transcript.pyannote[27].start |
2158.17471875 |
transcript.pyannote[27].end |
2158.96784375 |
transcript.pyannote[28].speaker |
SPEAKER_03 |
transcript.pyannote[28].start |
2158.96784375 |
transcript.pyannote[28].end |
2159.00159375 |
transcript.pyannote[29].speaker |
SPEAKER_05 |
transcript.pyannote[29].start |
2159.00159375 |
transcript.pyannote[29].end |
2159.03534375 |
transcript.pyannote[30].speaker |
SPEAKER_03 |
transcript.pyannote[30].start |
2160.99284375 |
transcript.pyannote[30].end |
2161.09409375 |
transcript.pyannote[31].speaker |
SPEAKER_05 |
transcript.pyannote[31].start |
2161.09409375 |
transcript.pyannote[31].end |
2161.34721875 |
transcript.pyannote[32].speaker |
SPEAKER_03 |
transcript.pyannote[32].start |
2161.34721875 |
transcript.pyannote[32].end |
2161.54971875 |
transcript.pyannote[33].speaker |
SPEAKER_03 |
transcript.pyannote[33].start |
2162.52846875 |
transcript.pyannote[33].end |
2163.10221875 |
transcript.pyannote[34].speaker |
SPEAKER_03 |
transcript.pyannote[34].start |
2168.85659375 |
transcript.pyannote[34].end |
2169.37971875 |
transcript.pyannote[35].speaker |
SPEAKER_05 |
transcript.pyannote[35].start |
2170.30784375 |
transcript.pyannote[35].end |
2171.35409375 |
transcript.pyannote[36].speaker |
SPEAKER_03 |
transcript.pyannote[36].start |
2171.48909375 |
transcript.pyannote[36].end |
2172.34971875 |
transcript.pyannote[37].speaker |
SPEAKER_05 |
transcript.pyannote[37].start |
2172.45096875 |
transcript.pyannote[37].end |
2172.50159375 |
transcript.pyannote[38].speaker |
SPEAKER_04 |
transcript.pyannote[38].start |
2173.81784375 |
transcript.pyannote[38].end |
2174.32409375 |
transcript.pyannote[39].speaker |
SPEAKER_03 |
transcript.pyannote[39].start |
2174.39159375 |
transcript.pyannote[39].end |
2177.07471875 |
transcript.pyannote[40].speaker |
SPEAKER_03 |
transcript.pyannote[40].start |
2182.25534375 |
transcript.pyannote[40].end |
2183.09909375 |
transcript.pyannote[41].speaker |
SPEAKER_05 |
transcript.pyannote[41].start |
2185.03971875 |
transcript.pyannote[41].end |
2185.79909375 |
transcript.pyannote[42].speaker |
SPEAKER_05 |
transcript.pyannote[42].start |
2185.93409375 |
transcript.pyannote[42].end |
2187.55409375 |
transcript.pyannote[43].speaker |
SPEAKER_05 |
transcript.pyannote[43].start |
2202.65721875 |
transcript.pyannote[43].end |
2202.74159375 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
2202.74159375 |
transcript.pyannote[44].end |
2203.23096875 |
transcript.pyannote[45].speaker |
SPEAKER_03 |
transcript.pyannote[45].start |
2207.87159375 |
transcript.pyannote[45].end |
2211.28034375 |
transcript.pyannote[46].speaker |
SPEAKER_05 |
transcript.pyannote[46].start |
2237.48721875 |
transcript.pyannote[46].end |
2239.96784375 |
transcript.pyannote[47].speaker |
SPEAKER_03 |
transcript.pyannote[47].start |
2239.96784375 |
transcript.pyannote[47].end |
2240.47409375 |
transcript.pyannote[48].speaker |
SPEAKER_05 |
transcript.pyannote[48].start |
2240.47409375 |
transcript.pyannote[48].end |
2241.03096875 |
transcript.pyannote[49].speaker |
SPEAKER_03 |
transcript.pyannote[49].start |
2246.17784375 |
transcript.pyannote[49].end |
2268.33471875 |
transcript.pyannote[50].speaker |
SPEAKER_03 |
transcript.pyannote[50].start |
2268.70596875 |
transcript.pyannote[50].end |
2293.37721875 |
transcript.pyannote[51].speaker |
SPEAKER_03 |
transcript.pyannote[51].start |
2293.76534375 |
transcript.pyannote[51].end |
2305.59471875 |
transcript.pyannote[52].speaker |
SPEAKER_03 |
transcript.pyannote[52].start |
2306.33721875 |
transcript.pyannote[52].end |
2321.84534375 |
transcript.pyannote[53].speaker |
SPEAKER_03 |
transcript.pyannote[53].start |
2342.87159375 |
transcript.pyannote[53].end |
2343.31034375 |
transcript.pyannote[54].speaker |
SPEAKER_03 |
transcript.pyannote[54].start |
2344.67721875 |
transcript.pyannote[54].end |
2344.99784375 |
transcript.pyannote[55].speaker |
SPEAKER_04 |
transcript.pyannote[55].start |
2344.99784375 |
transcript.pyannote[55].end |
2345.03159375 |
transcript.pyannote[56].speaker |
SPEAKER_03 |
transcript.pyannote[56].start |
2345.94284375 |
transcript.pyannote[56].end |
2360.75909375 |
transcript.pyannote[57].speaker |
SPEAKER_03 |
transcript.pyannote[57].start |
2361.40034375 |
transcript.pyannote[57].end |
2375.82846875 |
transcript.pyannote[58].speaker |
SPEAKER_03 |
transcript.pyannote[58].start |
2377.81971875 |
transcript.pyannote[58].end |
2378.00534375 |
transcript.pyannote[59].speaker |
SPEAKER_03 |
transcript.pyannote[59].start |
2378.98409375 |
transcript.pyannote[59].end |
2379.20346875 |
transcript.pyannote[60].speaker |
SPEAKER_03 |
transcript.pyannote[60].start |
2383.69221875 |
transcript.pyannote[60].end |
2383.86096875 |
transcript.pyannote[61].speaker |
SPEAKER_03 |
transcript.pyannote[61].start |
2385.73409375 |
transcript.pyannote[61].end |
2402.59221875 |
transcript.pyannote[62].speaker |
SPEAKER_03 |
transcript.pyannote[62].start |
2403.25034375 |
transcript.pyannote[62].end |
2403.30096875 |
transcript.pyannote[63].speaker |
SPEAKER_03 |
transcript.pyannote[63].start |
2403.40221875 |
transcript.pyannote[63].end |
2403.43596875 |
transcript.pyannote[64].speaker |
SPEAKER_03 |
transcript.pyannote[64].start |
2403.75659375 |
transcript.pyannote[64].end |
2421.61034375 |
transcript.pyannote[65].speaker |
SPEAKER_03 |
transcript.pyannote[65].start |
2422.03221875 |
transcript.pyannote[65].end |
2436.37596875 |
transcript.pyannote[66].speaker |
SPEAKER_03 |
transcript.pyannote[66].start |
2436.86534375 |
transcript.pyannote[66].end |
2455.20846875 |
transcript.pyannote[67].speaker |
SPEAKER_03 |
transcript.pyannote[67].start |
2455.51221875 |
transcript.pyannote[67].end |
2469.56909375 |
transcript.pyannote[68].speaker |
SPEAKER_03 |
transcript.pyannote[68].start |
2470.63221875 |
transcript.pyannote[68].end |
2480.77409375 |
transcript.pyannote[69].speaker |
SPEAKER_03 |
transcript.pyannote[69].start |
2481.49971875 |
transcript.pyannote[69].end |
2483.76096875 |
transcript.pyannote[70].speaker |
SPEAKER_03 |
transcript.pyannote[70].start |
2484.04784375 |
transcript.pyannote[70].end |
2486.35971875 |
transcript.pyannote[71].speaker |
SPEAKER_03 |
transcript.pyannote[71].start |
2487.32159375 |
transcript.pyannote[71].end |
2504.44971875 |
transcript.pyannote[72].speaker |
SPEAKER_03 |
transcript.pyannote[72].start |
2504.73659375 |
transcript.pyannote[72].end |
2512.71846875 |
transcript.pyannote[73].speaker |
SPEAKER_03 |
transcript.pyannote[73].start |
2513.08971875 |
transcript.pyannote[73].end |
2531.71971875 |
transcript.pyannote[74].speaker |
SPEAKER_03 |
transcript.pyannote[74].start |
2532.54659375 |
transcript.pyannote[74].end |
2549.50596875 |
transcript.pyannote[75].speaker |
SPEAKER_03 |
transcript.pyannote[75].start |
2550.38346875 |
transcript.pyannote[75].end |
2587.30596875 |
transcript.pyannote[76].speaker |
SPEAKER_03 |
transcript.pyannote[76].start |
2588.57159375 |
transcript.pyannote[76].end |
2609.42909375 |
transcript.pyannote[77].speaker |
SPEAKER_03 |
transcript.pyannote[77].start |
2610.00284375 |
transcript.pyannote[77].end |
2625.46034375 |
transcript.pyannote[78].speaker |
SPEAKER_03 |
transcript.pyannote[78].start |
2626.06784375 |
transcript.pyannote[78].end |
2650.08096875 |
transcript.pyannote[79].speaker |
SPEAKER_03 |
transcript.pyannote[79].start |
2650.43534375 |
transcript.pyannote[79].end |
2659.10909375 |
transcript.pyannote[80].speaker |
SPEAKER_03 |
transcript.pyannote[80].start |
2660.03721875 |
transcript.pyannote[80].end |
2664.03659375 |
transcript.pyannote[81].speaker |
SPEAKER_03 |
transcript.pyannote[81].start |
2665.92659375 |
transcript.pyannote[81].end |
2711.84346875 |
transcript.pyannote[82].speaker |
SPEAKER_03 |
transcript.pyannote[82].start |
2712.23159375 |
transcript.pyannote[82].end |
2715.75846875 |
transcript.pyannote[83].speaker |
SPEAKER_03 |
transcript.pyannote[83].start |
2716.19721875 |
transcript.pyannote[83].end |
2729.22471875 |
transcript.pyannote[84].speaker |
SPEAKER_03 |
transcript.pyannote[84].start |
2729.49471875 |
transcript.pyannote[84].end |
2734.45596875 |
transcript.pyannote[85].speaker |
SPEAKER_03 |
transcript.pyannote[85].start |
2734.70909375 |
transcript.pyannote[85].end |
2735.19846875 |
transcript.pyannote[86].speaker |
SPEAKER_03 |
transcript.pyannote[86].start |
2735.31659375 |
transcript.pyannote[86].end |
2750.23409375 |
transcript.pyannote[87].speaker |
SPEAKER_03 |
transcript.pyannote[87].start |
2751.24659375 |
transcript.pyannote[87].end |
2764.56096875 |
transcript.pyannote[88].speaker |
SPEAKER_03 |
transcript.pyannote[88].start |
2765.28659375 |
transcript.pyannote[88].end |
2768.10471875 |
transcript.pyannote[89].speaker |
SPEAKER_03 |
transcript.pyannote[89].start |
2768.81346875 |
transcript.pyannote[89].end |
2776.59284375 |
transcript.pyannote[90].speaker |
SPEAKER_03 |
transcript.pyannote[90].start |
2776.87971875 |
transcript.pyannote[90].end |
2777.79096875 |
transcript.pyannote[91].speaker |
SPEAKER_03 |
transcript.pyannote[91].start |
2778.56721875 |
transcript.pyannote[91].end |
2783.98409375 |
transcript.pyannote[92].speaker |
SPEAKER_03 |
transcript.pyannote[92].start |
2784.23721875 |
transcript.pyannote[92].end |
2789.78909375 |
transcript.pyannote[93].speaker |
SPEAKER_03 |
transcript.pyannote[93].start |
2790.24471875 |
transcript.pyannote[93].end |
2797.43346875 |
transcript.pyannote[94].speaker |
SPEAKER_03 |
transcript.pyannote[94].start |
2797.92284375 |
transcript.pyannote[94].end |
2812.06409375 |
transcript.pyannote[95].speaker |
SPEAKER_03 |
transcript.pyannote[95].start |
2812.60409375 |
transcript.pyannote[95].end |
2832.71909375 |
transcript.pyannote[96].speaker |
SPEAKER_03 |
transcript.pyannote[96].start |
2833.44471875 |
transcript.pyannote[96].end |
2842.32096875 |
transcript.pyannote[97].speaker |
SPEAKER_03 |
transcript.pyannote[97].start |
2842.74284375 |
transcript.pyannote[97].end |
2854.85909375 |
transcript.pyannote[98].speaker |
SPEAKER_03 |
transcript.pyannote[98].start |
2855.44971875 |
transcript.pyannote[98].end |
2856.49596875 |
transcript.pyannote[99].speaker |
SPEAKER_03 |
transcript.pyannote[99].start |
2857.35659375 |
transcript.pyannote[99].end |
2858.65596875 |
transcript.pyannote[100].speaker |
SPEAKER_03 |
transcript.pyannote[100].start |
2859.49971875 |
transcript.pyannote[100].end |
2870.28284375 |
transcript.pyannote[101].speaker |
SPEAKER_03 |
transcript.pyannote[101].start |
2870.90721875 |
transcript.pyannote[101].end |
2906.27721875 |
transcript.pyannote[102].speaker |
SPEAKER_03 |
transcript.pyannote[102].start |
2906.34471875 |
transcript.pyannote[102].end |
2928.14721875 |
transcript.pyannote[103].speaker |
SPEAKER_03 |
transcript.pyannote[103].start |
2928.73784375 |
transcript.pyannote[103].end |
2929.39596875 |
transcript.pyannote[104].speaker |
SPEAKER_03 |
transcript.pyannote[104].start |
2930.42534375 |
transcript.pyannote[104].end |
2939.40284375 |
transcript.pyannote[105].speaker |
SPEAKER_03 |
transcript.pyannote[105].start |
2939.55471875 |
transcript.pyannote[105].end |
2944.93784375 |
transcript.pyannote[106].speaker |
SPEAKER_03 |
transcript.pyannote[106].start |
2945.49471875 |
transcript.pyannote[106].end |
2954.32034375 |
transcript.pyannote[107].speaker |
SPEAKER_03 |
transcript.pyannote[107].start |
2954.84346875 |
transcript.pyannote[107].end |
2961.61034375 |
transcript.pyannote[108].speaker |
SPEAKER_03 |
transcript.pyannote[108].start |
2963.26409375 |
transcript.pyannote[108].end |
2963.46659375 |
transcript.pyannote[109].speaker |
SPEAKER_03 |
transcript.pyannote[109].start |
2963.92221875 |
transcript.pyannote[109].end |
2998.16159375 |
transcript.pyannote[110].speaker |
SPEAKER_03 |
transcript.pyannote[110].start |
2998.43159375 |
transcript.pyannote[110].end |
3001.82346875 |
transcript.pyannote[111].speaker |
SPEAKER_03 |
transcript.pyannote[111].start |
3004.59096875 |
transcript.pyannote[111].end |
3038.83034375 |
transcript.pyannote[112].speaker |
SPEAKER_03 |
transcript.pyannote[112].start |
3039.62346875 |
transcript.pyannote[112].end |
3044.01096875 |
transcript.pyannote[113].speaker |
SPEAKER_03 |
transcript.pyannote[113].start |
3046.69409375 |
transcript.pyannote[113].end |
3046.89659375 |
transcript.pyannote[114].speaker |
SPEAKER_03 |
transcript.pyannote[114].start |
3047.28471875 |
transcript.pyannote[114].end |
3047.72346875 |
transcript.pyannote[115].speaker |
SPEAKER_05 |
transcript.pyannote[115].start |
3055.16534375 |
transcript.pyannote[115].end |
3056.54909375 |
transcript.pyannote[116].speaker |
SPEAKER_05 |
transcript.pyannote[116].start |
3056.86971875 |
transcript.pyannote[116].end |
3057.10596875 |
transcript.pyannote[117].speaker |
SPEAKER_03 |
transcript.pyannote[117].start |
3069.18846875 |
transcript.pyannote[117].end |
3070.20096875 |
transcript.pyannote[118].speaker |
SPEAKER_03 |
transcript.pyannote[118].start |
3079.75221875 |
transcript.pyannote[118].end |
3082.03034375 |
transcript.pyannote[119].speaker |
SPEAKER_03 |
transcript.pyannote[119].start |
3082.70534375 |
transcript.pyannote[119].end |
3085.03409375 |
transcript.pyannote[120].speaker |
SPEAKER_03 |
transcript.pyannote[120].start |
3085.96221875 |
transcript.pyannote[120].end |
3086.29971875 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
3087.31221875 |
transcript.pyannote[121].end |
3111.51096875 |
transcript.pyannote[122].speaker |
SPEAKER_03 |
transcript.pyannote[122].start |
3111.98346875 |
transcript.pyannote[122].end |
3116.84346875 |
transcript.pyannote[123].speaker |
SPEAKER_03 |
transcript.pyannote[123].start |
3117.33284375 |
transcript.pyannote[123].end |
3119.42534375 |
transcript.pyannote[124].speaker |
SPEAKER_03 |
transcript.pyannote[124].start |
3119.84721875 |
transcript.pyannote[124].end |
3131.03534375 |
transcript.pyannote[125].speaker |
SPEAKER_03 |
transcript.pyannote[125].start |
3131.27159375 |
transcript.pyannote[125].end |
3139.27034375 |
transcript.pyannote[126].speaker |
SPEAKER_03 |
transcript.pyannote[126].start |
3139.74284375 |
transcript.pyannote[126].end |
3151.55534375 |
transcript.pyannote[127].speaker |
SPEAKER_03 |
transcript.pyannote[127].start |
3152.21346875 |
transcript.pyannote[127].end |
3164.75159375 |
transcript.pyannote[128].speaker |
SPEAKER_03 |
transcript.pyannote[128].start |
3165.07221875 |
transcript.pyannote[128].end |
3167.50221875 |
transcript.pyannote[129].speaker |
SPEAKER_03 |
transcript.pyannote[129].start |
3169.05471875 |
transcript.pyannote[129].end |
3178.97721875 |
transcript.pyannote[130].speaker |
SPEAKER_03 |
transcript.pyannote[130].start |
3179.98971875 |
transcript.pyannote[130].end |
3192.05534375 |
transcript.pyannote[131].speaker |
SPEAKER_03 |
transcript.pyannote[131].start |
3192.35909375 |
transcript.pyannote[131].end |
3193.84409375 |
transcript.pyannote[132].speaker |
SPEAKER_03 |
transcript.pyannote[132].start |
3195.81846875 |
transcript.pyannote[132].end |
3196.27409375 |
transcript.pyannote[133].speaker |
SPEAKER_03 |
transcript.pyannote[133].start |
3197.30346875 |
transcript.pyannote[133].end |
3198.46784375 |
transcript.pyannote[134].speaker |
SPEAKER_03 |
transcript.pyannote[134].start |
3198.82221875 |
transcript.pyannote[134].end |
3209.94284375 |
transcript.pyannote[135].speaker |
SPEAKER_03 |
transcript.pyannote[135].start |
3210.66846875 |
transcript.pyannote[135].end |
3215.51159375 |
transcript.pyannote[136].speaker |
SPEAKER_03 |
transcript.pyannote[136].start |
3215.96721875 |
transcript.pyannote[136].end |
3222.75096875 |
transcript.pyannote[137].speaker |
SPEAKER_03 |
transcript.pyannote[137].start |
3222.98721875 |
transcript.pyannote[137].end |
3229.65284375 |
transcript.pyannote[138].speaker |
SPEAKER_03 |
transcript.pyannote[138].start |
3230.19284375 |
transcript.pyannote[138].end |
3239.81159375 |
transcript.pyannote[139].speaker |
SPEAKER_03 |
transcript.pyannote[139].start |
3240.08159375 |
transcript.pyannote[139].end |
3260.70284375 |
transcript.pyannote[140].speaker |
SPEAKER_03 |
transcript.pyannote[140].start |
3261.36096875 |
transcript.pyannote[140].end |
3271.33409375 |
transcript.pyannote[141].speaker |
SPEAKER_03 |
transcript.pyannote[141].start |
3272.80221875 |
transcript.pyannote[141].end |
3285.96471875 |
