iVOD / 15789

Field Value
IVOD_ID 15789
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/15789
日期 2024-04-08
會議資料.會議代碼 委員會-11-1-26-11
會議資料.會議代碼:str 第11屆第1會期社會福利及衛生環境委員會第11次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第1會期社會福利及衛生環境委員會第11次全體委員會議
影片種類 Full
開始時間 2024-04-08T08:30:48+08:00
結束時間 2024-04-08T13:01:00+08:00
影片長度 04:30:12
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/bfaf9b39ac01a685307cb56df1ecea52247fba16bfc1c1c43be8d109af184be4a863a53b8e8d8d0d5ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2024-04-08T09:00:00+08:00
會議名稱 立法院第11屆第1會期社會福利及衛生環境委員會第11次全體委員會議(事由:邀請勞動部、行政院人事行政總處、銓敘部、教育部、國防部就「安心生養!試辦彈性育嬰假及如何提高男性育嬰留停比例」進行專題報告,並備質詢。 【4月8日及10日二天一次會】)
委員名稱 完整會議
委員發言時間 08:30:48 - 13:01:00
transcript.pyannote[0].speaker SPEAKER_19
transcript.pyannote[0].start 1816.59096875
transcript.pyannote[0].end 1820.37096875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 1817.80596875
transcript.pyannote[1].end 1818.64971875
transcript.pyannote[2].speaker SPEAKER_19
transcript.pyannote[2].start 1823.42534375
transcript.pyannote[2].end 1830.34409375
transcript.pyannote[3].speaker SPEAKER_10
transcript.pyannote[3].start 1830.71534375
transcript.pyannote[3].end 1875.90659375
transcript.pyannote[4].speaker SPEAKER_10
transcript.pyannote[4].start 1876.39596875
transcript.pyannote[4].end 1912.10346875
transcript.pyannote[5].speaker SPEAKER_19
transcript.pyannote[5].start 1913.04846875
transcript.pyannote[5].end 1932.16784375
transcript.pyannote[6].speaker SPEAKER_19
transcript.pyannote[6].start 1932.99471875
transcript.pyannote[6].end 1936.08284375
transcript.pyannote[7].speaker SPEAKER_19
transcript.pyannote[7].start 1936.50471875
transcript.pyannote[7].end 1940.74034375
transcript.pyannote[8].speaker SPEAKER_19
transcript.pyannote[8].start 1942.42784375
transcript.pyannote[8].end 1943.65971875
transcript.pyannote[9].speaker SPEAKER_19
transcript.pyannote[9].start 1945.43159375
transcript.pyannote[9].end 1946.73096875
transcript.pyannote[10].speaker SPEAKER_19
transcript.pyannote[10].start 1947.74346875
transcript.pyannote[10].end 1950.30846875
transcript.pyannote[11].speaker SPEAKER_19
transcript.pyannote[11].start 1950.51096875
transcript.pyannote[11].end 1954.69596875
transcript.pyannote[12].speaker SPEAKER_19
transcript.pyannote[12].start 1955.79284375
transcript.pyannote[12].end 1958.62784375
transcript.pyannote[13].speaker SPEAKER_19
transcript.pyannote[13].start 1958.99909375
transcript.pyannote[13].end 1961.63159375
transcript.pyannote[14].speaker SPEAKER_19
transcript.pyannote[14].start 1962.88034375
transcript.pyannote[14].end 1964.71971875
transcript.pyannote[15].speaker SPEAKER_19
transcript.pyannote[15].start 1965.12471875
transcript.pyannote[15].end 1966.77846875
transcript.pyannote[16].speaker SPEAKER_19
transcript.pyannote[16].start 1967.75721875
transcript.pyannote[16].end 1970.15346875
transcript.pyannote[17].speaker SPEAKER_19
transcript.pyannote[17].start 1971.19971875
transcript.pyannote[17].end 1973.47784375
transcript.pyannote[18].speaker SPEAKER_19
transcript.pyannote[18].start 1974.25409375
transcript.pyannote[18].end 1977.52784375
transcript.pyannote[19].speaker SPEAKER_19
transcript.pyannote[19].start 1978.30409375
transcript.pyannote[19].end 1982.13471875