transcript.pyannote[142].speaker |
SPEAKER_03 |
transcript.pyannote[142].start |
3286.20096875 |
transcript.pyannote[142].end |
3289.12034375 |
transcript.pyannote[143].speaker |
SPEAKER_03 |
transcript.pyannote[143].start |
3289.91346875 |
transcript.pyannote[143].end |
3291.60096875 |
transcript.pyannote[144].speaker |
SPEAKER_03 |
transcript.pyannote[144].start |
3292.14096875 |
transcript.pyannote[144].end |
3302.62034375 |
transcript.pyannote[145].speaker |
SPEAKER_03 |
transcript.pyannote[145].start |
3303.07596875 |
transcript.pyannote[145].end |
3305.35409375 |
transcript.pyannote[146].speaker |
SPEAKER_03 |
transcript.pyannote[146].start |
3305.52284375 |
transcript.pyannote[146].end |
3308.57721875 |
transcript.pyannote[147].speaker |
SPEAKER_03 |
transcript.pyannote[147].start |
3309.10034375 |
transcript.pyannote[147].end |
3330.73409375 |
transcript.pyannote[148].speaker |
SPEAKER_03 |
transcript.pyannote[148].start |
3331.07159375 |
transcript.pyannote[148].end |
3332.53971875 |
transcript.pyannote[149].speaker |
SPEAKER_03 |
transcript.pyannote[149].start |
3333.07971875 |
transcript.pyannote[149].end |
3335.93159375 |
transcript.pyannote[150].speaker |
SPEAKER_03 |
transcript.pyannote[150].start |
3336.30284375 |
transcript.pyannote[150].end |
3341.98971875 |
transcript.pyannote[151].speaker |
SPEAKER_03 |
transcript.pyannote[151].start |
3342.79971875 |
transcript.pyannote[151].end |
3354.88221875 |
transcript.pyannote[152].speaker |
SPEAKER_03 |
transcript.pyannote[152].start |
3355.40534375 |
transcript.pyannote[152].end |
3366.79596875 |
transcript.pyannote[153].speaker |
SPEAKER_03 |
transcript.pyannote[153].start |
3367.90971875 |
transcript.pyannote[153].end |
3380.09346875 |
transcript.pyannote[154].speaker |
SPEAKER_03 |
transcript.pyannote[154].start |
3380.36346875 |
transcript.pyannote[154].end |
3395.66909375 |
transcript.pyannote[155].speaker |
SPEAKER_03 |
transcript.pyannote[155].start |
3396.86721875 |
transcript.pyannote[155].end |
3421.82534375 |
transcript.pyannote[156].speaker |
SPEAKER_03 |
transcript.pyannote[156].start |
3422.17971875 |
transcript.pyannote[156].end |
3445.63596875 |
transcript.pyannote[157].speaker |
SPEAKER_03 |
transcript.pyannote[157].start |
3445.85534375 |
transcript.pyannote[157].end |
3446.31096875 |
transcript.pyannote[158].speaker |
SPEAKER_03 |
transcript.pyannote[158].start |
3446.34471875 |
transcript.pyannote[158].end |
3449.68596875 |
transcript.pyannote[159].speaker |
SPEAKER_03 |
transcript.pyannote[159].start |
3450.07409375 |
transcript.pyannote[159].end |
3458.42721875 |
transcript.pyannote[160].speaker |
SPEAKER_03 |
transcript.pyannote[160].start |
3459.13596875 |
transcript.pyannote[160].end |
3460.23284375 |
transcript.pyannote[161].speaker |
SPEAKER_03 |
transcript.pyannote[161].start |
3461.56596875 |
transcript.pyannote[161].end |
3464.73846875 |
transcript.pyannote[162].speaker |
SPEAKER_03 |
transcript.pyannote[162].start |
3465.22784375 |
transcript.pyannote[162].end |
3467.06721875 |
transcript.pyannote[163].speaker |
SPEAKER_03 |
transcript.pyannote[163].start |
3467.48909375 |
transcript.pyannote[163].end |
3468.11346875 |
transcript.pyannote[164].speaker |
SPEAKER_03 |
transcript.pyannote[164].start |
3468.48471875 |
transcript.pyannote[164].end |
3469.36221875 |
transcript.pyannote[165].speaker |
SPEAKER_03 |
transcript.pyannote[165].start |
3470.07096875 |
transcript.pyannote[165].end |
3486.32159375 |
transcript.pyannote[166].speaker |
SPEAKER_03 |
transcript.pyannote[166].start |
3487.08096875 |
transcript.pyannote[166].end |
3488.85284375 |
transcript.pyannote[167].speaker |
SPEAKER_03 |
transcript.pyannote[167].start |
3490.60784375 |
transcript.pyannote[167].end |
3497.57721875 |
transcript.pyannote[168].speaker |
SPEAKER_03 |
transcript.pyannote[168].start |
3497.79659375 |
transcript.pyannote[168].end |
3499.14659375 |
transcript.pyannote[169].speaker |
SPEAKER_03 |
transcript.pyannote[169].start |
3499.33221875 |
transcript.pyannote[169].end |
3500.81721875 |
transcript.pyannote[170].speaker |
SPEAKER_03 |
transcript.pyannote[170].start |
3501.40784375 |
transcript.pyannote[170].end |
3506.36909375 |
transcript.pyannote[171].speaker |
SPEAKER_03 |
transcript.pyannote[171].start |
3506.67284375 |
transcript.pyannote[171].end |
3507.51659375 |
transcript.pyannote[172].speaker |
SPEAKER_03 |
transcript.pyannote[172].start |
3507.88784375 |
transcript.pyannote[172].end |
3512.64659375 |
transcript.pyannote[173].speaker |
SPEAKER_03 |
transcript.pyannote[173].start |
3513.16971875 |
transcript.pyannote[173].end |
3519.86909375 |
transcript.pyannote[174].speaker |
SPEAKER_03 |
transcript.pyannote[174].start |
3520.29096875 |
transcript.pyannote[174].end |
3523.09221875 |
transcript.pyannote[175].speaker |
SPEAKER_03 |
transcript.pyannote[175].start |
3523.75034375 |
transcript.pyannote[175].end |
3540.49034375 |
transcript.pyannote[176].speaker |
SPEAKER_03 |
transcript.pyannote[176].start |
3542.46471875 |
transcript.pyannote[176].end |
3559.67721875 |
transcript.pyannote[177].speaker |
SPEAKER_03 |
transcript.pyannote[177].start |
3560.23409375 |
transcript.pyannote[177].end |
3568.95846875 |
transcript.pyannote[178].speaker |
SPEAKER_03 |
transcript.pyannote[178].start |
3569.53221875 |
transcript.pyannote[178].end |
3578.79659375 |
transcript.pyannote[179].speaker |
SPEAKER_03 |
transcript.pyannote[179].start |
3579.15096875 |
transcript.pyannote[179].end |
3589.71471875 |
transcript.pyannote[180].speaker |
SPEAKER_03 |
transcript.pyannote[180].start |
3590.17034375 |
transcript.pyannote[180].end |
3594.28784375 |
transcript.pyannote[181].speaker |
SPEAKER_03 |
transcript.pyannote[181].start |
3594.94596875 |
transcript.pyannote[181].end |
3599.60346875 |
transcript.pyannote[182].speaker |
SPEAKER_03 |
transcript.pyannote[182].start |
3600.71721875 |
transcript.pyannote[182].end |
3607.11284375 |
transcript.pyannote[183].speaker |
SPEAKER_03 |
transcript.pyannote[183].start |
3607.83846875 |
transcript.pyannote[183].end |
3609.69471875 |
transcript.pyannote[184].speaker |
SPEAKER_03 |
transcript.pyannote[184].start |
3610.70721875 |
transcript.pyannote[184].end |
3611.65221875 |
transcript.pyannote[185].speaker |
SPEAKER_03 |
transcript.pyannote[185].start |
3611.97284375 |
transcript.pyannote[185].end |
3621.86159375 |
transcript.pyannote[186].speaker |
SPEAKER_03 |
transcript.pyannote[186].start |
3622.72221875 |
transcript.pyannote[186].end |
3626.58659375 |
transcript.pyannote[187].speaker |
SPEAKER_03 |
transcript.pyannote[187].start |
3627.70034375 |
transcript.pyannote[187].end |
3648.72659375 |
transcript.pyannote[188].speaker |
SPEAKER_03 |
transcript.pyannote[188].start |
3649.73909375 |
transcript.pyannote[188].end |
3651.27471875 |
transcript.pyannote[189].speaker |
SPEAKER_03 |
transcript.pyannote[189].start |
3652.23659375 |
transcript.pyannote[189].end |
3670.25909375 |
transcript.pyannote[190].speaker |
SPEAKER_03 |
transcript.pyannote[190].start |
3670.68096875 |
transcript.pyannote[190].end |
3671.98034375 |
transcript.pyannote[191].speaker |
SPEAKER_03 |
transcript.pyannote[191].start |
3673.04346875 |
transcript.pyannote[191].end |
3688.93971875 |
transcript.pyannote[192].speaker |
SPEAKER_03 |
transcript.pyannote[192].start |
3689.19284375 |
transcript.pyannote[192].end |
3690.57659375 |
transcript.pyannote[193].speaker |
SPEAKER_03 |
transcript.pyannote[193].start |
3691.01534375 |
transcript.pyannote[193].end |
3695.90909375 |
transcript.pyannote[194].speaker |
SPEAKER_03 |
transcript.pyannote[194].start |
3696.34784375 |
transcript.pyannote[194].end |
3699.89159375 |
transcript.pyannote[195].speaker |
SPEAKER_03 |
transcript.pyannote[195].start |
3700.83659375 |
transcript.pyannote[195].end |
3713.00346875 |
transcript.pyannote[196].speaker |
SPEAKER_03 |
transcript.pyannote[196].start |
3713.57721875 |
transcript.pyannote[196].end |
3733.77659375 |
transcript.pyannote[197].speaker |
SPEAKER_03 |
transcript.pyannote[197].start |
3734.67096875 |
transcript.pyannote[197].end |
3740.50971875 |
transcript.pyannote[198].speaker |
SPEAKER_03 |
transcript.pyannote[198].start |
3740.77971875 |
transcript.pyannote[198].end |
3765.58596875 |
transcript.pyannote[199].speaker |
SPEAKER_03 |
transcript.pyannote[199].start |
3765.70409375 |
transcript.pyannote[199].end |
3774.20909375 |
transcript.pyannote[200].speaker |
SPEAKER_03 |
transcript.pyannote[200].start |
3777.33096875 |
transcript.pyannote[200].end |
3779.57534375 |
transcript.pyannote[201].speaker |
SPEAKER_03 |
transcript.pyannote[201].start |
3780.52034375 |
transcript.pyannote[201].end |
3785.73471875 |
transcript.pyannote[202].speaker |
SPEAKER_03 |
transcript.pyannote[202].start |
3786.25784375 |
transcript.pyannote[202].end |
3798.96471875 |
transcript.pyannote[203].speaker |
SPEAKER_03 |
transcript.pyannote[203].start |
3799.23471875 |
transcript.pyannote[203].end |
3802.10346875 |
transcript.pyannote[204].speaker |
SPEAKER_03 |
transcript.pyannote[204].start |
3802.71096875 |
transcript.pyannote[204].end |
3815.60346875 |
transcript.pyannote[205].speaker |
SPEAKER_03 |
transcript.pyannote[205].start |
3815.94096875 |
transcript.pyannote[205].end |
3817.57784375 |
transcript.pyannote[206].speaker |
SPEAKER_03 |
transcript.pyannote[206].start |
3817.84784375 |
transcript.pyannote[206].end |
3833.25471875 |
transcript.pyannote[207].speaker |
SPEAKER_03 |
transcript.pyannote[207].start |
3837.25409375 |
transcript.pyannote[207].end |
3837.89534375 |
transcript.pyannote[208].speaker |
SPEAKER_03 |
transcript.pyannote[208].start |
3846.72096875 |
transcript.pyannote[208].end |
3847.02471875 |
transcript.pyannote[209].speaker |
SPEAKER_03 |
transcript.pyannote[209].start |
3847.44659375 |
transcript.pyannote[209].end |
3871.78034375 |
transcript.pyannote[210].speaker |
SPEAKER_03 |
transcript.pyannote[210].start |
3872.18534375 |
transcript.pyannote[210].end |
3880.90971875 |
transcript.pyannote[211].speaker |
SPEAKER_03 |
transcript.pyannote[211].start |
3881.87159375 |
transcript.pyannote[211].end |
3892.68846875 |
transcript.pyannote[212].speaker |
SPEAKER_03 |
transcript.pyannote[212].start |
3894.25784375 |
transcript.pyannote[212].end |
3895.38846875 |
transcript.pyannote[213].speaker |
SPEAKER_03 |
transcript.pyannote[213].start |
3895.64159375 |
transcript.pyannote[213].end |
3896.36721875 |
transcript.pyannote[214].speaker |
SPEAKER_03 |
transcript.pyannote[214].start |
3896.41784375 |
transcript.pyannote[214].end |
3897.07596875 |
transcript.pyannote[215].speaker |
SPEAKER_03 |
transcript.pyannote[215].start |
3898.22346875 |
transcript.pyannote[215].end |
3898.30784375 |
transcript.pyannote[216].speaker |
SPEAKER_05 |
transcript.pyannote[216].start |
3903.57284375 |
transcript.pyannote[216].end |
3906.55971875 |
transcript.pyannote[217].speaker |
SPEAKER_05 |
transcript.pyannote[217].start |
3908.63534375 |
transcript.pyannote[217].end |
3909.41159375 |
transcript.pyannote[218].speaker |
SPEAKER_05 |
transcript.pyannote[218].start |
3909.96846875 |
transcript.pyannote[218].end |
3910.03596875 |
transcript.pyannote[219].speaker |
SPEAKER_05 |
transcript.pyannote[219].start |
3910.35659375 |
transcript.pyannote[219].end |
3911.03159375 |
transcript.pyannote[220].speaker |
SPEAKER_05 |
transcript.pyannote[220].start |
3911.53784375 |
transcript.pyannote[220].end |
3911.65596875 |
transcript.pyannote[221].speaker |
SPEAKER_03 |
transcript.pyannote[221].start |
3912.87096875 |
transcript.pyannote[221].end |
3916.54971875 |
transcript.pyannote[222].speaker |
SPEAKER_03 |
transcript.pyannote[222].start |
3918.62534375 |
transcript.pyannote[222].end |
3919.63784375 |
transcript.pyannote[223].speaker |
SPEAKER_03 |
transcript.pyannote[223].start |
3920.07659375 |
transcript.pyannote[223].end |
3924.16034375 |
transcript.pyannote[224].speaker |
SPEAKER_03 |
transcript.pyannote[224].start |
3924.54846875 |
transcript.pyannote[224].end |
3935.04471875 |
transcript.pyannote[225].speaker |
SPEAKER_03 |
transcript.pyannote[225].start |
3935.33159375 |
transcript.pyannote[225].end |
3939.71909375 |
transcript.pyannote[226].speaker |
SPEAKER_03 |
transcript.pyannote[226].start |
3940.05659375 |
transcript.pyannote[226].end |
3956.52659375 |
transcript.pyannote[227].speaker |
SPEAKER_03 |
transcript.pyannote[227].start |
3957.64034375 |
transcript.pyannote[227].end |
3960.96471875 |
transcript.pyannote[228].speaker |
SPEAKER_03 |
transcript.pyannote[228].start |
3961.25159375 |
transcript.pyannote[228].end |
3975.61221875 |
transcript.pyannote[229].speaker |
SPEAKER_03 |
transcript.pyannote[229].start |
3976.06784375 |
transcript.pyannote[229].end |
3977.08034375 |
transcript.pyannote[230].speaker |
SPEAKER_03 |
transcript.pyannote[230].start |
3977.26596875 |
transcript.pyannote[230].end |
3979.08846875 |
transcript.pyannote[231].speaker |
SPEAKER_03 |
transcript.pyannote[231].start |
3979.93221875 |
transcript.pyannote[231].end |
3980.62409375 |
transcript.pyannote[232].speaker |
SPEAKER_03 |
transcript.pyannote[232].start |
3981.24846875 |
transcript.pyannote[232].end |
3985.87221875 |
transcript.pyannote[233].speaker |
SPEAKER_03 |
transcript.pyannote[233].start |
3986.78346875 |
transcript.pyannote[233].end |
3988.63971875 |
transcript.pyannote[234].speaker |
SPEAKER_03 |
transcript.pyannote[234].start |
3988.77471875 |
transcript.pyannote[234].end |
3990.66471875 |
transcript.pyannote[235].speaker |
SPEAKER_03 |
transcript.pyannote[235].start |
3990.85034375 |
transcript.pyannote[235].end |
3992.16659375 |
transcript.pyannote[236].speaker |
SPEAKER_03 |
transcript.pyannote[236].start |
3992.72346875 |
transcript.pyannote[236].end |
3998.03909375 |
transcript.pyannote[237].speaker |
SPEAKER_03 |
transcript.pyannote[237].start |
3999.03471875 |
transcript.pyannote[237].end |
4003.92846875 |
transcript.pyannote[238].speaker |
SPEAKER_03 |
transcript.pyannote[238].start |
4004.29971875 |
transcript.pyannote[238].end |
4010.10471875 |
transcript.pyannote[239].speaker |
SPEAKER_03 |
transcript.pyannote[239].start |
4010.83034375 |
transcript.pyannote[239].end |
4012.41659375 |
transcript.pyannote[240].speaker |
SPEAKER_03 |
transcript.pyannote[240].start |
4012.75409375 |
transcript.pyannote[240].end |
4019.31846875 |
transcript.pyannote[241].speaker |
SPEAKER_03 |
transcript.pyannote[241].start |
4020.14534375 |
transcript.pyannote[241].end |
4031.35034375 |
transcript.pyannote[242].speaker |
SPEAKER_03 |
transcript.pyannote[242].start |
4032.02534375 |
transcript.pyannote[242].end |
4033.74659375 |
transcript.pyannote[243].speaker |
SPEAKER_03 |
transcript.pyannote[243].start |
4034.43846875 |
transcript.pyannote[243].end |
4044.98534375 |
transcript.pyannote[244].speaker |
SPEAKER_03 |
transcript.pyannote[244].start |
4045.40721875 |
transcript.pyannote[244].end |
4047.34784375 |
transcript.pyannote[245].speaker |
SPEAKER_03 |
transcript.pyannote[245].start |
4048.27596875 |
transcript.pyannote[245].end |
4051.92096875 |
transcript.pyannote[246].speaker |
SPEAKER_00 |
transcript.pyannote[246].start |
4049.06909375 |
transcript.pyannote[246].end |
4049.64284375 |
transcript.pyannote[247].speaker |
SPEAKER_03 |
transcript.pyannote[247].start |
4052.39346875 |
transcript.pyannote[247].end |
4078.14471875 |
transcript.pyannote[248].speaker |
SPEAKER_03 |
transcript.pyannote[248].start |
4078.44846875 |
transcript.pyannote[248].end |
4079.22471875 |
transcript.pyannote[249].speaker |
SPEAKER_03 |
transcript.pyannote[249].start |
4079.83221875 |
transcript.pyannote[249].end |
4104.16596875 |
transcript.pyannote[250].speaker |
SPEAKER_03 |
transcript.pyannote[250].start |
4105.26284375 |
transcript.pyannote[250].end |
4116.60284375 |
transcript.pyannote[251].speaker |
SPEAKER_03 |
transcript.pyannote[251].start |
4117.10909375 |
transcript.pyannote[251].end |
4119.03284375 |
transcript.pyannote[252].speaker |
SPEAKER_03 |
transcript.pyannote[252].start |
4119.82596875 |
transcript.pyannote[252].end |
4124.68596875 |
transcript.pyannote[253].speaker |
SPEAKER_03 |
transcript.pyannote[253].start |
4125.52971875 |
transcript.pyannote[253].end |
4131.63846875 |
transcript.pyannote[254].speaker |
SPEAKER_03 |
transcript.pyannote[254].start |
4132.41471875 |
transcript.pyannote[254].end |
4134.11909375 |
transcript.pyannote[255].speaker |
SPEAKER_03 |
transcript.pyannote[255].start |
4135.38471875 |
transcript.pyannote[255].end |
4137.34221875 |
transcript.pyannote[256].speaker |
SPEAKER_03 |
transcript.pyannote[256].start |
4137.74721875 |
transcript.pyannote[256].end |
4143.50159375 |
transcript.pyannote[257].speaker |
SPEAKER_03 |
transcript.pyannote[257].start |
4144.17659375 |
transcript.pyannote[257].end |
4150.65659375 |
transcript.pyannote[258].speaker |
SPEAKER_03 |
transcript.pyannote[258].start |
4150.79159375 |
transcript.pyannote[258].end |
4159.58346875 |
transcript.pyannote[259].speaker |
SPEAKER_03 |
transcript.pyannote[259].start |
4160.57909375 |
transcript.pyannote[259].end |
4165.72596875 |
transcript.pyannote[260].speaker |
SPEAKER_03 |
transcript.pyannote[260].start |
4165.92846875 |
transcript.pyannote[260].end |
4167.46409375 |
transcript.pyannote[261].speaker |
SPEAKER_03 |
transcript.pyannote[261].start |
4168.17284375 |
transcript.pyannote[261].end |
4169.74221875 |
transcript.pyannote[262].speaker |
SPEAKER_03 |
transcript.pyannote[262].start |
4170.48471875 |
transcript.pyannote[262].end |
4174.46721875 |
transcript.pyannote[263].speaker |
SPEAKER_03 |
transcript.pyannote[263].start |
4175.41221875 |
transcript.pyannote[263].end |
4178.55096875 |
transcript.pyannote[264].speaker |
SPEAKER_03 |
transcript.pyannote[264].start |
4179.52971875 |
transcript.pyannote[264].end |
4182.26346875 |
transcript.pyannote[265].speaker |
SPEAKER_03 |
transcript.pyannote[265].start |
4182.44909375 |
transcript.pyannote[265].end |
4189.84034375 |
transcript.pyannote[266].speaker |
SPEAKER_03 |
transcript.pyannote[266].start |
4190.46471875 |
transcript.pyannote[266].end |
4193.65409375 |
transcript.pyannote[267].speaker |
SPEAKER_03 |
transcript.pyannote[267].start |
4194.05909375 |
transcript.pyannote[267].end |
4199.94846875 |
transcript.pyannote[268].speaker |
SPEAKER_03 |
transcript.pyannote[268].start |
4200.62346875 |
transcript.pyannote[268].end |
4205.26409375 |
transcript.pyannote[269].speaker |
SPEAKER_03 |
transcript.pyannote[269].start |
4205.90534375 |
transcript.pyannote[269].end |
4209.82034375 |
transcript.pyannote[270].speaker |
SPEAKER_03 |
transcript.pyannote[270].start |
4211.55846875 |
transcript.pyannote[270].end |
4212.60471875 |
transcript.pyannote[271].speaker |
SPEAKER_03 |
transcript.pyannote[271].start |
4212.73971875 |
transcript.pyannote[271].end |
4224.45096875 |
transcript.pyannote[272].speaker |
SPEAKER_03 |
transcript.pyannote[272].start |
4224.97409375 |
transcript.pyannote[272].end |
4232.46659375 |
transcript.pyannote[273].speaker |
SPEAKER_03 |
transcript.pyannote[273].start |
4233.71534375 |
transcript.pyannote[273].end |
4237.20846875 |
transcript.pyannote[274].speaker |
SPEAKER_03 |
transcript.pyannote[274].start |
4237.41096875 |
transcript.pyannote[274].end |
4244.83596875 |
transcript.pyannote[275].speaker |
SPEAKER_03 |
transcript.pyannote[275].start |
4245.29159375 |
transcript.pyannote[275].end |
4251.83909375 |
transcript.pyannote[276].speaker |
SPEAKER_03 |
transcript.pyannote[276].start |
4252.10909375 |
transcript.pyannote[276].end |
4256.15909375 |
transcript.pyannote[277].speaker |
SPEAKER_03 |
transcript.pyannote[277].start |
4256.53034375 |
transcript.pyannote[277].end |
4262.99346875 |
transcript.pyannote[278].speaker |
SPEAKER_03 |
transcript.pyannote[278].start |
4263.14534375 |
transcript.pyannote[278].end |
4264.78221875 |
transcript.pyannote[279].speaker |
SPEAKER_03 |
transcript.pyannote[279].start |
4265.03534375 |
transcript.pyannote[279].end |
4266.13221875 |
transcript.pyannote[280].speaker |
SPEAKER_03 |
transcript.pyannote[280].start |
4267.06034375 |
transcript.pyannote[280].end |
4270.72221875 |
transcript.pyannote[281].speaker |
SPEAKER_03 |
transcript.pyannote[281].start |
4271.14409375 |
transcript.pyannote[281].end |
4284.18846875 |
transcript.pyannote[282].speaker |
SPEAKER_03 |
transcript.pyannote[282].start |
4284.40784375 |
transcript.pyannote[282].end |
4294.90409375 |
transcript.pyannote[283].speaker |
SPEAKER_03 |
transcript.pyannote[283].start |
4295.19096875 |
transcript.pyannote[283].end |
4299.22409375 |
transcript.pyannote[284].speaker |
SPEAKER_03 |
transcript.pyannote[284].start |
4299.29159375 |
transcript.pyannote[284].end |
4299.34221875 |
transcript.pyannote[285].speaker |
SPEAKER_03 |
transcript.pyannote[285].start |
4299.37596875 |
transcript.pyannote[285].end |
4304.05034375 |
transcript.pyannote[286].speaker |
SPEAKER_03 |
transcript.pyannote[286].start |
4305.83909375 |
transcript.pyannote[286].end |
4317.33096875 |
transcript.pyannote[287].speaker |
SPEAKER_03 |
transcript.pyannote[287].start |
4317.44909375 |
transcript.pyannote[287].end |
4318.25909375 |
transcript.pyannote[288].speaker |
SPEAKER_03 |
transcript.pyannote[288].start |
4318.74846875 |
transcript.pyannote[288].end |
4324.70534375 |
transcript.pyannote[289].speaker |
SPEAKER_03 |
transcript.pyannote[289].start |
4324.95846875 |
transcript.pyannote[289].end |
4328.62034375 |
transcript.pyannote[290].speaker |
SPEAKER_03 |
transcript.pyannote[290].start |
4329.43034375 |
transcript.pyannote[290].end |
4331.48909375 |
transcript.pyannote[291].speaker |
SPEAKER_03 |
transcript.pyannote[291].start |
4332.24846875 |
transcript.pyannote[291].end |
4338.79596875 |
transcript.pyannote[292].speaker |
SPEAKER_03 |
transcript.pyannote[292].start |
4340.09534375 |
transcript.pyannote[292].end |
4341.34409375 |
transcript.pyannote[293].speaker |
SPEAKER_03 |
transcript.pyannote[293].start |
4342.52534375 |
transcript.pyannote[293].end |
4344.73596875 |
transcript.pyannote[294].speaker |
SPEAKER_03 |
transcript.pyannote[294].start |
4346.22096875 |
transcript.pyannote[294].end |
4360.56471875 |
transcript.pyannote[295].speaker |
SPEAKER_03 |
transcript.pyannote[295].start |
4360.85159375 |
transcript.pyannote[295].end |
4368.76596875 |
transcript.pyannote[296].speaker |
SPEAKER_03 |
transcript.pyannote[296].start |
4369.66034375 |
transcript.pyannote[296].end |
4373.91284375 |
transcript.pyannote[297].speaker |
SPEAKER_03 |
transcript.pyannote[297].start |
4374.73971875 |
transcript.pyannote[297].end |
4374.99284375 |
transcript.pyannote[298].speaker |
SPEAKER_03 |
transcript.pyannote[298].start |
4375.22909375 |
transcript.pyannote[298].end |
4383.53159375 |
transcript.pyannote[299].speaker |
SPEAKER_03 |
transcript.pyannote[299].start |
4383.78471875 |
transcript.pyannote[299].end |
4391.86784375 |
transcript.pyannote[300].speaker |
SPEAKER_03 |
transcript.pyannote[300].start |
4393.40346875 |
transcript.pyannote[300].end |
4396.30596875 |
transcript.pyannote[301].speaker |
SPEAKER_03 |
transcript.pyannote[301].start |
4397.35221875 |
transcript.pyannote[301].end |
4409.11409375 |
transcript.pyannote[302].speaker |
SPEAKER_03 |
transcript.pyannote[302].start |
4409.80596875 |
transcript.pyannote[302].end |
4422.78284375 |
transcript.pyannote[303].speaker |
SPEAKER_03 |
transcript.pyannote[303].start |
4423.42409375 |
transcript.pyannote[303].end |
4443.35346875 |
transcript.pyannote[304].speaker |
SPEAKER_03 |
transcript.pyannote[304].start |
4443.72471875 |
transcript.pyannote[304].end |
4448.06159375 |
transcript.pyannote[305].speaker |
SPEAKER_03 |
transcript.pyannote[305].start |
4449.00659375 |
transcript.pyannote[305].end |
4449.98534375 |
transcript.pyannote[306].speaker |
SPEAKER_03 |
transcript.pyannote[306].start |
4451.20034375 |
transcript.pyannote[306].end |
4463.01284375 |
transcript.pyannote[307].speaker |
SPEAKER_03 |
transcript.pyannote[307].start |
4463.85659375 |
transcript.pyannote[307].end |
4464.85221875 |
transcript.pyannote[308].speaker |
SPEAKER_03 |
transcript.pyannote[308].start |
4465.44284375 |
transcript.pyannote[308].end |
4466.72534375 |
transcript.pyannote[309].speaker |
SPEAKER_03 |
transcript.pyannote[309].start |
4467.18096875 |
transcript.pyannote[309].end |
4468.02471875 |
transcript.pyannote[310].speaker |
SPEAKER_03 |
transcript.pyannote[310].start |
4468.41284375 |
transcript.pyannote[310].end |
4469.52659375 |
transcript.pyannote[311].speaker |
SPEAKER_03 |
transcript.pyannote[311].start |
4469.84721875 |
transcript.pyannote[311].end |
4472.44596875 |
transcript.pyannote[312].speaker |
SPEAKER_03 |
transcript.pyannote[312].start |
4473.05346875 |
transcript.pyannote[312].end |
4480.19159375 |
transcript.pyannote[313].speaker |
SPEAKER_03 |
transcript.pyannote[313].start |
4480.96784375 |
transcript.pyannote[313].end |
4488.69659375 |
transcript.pyannote[314].speaker |
SPEAKER_03 |
transcript.pyannote[314].start |
4490.53596875 |
transcript.pyannote[314].end |
4495.53096875 |
transcript.pyannote[315].speaker |
SPEAKER_03 |
transcript.pyannote[315].start |
4496.72909375 |
transcript.pyannote[315].end |
4499.04096875 |
transcript.pyannote[316].speaker |
SPEAKER_03 |
transcript.pyannote[316].start |
4499.54721875 |
transcript.pyannote[316].end |
4507.41096875 |
transcript.pyannote[317].speaker |
SPEAKER_03 |
transcript.pyannote[317].start |
4508.00159375 |
transcript.pyannote[317].end |
4510.92096875 |
transcript.pyannote[318].speaker |
SPEAKER_03 |
transcript.pyannote[318].start |
4511.95034375 |
transcript.pyannote[318].end |
4515.56159375 |
transcript.pyannote[319].speaker |
SPEAKER_03 |
transcript.pyannote[319].start |
4515.94971875 |
transcript.pyannote[319].end |
4517.38409375 |
transcript.pyannote[320].speaker |
SPEAKER_03 |
transcript.pyannote[320].start |
4517.97471875 |
transcript.pyannote[320].end |
4537.26284375 |
transcript.pyannote[321].speaker |
SPEAKER_03 |
transcript.pyannote[321].start |
4537.53284375 |
transcript.pyannote[321].end |
4538.86596875 |
transcript.pyannote[322].speaker |
SPEAKER_03 |
transcript.pyannote[322].start |
4539.18659375 |
transcript.pyannote[322].end |
4547.65784375 |
transcript.pyannote[323].speaker |
SPEAKER_03 |
transcript.pyannote[323].start |
4547.82659375 |
transcript.pyannote[323].end |
4555.77471875 |
transcript.pyannote[324].speaker |
SPEAKER_03 |
transcript.pyannote[324].start |
4556.06159375 |
transcript.pyannote[324].end |
4564.49909375 |
transcript.pyannote[325].speaker |
SPEAKER_03 |
transcript.pyannote[325].start |
4565.62971875 |
transcript.pyannote[325].end |
4566.79409375 |
transcript.pyannote[326].speaker |
SPEAKER_03 |
transcript.pyannote[326].start |
4567.80659375 |
transcript.pyannote[326].end |
4567.89096875 |
transcript.pyannote[327].speaker |
SPEAKER_03 |
transcript.pyannote[327].start |
4568.36346875 |
transcript.pyannote[327].end |
4571.80596875 |
transcript.pyannote[328].speaker |
SPEAKER_03 |
transcript.pyannote[328].start |
4572.53159375 |
transcript.pyannote[328].end |
4588.27596875 |
transcript.pyannote[329].speaker |
SPEAKER_03 |
transcript.pyannote[329].start |
4588.69784375 |
transcript.pyannote[329].end |
4589.35596875 |
transcript.pyannote[330].speaker |
SPEAKER_03 |
transcript.pyannote[330].start |
4590.11534375 |
transcript.pyannote[330].end |
4594.23284375 |
transcript.pyannote[331].speaker |
SPEAKER_03 |
transcript.pyannote[331].start |
4600.89846875 |
transcript.pyannote[331].end |
4601.70846875 |
transcript.pyannote[332].speaker |
SPEAKER_05 |
transcript.pyannote[332].start |
4601.23596875 |
transcript.pyannote[332].end |
4603.75034375 |
transcript.pyannote[333].speaker |
SPEAKER_03 |
transcript.pyannote[333].start |
4604.45909375 |
transcript.pyannote[333].end |
4605.50534375 |
transcript.pyannote[334].speaker |
SPEAKER_03 |
transcript.pyannote[334].start |
4608.79596875 |
transcript.pyannote[334].end |
4619.02221875 |
transcript.pyannote[335].speaker |
SPEAKER_03 |
transcript.pyannote[335].start |
4619.41034375 |
transcript.pyannote[335].end |
4625.89034375 |
transcript.pyannote[336].speaker |
SPEAKER_03 |
transcript.pyannote[336].start |
4625.92409375 |
transcript.pyannote[336].end |
4638.27659375 |
transcript.pyannote[337].speaker |
SPEAKER_03 |
transcript.pyannote[337].start |
4640.38596875 |
transcript.pyannote[337].end |
4640.63909375 |
transcript.pyannote[338].speaker |
SPEAKER_03 |
transcript.pyannote[338].start |
4642.05659375 |
transcript.pyannote[338].end |
4643.54159375 |
transcript.pyannote[339].speaker |
SPEAKER_03 |
transcript.pyannote[339].start |
4646.51159375 |
transcript.pyannote[339].end |
4654.24034375 |
transcript.pyannote[340].speaker |
SPEAKER_05 |
transcript.pyannote[340].start |
4657.76721875 |
transcript.pyannote[340].end |
4663.79159375 |
transcript.pyannote[341].speaker |
SPEAKER_03 |
transcript.pyannote[341].start |
4661.93534375 |
transcript.pyannote[341].end |
4662.23909375 |
transcript.pyannote[342].speaker |
SPEAKER_03 |
transcript.pyannote[342].start |
4664.63534375 |
transcript.pyannote[342].end |
4665.85034375 |
transcript.pyannote[343].speaker |
SPEAKER_03 |
transcript.pyannote[343].start |
4667.57159375 |
transcript.pyannote[343].end |
4681.07159375 |
transcript.pyannote[344].speaker |
SPEAKER_03 |
transcript.pyannote[344].start |
4682.67471875 |
transcript.pyannote[344].end |
4687.73721875 |
transcript.pyannote[345].speaker |
SPEAKER_03 |
transcript.pyannote[345].start |
4688.14221875 |
transcript.pyannote[345].end |
4694.50409375 |
transcript.pyannote[346].speaker |
SPEAKER_03 |
transcript.pyannote[346].start |
4695.11159375 |
transcript.pyannote[346].end |
4720.44096875 |
transcript.pyannote[347].speaker |
SPEAKER_03 |
transcript.pyannote[347].start |
4720.81221875 |
transcript.pyannote[347].end |
4736.06721875 |
transcript.pyannote[348].speaker |
SPEAKER_03 |
transcript.pyannote[348].start |
4736.57346875 |
transcript.pyannote[348].end |
4736.82659375 |
transcript.pyannote[349].speaker |
SPEAKER_03 |
transcript.pyannote[349].start |
4739.00346875 |
transcript.pyannote[349].end |
4741.55159375 |
transcript.pyannote[350].speaker |
SPEAKER_03 |
transcript.pyannote[350].start |
4743.54284375 |
transcript.pyannote[350].end |
4744.08284375 |
transcript.pyannote[351].speaker |
SPEAKER_03 |
transcript.pyannote[351].start |
4747.12034375 |
transcript.pyannote[351].end |
4749.73596875 |
transcript.pyannote[352].speaker |
SPEAKER_03 |
transcript.pyannote[352].start |
4750.32659375 |
transcript.pyannote[352].end |
4756.09784375 |
transcript.pyannote[353].speaker |
SPEAKER_03 |
transcript.pyannote[353].start |
4756.43534375 |
transcript.pyannote[353].end |
4791.21471875 |
transcript.pyannote[354].speaker |
SPEAKER_03 |
transcript.pyannote[354].start |
4791.58596875 |
transcript.pyannote[354].end |
4794.38721875 |
transcript.pyannote[355].speaker |
SPEAKER_03 |
transcript.pyannote[355].start |
4794.64034375 |
transcript.pyannote[355].end |
4795.45034375 |
transcript.pyannote[356].speaker |
SPEAKER_03 |
transcript.pyannote[356].start |
4796.09159375 |
transcript.pyannote[356].end |
4808.30909375 |
transcript.pyannote[357].speaker |
SPEAKER_03 |
transcript.pyannote[357].start |
4808.79846875 |
transcript.pyannote[357].end |
4827.39471875 |
transcript.pyannote[358].speaker |
SPEAKER_03 |
transcript.pyannote[358].start |
4827.63096875 |
transcript.pyannote[358].end |
4842.09284375 |
transcript.pyannote[359].speaker |
SPEAKER_03 |
transcript.pyannote[359].start |
4842.19409375 |
transcript.pyannote[359].end |
4844.74221875 |
transcript.pyannote[360].speaker |
SPEAKER_03 |
transcript.pyannote[360].start |
4844.77596875 |
transcript.pyannote[360].end |
4847.15534375 |
transcript.pyannote[361].speaker |
SPEAKER_03 |
transcript.pyannote[361].start |
4847.62784375 |
transcript.pyannote[361].end |
4849.82159375 |
transcript.pyannote[362].speaker |
SPEAKER_03 |
transcript.pyannote[362].start |
4850.68221875 |
transcript.pyannote[362].end |
4854.15846875 |
transcript.pyannote[363].speaker |
SPEAKER_03 |
transcript.pyannote[363].start |
4854.29346875 |
transcript.pyannote[363].end |
4865.97096875 |
transcript.pyannote[364].speaker |
SPEAKER_00 |
transcript.pyannote[364].start |
4855.17096875 |
transcript.pyannote[364].end |
4855.23846875 |
transcript.pyannote[365].speaker |
SPEAKER_03 |
transcript.pyannote[365].start |
4866.24096875 |
transcript.pyannote[365].end |
4872.70409375 |
transcript.pyannote[366].speaker |
SPEAKER_03 |
transcript.pyannote[366].start |
4873.66596875 |
transcript.pyannote[366].end |
4875.87659375 |
transcript.pyannote[367].speaker |
SPEAKER_03 |
transcript.pyannote[367].start |
4876.56846875 |