transcript.pyannote[20].speaker SPEAKER_19
transcript.pyannote[20].start 1982.62409375
transcript.pyannote[20].end 1987.68659375
transcript.pyannote[21].speaker SPEAKER_19
transcript.pyannote[21].start 1988.63159375
transcript.pyannote[21].end 1992.12471875
transcript.pyannote[22].speaker SPEAKER_19
transcript.pyannote[22].start 1992.95159375
transcript.pyannote[22].end 1995.39846875
transcript.pyannote[23].speaker SPEAKER_19
transcript.pyannote[23].start 1996.36034375
transcript.pyannote[23].end 1998.99284375
transcript.pyannote[24].speaker SPEAKER_19
transcript.pyannote[24].start 1999.51596875
transcript.pyannote[24].end 2002.35096875
transcript.pyannote[25].speaker SPEAKER_19
transcript.pyannote[25].start 2003.51534375
transcript.pyannote[25].end 2007.66659375
transcript.pyannote[26].speaker SPEAKER_19
transcript.pyannote[26].start 2008.35846875
transcript.pyannote[26].end 2014.75409375
transcript.pyannote[27].speaker SPEAKER_19
transcript.pyannote[27].start 2015.90159375
transcript.pyannote[27].end 2026.95471875
transcript.pyannote[28].speaker SPEAKER_20
transcript.pyannote[28].start 2036.37096875
transcript.pyannote[28].end 2039.25659375
transcript.pyannote[29].speaker SPEAKER_20
transcript.pyannote[29].start 2039.67846875
transcript.pyannote[29].end 2041.73721875
transcript.pyannote[30].speaker SPEAKER_20
transcript.pyannote[30].start 2042.09159375
transcript.pyannote[30].end 2044.79159375
transcript.pyannote[31].speaker SPEAKER_20
transcript.pyannote[31].start 2045.39909375
transcript.pyannote[31].end 2047.84596875
transcript.pyannote[32].speaker SPEAKER_20
transcript.pyannote[32].start 2048.08221875
transcript.pyannote[32].end 2049.26346875
transcript.pyannote[33].speaker SPEAKER_20
transcript.pyannote[33].start 2049.55034375
transcript.pyannote[33].end 2051.05221875
transcript.pyannote[34].speaker SPEAKER_20
transcript.pyannote[34].start 2051.44034375
transcript.pyannote[34].end 2054.41034375
transcript.pyannote[35].speaker SPEAKER_20
transcript.pyannote[35].start 2054.57909375
transcript.pyannote[35].end 2057.24534375
transcript.pyannote[36].speaker SPEAKER_20
transcript.pyannote[36].start 2057.49846875
transcript.pyannote[36].end 2058.89909375
transcript.pyannote[37].speaker SPEAKER_20
transcript.pyannote[37].start 2059.32096875
transcript.pyannote[37].end 2061.88596875
transcript.pyannote[38].speaker SPEAKER_20
transcript.pyannote[38].start 2062.56096875
transcript.pyannote[38].end 2064.07971875
transcript.pyannote[39].speaker SPEAKER_20
transcript.pyannote[39].start 2064.28221875
transcript.pyannote[39].end 2069.53034375
transcript.pyannote[40].speaker SPEAKER_20
transcript.pyannote[40].start 2069.74971875
transcript.pyannote[40].end 2070.27284375
transcript.pyannote[41].speaker SPEAKER_20
transcript.pyannote[41].start 2070.54284375
transcript.pyannote[41].end 2071.16721875
transcript.pyannote[42].speaker SPEAKER_20
transcript.pyannote[42].start 2071.33596875
transcript.pyannote[42].end 2074.17096875
transcript.pyannote[43].speaker SPEAKER_20
transcript.pyannote[43].start 2074.42409375
transcript.pyannote[43].end 2075.67284375
transcript.pyannote[44].speaker SPEAKER_20
transcript.pyannote[44].start 2075.89221875
transcript.pyannote[44].end 2077.19159375
transcript.pyannote[45].speaker SPEAKER_20