transcript.pyannote[367].end |
4889.52846875 |
transcript.pyannote[368].speaker |
SPEAKER_03 |
transcript.pyannote[368].start |
4890.06846875 |
transcript.pyannote[368].end |
4897.05471875 |
transcript.pyannote[369].speaker |
SPEAKER_03 |
transcript.pyannote[369].start |
4897.69596875 |
transcript.pyannote[369].end |
4900.42971875 |
transcript.pyannote[370].speaker |
SPEAKER_03 |
transcript.pyannote[370].start |
4900.61534375 |
transcript.pyannote[370].end |
4904.19284375 |
transcript.pyannote[371].speaker |
SPEAKER_03 |
transcript.pyannote[371].start |
4904.81721875 |
transcript.pyannote[371].end |
4909.55909375 |
transcript.pyannote[372].speaker |
SPEAKER_03 |
transcript.pyannote[372].start |
4909.82909375 |
transcript.pyannote[372].end |
4912.54596875 |
transcript.pyannote[373].speaker |
SPEAKER_03 |
transcript.pyannote[373].start |
4913.00159375 |
transcript.pyannote[373].end |
4914.04784375 |
transcript.pyannote[374].speaker |
SPEAKER_03 |
transcript.pyannote[374].start |
4914.67221875 |
transcript.pyannote[374].end |
4924.51034375 |
transcript.pyannote[375].speaker |
SPEAKER_03 |
transcript.pyannote[375].start |
4925.06721875 |
transcript.pyannote[375].end |
4932.34034375 |
transcript.pyannote[376].speaker |
SPEAKER_03 |
transcript.pyannote[376].start |
4932.66096875 |
transcript.pyannote[376].end |
4942.60034375 |
transcript.pyannote[377].speaker |
SPEAKER_03 |
transcript.pyannote[377].start |
4943.86596875 |
transcript.pyannote[377].end |
4962.14159375 |
transcript.pyannote[378].speaker |
SPEAKER_03 |
transcript.pyannote[378].start |
4962.66471875 |
transcript.pyannote[378].end |
4967.69346875 |
transcript.pyannote[379].speaker |
SPEAKER_03 |
transcript.pyannote[379].start |
4968.35159375 |
transcript.pyannote[379].end |
4970.41034375 |
transcript.pyannote[380].speaker |
SPEAKER_03 |
transcript.pyannote[380].start |
4970.79846875 |
transcript.pyannote[380].end |
4979.74221875 |
transcript.pyannote[381].speaker |
SPEAKER_03 |
transcript.pyannote[381].start |
4980.06284375 |
transcript.pyannote[381].end |
5002.99596875 |
transcript.pyannote[382].speaker |
SPEAKER_03 |
transcript.pyannote[382].start |
5003.46846875 |
transcript.pyannote[382].end |
5007.90659375 |
transcript.pyannote[383].speaker |
SPEAKER_03 |
transcript.pyannote[383].start |
5008.78409375 |
transcript.pyannote[383].end |
5009.15534375 |
transcript.pyannote[384].speaker |
SPEAKER_03 |
transcript.pyannote[384].start |
5009.37471875 |
transcript.pyannote[384].end |
5016.86721875 |
transcript.pyannote[385].speaker |
SPEAKER_03 |
transcript.pyannote[385].start |
5017.12034375 |
transcript.pyannote[385].end |
5019.58409375 |
transcript.pyannote[386].speaker |
SPEAKER_03 |
transcript.pyannote[386].start |
5020.09034375 |
transcript.pyannote[386].end |
5024.00534375 |
transcript.pyannote[387].speaker |
SPEAKER_03 |
transcript.pyannote[387].start |
5024.64659375 |
transcript.pyannote[387].end |
5026.97534375 |
transcript.pyannote[388].speaker |
SPEAKER_03 |
transcript.pyannote[388].start |
5028.02159375 |
transcript.pyannote[388].end |
5039.09159375 |
transcript.pyannote[389].speaker |
SPEAKER_03 |
transcript.pyannote[389].start |
5039.51346875 |
transcript.pyannote[389].end |
5046.56721875 |
transcript.pyannote[390].speaker |
SPEAKER_03 |
transcript.pyannote[390].start |
5048.35596875 |
transcript.pyannote[390].end |
5060.65784375 |
transcript.pyannote[391].speaker |
SPEAKER_03 |
transcript.pyannote[391].start |
5060.84346875 |
transcript.pyannote[391].end |
5068.13346875 |
transcript.pyannote[392].speaker |
SPEAKER_03 |
transcript.pyannote[392].start |
5068.65659375 |
transcript.pyannote[392].end |
5070.61409375 |
transcript.pyannote[393].speaker |
SPEAKER_03 |
transcript.pyannote[393].start |
5070.68159375 |
transcript.pyannote[393].end |
5070.69846875 |
transcript.pyannote[394].speaker |
SPEAKER_03 |
transcript.pyannote[394].start |
5070.71534375 |
transcript.pyannote[394].end |
5070.83346875 |
transcript.pyannote[395].speaker |
SPEAKER_03 |
transcript.pyannote[395].start |
5072.28471875 |
transcript.pyannote[395].end |
5073.39846875 |
transcript.pyannote[396].speaker |
SPEAKER_03 |
transcript.pyannote[396].start |
5073.51659375 |
transcript.pyannote[396].end |
5074.95096875 |
transcript.pyannote[397].speaker |
SPEAKER_03 |
transcript.pyannote[397].start |
5076.08159375 |
transcript.pyannote[397].end |
5077.17846875 |
transcript.pyannote[398].speaker |
SPEAKER_03 |
transcript.pyannote[398].start |
5078.19096875 |
transcript.pyannote[398].end |
5079.43971875 |
transcript.pyannote[399].speaker |
SPEAKER_03 |
transcript.pyannote[399].start |
5079.55784375 |
transcript.pyannote[399].end |
5080.65471875 |
transcript.pyannote[400].speaker |
SPEAKER_03 |
transcript.pyannote[400].start |
5080.87409375 |
transcript.pyannote[400].end |
5082.42659375 |
transcript.pyannote[401].speaker |
SPEAKER_03 |
transcript.pyannote[401].start |
5083.96221875 |
transcript.pyannote[401].end |
5084.16471875 |
transcript.pyannote[402].speaker |
SPEAKER_03 |
transcript.pyannote[402].start |
5084.43471875 |
transcript.pyannote[402].end |
5086.51034375 |
transcript.pyannote[403].speaker |
SPEAKER_03 |
transcript.pyannote[403].start |
5086.69596875 |
transcript.pyannote[403].end |
5090.64471875 |
transcript.pyannote[404].speaker |
SPEAKER_03 |
transcript.pyannote[404].start |
5091.30284375 |
transcript.pyannote[404].end |
5093.56409375 |
transcript.pyannote[405].speaker |
SPEAKER_03 |
transcript.pyannote[405].start |
5093.88471875 |
transcript.pyannote[405].end |
5094.25596875 |
transcript.pyannote[406].speaker |
SPEAKER_03 |
transcript.pyannote[406].start |
5094.67784375 |
transcript.pyannote[406].end |
5099.14971875 |
transcript.pyannote[407].speaker |
SPEAKER_03 |
transcript.pyannote[407].start |
5099.95971875 |
transcript.pyannote[407].end |
5102.00159375 |
transcript.pyannote[408].speaker |
SPEAKER_03 |
transcript.pyannote[408].start |
5102.47409375 |
transcript.pyannote[408].end |
5107.80659375 |
transcript.pyannote[409].speaker |
SPEAKER_03 |
transcript.pyannote[409].start |
5108.46471875 |
transcript.pyannote[409].end |
5114.30346875 |
transcript.pyannote[410].speaker |
SPEAKER_03 |
transcript.pyannote[410].start |
5115.26534375 |
transcript.pyannote[410].end |
5115.87284375 |
transcript.pyannote[411].speaker |
SPEAKER_03 |
transcript.pyannote[411].start |
5116.27784375 |
transcript.pyannote[411].end |
5117.79659375 |
transcript.pyannote[412].speaker |
SPEAKER_03 |
transcript.pyannote[412].start |
5118.28596875 |
transcript.pyannote[412].end |
5119.38284375 |
transcript.pyannote[413].speaker |
SPEAKER_03 |
transcript.pyannote[413].start |
5119.97346875 |
transcript.pyannote[413].end |
5123.48346875 |
transcript.pyannote[414].speaker |
SPEAKER_03 |
transcript.pyannote[414].start |
5124.37784375 |
transcript.pyannote[414].end |
5126.79096875 |
transcript.pyannote[415].speaker |
SPEAKER_03 |
transcript.pyannote[415].start |
5127.31409375 |
transcript.pyannote[415].end |
5133.74346875 |
transcript.pyannote[416].speaker |
SPEAKER_03 |
transcript.pyannote[416].start |
5134.48596875 |
transcript.pyannote[416].end |
5138.26596875 |
transcript.pyannote[417].speaker |
SPEAKER_03 |
transcript.pyannote[417].start |
5139.71721875 |
transcript.pyannote[417].end |
5160.84471875 |
transcript.pyannote[418].speaker |
SPEAKER_03 |
transcript.pyannote[418].start |
5161.38471875 |
transcript.pyannote[418].end |
5163.07221875 |
transcript.pyannote[419].speaker |
SPEAKER_03 |
transcript.pyannote[419].start |
5164.18596875 |
transcript.pyannote[419].end |
5166.91971875 |
transcript.pyannote[420].speaker |
SPEAKER_03 |
transcript.pyannote[420].start |
5167.18971875 |
transcript.pyannote[420].end |
5169.67034375 |
transcript.pyannote[421].speaker |
SPEAKER_03 |
transcript.pyannote[421].start |
5169.95721875 |
transcript.pyannote[421].end |
5171.79659375 |
transcript.pyannote[422].speaker |
SPEAKER_03 |
transcript.pyannote[422].start |
5172.96096875 |
transcript.pyannote[422].end |
5182.22534375 |
transcript.pyannote[423].speaker |
SPEAKER_03 |
transcript.pyannote[423].start |
5182.37721875 |
transcript.pyannote[423].end |
5186.47784375 |
transcript.pyannote[424].speaker |
SPEAKER_03 |
transcript.pyannote[424].start |
5187.37221875 |
transcript.pyannote[424].end |
5189.24534375 |
transcript.pyannote[425].speaker |
SPEAKER_03 |
transcript.pyannote[425].start |
5189.56596875 |
transcript.pyannote[425].end |
5193.73409375 |
transcript.pyannote[426].speaker |
SPEAKER_03 |
transcript.pyannote[426].start |
5194.12221875 |
transcript.pyannote[426].end |
5198.17221875 |
transcript.pyannote[427].speaker |
SPEAKER_03 |
transcript.pyannote[427].start |
5198.61096875 |
transcript.pyannote[427].end |
5200.24784375 |
transcript.pyannote[428].speaker |
SPEAKER_03 |
transcript.pyannote[428].start |
5200.31534375 |
transcript.pyannote[428].end |
5205.10784375 |
transcript.pyannote[429].speaker |
SPEAKER_03 |
transcript.pyannote[429].start |
5205.96846875 |
transcript.pyannote[429].end |
5207.87534375 |
transcript.pyannote[430].speaker |
SPEAKER_03 |
transcript.pyannote[430].start |
5209.07346875 |
transcript.pyannote[430].end |
5217.74721875 |
transcript.pyannote[431].speaker |
SPEAKER_03 |
transcript.pyannote[431].start |
5218.52346875 |
transcript.pyannote[431].end |
5222.26971875 |
transcript.pyannote[432].speaker |
SPEAKER_03 |
transcript.pyannote[432].start |
5223.41721875 |
transcript.pyannote[432].end |
5231.17971875 |
transcript.pyannote[433].speaker |
SPEAKER_03 |
transcript.pyannote[433].start |
5231.34846875 |
transcript.pyannote[433].end |
5241.81096875 |
transcript.pyannote[434].speaker |
SPEAKER_03 |
transcript.pyannote[434].start |
5242.43534375 |
transcript.pyannote[434].end |
5246.82284375 |
transcript.pyannote[435].speaker |
SPEAKER_03 |
transcript.pyannote[435].start |
5247.07596875 |
transcript.pyannote[435].end |
5256.94784375 |
transcript.pyannote[436].speaker |
SPEAKER_03 |
transcript.pyannote[436].start |
5257.35284375 |
transcript.pyannote[436].end |
5266.48221875 |
transcript.pyannote[437].speaker |
SPEAKER_03 |
transcript.pyannote[437].start |
5266.49909375 |
transcript.pyannote[437].end |
5281.88909375 |
transcript.pyannote[438].speaker |
SPEAKER_03 |
transcript.pyannote[438].start |
5282.12534375 |
transcript.pyannote[438].end |
5310.93096875 |
transcript.pyannote[439].speaker |
SPEAKER_03 |
transcript.pyannote[439].start |
5310.94784375 |
transcript.pyannote[439].end |
5311.99409375 |
transcript.pyannote[440].speaker |
SPEAKER_03 |
transcript.pyannote[440].start |
5312.51721875 |
transcript.pyannote[440].end |
5313.66471875 |
transcript.pyannote[441].speaker |
SPEAKER_03 |
transcript.pyannote[441].start |
5313.95159375 |
transcript.pyannote[441].end |
5343.16221875 |
transcript.pyannote[442].speaker |
SPEAKER_03 |
transcript.pyannote[442].start |
5343.49971875 |
transcript.pyannote[442].end |
5347.87034375 |
transcript.pyannote[443].speaker |
SPEAKER_03 |
transcript.pyannote[443].start |
5348.81534375 |
transcript.pyannote[443].end |
5353.37159375 |
transcript.pyannote[444].speaker |
SPEAKER_03 |
transcript.pyannote[444].start |
5353.52346875 |
transcript.pyannote[444].end |
5356.05471875 |
transcript.pyannote[445].speaker |
SPEAKER_03 |
transcript.pyannote[445].start |
5356.74659375 |
transcript.pyannote[445].end |
5361.15096875 |
transcript.pyannote[446].speaker |
SPEAKER_03 |
transcript.pyannote[446].start |
5361.89346875 |
transcript.pyannote[446].end |
5386.86846875 |
transcript.pyannote[447].speaker |
SPEAKER_03 |
transcript.pyannote[447].start |
5387.40846875 |
transcript.pyannote[447].end |
5388.01596875 |
transcript.pyannote[448].speaker |
SPEAKER_03 |
transcript.pyannote[448].start |
5388.77534375 |
transcript.pyannote[448].end |
5390.32784375 |
transcript.pyannote[449].speaker |
SPEAKER_03 |
transcript.pyannote[449].start |
5390.90159375 |
transcript.pyannote[449].end |
5405.56596875 |
transcript.pyannote[450].speaker |
SPEAKER_03 |
transcript.pyannote[450].start |
5406.00471875 |
transcript.pyannote[450].end |
5406.27471875 |
transcript.pyannote[451].speaker |
SPEAKER_03 |
transcript.pyannote[451].start |
5406.83159375 |
transcript.pyannote[451].end |
5420.43284375 |
transcript.pyannote[452].speaker |
SPEAKER_03 |
transcript.pyannote[452].start |
5421.25971875 |
transcript.pyannote[452].end |
5421.93471875 |
transcript.pyannote[453].speaker |
SPEAKER_03 |
transcript.pyannote[453].start |
5422.98096875 |
transcript.pyannote[453].end |
5423.84159375 |
transcript.pyannote[454].speaker |
SPEAKER_03 |
transcript.pyannote[454].start |
5424.56721875 |
transcript.pyannote[454].end |
5425.36034375 |
transcript.pyannote[455].speaker |
SPEAKER_03 |
transcript.pyannote[455].start |
5425.84971875 |
transcript.pyannote[455].end |
5426.98034375 |
transcript.pyannote[456].speaker |
SPEAKER_03 |
transcript.pyannote[456].start |
5427.33471875 |
transcript.pyannote[456].end |
5430.55784375 |
transcript.pyannote[457].speaker |
SPEAKER_03 |
transcript.pyannote[457].start |
5431.08096875 |
transcript.pyannote[457].end |
5432.04284375 |
transcript.pyannote[458].speaker |
SPEAKER_03 |
transcript.pyannote[458].start |
5432.41409375 |
transcript.pyannote[458].end |
5434.81034375 |
transcript.pyannote[459].speaker |
SPEAKER_03 |
transcript.pyannote[459].start |
5435.31659375 |
transcript.pyannote[459].end |
5436.63284375 |
transcript.pyannote[460].speaker |
SPEAKER_03 |
transcript.pyannote[460].start |
5437.98284375 |
transcript.pyannote[460].end |
5445.03659375 |
transcript.pyannote[461].speaker |
SPEAKER_03 |
transcript.pyannote[461].start |
5445.82971875 |
transcript.pyannote[461].end |
5447.19659375 |
transcript.pyannote[462].speaker |
SPEAKER_03 |
transcript.pyannote[462].start |
5447.70284375 |
transcript.pyannote[462].end |
5448.49596875 |
transcript.pyannote[463].speaker |
SPEAKER_03 |
transcript.pyannote[463].start |
5449.25534375 |
transcript.pyannote[463].end |
5454.63846875 |
transcript.pyannote[464].speaker |
SPEAKER_03 |
transcript.pyannote[464].start |
5455.14471875 |
transcript.pyannote[464].end |
5459.92034375 |
transcript.pyannote[465].speaker |
SPEAKER_03 |
transcript.pyannote[465].start |
5460.47721875 |
transcript.pyannote[465].end |
5464.52721875 |
transcript.pyannote[466].speaker |
SPEAKER_03 |
transcript.pyannote[466].start |
5464.93221875 |
transcript.pyannote[466].end |
5467.64909375 |
transcript.pyannote[467].speaker |
SPEAKER_03 |
transcript.pyannote[467].start |
5468.29034375 |
transcript.pyannote[467].end |
5477.28471875 |
transcript.pyannote[468].speaker |
SPEAKER_03 |
transcript.pyannote[468].start |
5477.43659375 |
transcript.pyannote[468].end |
5494.10909375 |
transcript.pyannote[469].speaker |
SPEAKER_04 |
transcript.pyannote[469].start |
5494.48034375 |
transcript.pyannote[469].end |
5494.54784375 |
transcript.pyannote[470].speaker |
SPEAKER_03 |
transcript.pyannote[470].start |
5494.54784375 |
transcript.pyannote[470].end |
5498.46284375 |
transcript.pyannote[471].speaker |
SPEAKER_03 |
transcript.pyannote[471].start |
5500.11659375 |
transcript.pyannote[471].end |
5500.80846875 |
transcript.pyannote[472].speaker |
SPEAKER_03 |
transcript.pyannote[472].start |
5501.26409375 |
transcript.pyannote[472].end |
5505.88784375 |
transcript.pyannote[473].speaker |
SPEAKER_03 |
transcript.pyannote[473].start |
5506.29284375 |
transcript.pyannote[473].end |
5523.85971875 |
transcript.pyannote[474].speaker |
SPEAKER_03 |
transcript.pyannote[474].start |
5524.39971875 |
transcript.pyannote[474].end |
5534.47409375 |
transcript.pyannote[475].speaker |
SPEAKER_03 |
transcript.pyannote[475].start |
5534.98034375 |
transcript.pyannote[475].end |
5562.23346875 |
transcript.pyannote[476].speaker |
SPEAKER_03 |
transcript.pyannote[476].start |
5562.57096875 |
transcript.pyannote[476].end |
5580.88034375 |
transcript.pyannote[477].speaker |
SPEAKER_03 |
transcript.pyannote[477].start |
5581.26846875 |
transcript.pyannote[477].end |
5584.12034375 |
transcript.pyannote[478].speaker |
SPEAKER_03 |
transcript.pyannote[478].start |
5584.23846875 |
transcript.pyannote[478].end |
5590.14471875 |
transcript.pyannote[479].speaker |
SPEAKER_03 |
transcript.pyannote[479].start |
5590.75221875 |
transcript.pyannote[479].end |
5592.32159375 |
transcript.pyannote[480].speaker |
SPEAKER_03 |
transcript.pyannote[480].start |
5593.03034375 |
transcript.pyannote[480].end |
5598.41346875 |
transcript.pyannote[481].speaker |
SPEAKER_03 |
transcript.pyannote[481].start |
5598.54846875 |
transcript.pyannote[481].end |
5602.29471875 |
transcript.pyannote[482].speaker |
SPEAKER_03 |
transcript.pyannote[482].start |
5610.12471875 |
transcript.pyannote[482].end |
5610.71534375 |
transcript.pyannote[483].speaker |
SPEAKER_00 |
transcript.pyannote[483].start |
5613.09471875 |
transcript.pyannote[483].end |
5615.18721875 |
transcript.pyannote[484].speaker |
SPEAKER_00 |
transcript.pyannote[484].start |
5615.42346875 |
transcript.pyannote[484].end |
5619.67596875 |
transcript.pyannote[485].speaker |
SPEAKER_00 |
transcript.pyannote[485].start |
5620.11471875 |
transcript.pyannote[485].end |
5621.31284375 |
transcript.pyannote[486].speaker |
SPEAKER_03 |
transcript.pyannote[486].start |
5622.00471875 |
transcript.pyannote[486].end |
5647.38471875 |
transcript.pyannote[487].speaker |
SPEAKER_03 |
transcript.pyannote[487].start |
5647.75596875 |
transcript.pyannote[487].end |
5665.35659375 |
transcript.pyannote[488].speaker |
SPEAKER_02 |
transcript.pyannote[488].start |
5667.14534375 |
transcript.pyannote[488].end |
5672.24159375 |
transcript.pyannote[489].speaker |
SPEAKER_02 |
transcript.pyannote[489].start |
5672.62971875 |
transcript.pyannote[489].end |
5673.77721875 |
transcript.pyannote[490].speaker |
SPEAKER_02 |
transcript.pyannote[490].start |
5674.68846875 |
transcript.pyannote[490].end |
5676.44346875 |
transcript.pyannote[491].speaker |
SPEAKER_02 |
transcript.pyannote[491].start |
5677.06784375 |
transcript.pyannote[491].end |
5690.90534375 |
transcript.pyannote[492].speaker |
SPEAKER_02 |
transcript.pyannote[492].start |
5691.51284375 |
transcript.pyannote[492].end |
5695.36034375 |
transcript.pyannote[493].speaker |
SPEAKER_02 |
transcript.pyannote[493].start |
5696.01846875 |
transcript.pyannote[493].end |
5703.59534375 |
transcript.pyannote[494].speaker |
SPEAKER_02 |
transcript.pyannote[494].start |
5704.03409375 |
transcript.pyannote[494].end |
5708.37096875 |
transcript.pyannote[495].speaker |
SPEAKER_02 |
transcript.pyannote[495].start |
5708.97846875 |
transcript.pyannote[495].end |
5722.15784375 |
transcript.pyannote[496].speaker |
SPEAKER_02 |
transcript.pyannote[496].start |
5723.06909375 |
transcript.pyannote[496].end |
5727.81096875 |
transcript.pyannote[497].speaker |
SPEAKER_02 |
transcript.pyannote[497].start |
5728.53659375 |
transcript.pyannote[497].end |
5728.94159375 |
transcript.pyannote[498].speaker |
SPEAKER_02 |
transcript.pyannote[498].start |
5729.16096875 |
transcript.pyannote[498].end |
5735.26971875 |
transcript.pyannote[499].speaker |
SPEAKER_02 |
transcript.pyannote[499].start |
5735.65784375 |
transcript.pyannote[499].end |
5736.75471875 |
transcript.pyannote[500].speaker |
SPEAKER_02 |
transcript.pyannote[500].start |
5737.31159375 |
transcript.pyannote[500].end |
5739.80909375 |
transcript.pyannote[501].speaker |
SPEAKER_02 |
transcript.pyannote[501].start |
5740.36596875 |
transcript.pyannote[501].end |
5741.88471875 |
transcript.pyannote[502].speaker |
SPEAKER_04 |
transcript.pyannote[502].start |
5742.71159375 |
transcript.pyannote[502].end |
5742.81284375 |
transcript.pyannote[503].speaker |
SPEAKER_02 |
transcript.pyannote[503].start |
5742.81284375 |
transcript.pyannote[503].end |
5744.85471875 |
transcript.pyannote[504].speaker |
SPEAKER_04 |
transcript.pyannote[504].start |
5742.84659375 |
transcript.pyannote[504].end |
5742.96471875 |
transcript.pyannote[505].speaker |
SPEAKER_02 |
transcript.pyannote[505].start |
5745.88409375 |
transcript.pyannote[505].end |
5749.88346875 |
transcript.pyannote[506].speaker |
SPEAKER_02 |
transcript.pyannote[506].start |
5750.30534375 |
transcript.pyannote[506].end |
5752.22909375 |
transcript.pyannote[507].speaker |
SPEAKER_02 |
transcript.pyannote[507].start |
5752.44846875 |
transcript.pyannote[507].end |
5756.31284375 |
transcript.pyannote[508].speaker |
SPEAKER_02 |
transcript.pyannote[508].start |
5756.71784375 |
transcript.pyannote[508].end |
5759.46846875 |
transcript.pyannote[509].speaker |
SPEAKER_02 |
transcript.pyannote[509].start |
5759.92409375 |
transcript.pyannote[509].end |
5761.29096875 |
transcript.pyannote[510].speaker |
SPEAKER_02 |
transcript.pyannote[510].start |
5761.51034375 |
transcript.pyannote[510].end |
5774.45346875 |
transcript.pyannote[511].speaker |
SPEAKER_02 |
transcript.pyannote[511].start |
5774.75721875 |
transcript.pyannote[511].end |
5782.67159375 |
transcript.pyannote[512].speaker |
SPEAKER_02 |
transcript.pyannote[512].start |
5783.05971875 |
transcript.pyannote[512].end |
5786.29971875 |
transcript.pyannote[513].speaker |
SPEAKER_02 |
transcript.pyannote[513].start |
5787.54846875 |
transcript.pyannote[513].end |
5788.32471875 |
transcript.pyannote[514].speaker |
SPEAKER_02 |
transcript.pyannote[514].start |
5790.04596875 |
transcript.pyannote[514].end |
5791.58159375 |
transcript.pyannote[515].speaker |
SPEAKER_02 |
transcript.pyannote[515].start |
5792.20596875 |
transcript.pyannote[515].end |
5797.63971875 |
transcript.pyannote[516].speaker |
SPEAKER_02 |
transcript.pyannote[516].start |
5797.89284375 |
transcript.pyannote[516].end |
5800.12034375 |
transcript.pyannote[517].speaker |
SPEAKER_02 |
transcript.pyannote[517].start |
5800.45784375 |
transcript.pyannote[517].end |
5802.38159375 |
transcript.pyannote[518].speaker |
SPEAKER_02 |
transcript.pyannote[518].start |
5802.97221875 |
transcript.pyannote[518].end |
5805.65534375 |
transcript.pyannote[519].speaker |
SPEAKER_02 |
transcript.pyannote[519].start |
5806.06034375 |
transcript.pyannote[519].end |
5808.99659375 |
transcript.pyannote[520].speaker |
SPEAKER_02 |
transcript.pyannote[520].start |
5809.58721875 |
transcript.pyannote[520].end |
5811.84846875 |
transcript.pyannote[521].speaker |
SPEAKER_02 |
transcript.pyannote[521].start |
5812.42221875 |
transcript.pyannote[521].end |
5815.18971875 |
transcript.pyannote[522].speaker |
SPEAKER_02 |
transcript.pyannote[522].start |
5815.81409375 |
transcript.pyannote[522].end |
5827.52534375 |
transcript.pyannote[523].speaker |
SPEAKER_02 |
transcript.pyannote[523].start |
5828.26784375 |
transcript.pyannote[523].end |
5831.23784375 |
transcript.pyannote[524].speaker |
SPEAKER_02 |
transcript.pyannote[524].start |
5831.87909375 |
transcript.pyannote[524].end |
5833.93784375 |
transcript.pyannote[525].speaker |
SPEAKER_02 |
transcript.pyannote[525].start |
5835.42284375 |
transcript.pyannote[525].end |
5839.74284375 |
transcript.pyannote[526].speaker |
SPEAKER_02 |
transcript.pyannote[526].start |
5840.43471875 |
transcript.pyannote[526].end |
5843.37096875 |
transcript.pyannote[527].speaker |
SPEAKER_02 |
transcript.pyannote[527].start |
5844.34971875 |
transcript.pyannote[527].end |
5848.61909375 |
transcript.pyannote[528].speaker |
SPEAKER_02 |
transcript.pyannote[528].start |
5849.20971875 |
transcript.pyannote[528].end |
5852.46659375 |
transcript.pyannote[529].speaker |
SPEAKER_02 |
transcript.pyannote[529].start |
5853.07409375 |
transcript.pyannote[529].end |
5857.03971875 |
transcript.pyannote[530].speaker |
SPEAKER_02 |
transcript.pyannote[530].start |
5857.83284375 |
transcript.pyannote[530].end |
5866.96221875 |
transcript.pyannote[531].speaker |
SPEAKER_02 |
transcript.pyannote[531].start |
5870.40471875 |
transcript.pyannote[531].end |
5874.40409375 |
transcript.pyannote[532].speaker |
SPEAKER_01 |
transcript.pyannote[532].start |
5884.20846875 |
transcript.pyannote[532].end |
5913.06471875 |
transcript.pyannote[533].speaker |
SPEAKER_03 |
transcript.pyannote[533].start |
5916.01784375 |
transcript.pyannote[533].end |
5959.20096875 |
transcript.pyannote[534].speaker |
SPEAKER_00 |
transcript.pyannote[534].start |
5954.12159375 |
transcript.pyannote[534].end |
5954.17221875 |
transcript.pyannote[535].speaker |
SPEAKER_04 |
transcript.pyannote[535].start |
5954.17221875 |
transcript.pyannote[535].end |
5954.52659375 |
transcript.pyannote[536].speaker |
SPEAKER_02 |
transcript.pyannote[536].start |
5962.15409375 |
transcript.pyannote[536].end |
5975.55284375 |
transcript.pyannote[537].speaker |
SPEAKER_02 |
transcript.pyannote[537].start |
5976.34596875 |
transcript.pyannote[537].end |
5977.49346875 |
transcript.pyannote[538].speaker |
SPEAKER_02 |
transcript.pyannote[538].start |
5977.84784375 |
transcript.pyannote[538].end |
5995.48221875 |
transcript.pyannote[539].speaker |
SPEAKER_02 |
transcript.pyannote[539].start |
5995.53284375 |
transcript.pyannote[539].end |
5996.68034375 |
transcript.pyannote[540].speaker |
SPEAKER_02 |
transcript.pyannote[540].start |
5997.05159375 |
transcript.pyannote[540].end |
6015.96846875 |
transcript.pyannote[541].speaker |
SPEAKER_02 |
transcript.pyannote[541].start |
6016.32284375 |
transcript.pyannote[541].end |
6020.79471875 |
transcript.pyannote[542].speaker |
SPEAKER_02 |
transcript.pyannote[542].start |
6020.81159375 |
transcript.pyannote[542].end |
6023.10659375 |
transcript.pyannote[543].speaker |
SPEAKER_02 |
transcript.pyannote[543].start |
6023.71409375 |
transcript.pyannote[543].end |
6037.93971875 |
transcript.pyannote[544].speaker |
SPEAKER_02 |
transcript.pyannote[544].start |
6038.31096875 |
transcript.pyannote[544].end |
6041.44971875 |
transcript.pyannote[545].speaker |
SPEAKER_02 |
transcript.pyannote[545].start |
6041.53409375 |
transcript.pyannote[545].end |
6048.72284375 |
transcript.pyannote[546].speaker |
SPEAKER_02 |
transcript.pyannote[546].start |
6048.87471875 |
transcript.pyannote[546].end |
6087.19784375 |
transcript.pyannote[547].speaker |
SPEAKER_02 |
transcript.pyannote[547].start |
6088.27784375 |
transcript.pyannote[547].end |
6089.05409375 |
transcript.pyannote[548].speaker |
SPEAKER_02 |
transcript.pyannote[548].start |
6090.23534375 |
transcript.pyannote[548].end |
6104.15721875 |
transcript.pyannote[549].speaker |
SPEAKER_02 |
transcript.pyannote[549].start |
6104.83221875 |
transcript.pyannote[549].end |
6126.58409375 |
transcript.pyannote[550].speaker |
SPEAKER_02 |
transcript.pyannote[550].start |
6127.98471875 |
transcript.pyannote[550].end |
6129.03096875 |
transcript.pyannote[551].speaker |
SPEAKER_02 |
transcript.pyannote[551].start |
6130.14471875 |
transcript.pyannote[551].end |
6132.22034375 |
transcript.pyannote[552].speaker |
SPEAKER_02 |
transcript.pyannote[552].start |
6135.34221875 |
transcript.pyannote[552].end |
6142.51409375 |
transcript.pyannote[553].speaker |
SPEAKER_02 |
transcript.pyannote[553].start |
6143.08784375 |
transcript.pyannote[553].end |
6147.84659375 |
transcript.pyannote[554].speaker |
SPEAKER_02 |
transcript.pyannote[554].start |
6148.40346875 |
transcript.pyannote[554].end |
6157.78596875 |
transcript.pyannote[555].speaker |
SPEAKER_02 |
transcript.pyannote[555].start |
6159.92909375 |
transcript.pyannote[555].end |
6167.16846875 |
transcript.pyannote[556].speaker |
SPEAKER_02 |
transcript.pyannote[556].start |
6167.77596875 |
transcript.pyannote[556].end |
6170.13846875 |
transcript.pyannote[557].speaker |
SPEAKER_02 |
transcript.pyannote[557].start |
6170.86409375 |
transcript.pyannote[557].end |
6171.99471875 |
transcript.pyannote[558].speaker |
SPEAKER_02 |
transcript.pyannote[558].start |
6172.63596875 |
transcript.pyannote[558].end |
6175.69034375 |
transcript.pyannote[559].speaker |
SPEAKER_02 |
transcript.pyannote[559].start |
6175.97721875 |
transcript.pyannote[559].end |
6179.36909375 |
transcript.pyannote[560].speaker |
SPEAKER_02 |
transcript.pyannote[560].start |
6181.51221875 |
transcript.pyannote[560].end |
6185.44409375 |
transcript.pyannote[561].speaker |
SPEAKER_02 |
transcript.pyannote[561].start |
6186.74346875 |
transcript.pyannote[561].end |
6194.80971875 |
transcript.pyannote[562].speaker |
SPEAKER_02 |
transcript.pyannote[562].start |
6197.03721875 |
transcript.pyannote[562].end |
6198.77534375 |
transcript.pyannote[563].speaker |
SPEAKER_02 |
transcript.pyannote[563].start |
6199.26471875 |
transcript.pyannote[563].end |
6202.70721875 |
transcript.pyannote[564].speaker |
SPEAKER_02 |
transcript.pyannote[564].start |
6203.16284375 |
transcript.pyannote[564].end |
6204.51284375 |
transcript.pyannote[565].speaker |
SPEAKER_02 |
transcript.pyannote[565].start |
6205.30596875 |
transcript.pyannote[565].end |
6206.45346875 |
transcript.pyannote[566].speaker |
SPEAKER_02 |
transcript.pyannote[566].start |
6207.19596875 |
transcript.pyannote[566].end |
6209.42346875 |
transcript.pyannote[567].speaker |
SPEAKER_02 |
transcript.pyannote[567].start |
6210.06471875 |
transcript.pyannote[567].end |
6212.25846875 |
transcript.pyannote[568].speaker |
SPEAKER_02 |
transcript.pyannote[568].start |
6213.22034375 |
transcript.pyannote[568].end |
6217.27034375 |
transcript.pyannote[569].speaker |
SPEAKER_00 |
transcript.pyannote[569].start |
6214.26659375 |
transcript.pyannote[569].end |
6214.63784375 |
transcript.pyannote[570].speaker |
SPEAKER_02 |
transcript.pyannote[570].start |
6218.28284375 |
transcript.pyannote[570].end |
6220.61159375 |
transcript.pyannote[571].speaker |
SPEAKER_02 |
transcript.pyannote[571].start |
6221.37096875 |
transcript.pyannote[571].end |
6221.72534375 |
transcript.pyannote[572].speaker |
SPEAKER_02 |
transcript.pyannote[572].start |
6222.21471875 |
transcript.pyannote[572].end |
6229.11659375 |
transcript.pyannote[573].speaker |
SPEAKER_02 |
transcript.pyannote[573].start |
6229.96034375 |
transcript.pyannote[573].end |
6233.84159375 |
transcript.pyannote[574].speaker |
SPEAKER_02 |
transcript.pyannote[574].start |
6235.39409375 |
transcript.pyannote[574].end |
6239.78159375 |
transcript.pyannote[575].speaker |
SPEAKER_02 |
transcript.pyannote[575].start |
6240.92909375 |
transcript.pyannote[575].end |
6241.85721875 |
transcript.pyannote[576].speaker |
SPEAKER_02 |
transcript.pyannote[576].start |
6241.97534375 |
transcript.pyannote[576].end |
6242.02596875 |
transcript.pyannote[577].speaker |
SPEAKER_02 |
transcript.pyannote[577].start |
6242.49846875 |
transcript.pyannote[577].end |
6247.12221875 |
transcript.pyannote[578].speaker |
SPEAKER_02 |
transcript.pyannote[578].start |
6248.11784375 |
transcript.pyannote[578].end |
6256.09971875 |
transcript.pyannote[579].speaker |
SPEAKER_02 |
transcript.pyannote[579].start |
6256.35284375 |
transcript.pyannote[579].end |
6256.99409375 |
transcript.pyannote[580].speaker |
SPEAKER_02 |
transcript.pyannote[580].start |
6257.43284375 |
transcript.pyannote[580].end |
6259.55909375 |
transcript.pyannote[581].speaker |
SPEAKER_02 |
transcript.pyannote[581].start |
6260.01471875 |
transcript.pyannote[581].end |
6262.36034375 |
transcript.pyannote[582].speaker |
SPEAKER_02 |
transcript.pyannote[582].start |
6262.81596875 |
transcript.pyannote[582].end |
6265.92096875 |
transcript.pyannote[583].speaker |
SPEAKER_02 |
transcript.pyannote[583].start |
6267.38909375 |
transcript.pyannote[583].end |
6272.21534375 |
transcript.pyannote[584].speaker |
SPEAKER_02 |
transcript.pyannote[584].start |
6273.32909375 |
transcript.pyannote[584].end |
6273.68346875 |
transcript.pyannote[585].speaker |
SPEAKER_02 |
transcript.pyannote[585].start |
6273.88596875 |
transcript.pyannote[585].end |
6276.18096875 |
transcript.pyannote[586].speaker |
SPEAKER_02 |
transcript.pyannote[586].start |
6277.00784375 |
transcript.pyannote[586].end |
6277.83471875 |
transcript.pyannote[587].speaker |
SPEAKER_02 |
transcript.pyannote[587].start |
6278.13846875 |
transcript.pyannote[587].end |
6281.90159375 |
transcript.pyannote[588].speaker |
SPEAKER_02 |
transcript.pyannote[588].start |
6282.25596875 |
transcript.pyannote[588].end |
6308.68221875 |
transcript.pyannote[589].speaker |
SPEAKER_00 |
transcript.pyannote[589].start |
6294.37221875 |
transcript.pyannote[589].end |
6294.45659375 |
transcript.pyannote[590].speaker |
SPEAKER_02 |
transcript.pyannote[590].start |
6309.07034375 |
transcript.pyannote[590].end |
6312.05721875 |
transcript.pyannote[591].speaker |
SPEAKER_02 |
transcript.pyannote[591].start |
6312.73221875 |
transcript.pyannote[591].end |
6320.02221875 |
transcript.pyannote[592].speaker |
SPEAKER_02 |
transcript.pyannote[592].start |
6320.42721875 |
transcript.pyannote[592].end |
6341.67284375 |
transcript.pyannote[593].speaker |