transcript.pyannote[45].start 2077.64721875
transcript.pyannote[45].end 2080.27971875
transcript.pyannote[46].speaker SPEAKER_20
transcript.pyannote[46].start 2080.56659375
transcript.pyannote[46].end 2083.01346875
transcript.pyannote[47].speaker SPEAKER_20
transcript.pyannote[47].start 2083.38471875
transcript.pyannote[47].end 2084.29596875
transcript.pyannote[48].speaker SPEAKER_20
transcript.pyannote[48].start 2084.63346875
transcript.pyannote[48].end 2088.61596875
transcript.pyannote[49].speaker SPEAKER_20
transcript.pyannote[49].start 2088.91971875
transcript.pyannote[49].end 2092.36221875
transcript.pyannote[50].speaker SPEAKER_20
transcript.pyannote[50].start 2092.95284375
transcript.pyannote[50].end 2097.13784375
transcript.pyannote[51].speaker SPEAKER_20
transcript.pyannote[51].start 2097.45846875
transcript.pyannote[51].end 2102.31846875
transcript.pyannote[52].speaker SPEAKER_20
transcript.pyannote[52].start 2102.77409375
transcript.pyannote[52].end 2107.58346875
transcript.pyannote[53].speaker SPEAKER_20
transcript.pyannote[53].start 2107.68471875
transcript.pyannote[53].end 2108.62971875
transcript.pyannote[54].speaker SPEAKER_20
transcript.pyannote[54].start 2108.84909375
transcript.pyannote[54].end 2111.11034375
transcript.pyannote[55].speaker SPEAKER_20
transcript.pyannote[55].start 2111.75159375
transcript.pyannote[55].end 2114.63721875
transcript.pyannote[56].speaker SPEAKER_20
transcript.pyannote[56].start 2115.41346875
transcript.pyannote[56].end 2115.71721875
transcript.pyannote[57].speaker SPEAKER_20
transcript.pyannote[57].start 2115.80159375
transcript.pyannote[57].end 2117.92784375
transcript.pyannote[58].speaker SPEAKER_20
transcript.pyannote[58].start 2118.24846875
transcript.pyannote[58].end 2119.86846875
transcript.pyannote[59].speaker SPEAKER_20
transcript.pyannote[59].start 2120.02034375
transcript.pyannote[59].end 2120.03721875
transcript.pyannote[60].speaker SPEAKER_20
transcript.pyannote[60].start 2120.05409375
transcript.pyannote[60].end 2122.01159375
transcript.pyannote[61].speaker SPEAKER_20
transcript.pyannote[61].start 2122.29846875
transcript.pyannote[61].end 2124.81284375
transcript.pyannote[62].speaker SPEAKER_20
transcript.pyannote[62].start 2125.48784375
transcript.pyannote[62].end 2128.13721875
transcript.pyannote[63].speaker SPEAKER_20
transcript.pyannote[63].start 2128.60971875
transcript.pyannote[63].end 2131.12409375
transcript.pyannote[64].speaker SPEAKER_20
transcript.pyannote[64].start 2131.41096875
transcript.pyannote[64].end 2134.26284375
transcript.pyannote[65].speaker SPEAKER_20
transcript.pyannote[65].start 2134.68471875
transcript.pyannote[65].end 2136.22034375
transcript.pyannote[66].speaker SPEAKER_20
transcript.pyannote[66].start 2136.49034375
transcript.pyannote[66].end 2137.73909375
transcript.pyannote[67].speaker SPEAKER_20
transcript.pyannote[67].start 2138.21159375
transcript.pyannote[67].end 2140.25346875
transcript.pyannote[68].speaker SPEAKER_20
transcript.pyannote[68].start 2140.70909375
transcript.pyannote[68].end 2142.31221875
transcript.pyannote[69].speaker SPEAKER_20
transcript.pyannote[69].start 2143.15596875
transcript.pyannote[69].end 2145.26534375
transcript.pyannote[70].speaker SPEAKER_20
transcript.pyannote[70].start 2145.60284375