SPEAKER_02 |
transcript.pyannote[593].start |
6341.82471875 |
transcript.pyannote[593].end |
6344.84534375 |
transcript.pyannote[594].speaker |
SPEAKER_02 |
transcript.pyannote[594].start |
6345.41909375 |
transcript.pyannote[594].end |
6346.92096875 |
transcript.pyannote[595].speaker |
SPEAKER_02 |
transcript.pyannote[595].start |
6347.46096875 |
transcript.pyannote[595].end |
6347.98409375 |
transcript.pyannote[596].speaker |
SPEAKER_02 |
transcript.pyannote[596].start |
6349.04721875 |
transcript.pyannote[596].end |
6350.07659375 |
transcript.pyannote[597].speaker |
SPEAKER_02 |
transcript.pyannote[597].start |
6350.14409375 |
transcript.pyannote[597].end |
6353.87346875 |
transcript.pyannote[598].speaker |
SPEAKER_02 |
transcript.pyannote[598].start |
6354.16034375 |
transcript.pyannote[598].end |
6360.23534375 |
transcript.pyannote[599].speaker |
SPEAKER_02 |
transcript.pyannote[599].start |
6360.52221875 |
transcript.pyannote[599].end |
6360.72471875 |
transcript.pyannote[600].speaker |
SPEAKER_02 |
transcript.pyannote[600].start |
6361.38284375 |
transcript.pyannote[600].end |
6364.26846875 |
transcript.pyannote[601].speaker |
SPEAKER_02 |
transcript.pyannote[601].start |
6364.77471875 |
transcript.pyannote[601].end |
6368.11596875 |
transcript.pyannote[602].speaker |
SPEAKER_02 |
transcript.pyannote[602].start |
6368.30159375 |
transcript.pyannote[602].end |
6370.25909375 |
transcript.pyannote[603].speaker |
SPEAKER_04 |
transcript.pyannote[603].start |
6370.37721875 |
transcript.pyannote[603].end |
6372.01409375 |
transcript.pyannote[604].speaker |
SPEAKER_02 |
transcript.pyannote[604].start |
6372.41909375 |
transcript.pyannote[604].end |
6376.63784375 |
transcript.pyannote[605].speaker |
SPEAKER_02 |
transcript.pyannote[605].start |
6377.14409375 |
transcript.pyannote[605].end |
6380.75534375 |
transcript.pyannote[606].speaker |
SPEAKER_02 |
transcript.pyannote[606].start |
6381.53159375 |
transcript.pyannote[606].end |
6387.43784375 |
transcript.pyannote[607].speaker |
SPEAKER_02 |
transcript.pyannote[607].start |
6388.24784375 |
transcript.pyannote[607].end |
6388.80471875 |
transcript.pyannote[608].speaker |
SPEAKER_02 |
transcript.pyannote[608].start |
6389.05784375 |
transcript.pyannote[608].end |
6399.50346875 |
transcript.pyannote[609].speaker |
SPEAKER_02 |
transcript.pyannote[609].start |
6400.06034375 |
transcript.pyannote[609].end |
6408.14346875 |
transcript.pyannote[610].speaker |
SPEAKER_02 |
transcript.pyannote[610].start |
6408.70034375 |
transcript.pyannote[610].end |
6413.07096875 |
transcript.pyannote[611].speaker |
SPEAKER_02 |
transcript.pyannote[611].start |
6413.18909375 |
transcript.pyannote[611].end |
6418.26846875 |
transcript.pyannote[612].speaker |
SPEAKER_02 |
transcript.pyannote[612].start |
6418.74096875 |
transcript.pyannote[612].end |
6430.45221875 |
transcript.pyannote[613].speaker |
SPEAKER_02 |
transcript.pyannote[613].start |
6430.97534375 |
transcript.pyannote[613].end |
6434.24909375 |
transcript.pyannote[614].speaker |
SPEAKER_02 |
transcript.pyannote[614].start |
6434.97471875 |
transcript.pyannote[614].end |
6450.16221875 |
transcript.pyannote[615].speaker |
SPEAKER_02 |
transcript.pyannote[615].start |
6450.75284375 |
transcript.pyannote[615].end |
6453.38534375 |
transcript.pyannote[616].speaker |
SPEAKER_02 |
transcript.pyannote[616].start |
6453.53721875 |
transcript.pyannote[616].end |
6454.93784375 |
transcript.pyannote[617].speaker |
SPEAKER_02 |
transcript.pyannote[617].start |
6455.25846875 |
transcript.pyannote[617].end |
6456.92909375 |
transcript.pyannote[618].speaker |
SPEAKER_02 |
transcript.pyannote[618].start |
6457.26659375 |
transcript.pyannote[618].end |
6460.16909375 |
transcript.pyannote[619].speaker |
SPEAKER_02 |
transcript.pyannote[619].start |
6460.28721875 |
transcript.pyannote[619].end |
6462.88596875 |
transcript.pyannote[620].speaker |
SPEAKER_02 |
transcript.pyannote[620].start |
6462.97034375 |
transcript.pyannote[620].end |
6462.98721875 |
transcript.pyannote[621].speaker |
SPEAKER_02 |
transcript.pyannote[621].start |
6463.44284375 |
transcript.pyannote[621].end |
6470.95221875 |
transcript.pyannote[622].speaker |
SPEAKER_02 |
transcript.pyannote[622].start |
6472.52159375 |
transcript.pyannote[622].end |
6475.35659375 |
transcript.pyannote[623].speaker |
SPEAKER_02 |
transcript.pyannote[623].start |
6488.89034375 |
transcript.pyannote[623].end |
6492.67034375 |
transcript.pyannote[624].speaker |
SPEAKER_02 |
transcript.pyannote[624].start |
6495.33659375 |
transcript.pyannote[624].end |
6495.92721875 |
transcript.pyannote[625].speaker |
SPEAKER_03 |
transcript.pyannote[625].start |
6503.38596875 |
transcript.pyannote[625].end |
6511.04721875 |
transcript.pyannote[626].speaker |
SPEAKER_03 |
transcript.pyannote[626].start |
6512.31284375 |
transcript.pyannote[626].end |
6514.86096875 |
transcript.pyannote[627].speaker |
SPEAKER_03 |
transcript.pyannote[627].start |
6515.43471875 |
transcript.pyannote[627].end |
6554.83784375 |
transcript.pyannote[628].speaker |
SPEAKER_02 |
transcript.pyannote[628].start |
6555.68159375 |
transcript.pyannote[628].end |
6561.55409375 |
transcript.pyannote[629].speaker |
SPEAKER_02 |
transcript.pyannote[629].start |
6562.07721875 |
transcript.pyannote[629].end |
6596.63721875 |
transcript.pyannote[630].speaker |
SPEAKER_02 |
transcript.pyannote[630].start |
6596.89034375 |
transcript.pyannote[630].end |
6610.52534375 |
transcript.pyannote[631].speaker |
SPEAKER_02 |
transcript.pyannote[631].start |
6610.91346875 |
transcript.pyannote[631].end |
6616.68471875 |
transcript.pyannote[632].speaker |
SPEAKER_04 |
transcript.pyannote[632].start |
6615.89159375 |
transcript.pyannote[632].end |
6616.09409375 |
transcript.pyannote[633].speaker |
SPEAKER_02 |
transcript.pyannote[633].start |
6617.29221875 |
transcript.pyannote[633].end |
6617.59596875 |
transcript.pyannote[634].speaker |
SPEAKER_02 |
transcript.pyannote[634].start |
6618.38909375 |
transcript.pyannote[634].end |
6623.04659375 |
transcript.pyannote[635].speaker |
SPEAKER_02 |
transcript.pyannote[635].start |
6625.34159375 |
transcript.pyannote[635].end |
6625.66221875 |
transcript.pyannote[636].speaker |
SPEAKER_02 |
transcript.pyannote[636].start |
6626.70846875 |
transcript.pyannote[636].end |
6628.14284375 |
transcript.pyannote[637].speaker |
SPEAKER_02 |
transcript.pyannote[637].start |
6628.59846875 |
transcript.pyannote[637].end |
6630.33659375 |
transcript.pyannote[638].speaker |
SPEAKER_02 |
transcript.pyannote[638].start |
6630.38721875 |
transcript.pyannote[638].end |
6635.07846875 |
transcript.whisperx[0].start |
1917.539 |
transcript.whisperx[0].end |
1936.829 |
transcript.whisperx[0].text |
各位助理同仁大家午安現在已經12點12分了因為我們表定是12點10分開始我們還是繼續這次的國會助理研習活動首先介紹一下我們立法院人事處的陳淑美副組長還有邱樂勤科長 |
transcript.whisperx[1].start |
1938.496 |
transcript.whisperx[1].end |
1956.639 |
transcript.whisperx[1].text |
秘書 邱業齊秘書 余科長還有今天的講師 楊清霞楊主任今天的課程主要是講那個執行稿的寫作所以今天應該有大部分來的一些法案助理吧 |
transcript.whisperx[2].start |
1960.065 |
transcript.whisperx[2].end |
1982.214 |
transcript.whisperx[2].text |
青霞主任在立法院非常資深她的課必然是非常精彩希望今天的課程對大家應該是有所收穫她也會把自己畢生所學的功力講出來再掌聲謝謝一下青霞我們就正式來研習活動開始 |
transcript.whisperx[3].start |
1998.976 |
transcript.whisperx[3].end |
2007.243 |
transcript.whisperx[3].text |
感謝今天各位來參加這個講習我先自我介紹一下我是楊清霞我在立法院很久的時間了久到有點不可考我服務過很多黨籍跟黨派的委員 |
transcript.whisperx[4].start |
2014.429 |
transcript.whisperx[4].end |
2041.857 |
transcript.whisperx[4].text |
那基本上我們就是做一個專業的那個服務的提供那希望那個今天的講習可以有助於大家融入這個職場環境然後給大家一些那個工作的一些那個指引不好意思因為我昨天剛好臨時那個腹部呢有一點點小問題就是做了一個小手術所以呢我我請容我坐著講完這堂課那先謝謝大家謝謝 |
transcript.whisperx[5].start |
2045.475 |
transcript.whisperx[5].end |
2072.061 |
transcript.whisperx[5].text |
好 那個我們現在開始首先經過這一兩個月下來那個助理應該對於那個立法院的那個工作的tempo應該有點了解首先在每個會期開始的時候上下會期都一樣都會有一個總諮詢那在下個會期的在雙數會期的時候還會有一個預算總諮詢那那個在總諮詢的部分呢那個助理同仁應該要先去了解一下委員登記的組別或者是對對對 |
transcript.whisperx[6].start |
2077.725 |
transcript.whisperx[6].end |
2080.387 |
transcript.whisperx[6].text |
對那個520之後新院長上任之後再一次總諮詢對 |
transcript.whisperx[7].start |
2089.683 |
transcript.whisperx[7].end |
2116.253 |
transcript.whisperx[7].text |
總質詢 如果委員沒有登記到政黨質詢的話那就了解一下它的那個組別另外各個委員會裡面的議程安排在一三四大家都應該很熟悉了那個議程可以的話也盡量提早了解那最主要就是禮拜一的那個議程那個如果可以透過黨團助理或是說那個跟召委辦公室如果比較熟的話先私底下去探尋一下對於大家工作準備起來會比較好一點不然的話在每個禮拜五的下午大家可能 |
transcript.whisperx[8].start |
2116.653 |
transcript.whisperx[8].end |
2127.849 |
transcript.whisperx[8].text |
下午以後大家才會拿到那個週報再來準備起來的話會比較吃力我在想說助理多半都在辦公室幫很多人爭取權益但是也要顧一下本身的勞權不要太操勞了 |
transcript.whisperx[9].start |
2130.29 |
transcript.whisperx[9].end |
2151.797 |
transcript.whisperx[9].text |
那個我首先在如果要做法案的話一定要知道那個參考資料的來源嘛那我就從那個立法院這邊講起先前立法院有安排一些那個講習活動可能大家也都有參與過我們在立法院網站上面其實有很多的參考資料那對於法案助理來講我覺得有一部分是非常值得參考的就是沒有辦法上網子萱呢子萱 |
transcript.whisperx[10].start |
2168.954 |
transcript.whisperx[10].end |
2176.439 |
transcript.whisperx[10].text |
不好意思啊沒辦法上網他沒辦法上網我要連結沒辦法連結 |
transcript.whisperx[11].start |
2208.182 |
transcript.whisperx[11].end |
2211.083 |
transcript.whisperx[11].text |
會議室的冷氣好像有點都無法調節通常都很冷 |
transcript.whisperx[12].start |
2246.181 |
transcript.whisperx[12].end |
2267.995 |
transcript.whisperx[12].text |
好那那個不好意思待會如果回過頭來我再跟大家呃代理大家看一下我先講一下就是在那個呃立法院的網站上面呢其實有很多的參考資料那我覺得比較那個呃適合的適合法案助理參考的主要有兩大部分一個是法治局的一個是預算中心的 |
transcript.whisperx[13].start |
2268.795 |
transcript.whisperx[13].end |
2294.529 |
transcript.whisperx[13].text |
我本來想要帶大家看一下在法治局他們會有很多的那個專題研究或是法案研究那大家可以注意他的法案研究其實是跟著立法院委員會的開會的tempo在出他們的那個研究報告的也就是說比如說明天要審動保法他動保法可能就在提前幾天他就會出來就是他會提供他的一些意見那那個意見其實有的可以值得參考有的大家就是真的就參考用 |
transcript.whisperx[14].start |
2295.91 |
transcript.whisperx[14].end |
2320.551 |
transcript.whisperx[14].text |
另外在預算中心的部分預算中心他們在我們選預算的時候是絕大多數的辦公室都會參考的一個資料因為是絕大多數的辦公室都會參考的所以大家提案都會非常的類似所以大家也要想盡辦法幫委員去挖掘一些預算中心以外他可能可以找到的預算審查的一些資料提供給委員 |
transcript.whisperx[15].start |
2342.924 |
transcript.whisperx[15].end |
2343.044 |
transcript.whisperx[15].text |
OK |
transcript.whisperx[16].start |
2347.064 |
transcript.whisperx[16].end |
2375.753 |
transcript.whisperx[16].text |
那我們先往下走喔就是說我提供幾個那個那個範例這個是之前我們在我在林思敏委員辦公室服務的時候那個那時候剛好在審那個警戒使用條例部分條例的那個修正草案這個呢就是我剛剛講的法治局的法案評估報告他評估報告裡面呢有幾點啦但是我截出其中兩點第一個呢他講說警察人員他執勤的時候我先講一下那個警戒條例那時候在修的時候可以了 |
transcript.whisperx[17].start |
2386.309 |
transcript.whisperx[17].end |
2402.232 |
transcript.whisperx[17].text |
他主要在講那時候在修正第一個是關於警察如果說我們在我們規定的警戒 警刀 警棍 警槍之外如果我出於緊急狀況我撿起旁邊一塊石頭丟過去那個算不算警戒 |
transcript.whisperx[18].start |
2403.824 |
transcript.whisperx[18].end |
2404.264 |
transcript.whisperx[18].text |
那時候修正的主要的重點在這裡 |
transcript.whisperx[19].start |
2422.124 |
transcript.whisperx[19].end |
2438.619 |
transcript.whisperx[19].text |
法治局的法案評估提供了幾點他們的意見第一點他是講說警察在冤執勤的時候要以警戒為原則如果要使用其他的輔具的時候不可以逾越執行目的的必要 |
transcript.whisperx[20].start |
2439.159 |
transcript.whisperx[20].end |
2454.866 |
transcript.whisperx[20].text |
那這一點呢他講的就是關於那個行政院的草案他通常會針對行政院的草案來做一個回應他講的是行政院草案裡面可能他的那個規定並不是這麼的完備這是第一點第二個呢他建議他說如果說發生事情了 |
transcript.whisperx[21].start |
2455.786 |
transcript.whisperx[21].end |
2456.927 |
transcript.whisperx[21].text |
委員的意見是什麼呢 |
transcript.whisperx[22].start |
2481.533 |
transcript.whisperx[22].end |
2503.954 |
transcript.whisperx[22].text |
好 我們那時候提出來的是說這是我寫給委員的那個質詢稿那第一個我有參採他請看那個第五點喔就是說月版的第一條對於以不使用警戒為適當的立法說明不足他會使得那個你所把他認定為警戒的那個範圍無限的擴大所以這部分呢可能就不是很適合所以這點我有寫進去給委員做參考 |
transcript.whisperx[23].start |
2504.855 |
transcript.whisperx[23].end |
2531.045 |
transcript.whisperx[23].text |
但是剛才他提到的說你如果事情發生的話呢要以那個檢調或者說怎麼樣組成一個任務編組然後去做那個事後的判定可是這一件事情對於警察同仁來講他們非常不能接受其實在那個當下執勤的當下他到底碰到了什麼樣的狀況他要做什麼樣的應對他們期待的是應以用槍當時警察人員的合理認知為主事後調查為輔 |
transcript.whisperx[24].start |
2532.551 |
transcript.whisperx[24].end |
2533.751 |
transcript.whisperx[24].text |
警戒使用條例並不是單純只有他要修法 |
transcript.whisperx[25].start |
2550.441 |
transcript.whisperx[25].end |
2569.099 |
transcript.whisperx[25].text |
警戒還有人在用包括海岸巡防然後包括那個他警戒使用條件下面有一個他們那個警察人員使用疆界的規範他其實都要一併修法你今天單獨提出這一條之後這條過了那未來的海巡署怎麼辦他們要不要去他們要不要去follow他們使用的準則是怎麼樣 |
transcript.whisperx[26].start |
2569.699 |
transcript.whisperx[26].end |
2569.839 |
transcript.whisperx[26].text |
委員會主席 |
transcript.whisperx[27].start |
2588.619 |
transcript.whisperx[27].end |
2609.112 |
transcript.whisperx[27].text |
到111年的時候 這個案子才完成了最後的修正 那我們也很慶幸就是最後在新增的十之一條的時候的第二項 它確實參採了當初我們所提出的 就是你對於警戒使用的妥適性的判斷 應該要考量使用人員當時的合理認知 |
transcript.whisperx[28].start |
2610.332 |
transcript.whisperx[28].end |
2623.099 |
transcript.whisperx[28].text |
這就是我提出的就是那個對於法治局他們給你們的意見你可以參採但你也可以去參考一些比如說團體或是誰給你們的意見然後那個再提供給委員做質詢這是第一個 |
transcript.whisperx[29].start |
2628.563 |
transcript.whisperx[29].end |
2649.718 |
transcript.whisperx[29].text |
預算中心每一年審查 比如說今年下個會期開始我們就會審114年的預算了也是一樣大概在預算排審的時候大概前一兩天它的預算報告就會出來你們可以把它拿來看我覺得這個預算中心的那個報告你們要多看多了解之後你就會 |
transcript.whisperx[30].start |
2650.418 |
transcript.whisperx[30].end |
2650.758 |
transcript.whisperx[30].text |
提供竊領 |
transcript.whisperx[31].start |
2665.953 |
transcript.whisperx[31].end |
2666.694 |
transcript.whisperx[31].text |
立法院領導者﹑心態 |
transcript.whisperx[32].start |
2684.006 |
transcript.whisperx[32].end |
2710.16 |
transcript.whisperx[32].text |
過去預算中心跟法治局他寫的所有的報告在第一時間當他交到辦公室來的時候他東西在網上上面是都可以搜尋到的可是後來卻變成你這個東西要經過院會同意之後他才可以上網公告就是說外界的人是看不到的那為什麼會有這種狀況大家可能可以注意到就是很多的記者會去follow那個預算中心提出來的意見或是法治局提出的意見去做新聞 |
transcript.whisperx[33].start |
2710.72 |
transcript.whisperx[33].end |
2734.298 |
transcript.whisperx[33].text |
那有的東西可能不受立法院的高層的那個那個那個他可能跟他的路線不太相同或是說跟他的意見不太不太一樣所以後來才會有了這樣的規定那我們覺得這東西有點多餘那我們也看見預算中心寫的東西我覺得他是有點越來越回縮他寫他過去東西他可以很全面但現在東西就是越來越focus幾個點而已 |
transcript.whisperx[34].start |
2737.182 |
transcript.whisperx[34].end |
2744.993 |
transcript.whisperx[34].text |
預算中心的預算報告可以參考 但是要多幫委員發掘一些其他的議題那這邊我舉一個 當初他確實在移民署這邊有提出來 他們 |
transcript.whisperx[35].start |
2751.414 |
transcript.whisperx[35].end |
2777.519 |
transcript.whisperx[35].text |
這有一個問題就是說外國人在國內他如果比如說與其居留或是說他在居留期間從事跟他入境目的不相符的活動的時候他會有一些罰款你在離境之前呢我會把這個罰單開給你可是呢這個其實與其或是說從事不法跟那個目的不相符的等等的大多都是非法移工 |
transcript.whisperx[36].start |
2778.581 |
transcript.whisperx[36].end |
2797.177 |
transcript.whisperx[36].text |
那我們現在有一個很大的問題是在於非法移工進來了之後呢他要離境之前他都會利用地下會隊把錢送到國外去你要他在離境的時候呢你雖然開給他一千兩千一萬兩萬的罰款其實是罰不到的 |
transcript.whisperx[37].start |
2798.258 |
transcript.whisperx[37].end |
2810.286 |
transcript.whisperx[37].text |
發不到之後就產生了預算中心所提的這個問題你那個會一直累積那個債權憑證債權憑證大家懂是什麼吧就是我本來應收未收然後一直收不到最後就變成一個債權憑證就是你收不到的呆帳那債權憑證呢在他就在講說你那時候已經累積到了那個4900萬 |
transcript.whisperx[38].start |
2818.672 |
transcript.whisperx[38].end |
2818.752 |
transcript.whisperx[38].text |
國會主席 |
transcript.whisperx[39].start |
2833.476 |
transcript.whisperx[39].end |
2856.415 |
transcript.whisperx[39].text |
好那這件事情我們那時候有幫委員做了一個提案但這件事情就跟剛才我們講的那個法案的質詢那個結果就不太一樣那我們再回過頭來我們後來呢又重新調了一份資料從101年到110年的我們同樣去看他的所謂的債權批准也就是後來變成呆帳的那個累計數到底到了多少已經達到1億了已經超過1億了 |
transcript.whisperx[40].start |
2860.437 |
transcript.whisperx[40].end |
2878.624 |
transcript.whisperx[40].text |
這個事情一直沒有辦法獲得好的解決我們也一直在催促移民署你應該要有一個好的方式去處理這個東西要獲得一個平衡因為其實國內的勞選團體有時候會非常替移工著想 |
transcript.whisperx[41].start |
2879.184 |
transcript.whisperx[41].end |
2905.816 |
transcript.whisperx[41].text |
他們會覺得說移工進來他們是弱勢我們不可以給予他太多的比如說過去大家會比如說你會預扣他的薪資或者說扣留他的證件然後讓他不至於比如說工作到一半然後人就不見了等等但是人權他也認為這樣子的行為是傷害移工人權的但從此之後其實也就沒有太多的手段可以去管控這些移工然後之後的演變就變成移工很多人入境之後 |
transcript.whisperx[42].start |
2906.956 |
transcript.whisperx[42].end |
2929.17 |
transcript.whisperx[42].text |
人一到臺灣就有他的同國籍的先前留在臺灣的人員就把他給接走了那他從此就成為了失聯移工那他失聯之後打工的那個收入等等他都還是一樣像我剛才講的地下會隊就會出去了那一旦他覺得我已經賺夠了我就來自首自首呢 |
transcript.whisperx[43].start |
2930.491 |
transcript.whisperx[43].end |
2954.062 |
transcript.whisperx[43].text |
我的罰款我繳不出來我的機票我沒有機票還要國家幫他出還要中華民國政府幫他出然後把他送回去就是中華民國對於移工的那個保障算是還不錯了啦但是相對的就會對於國家的那個法律就感覺就是有點傷害了那這件事情呢到目前為止無解 |
transcript.whisperx[44].start |
2954.915 |
transcript.whisperx[44].end |
2961.344 |
transcript.whisperx[44].text |
那未來呢大家看到那個帳面上的那個累計呆帳也只會越來越多如果大家有興趣的話可以去查一下 |
transcript.whisperx[45].start |
2963.254 |
transcript.whisperx[45].end |
2984.911 |
transcript.whisperx[45].text |
好再來就是我們也要可以回頭去看就是去參考一下政府機關他們提供的資料包括他們的那個官網官網會有很多的那個統計處阿或什麼的那些統計資料另外呢你可以透過國會新聞去索取資料的方式去要到一些他們在官網上面有呈現而你希望可以看到的那個資訊 |
transcript.whisperx[46].start |
2986.652 |
transcript.whisperx[46].end |
3001.603 |
transcript.whisperx[46].text |
那我舉兩個範例第一個是根據那個政府的統計資料來轉為質詢的另外一個呢你根據你所取來的資料轉為質詢的我們現在看一下首先就是這個我看看教育部這邊我連進去可不可以看得到 |
transcript.whisperx[47].start |
3004.802 |
transcript.whisperx[47].end |
3033.504 |
transcript.whisperx[47].text |
教育部呢其實他有一個這樣子大專院校的那個校務資訊的公開平台喔這個裡面有很多的那個資訊這個資訊呢當然是針對大學大專以上的他可以針對單獨的一個學校那也可以針對那個統計的你可以用學校設立別去查詢那你也可以用地區地區查詢那你當然呢也可以在上面看到一些他的歷史資料或者是那個現在看到的那個專輔等等 |
transcript.whisperx[48].start |
3034.745 |
transcript.whisperx[48].end |
3043.588 |
transcript.whisperx[48].text |
那這邊都有很多的那個訊息可以去參考那我們回到剛才的這個我要舉的例子就是 |
transcript.whisperx[49].start |
3069.216 |
transcript.whisperx[49].end |
3069.236 |
transcript.whisperx[49].text |
好這裡對這裡 |
transcript.whisperx[50].start |
3087.392 |
transcript.whisperx[50].end |
3107.791 |
transcript.whisperx[50].text |
在一百零大家看到那個畫面上的是一百零六年資料為什麼在一百零六年的時候呢這個是各個大學他對於他的那個宿舍提供的那個一個比例的統計這個是在那剛才我講的官網上面都可以找的剛才的那個統計的網站上面都可以找得到的 |
transcript.whisperx[51].start |
3108.391 |
transcript.whisperx[51].end |
3130.313 |
transcript.whisperx[51].text |
那為什麼在107年的時候這件事情會出來呢因為那時候在選縣市長然後呢我們的侯友宜市長那時候還不是市長他的那個文化大學大群館那個事件就非常受矚目然後就使得大家開始回頭去看大專院校他們的宿舍提供的那個狀況 |
transcript.whisperx[52].start |
3131.414 |
transcript.whisperx[52].end |
3131.554 |
transcript.whisperx[52].text |
107年爭議大群館 |
transcript.whisperx[53].start |
3152.248 |
transcript.whisperx[53].end |
3167.199 |
transcript.whisperx[53].text |
到底各個大學提供給學生的那個數字的統計的狀況是怎麼樣我們看見那個數字非常的漂亮就是從政大 清大 台大 成大 中興大致上都在八九十 |
transcript.whisperx[54].start |
3169.113 |
transcript.whisperx[54].end |
3193.665 |
transcript.whisperx[54].text |
但是我們這個資料要就看到了之後呢我們就覺得心中有個很大的疑問就是跟我們的認知差很多啊大家也都是學校可能剛剛出來或剛畢業的那為什麼會有這樣的差別呢統計數字為什麼會是這樣子的所以我們就去深入了解然後去詢問教育部然後去看他這統計資料的那個分子分母是怎麼樣計算的後來我們搞清楚了 |
transcript.whisperx[55].start |
3195.848 |
transcript.whisperx[55].end |
3209.683 |
transcript.whisperx[55].text |
他在大一的時候大家都曉得無限制供給嘛你有來登記的我一定就提供給你這個就我們先不講但是他在大二以上他是用什麼做分母呢用你有來申請的 |
transcript.whisperx[56].start |
3211.755 |
transcript.whisperx[56].end |
3229.387 |
transcript.whisperx[56].text |
學長學姐都跟我講說你大了以後要申請是不是很難你趕快去租房子你那個沒有去跟學校申請的他就當作不把他當分幕不認為你是一個有需求的人所以在這樣子的統計狀況之下他就形成了剛才我們那個八九十趴的供給率 |
transcript.whisperx[57].start |
3230.248 |
transcript.whisperx[57].end |
3247.266 |
transcript.whisperx[57].text |
那個是完全不對的他是完全失真的所以那一次在108年107年審的是108年的預算在那一次的預算裡頭我們就提出來他應該要以他原本是用申請學校宿舍學生數作為分母他沒有辦法反映實際的需求 |
transcript.whisperx[58].start |
3247.907 |
transcript.whisperx[58].end |
3270.256 |
transcript.whisperx[58].text |
你應該要用整體學生的需求包括有在外面已經租房子的把他納進來當分母之後這個才是一個可以真實呈現宿舍供給狀況的那個數字好那在我們提出來之後呢那教育部就確實做了改善後來在這個是這個是我最近抓的啦這個是112點的 |
transcript.whisperx[59].start |
3272.827 |
transcript.whisperx[59].end |
3289.055 |
transcript.whisperx[59].text |
他們就會把那個學生校外租屋的那個人數就一併把它拉進去從107人開始拉進去了那提供的那個學生的那個書的比例大家就看見很明顯下降了就是從八九十趴就變成了四十五十六十這個才是實際的狀況 |
transcript.whisperx[60].start |
3292.196 |
transcript.whisperx[60].end |
3308.375 |
transcript.whisperx[60].text |
那我們跟剛才那個我把它截圖截出來你看到那政大原本講他是81%後來就變成68%清大原本說89%變成49%那台大我們就不講他得天獨厚他效率特別多 宿舍特別多所以還增加了 |
transcript.whisperx[61].start |
3309.156 |
transcript.whisperx[61].end |
3330.05 |
transcript.whisperx[61].text |
那其他的大家也都可以去比著看所以我們就講說我們其實看到一個新聞事件的時候你可以去思考一下你可以你要去了解什麼事情然後這個事情後面有沒有問題就是這樣慢慢幫委員推演出來你可以透過質詢透過那個預算提案等等然後去促成每一點每一件事情的一點點改變這是一個例子 |
transcript.whisperx[62].start |
3333.152 |
transcript.whisperx[62].end |
3344.905 |
transcript.whisperx[62].text |
好接下來我剛要講到說我們去跟行政部門去索取資料好然後作為你的質詢的那個參考我還是用那個視點移工的那個問題來來做來做來來來做一個例子 |
transcript.whisperx[63].start |
3348.749 |
transcript.whisperx[63].end |
3349.189 |
transcript.whisperx[63].text |
政政前委員 |
transcript.whisperx[64].start |
3367.95 |
transcript.whisperx[64].end |
3395.385 |
transcript.whisperx[64].text |
到一百就是到二零二四年的一月底為止大概已經到了八萬五千多那如果是到二零二三年為止的話那個人數是一直往上走的從四萬多一直走到八萬多這個其實是一個非常非常誇張的那個數字喔有點呈現有點像失控的狀態其實我們引進的那個移工大概就是七八十萬你就是但七八十萬其中大概十分之一都在外面 |
transcript.whisperx[65].start |
3396.912 |
transcript.whisperx[65].end |
3416.52 |
transcript.whisperx[65].text |
那這些移工他會形成一些什麼樣的問題我們有在執行的時候給委員去提出來包括比如說你政府衛星的喪屍比如說你移工其實沒有辦法收到一個完整的保障他如果是在合法的工廠裡頭工作的話他有健保有勞保什麼都有我們可以去去去他是在我們社會保險範圍之內的 |
transcript.whisperx[66].start |
3417.62 |
transcript.whisperx[66].end |
3445.014 |
transcript.whisperx[66].text |
那如果沒有的話呢他其實也是也是他他他其實也是一個在一個一個一個一個雙數的狀況另外我們的社會也要承擔一些那個社會的風險比如說大家一直在講的那個黑戶寶寶如果他懷孕了那他生下來那這個寶寶是沒有辦法取得正式的戶籍的那這寶寶的那個生養就成了一個問題最終他可能還是丟給我們的社會去處理這其實是一個政府要去思考的問題 |
transcript.whisperx[67].start |
3445.934 |
transcript.whisperx[67].end |
3459.563 |
transcript.whisperx[67].text |
那委員在質詢這件事情的時候那我們當然也要去思考為什麼失聯移工他一直可以在外面找到工作他最大的那個缺口來自哪裡後來我們就發現 |
transcript.whisperx[68].start |
3461.596 |
transcript.whisperx[68].end |
3488.168 |
transcript.whisperx[68].text |
他最大的去向一個是在營建一個是在我們的山上我們的農業我們的茶葉我們那個到了農忙時候要採收果子或幹什麼這個勞力是非常的缺乏的那他們也都知道可以到那個地方去找到這樣子的工作所以呢他們都不怕離開了之後沒有工作可以做那這件事情怎麼辦呢 |
transcript.whisperx[69].start |
3490.632 |
transcript.whisperx[69].end |
3513.196 |
transcript.whisperx[69].text |
我們後來想到了關於農業的這一塊我們就想到去跟農業部調資料那農業部這邊調資料你們通常會行一個簡便行文但重點是告訴大家你要的那個資料要精準不然他給你的那個東西啊你會發覺不能用你也不知道看到那些資料之後也不知道拿來幹什麼那 |
transcript.whisperx[70].start |
3513.616 |
transcript.whisperx[70].end |
3540.063 |
transcript.whisperx[70].text |
我們跟他搜尋資料的時候我們就非常的清楚告訴他你告訴我們你們現在的農業移工引進的狀況我們開放了那你現在的狀況如何好那這邊我們就看到他回我們的那個資料裡頭他告訴我們到2023年為止他合定可以給農業你們去申請那個外展的那些人外展的農業服務大家知道什麼叫外展嗎 |
transcript.whisperx[71].start |
3542.489 |
transcript.whisperx[71].end |
3568.63 |
transcript.whisperx[71].text |
那個移工有兩種一種是那個左邊這個比如說農林榆木養殖業自行聘僱這個他這個就是整天都在同一位僱主的或整年整個月都在同一個僱主的那個固定的工作場所裡頭工作的那外展呢是有一個外展機構把它聘僱進來了之後呢你哪邊缺工我就把工派到那邊去那個叫外展 |
transcript.whisperx[72].start |
3569.551 |
transcript.whisperx[72].end |
3571.453 |
transcript.whisperx[72].text |
創立外展機構,引進移工之後幫忙派到各個缺工的地方,這個叫做外展 |
transcript.whisperx[73].start |
3589.991 |
transcript.whisperx[73].end |
3591.713 |
transcript.whisperx[73].text |
外展 外展 外展 外展 外展 外展 外展 |
transcript.whisperx[74].start |
3610.771 |
transcript.whisperx[74].end |
3626.188 |
transcript.whisperx[74].text |
照說每一個移工的那個缺只要開出來之後啊很快就會滿了就像營建你開多少他馬上就是滿了馬上就滿了為什麼外展的移工一直沒有辦法滿好那這個就是問題所在了我們看看他的問題在哪裡 |
transcript.whisperx[75].start |
3629.251 |
transcript.whisperx[75].end |
3651.212 |
transcript.whisperx[75].text |
這是我這一次寫給委員的質詢稿但前面的那個我那個論述的部分我已經把它去除掉我把它截出最後面的關於世界移工居高不下供需失衡是主因那個看到這個圖這個圖其實也是在那個勞動部的那個網站上面可以找得到的你們可以看到就是他進來這可能有點太小了 |
transcript.whisperx[76].start |
3652.427 |
transcript.whisperx[76].end |
3669.635 |
transcript.whisperx[76].text |
總而言之他進來呢那個產業的那個分佈上面呢我們明明最缺的比如說像營建等等他其實是供給不足的那你那個農業部分他供給更是有點誇張因為我們現在看到那個第三我寫的那個第三點我國的農業常態性缺工是1.2萬人次 |
transcript.whisperx[77].start |
3673.055 |
transcript.whisperx[77].end |
3695.585 |
transcript.whisperx[77].text |
他那個人次是說比如說我這個季節我這邊缺多少人然後那個季節缺多少人他是這樣子統計的可是沒關係他也是一個參考的那個數字但是我們現行開放外展只有2660人而且請不到這麼多人他主要就是如果我把他引進來了我沒有辦法保證他一年12個月都有工作 |
transcript.whisperx[78].start |
3696.405 |
transcript.whisperx[78].end |
3696.565 |
transcript.whisperx[78].text |
國會主席 |
transcript.whisperx[79].start |
3713.599 |
transcript.whisperx[79].end |
3739.293 |
transcript.whisperx[79].text |
後來我們就建議他是不是跨業別比如說在他真的這個人力沒有這麼大需求的時候我們給他一個那個比例比如說他們進來工作一年是12個月嘛那在這12個月裡面我們可能至少有3個月同意他可以跨業別到別的地方去支援比如說我們的長照大家可能親人都有很多那種臨時要照護的時候找不到人的那個困難 |
transcript.whisperx[80].start |
3740.874 |
transcript.whisperx[80].end |
3757.325 |
transcript.whisperx[80].text |
或者是你到那個營建到那個營建工地去他做一些臨時的勞力的補充這些都是沒有什麼技術性的你如果容許他們這樣子跨業別去做的話他會變得更有彈性但這個東西一定要行政院跟勞動部跟比如說像農業部或者是那個內政部等等相關單位去跨部會的那個協商這是我們給予的一個方向 |
transcript.whisperx[81].start |
3765.871 |
transcript.whisperx[81].end |
3773.916 |
transcript.whisperx[81].text |
所以這就是我剛才講的你可以去跟波佩索取資料索取資料之後你要瞭解怎麼樣去運用在你的那個資訊的資料裡頭在下面這個大家以後 |
transcript.whisperx[82].start |
3780.563 |
transcript.whisperx[82].end |
3782.805 |
transcript.whisperx[82].text |
審計部的資料有很多值得參考的 |
transcript.whisperx[83].start |
3799.318 |
transcript.whisperx[83].end |
3815.212 |
transcript.whisperx[83].text |
他在每年的七月份的時候會出前一個年度的比如說一百一十二年現在是一百一十三年嘛一百一十二年的審計報告會在今年的七月進到各個委員辦公室裡頭看到這個藍色書皮的時候稍微留一下 |
transcript.whisperx[84].start |
3816.013 |
transcript.whisperx[84].end |
3833.15 |
transcript.whisperx[84].text |
好這個是決算然後呢我帶大家你你如果沒有辦法留到這個書因為有人習慣翻紙本然後有人就是呃上網可以因為他非常厚非常多的資料看大家的習慣我帶大家看一下審計部的審計報告到底長什麼樣子哦一樣嗎 |
transcript.whisperx[85].start |
3847.756 |
transcript.whisperx[85].end |
3871.408 |
transcript.whisperx[85].text |
進到那個審計部的網站裡頭呢大家看到這個上面有認識審計部等等等等就是我講的就是這個審計報告審計報告裡面有什麼呢有總決算的審計報告有特別決算的審計報告整合報告有半年的或者是年度的等等甚至有各個地方相正式的你們如果關心地方的話呢其實也可以把它拉出來看一看 |
transcript.whisperx[86].start |
3873.028 |
transcript.whisperx[86].end |
3892.213 |
transcript.whisperx[86].text |
審計報告裡頭就是我剛剛講的這個總決算裡頭你進來之後呢他可以透過檢索你就去看查到你要想要質詢的那個單位或是那個資料他在前一個年度的時候他的那個決算狀況究竟如何我這邊也是一樣舉一個例子給大家看 |
transcript.whisperx[87].start |
3913.961 |
transcript.whisperx[87].end |
3916.364 |
transcript.whisperx[87].text |
好也沒關係就隨他吧 |
transcript.whisperx[88].start |
3920.137 |
transcript.whisperx[88].end |
3931.854 |
transcript.whisperx[88].text |
那個在前幾個禮拜的時候呢那個經紀委員會排審了國家發展基金國發基金的那個他應該那時候是預算審查因為 |
transcript.whisperx[89].start |
3936.42 |
transcript.whisperx[89].end |
3960.034 |
transcript.whisperx[89].text |
這個有點奇怪就是說在我早年的時候那個立法院呢會非常的努力的在比如說我講我們下半年都會開始審114年的預算他不管是他的營業預算或是非營業預算他都會在113年的12月31號半夜12點之前把他全部審議完畢 |
transcript.whisperx[90].start |
3961.451 |
transcript.whisperx[90].end |
3978.5 |
transcript.whisperx[90].text |
過去還發生過我12點審查不完我把那個時鐘往回撥兩個鐘頭然後在立法院現場給他表決表決到完為止然後搶在12點之前把那個預算送出去把那個預算的審查報告送出去可是後來大家發覺啊 |
transcript.whisperx[91].start |
3979.961 |
transcript.whisperx[91].end |
3997.318 |
transcript.whisperx[91].text |
立法院就有時候是因為政黨的那個惡鬥就是說我是在野黨的委員那我就是拖著你的預算我就是不審查然後本來該排審的時候呢我就一直讓他往後壓壓壓壓到最後會變成什麼狀況呢 |
transcript.whisperx[92].start |
3999.096 |
transcript.whisperx[92].end |
3999.276 |
transcript.whisperx[92].text |
委員會主席 |
transcript.whisperx[93].start |
4020.212 |
transcript.whisperx[93].end |
4046.793 |
transcript.whisperx[93].text |
那但是這個情況目前無解啦所以我們在前幾個禮拜的時候呢我們才審到那個那個113年就今年的國發基金的預算國發基金大家乍聽之下不知道要去問他什麼嗎那但是國發基金大家曉得就是他是對於國家的一些重點想要扶植的一些那個那個事業或是那個那個發展的方向去做一些投資 |
transcript.whisperx[94].start |
4048.234 |
transcript.whisperx[94].end |
4048.414 |
transcript.whisperx[94].text |
委員會主席 |
transcript.whisperx[95].start |
4071.207 |
transcript.whisperx[95].end |
4090.908 |
transcript.whisperx[95].text |
那我看到什麼呢他在那個國泊基金裡面寫寫寫了一堆東西前面是一堆數字然後我看到了剛好這個第二點他提到就是國泊基金他參與了一個投資項目叫做趙遠公司協助他創新轉型可是呢後來呢這個東西呢就發生了一大堆的那個減資啊虧損啊什麼亂七八糟的東西之後呢 |
transcript.whisperx[96].start |
4094.632 |
transcript.whisperx[96].end |
4101.317 |
transcript.whisperx[96].text |
紫色圈起來的地方 最後他在110年111年的時候呢 認列投資損失1億1657萬 |
transcript.whisperx[97].start |
4105.325 |
transcript.whisperx[97].end |
4133.469 |
transcript.whisperx[97].text |
我們總共才投資了兩億零四百九十六萬可是呢投資進去之後一百零八年進去才一百零八一零九一一零到一一一三年就損失了一億一千多萬這件事情從來沒有見報過可是我們的審計單位已經把它抓出來了那這件事情後來那我們要把它把它做成一個委員可以質詢的東西我們怎麼做呢把它整理出來它的時間序 |
transcript.whisperx[98].start |
4136.184 |
transcript.whisperx[98].end |
4158.958 |
transcript.whisperx[98].text |
118年1月份國發基金去有一個有一個有一個審查會評估他是符合國家產業發展的方向4月份的時候呢他有一個投資評估審議委員會通過了這樣的那個投資所以呢在4月30號的時候呢再經過他們呃國發基金的管理會的那個呃審議通過就投資我剛才說那個數字就是2億多 |
transcript.whisperx[99].start |
4160.626 |
transcript.whisperx[99].end |
4176.922 |
transcript.whisperx[99].text |
可是到了一百零九年的六月十六號的時候呢他就說他虧損他的減資了他的減資幅度非常的大百分之五七點九七也就是說我們進去的百分之五七已經不見了好然後那這個東西還發生什麼問題呢 |
transcript.whisperx[100].start |
4179.811 |
transcript.whisperx[100].end |
4199.443 |
transcript.whisperx[100].text |
當初國發基金同意要去投資的時候 趙遠答應要給國發基金一席董事跟一席獨董但是這件事情拖到他們減資以後 到109年的6月份的時候 他才讓國發基金派任董事跟獨董 |
transcript.whisperx[101].start |
4200.666 |
transcript.whisperx[101].end |
4209.245 |
transcript.whisperx[101].text |
在此之前 他們公司所有的營運 國發經濟是沒有辦法掌握的就是莫名其妙我被檢知了之後 我的董事跟獨董才進去 |
transcript.whisperx[102].start |
4211.616 |
transcript.whisperx[102].end |
4232.067 |
transcript.whisperx[102].text |
後來呢到了一百一十一年的六月十四號的時候再次減資百分之五十我們原本剩下的那個不到大概百分之四十左右的那資金再被減掉了百分之五十然後所以到了一百一十一年底的時候呢他就認列我剛才講的那個數字喔那個一億一千六百五十七萬 |
transcript.whisperx[103].start |
4233.752 |
transcript.whisperx[103].end |
4233.772 |
transcript.whisperx[103].text |
《環球經》 |
transcript.whisperx[104].start |
4252.213 |
transcript.whisperx[104].end |
4265.872 |
transcript.whisperx[104].text |
那併購他的併購的那個他的那個比例是1比0.02非常非常的低那也就是說他原本的那個市值呢又又又只剩下了2%好那這樣下去那到底 |
transcript.whisperx[105].start |
4267.116 |
transcript.whisperx[105].end |
4292.814 |
transcript.whisperx[105].text |
在被併購之後:國發基金的損失到底是怎麼樣這個數字在原本的審計報告裡頭是沒有看到的那你可以怎麼樣你就打電話去問國發基金你跟他講說我們有注意到這件事情然後呢我們想知道在環球金併購照援之後國發基金他的損失 認列損失是多少果然這數字就出來了他認列的損失是4655萬 |
transcript.whisperx[106].start |
4295.316 |
transcript.whisperx[106].end |
4303.899 |
transcript.whisperx[106].text |
那麼大家就可以去計算一下在這幾年之內我們投資了2億下去之後呢已經有1億6千多萬已經回不來了 |
transcript.whisperx[107].start |
4305.854 |
transcript.whisperx[107].end |
4330.855 |
transcript.whisperx[107].text |
那這件事情當你做成給委員的那個資訊稿的時候呢你當然除了前面的故事把它說清楚讓委員條列式的把像我剛才講的把它故事講清楚之外大家就可以明顯的知道國發基金他的管理確實是有疏失的那這管理的疏失要怎麼改善我們可以去查一下他的我剛才講的就在那個在這個在這個大表裡頭的 |
transcript.whisperx[108].start |
4332.284 |
transcript.whisperx[108].end |
4338.129 |
transcript.whisperx[108].text |
你有一個評估審議委員會你有一個國發經濟管理委員會你這兩個審議你們都審議了什麼審議的內容從來不公開 |
transcript.whisperx[109].start |
4346.303 |
transcript.whisperx[109].end |
4373.168 |
transcript.whisperx[109].text |
所以我們要求我們就請委員要求這件事情你應該要去做一個改善你未來在你的那個審議委員會那個投資評估審議會或者是管理基金的那個審議審議會等等這些資料你都要公開我們要看看到底是哪些人同意這個投資的你們是怎麼樣去評估同意把國家的錢就這樣丟進去之後剩下就是在短短三年之內就賠了這麼多錢 |
transcript.whisperx[110].start |
4375.268 |
transcript.whisperx[110].end |
4391.586 |
transcript.whisperx[110].text |
大家明白嗎就是說這個東西你們可以去多多運用就交互運用除了剛才講的審計部的那個審查報告之外那個你再後續追蹤一下他們的那個後來的發展媒體上面的資訊等等那就會出來一篇這樣的諮詢稿再接下來我再舉一個例子 |
transcript.whisperx[111].start |
4397.409 |
transcript.whisperx[111].end |
4418.586 |
transcript.whisperx[111].text |
我們看到這麼多的數字或是這麼多的審查報告這樣一頁一頁翻過去我們要有訓練自己判讀的能力比如說在左邊這個圖裡面這一樣是在它的總決算裡頭111年我們看到它最前面是在還沒有分機關的時候它有一個大的審核報告 |
transcript.whisperx[112].start |
4423.51 |
transcript.whisperx[112].end |
4448.047 |
transcript.whisperx[112].text |
在111年度行政院所屬各機關的重大公共建設計劃預算的執行情形你要看他那個他去看到那個年度的年度計劃的執行率呢也是一樣我講的很漂亮喔都九十幾一百一百一百九十八九十九一百一百一百一百但是呢他在那個表二裡面他有去做個案抽查我們看見了什麼 |
transcript.whisperx[113].start |
4451.223 |
transcript.whisperx[113].end |
4471.41 |
transcript.whisperx[113].text |
他111年原本編列的計劃經濟我們講經濟不好了他原本分配的數字他這個是用千元去計算百萬千萬億十億百億一百二十八億可是他後來做了調整他調整變成多少呢變成了只有剩下51億 |
transcript.whisperx[114].start |
4473.106 |
transcript.whisperx[114].end |
4488.209 |
transcript.whisperx[114].text |
也就是說他在其中的時候突然告訴你我本來說我要128億但是我現在只要57億他減了59%他就用這個51億去看他年度的那個執行率所以他的執行率超高的變成99.04%助理要有一個概念就是說我們的那個預算 |
transcript.whisperx[115].start |
4496.755 |
transcript.whisperx[115].end |
4496.975 |
transcript.whisperx[115].text |
國會主席 |
transcript.whisperx[116].start |
4511.977 |
transcript.whisperx[116].end |
4534.596 |
transcript.whisperx[116].text |
你原本匡列這麼多錢然後到其中你跟我講說你花不完然後你就去做簡列這個東西是不負責任的但是有沒有人去追究呢我發覺好像沒有人好像後來都不太有人在管這件事情欸所以你看幾個重大的計畫最主要都是臺中電廠喔然後再來就是經濟部的那個一樣也是臺中電廠然後那個還有臺北榮民總醫院的那個什麼醫療大樓的新的計畫等等 |
transcript.whisperx[117].start |
4537.734 |
transcript.whisperx[117].end |
4564.245 |
transcript.whisperx[117].text |
這是比較大向的大家應該要去看不要只看他最後的那個執行率應該去分析一下他他那個執行變動的情況是怎麼樣合不合理那也許在那個明年度的那個大家質詢的時候呢可以這又是一個一個一個的題目可以讓委員去做質詢你們可能在今年七月份那個在一百一十二年的那個審核報告出來的時候大家可以盡量到裡面去挖資料這是我舉的例子 |
transcript.whisperx[118].start |
4567.79 |
transcript.whisperx[118].end |
4592.7 |
transcript.whisperx[118].text |
好那再接下來呢就是我講到了嗯我們其實國內的那公民團體是非常活潑的我們有他那個各個公民團體也都有很多的那個嗯他們自己的專業網站那當然也有一些很特殊的媒體像比如說關鍵評論網啊或者說像這個報導者啊他們都會有比較大篇幅的或者說比較深度的去挖掘事情的那個狀況進不去了嗎 |
transcript.whisperx[119].start |
4600.97 |
transcript.whisperx[119].end |
4605.414 |
transcript.whisperx[119].text |
一直不同步喔 可以啦 好 |
transcript.whisperx[120].start |
4608.82 |
transcript.whisperx[120].end |
4637.498 |
transcript.whisperx[120].text |
好 像比如說報導者他這邊就有很多的那個深度的專題或是國際兩岸甚至關於這一次的那個地震他就有很多topic比如說首先他關於那個地質的部分那包括那個逃生的部分包括在後重建的部分我們如果要去質詢的時候有很多東西我們就可以透過這些專業網站去給我們一些那個啟示或是啟發然後把它整理出來提供給委員做那個質詢然後另外我舉了幾個 |
transcript.whisperx[121].start |
4642.001 |
transcript.whisperx[121].end |
4642.021 |
transcript.whisperx[121].text |
委員: |
transcript.whisperx[122].start |
4667.611 |
transcript.whisperx[122].end |
4668.713 |
transcript.whisperx[122].text |
一天都在罵以色列 |
transcript.whisperx[123].start |
4684.592 |
transcript.whisperx[123].end |
4701.098 |
transcript.whisperx[123].text |
環境資訊中心關注環保方面的環境資源等等環境資源包括節能減碳他的立場是非常反核的怎麼樣都不可以有核能等等 |
transcript.whisperx[124].start |
4702.919 |
transcript.whisperx[124].end |
4716.857 |
transcript.whisperx[124].text |
這些資料呢大家也都可以常常去滑一滑然後看一看另外當然我們有很多的那個專業的雜誌或者是比如說像聯合報我現在發現他大概每週每週一的時候會有一個比較大型的那個專題報導比如說討論我們的教改啊討論什麼等等的議題 |
transcript.whisperx[125].start |
4721.102 |
transcript.whisperx[125].end |
4741.409 |
transcript.whisperx[125].text |
大家要學習就是盡量去吸收這種大篇幅的比較深度的那個報導然後去充實一下自己的知識庫然後那個在要做質詢的時候他會很快的讓你產生一些聯想跟連結然後知道往什麼方向去可以可以去做質詢然後在接下來我要舉的例子就是這有出來 |
transcript.whisperx[126].start |
4747.47 |
transcript.whisperx[126].end |
4775.164 |
transcript.whisperx[126].text |
委員會有很多的民間友人那有時候是一些民團有時候是廠商有時候是個人的那個陳情案件等等這些東西呢我們其實我之前上次如果有來上課的禮拜二有來上課我有跟大家講過就是大家不要害怕去接聽電話有時候接聽電話呢雖然那個來陳情的那個民眾很嘮叨可是他那個嘮叨的那個內容當中搞不好就會給你一些啟發就是他有的東西是可以轉為質詢的這是一個 |
transcript.whisperx[127].start |
4777.165 |
transcript.whisperx[127].end |
4777.725 |
transcript.whisperx[127].text |
法律提案 |
transcript.whisperx[128].start |
4796.175 |
transcript.whisperx[128].end |
4814.853 |
transcript.whisperx[128].text |
先前我們有講就是說關於那個失聯移工的部分因為一直都沒有辦法做好的控管那麼我們是不是對於那個失聯移工的部分我們非法僱用啊或是非法非法仲介或是非法僱用那個移工的那些僱主們 |
transcript.whisperx[129].start |
4815.433 |
transcript.whisperx[129].end |
4815.573 |
transcript.whisperx[129].text |
該否加重法則: |
transcript.whisperx[130].start |
4836.357 |
transcript.whisperx[130].end |
4836.577 |
transcript.whisperx[130].text |
委員會主席 |
transcript.whisperx[131].start |
4854.409 |
transcript.whisperx[131].end |
4854.569 |
transcript.whisperx[131].text |
劉慧卿議員 |
transcript.whisperx[132].start |
4873.697 |
transcript.whisperx[132].end |
4900.135 |
transcript.whisperx[132].text |
他這個藉口呢一用呢用了四年從我們就上屆一整個會期只要碰到相同的議題他的回覆都一樣那我們就會我們就可以回頭去追我們就問勞動部你說你要修法那你的進度呢然後那勞動部就講說有有有我們都已經送給行政院了那你就去問行政院那個案子進來之後現在呢在行政院果然一躺就躺了三四年 |
transcript.whisperx[133].start |
4900.715 |
transcript.whisperx[133].end |
4924.073 |
transcript.whisperx[133].text |
那我們就問行政院說那你為什麼不送到立法院來審議呢行政院給我的答案非常的好玩當然這不是行逐文字他們也沒有辦法行逐文字他說我如果把他送進去的話呢會動搖國本為什麼就是就是營建跟農業的那個缺工的狀況擺在那裡你今天如果把這個全抄了或是說我去重罰那些僱主 |
transcript.whisperx[134].start |
4925.134 |
transcript.whisperx[134].end |
4941.889 |
transcript.whisperx[134].text |
那些農民大概就會要起來起議了你知道嗎所以呢因為這件事情沒有辦法解決所以他們這個東西也沒辦法動但是呢我們就在講你還是看到了這個問題你可以把它轉為提案這是一個那當然也不只是這個你處罰了僱主跟仲介你也要去處罰 |
transcript.whisperx[135].start |
4943.868 |
transcript.whisperx[135].end |
4943.928 |
transcript.whisperx[135].text |
委員會主席 |
transcript.whisperx[136].start |
4962.719 |
transcript.whisperx[136].end |
4979.439 |
transcript.whisperx[136].text |
但是我覺得那個效果還是不大就是回到我最先提的那個那個那個那個狀況喔就你罰不到他啊他告訴他雙手一探跟你講說我沒錢你還是你還是你還是對他莫可奈何那這件事情可能還要再想一些其他方法去處理啦 |
transcript.whisperx[137].start |
4980.18 |
transcript.whisperx[137].end |
5007.68 |
transcript.whisperx[137].text |
嗯當然因為因為因為台灣真的是一個很講究人權的社會我們沒有辦法像比如說新加坡你如果敢你呃新加坡或馬來西亞你如果敢那逾期拘留的話我去抓起來先編幾下那香港是你如果敢逾期拘留的話我就抓起來先關兩年那你覺得不划算在經濟在經濟上面換算我不划算我那兩年會沒有收入那你就不敢這樣做了但是台灣實在是做不下去那到底可以怎麼樣去處理這件事情呢目前為止沒有一個好的方法說實在的 |
transcript.whisperx[138].start |
5008.82 |
transcript.whisperx[138].end |
5009.68 |
transcript.whisperx[138].text |
公通高工信箱擾案 |
transcript.whisperx[139].start |
5028.853 |
transcript.whisperx[139].end |
5046.307 |
transcript.whisperx[139].text |
在103年之前的五年在103年的時候有一個女學生出面指控說校長對她性騷擾長達五年她也出具了一些訊息啊或什麼的那個東西就是很明確後來呢104年的時候那個教育部呢他就有組成了性品委員會去調查他認為這個性騷擾案是成立的 |
transcript.whisperx[140].start |
5047.116 |
transcript.whisperx[140].end |
5074.742 |
transcript.whisperx[140].text |
那成立的話那他就要求校方那你要必須要做出懲處然後他還要求就是這個是在教育部的性評會決定的你除了要做懲處之外校長要出面道歉接受性要去上性評課重新接受性評教育這是教育部一百零四年五月作出的結論但是到一百零七年的時候這個陳情案件到了洪森委員辦公室 |
transcript.whisperx[141].start |
5076.104 |
transcript.whisperx[141].end |
5098.727 |
transcript.whisperx[141].text |
他是什麼狀況呢校長不道歉不上性評課學校也沒有任何的懲處那到底為了什麼然後在當年度我們接到這個陳情案之後的四月份我們就向教育部提出了質詢那教育部在我們質詢之後呢他就安排了一個到校查訪 |
transcript.whisperx[142].start |
5100.637 |
transcript.whisperx[142].end |
5123.307 |
transcript.whisperx[142].text |
在5月份進行 去查訪之後在107年5月去查訪學校做的那個結論也非常的神奇他讓校長後來就停職留薪大家有聽懂這個意思嗎就是說我薪水照樣付給你但你不用來上班了 |
transcript.whisperx[143].start |
5124.427 |
transcript.whisperx[143].end |
5137.618 |
transcript.whisperx[143].text |
到6月1號 讓他光榮退休校長就退休了 學校就罰不到他了他可以不道歉 不用上信名課這聽起來非常的荒謬那我們除了4月份提出質詢之後呢 後來我們發覺 |
transcript.whisperx[144].start |
5140.658 |
transcript.whisperx[144].end |
5162.849 |
transcript.whisperx[144].text |
我們應該要再用一些其他的手段這就是我剛才講的我們可能在審查預算的時候呢我們又提出了一個凍結預算的那個提案我們去要求他要去檢討這件事情你怎麼可以這麼的消極我每次去叫你去處理這件事情的時候你就開始跟學校文來文往33趟然後都沒有辦法解決這件事情 |
transcript.whisperx[145].start |
5164.229 |
transcript.whisperx[145].end |
5185.938 |
transcript.whisperx[145].text |
教育部怎麼可以荒廢你自己的職務到這種地步這是我們提的那個預算的一個凍結案另外我們發覺我的那個因為我做PowerPoint的時候呢在那Canva跟那個PPT中間一直轉來轉去所以那個框線有時候粗有時候細大家包容一下所以我發現那個性平教育法裡頭呢你什麼人都處罰到了沒有對校長的處罰 |
transcript.whisperx[146].start |
5189.62 |
transcript.whisperx[146].end |
5189.64 |
transcript.whisperx[146].text |
後來﹖ |
transcript.whisperx[147].start |
5209.13 |
transcript.whisperx[147].end |
5221.787 |
transcript.whisperx[147].text |
我們同樣一樣就是在那個修正案的時候呢讓委員去做一個質詢然後呢我們就是把那這個我們就提醒你一下就是說我等一下再回頭講我們這個提醒你一下就是說 |
transcript.whisperx[148].start |
5223.422 |
transcript.whisperx[148].end |
5223.482 |
transcript.whisperx[148].text |
關鍵性的 |
transcript.whisperx[149].start |
5242.672 |
transcript.whisperx[149].end |
5243.212 |
transcript.whisperx[149].text |
提醒委員:指定部長:回答 |
transcript.whisperx[150].start |
5259.418 |
transcript.whisperx[150].end |
5259.538 |
transcript.whisperx[150].text |
索資提供提供 |
transcript.whisperx[151].start |
5279.582 |
transcript.whisperx[151].end |
5297.21 |
transcript.whisperx[151].text |
規範 |
transcript.whisperx[152].start |
5297.79 |
transcript.whisperx[152].end |
5299.031 |
transcript.whisperx[152].text |
提醒委員指定部會首長回答 |
transcript.whisperx[153].start |
5312.574 |
transcript.whisperx[153].end |
5313.194 |
transcript.whisperx[153].text |
教育部 教育部 |
transcript.whisperx[154].start |
5342.674 |
transcript.whisperx[154].end |
5360.705 |
transcript.whisperx[154].text |
後來我們就說 行為人為校長的話請教育部出面而且你還可以連續罰這個是後來那個修法通過了那通過之後 教育部總要去執行了吧那他確實去執行了那我們看一下後來這件事情到底怎麼樣了 |
transcript.whisperx[155].start |
5362.066 |
transcript.whisperx[155].end |
5389.911 |
transcript.whisperx[155].text |
這我剛才前面講的他發生的時間點是在103年他被出面指控時間已經長達五年了然後104年做了那個確定然後要去怎樣怎樣然後過了三年都沒有辦法執行107年這個陳情案到了委員辦公室然後在107年進行了一系列的那個處置之後呢進行法修法了那108年國教署確實去開罰了罰一萬校長非常堅持他聚腳 |
transcript.whisperx[156].start |
5390.951 |
transcript.whisperx[156].end |
5391.071 |
transcript.whisperx[156].text |
一百零九年 |
transcript.whisperx[157].start |
5406.922 |
transcript.whisperx[157].end |
5420.269 |
transcript.whisperx[157].text |
後來我也是靈光一閃我在去年年底的時候突然想到雖然洪委員已經畢業了但畢竟當初這個事情是我在跟的我再去了解一下到底後來怎麼樣了我就回頭去問國教署 |
transcript.whisperx[158].start |
5421.509 |
transcript.whisperx[158].end |
5436.564 |
transcript.whisperx[158].text |
國會主說我說那校長道歉了嗎上性評課了嗎那他承認說對我們在111年把那三萬塊罰還拿到了之後呢我們後面大家都忘記這件事了 |
transcript.whisperx[159].start |
5437.981 |
transcript.whisperx[159].end |
5464.313 |
transcript.whisperx[159].text |
後來他就跟我們講說會我們會再去再去處理要求他要出來道歉要要要要要去上心靈課這件事情告訴我們很多的行政單位他會在跟委員比氣場看你委員在位4年9還是我在我還是我當公務員當的久有時候真的委員就是下來之後可能這案子就這樣不了了之了 |
transcript.whisperx[160].start |
5464.753 |
transcript.whisperx[160].end |
5465.493 |
transcript.whisperx[160].text |
該修法的修法該開記者會開記者會該提案的提案 |
transcript.whisperx[161].start |
5487.378 |
transcript.whisperx[161].end |
5498.207 |
transcript.whisperx[161].text |
但是最終最終如果行政單位他沒有那個執行力他沒有去貫徹的話這件事情還是沒有辦法得到平反所以各位助理可以多注意一下多留心這件事情 |
transcript.whisperx[162].start |
5500.148 |
transcript.whisperx[162].end |
5523.603 |
transcript.whisperx[162].text |
好那最後呢我就跟大家講到就是關於那個諮詢稿的一個呈現方式喔那你當然看各個辦公室還有委員的需求你有時候可能是諮詢的主題加重點還有那個補充的資料去highlight一下等等那或者是真的是看委員的需求啦有的委員只要給你只要你提重點有的委員希望要主治稿這個都不太一定 |
transcript.whisperx[163].start |
5524.463 |
transcript.whisperx[163].end |
5548.544 |
transcript.whisperx[163].text |
好然後再來呢就是大家注意一下如果委員您幫委員準備的口頭諮詢他如果覺得說我今天沒辦法出席我要把它轉成書面的時候拜託拜託多一點心不要把那口頭諮詢就這樣丟出去因為口頭諮詢跟書面諮詢畢竟不太長得不太一樣喔那口頭諮詢如果丟出去會很好笑那你要把他那書面諮詢稍微改書寫的方式有別你就把它改一下再把它送出去 |
transcript.whisperx[164].start |
5549.184 |
transcript.whisperx[164].end |
5549.204 |
transcript.whisperx[164].text |
委員會議 |
transcript.whisperx[165].start |
5570.373 |
transcript.whisperx[165].end |
5592.057 |
transcript.whisperx[165].text |
我要講的東西你就把它丟在那個PPT上面就提供確定講一下我可能看了PPT我就可以質詢了那又或者是說PPT有其他呈現方式也不太一定真的就是看看各個委員的那個狀況以後或者說請教一下那個辦公室的前輩啦這樣會比較清楚就謀何其了解一下委員的需求 |
transcript.whisperx[166].start |
5593.069 |
transcript.whisperx[166].end |
5620.982 |
transcript.whisperx[166].text |
好那就以上謝謝大家的聆聽我就開放謝謝謝謝大家我就開放現場看他有沒有什麼其他的問題請說謝謝我想詢問講師的部分吶就是你有遇過你在準備諮詢題目的時候啊如果被前面的人講掉了勒如果又很雷同的話 |
transcript.whisperx[167].start |
5622.497 |
transcript.whisperx[167].end |
5646.995 |
transcript.whisperx[167].text |
這個常常發生那有一種方式可能請委員搶先去登記吧但是呢如果被前面講掉的話呢你可以看看你可以立刻從前面的那個官員回答委員的那個問題的那個內容裡頭你再去找題目然後跟委員講說這個題目剛才誰誰誰問了然後部長答了什麼什麼東西那你覺得什麼東西是不對的請委員再去追問 |
transcript.whisperx[168].start |
5648.076 |
transcript.whisperx[168].end |
5650.498 |
transcript.whisperx[168].text |
假如說你們委員都不是很前面的話建議那種實事議題就少做實事議題做那些 |
transcript.whisperx[169].start |
5674.718 |
transcript.whisperx[169].end |
5694.87 |
transcript.whisperx[169].text |
可能其他委員不會問到的題目因為你假如說這種經驗你有一兩次你就知道說委員不會那麼早來登記嘛對不對阿你做時事議題可能前面大概兩三個委員就問掉了所以題目就不要做了你就做別的不然你會很困擾阿你困擾委員會很困擾另外一個是說執行稿其實要是說你們 |
transcript.whisperx[170].start |
5696.158 |
transcript.whisperx[170].end |
5721.695 |
transcript.whisperx[170].text |
可以事前先問委員說委員你對這個下禮拜的諮詢134你有沒有什麼想法或說你想要問什麼通常你問委員委員他也會講自己的想法說大概我要問什麼問什麼委員假如說有一個指示一個比較明確的方向讓你們法案助理再準備諮詢稿就會比較更好準備了那是委員要是沒有的話可以問主任就看看他不然有時候你自己 |
transcript.whisperx[171].start |
5723.134 |
transcript.whisperx[171].end |
5744.556 |
transcript.whisperx[171].text |
毛起來自己做 做到最後主任不喜歡委員不喜歡 那就很麻煩那當然有時候會跟你們所處的委員會有些委員會比較好準備 有些委員會就是坦白講是比較專業 像司法委員會那個很專業財政委員會那個也很專業那種東西有時候就是說你可能還要去 |
transcript.whisperx[172].start |
5745.933 |
transcript.whisperx[172].end |
5760.706 |
transcript.whisperx[172].text |
假如說辦公室有一些顧問 有一些專家學者還可以去請教反正有一些太專業問題 本身不是助理假如說你不是學財經背景 或是說一些法律背景你要準備這些執行稿 確實是蠻吃力的所以最好是問委員 |
transcript.whisperx[173].start |
5762.468 |
transcript.whisperx[173].end |
5788.084 |
transcript.whisperx[173].text |
當然你們對自己委員的背景出身也是要去了解委員他是不溫區的還是區域的他是北部中部南部還是離島立委還是原住民立委他自己關心的一面所以你們對自己委員的背景要非常了解要去相處久總之總知道他比較大概他喜歡執行哪方面的那些議題另外 |
transcript.whisperx[174].start |
5790.503 |
transcript.whisperx[174].end |
5808.601 |
transcript.whisperx[174].text |
委員會的執行稿最好可以為一些下會期的預算提案做準備就是說一稿要多用比如說你這個會期你在交通委員會提出一些執行稿也不會首長答得不是很好或怎麼樣下會期預算提案就把它變成預算提案把它提出來 |
transcript.whisperx[175].start |
5809.936 |
transcript.whisperx[175].end |
5833.415 |
transcript.whisperx[175].text |
所以說這樣你可以去靈活運用你會覺得說我上回提的那個質詢稿這個部長或是署長局長答的不怎麼樣或沒有回答到位你把它改寫成預算提案去動它預算或去刪它預算這樣你就會覺得說還蠻有成就感就是說可以把它變成一稿多用這樣這也是一種模式 |
transcript.whisperx[176].start |
5835.458 |
transcript.whisperx[176].end |
5856.654 |
transcript.whisperx[176].text |
另外跟各位報告一下說 助理工會在下會期九月大約中下旬的時候也會舉辦預算員吸引到時候各位也可以來報名參加因為預算是一個蠻複雜的一個工程現在送來立法院預算書都寫得很簡略 你要看得懂 坦白講 |
transcript.whisperx[177].start |
5857.881 |
transcript.whisperx[177].end |
5867.355 |
transcript.whisperx[177].text |
他都寫的不會有問題有問題絕對不會要送到立法院所以要從一三十裡面去找問題其實是要花一些時間去找當然也需要一些經驗剛剛還沒有說問題要請教我們今天的講師請下主任 |
transcript.whisperx[178].start |
5885.649 |
transcript.whisperx[178].end |
5912.854 |
transcript.whisperx[178].text |
主要想要請教的就是因為我們現在在委員會的環節裡面不免俗的還是會遇到逐條審查的一個階段嘛對不對那我個人在觀察就是有一些委員在逐條審查階段就是幾乎每一條他都有東西可以講那我們要怎麼樣幫助可能就是相對可能比較非法律專業背景的委員在逐條審查階段能夠有一些內容我們能夠在事前能夠幫他做一些了解或補充 |
transcript.whisperx[179].start |
5916.181 |
transcript.whisperx[179].end |
5943.631 |
transcript.whisperx[179].text |
這主條審查還是看委員喔那個你如果比如說在執行的時候有一個大方向那或者說你們有自己的版本那有條文對照當然是最好就是說那個行政院有行政院的版本然後你有你的版本你的說法跟行政院不一樣那到底為什麼要堅持在當中就可以做出來討論那如果沒有的話你也可以看看其他的委員的提案各個提案有什麼樣的那個可以參採的地方那就是在現場做一個討論 |
transcript.whisperx[180].start |
5944.571 |
transcript.whisperx[180].end |
5944.811 |
transcript.whisperx[180].text |
委員委員 |
transcript.whisperx[181].start |
5963.203 |
transcript.whisperx[181].end |
5989.525 |
transcript.whisperx[181].text |
法案主條其實對很多委員來講坦白講新科立委來講一定是初體驗他會覺得比較辛苦但是他一定是先觀察別人之前立委怎麼講你會不會是在哪個委員會交通交通的法案還好啦他們都是一些法則還是一些什麼最近行人道路的那些的那些可以去參考一些團體的他們的意見 |
transcript.whisperx[182].start |
5990.826 |
transcript.whisperx[182].end |
6015.462 |
transcript.whisperx[182].text |
有時候團體的意見也可以拿來當作委員長發言的一個背景資料通常行政院或交通部的版本都會比較保守老實講政府很多的法律案都很保守那委員提案有時候會比較大膽一點那你可以就比如說罰則是不夠高還是處分過輕還是說那個執法的那個規定不是很明確那在 |
transcript.whisperx[183].start |
6016.463 |
transcript.whisperx[183].end |
6028.903 |
transcript.whisperx[183].text |
在裡面主條發言的時候都可以做一些質疑向委員去發言那通常假如說你每一條委員都發言的話去法案助理是很累的你等下幫他寫很多memo備註要給他看 |
transcript.whisperx[184].start |
6029.987 |
transcript.whisperx[184].end |
6047.438 |
transcript.whisperx[184].text |
當然要看委員自己本身用功不用功 假如他現在很用功他想講那當然法院助理都是一條一條去幫他準備發言稿也可以用那種條例式的1點2點3點這樣那在委員會審查的時候你就跟在委員旁邊跟他提點說這條大概可以怎麼樣講怎麼樣講 |
transcript.whisperx[185].start |
6050.043 |
transcript.whisperx[185].end |
6072.563 |
transcript.whisperx[185].text |
主條他不是在發言台上講 通常是坐在下面發言對委員來講他發言會比較輕鬆 比較沒有壓力助理就可以在旁邊搖耳朵 委員在這一條怎麼講怎麼講他是理解的進去就可以去發言甚至還可以call out假如你有認識一些自己的老師或專家學者也可以問他一些意見 |
transcript.whisperx[186].start |
6074.557 |
transcript.whisperx[186].end |
6086.823 |
transcript.whisperx[186].text |
那當然就是要有一些跟委之前要有一些默契你講的話我一定都懂我也可以農會貫通不然我要是真的不是不能太去領會的話他媽假設很辛苦但是 |
transcript.whisperx[187].start |
6090.526 |
transcript.whisperx[187].end |
6103.485 |
transcript.whisperx[187].text |
連立委狀況都不一樣有些立委人跟他講他就很容易聽得進去有些立委講很久他就聽得進去這個也沒辦法啦大家要學習啦但是我覺得立委他們要是夠認真 |
transcript.whisperx[188].start |
6104.912 |
transcript.whisperx[188].end |
6126.563 |
transcript.whisperx[188].text |
大概一個會期 兩個會期 它大部分都可以進入狀況大概法案怎麼講有些主條發言它還是講一個比較大方向大概的也不見得要講那麼細它還可以講自己的案例 講自己的例子或說講一些選區的一些案例來講也可以只是說你們要有一個發言紀錄或怎麼樣其實也可以只是比較辛苦我不曉得在座應該都是法案主理吧 |
transcript.whisperx[189].start |
6135.713 |
transcript.whisperx[189].end |
6157.336 |
transcript.whisperx[189].text |
辦公室的法案注意 假如說 越多個是越好有些委員辦公室的法案注意只有一個兩個 其實都很辛苦假如你有三個四個以上 會比較輕鬆一點不然的話 一三四委員會 二五院會 還要寫一些有的沒的稿子其實一兩個人寫都很累 很辛苦 做到最後有點厭世的感覺 |
transcript.whisperx[190].start |
6160.217 |
transcript.whisperx[190].end |
6184.434 |
transcript.whisperx[190].text |
禮拜一的執行稿你不可能禮拜五就完成嘛你應該用禮拜六禮拜天來寫所以法案助理在會期當中是沒有什麼假日的有時候你禮拜六禮拜天還要找很多資料禮拜一又要開會尤其像那種未完委員會幾乎一三次都在開會未完委員會號稱血汗委員會很辛苦啊交通、外交還好都會排考察 |
transcript.whisperx[191].start |
6187.126 |
transcript.whisperx[191].end |
6211.894 |
transcript.whisperx[191].text |
經濟也會排考察有些委員會不太排考察就很累所以做到最後你會看立法院中心道樓一館二館在找助理都是找法案助理你們去看公佈欄就知道了爭法案助理永遠都在爭法案助理因為確實很辛苦每天要寫東西寫到最後一定會批法今天清曉主任講的那些都不錯 |
transcript.whisperx[192].start |
6213.417 |
transcript.whisperx[192].end |
6241.703 |
transcript.whisperx[192].text |
安裝模式來做,但是他要花很多時間去看資料看完之後還要再整理,再把它變成執行稿執行稿有些文是主事稿,有些還要做成拋破影對不對這個時間花下來,花了很長的時間假如經驗不夠長的話,你又花很多時間,這做下來你會覺得非常會厭世啦,你會覺得花那麼多時間到最後我又不講,到最後又不講,那你又更挫折感 |
transcript.whisperx[193].start |
6243.554 |
transcript.whisperx[193].end |
6271.901 |
transcript.whisperx[193].text |
挫折感一久放你就不想再來立法院這是正常的所以上禮拜我有講說來立法院學習要先學習面對那種挫折感跟你要有那種被罵被嫌棄那種的心理準備一定會的每天寫東西不可能每一天都寫得非常好不太可能每天一三次都要寫怎麼可能每一次的執行長都寫那麼好怎麼可能不可能 |
transcript.whisperx[194].start |
6273.99 |
transcript.whisperx[194].end |
6277.311 |
transcript.whisperx[194].text |
高壓力、高工時、薪水不見得高高薪 |
transcript.whisperx[195].start |
6292.136 |
transcript.whisperx[195].end |
6319.398 |
transcript.whisperx[195].text |
要去調適自己的身心當你還有一點熱誠興趣的時候就盡量去做當你做不了的時候就自己去做選擇了我只能告訴你這些但是說辦公室有一些比較好的主管或同事來大家互相搭配學習是比較好我也看過很多委員辦公室一個team很強他們互相討論會帶這樣其實大家做的會比較愉快通常部分區立委會比較多的法案助理他們都是比較 |
transcript.whisperx[196].start |
6321.09 |
transcript.whisperx[196].end |
6346.07 |
transcript.whisperx[196].text |
分工比較細,不是一個人負責一大塊分工比較細就比較好分工比較細,資料可以轉移得比較深做出來的東西品質會比較好,因為比較細看得比較多但是有些委員辦公室我剛剛講一個法案主義或兩個法案主義,那很累,什麼都要做做到會有品質我都不太相信,能應付委員就有點了不起了但是韓寧還是要應付他 |
transcript.whisperx[197].start |
6349.23 |
transcript.whisperx[197].end |
6369.096 |
transcript.whisperx[197].text |
只是說每個委員辦公室編織的不太一樣,看委員縱事是哪一塊委員縱事選區執行只要有執行就好,那也可以,你能應付他OK就好不然你要照清查主任標準再一套來做的話你可能每天寫執行稿要寫到三清半夜才寫出來,那也辛苦 |
transcript.whisperx[198].start |
6372.475 |
transcript.whisperx[198].end |
6399.255 |
transcript.whisperx[198].text |
你是二十年的經驗,你應該是第一年的經驗,怎麼比,對不對,這不能這樣講所以說你們要求快求精的話,就自己要找技巧所以說最快就問委員,委員你想要問什麼,你興趣什麼,這樣是最快的不然你大海撈箭撈一個東西給他,他不要的話那就麻煩了先問委員,委員會有自己的想法,每個委員都有自己的想法,先問他是最快的再問他,再這樣去做,再問他 |
transcript.whisperx[199].start |
6400.414 |
transcript.whisperx[199].end |
6417.815 |
transcript.whisperx[199].text |
這樣也可以慢慢跟委員建立一些默契反正助理一定要多跟委員相處 問他喜歡什麼 觀察他喜歡什麼因為每個委員都喜歡他自己想要的議題 給他關心的議題相處久之後就大概知道了 朝兩方下去準備 大部分都錯不了 |
transcript.whisperx[200].start |
6419.434 |
transcript.whisperx[200].end |
6446.511 |
transcript.whisperx[200].text |
比如說委員是農業縣那你老是問一些政治議題他就不喜歡對不對就是說你要看委員選區的屬性也要去注意一下注意一下所以說法案助理絕對不要怕委員有什麼事情多問委員你比較關心什麼議題為什麼問他問久之後他也會告訴你互相還是說你準備幾個議題問委員下禮拜某某委員會的執行問這幾個議題好不好你先寫幾個大綱給他也可以 |
transcript.whisperx[201].start |
6448.527 |
transcript.whisperx[201].end |
6469.945 |
transcript.whisperx[201].text |
他會跳 讓他跳也可以就慢慢跟委員建立一些默契這樣你們法案助理工作起來會比較愉快不然的話你假如說一直跟委員格格不入的話對不起的話 去對不起的話就會很辛苦你做的東西委員不想要 或是說委員想要的東西你又做不出來 那就會很辛苦壓力也會很大好 看看還有沒有其他要再請教的 |
transcript.whisperx[202].start |
6488.36 |
transcript.whisperx[202].end |
6496.386 |
transcript.whisperx[202].text |
有其他什麼想要詢問的問題?你有印象最糟糕的時間?最糟糕,那個應該是出租行第一年、第二年有印象最糟糕?最糟糕或最深刻? |
transcript.whisperx[203].start |
6504.673 |
transcript.whisperx[203].end |
6504.913 |
transcript.whisperx[203].text |
委員:發言委員:發言委員: |
transcript.whisperx[204].start |
6525.034 |
transcript.whisperx[204].end |
6525.414 |
transcript.whisperx[204].text |
李柏芸 |
transcript.whisperx[205].start |
6555.894 |
transcript.whisperx[205].end |
6577.685 |
transcript.whisperx[205].text |
盡量啦,你們剛開始在做質詢稿,盡量內容不要出錯就是說因為你們準備東西委員會去講,萬一引用的數字或資料有錯誤的話那其實會被媒體抓包去報導出來,這樣對委員就不好所以說盡量那個質詢稿裡面的資料不要錯,一定要去查證 |
transcript.whisperx[206].start |
6578.906 |
transcript.whisperx[206].end |
6593.143 |
transcript.whisperx[206].text |
那不要錯的一個保險就是說盡量用官方的資料假如牽涉到統計數據數字的話有時候媒體會有錯要小心媒體都是引用那個所以去查官方統計的資料比較不會錯這樣比較保險有時候 |
transcript.whisperx[207].start |
6597.248 |
transcript.whisperx[207].end |
6622.563 |
transcript.whisperx[207].text |
給委員錯誤的資料他講出來執行出來避免你報導的話對他是很傷所以這個要切記就是說我寧願執行稿做得不好但是我資料不要有錯誤這是最一個比較一個要求這樣那慢慢在精進做久之後其實都會掌握到做一些執行稿的一個技巧跟要領我想相信大家都很聰明都會慢慢其實今天都是這樣累積的啦好 |
transcript.whisperx[208].start |
6627.411 |
transcript.whisperx[208].end |
6633.486 |
transcript.whisperx[208].text |
時間一點半了還可以回去睡個午覺一下好不好那就沒有問題我們今天的研習活動就到這邊結束謝謝大家 謝謝 |