transcript.pyannote[70].end 2147.37471875
transcript.pyannote[71].speaker SPEAKER_20
transcript.pyannote[71].start 2147.76284375
transcript.pyannote[71].end 2149.04534375
transcript.pyannote[72].speaker SPEAKER_20
transcript.pyannote[72].start 2149.36596875
transcript.pyannote[72].end 2150.02409375
transcript.pyannote[73].speaker SPEAKER_20
transcript.pyannote[73].start 2150.83409375
transcript.pyannote[73].end 2152.03221875
transcript.pyannote[74].speaker SPEAKER_20
transcript.pyannote[74].start 2152.38659375
transcript.pyannote[74].end 2156.35221875
transcript.pyannote[75].speaker SPEAKER_20
transcript.pyannote[75].start 2156.97659375
transcript.pyannote[75].end 2159.17034375
transcript.pyannote[76].speaker SPEAKER_20
transcript.pyannote[76].start 2159.47409375
transcript.pyannote[76].end 2162.96721875
transcript.pyannote[77].speaker SPEAKER_20
transcript.pyannote[77].start 2163.22034375
transcript.pyannote[77].end 2166.24096875
transcript.pyannote[78].speaker SPEAKER_20
transcript.pyannote[78].start 2166.61221875
transcript.pyannote[78].end 2168.48534375
transcript.pyannote[79].speaker SPEAKER_20
transcript.pyannote[79].start 2168.80596875
transcript.pyannote[79].end 2172.34971875
transcript.pyannote[80].speaker SPEAKER_20
transcript.pyannote[80].start 2172.61971875
transcript.pyannote[80].end 2174.89784375
transcript.pyannote[81].speaker SPEAKER_20
transcript.pyannote[81].start 2175.15096875
transcript.pyannote[81].end 2177.81721875
transcript.pyannote[82].speaker SPEAKER_20
transcript.pyannote[82].start 2178.32346875
transcript.pyannote[82].end 2181.29346875
transcript.pyannote[83].speaker SPEAKER_20
transcript.pyannote[83].start 2181.58034375
transcript.pyannote[83].end 2184.93846875
transcript.pyannote[84].speaker SPEAKER_20
transcript.pyannote[84].start 2185.29284375
transcript.pyannote[84].end 2185.98471875
transcript.pyannote[85].speaker SPEAKER_20
transcript.pyannote[85].start 2186.35596875
transcript.pyannote[85].end 2186.76096875
transcript.pyannote[86].speaker SPEAKER_20
transcript.pyannote[86].start 2186.84534375
transcript.pyannote[86].end 2188.98846875
transcript.pyannote[87].speaker SPEAKER_20
transcript.pyannote[87].start 2189.66346875
transcript.pyannote[87].end 2192.53221875
transcript.pyannote[88].speaker SPEAKER_20
transcript.pyannote[88].start 2192.80221875
transcript.pyannote[88].end 2194.87784375
transcript.pyannote[89].speaker SPEAKER_20
transcript.pyannote[89].start 2195.21534375
transcript.pyannote[89].end 2196.59909375
transcript.pyannote[90].speaker SPEAKER_20
transcript.pyannote[90].start 2196.86909375
transcript.pyannote[90].end 2199.88971875
transcript.pyannote[91].speaker SPEAKER_20
transcript.pyannote[91].start 2200.26096875
transcript.pyannote[91].end 2201.56034375
transcript.pyannote[92].speaker SPEAKER_20
transcript.pyannote[92].start 2201.98221875
transcript.pyannote[92].end 2206.48784375
transcript.pyannote[93].speaker SPEAKER_20
transcript.pyannote[93].start 2206.97721875
transcript.pyannote[93].end 2208.69846875
transcript.pyannote[94].speaker SPEAKER_20
transcript.pyannote[94].start 2208.86721875
transcript.pyannote[94].end 2211.75284375
transcript.pyannote[95].speaker SPEAKER_20
transcript.pyannote[95].start 2212.34346875
transcript.pyannote[95].end 2214.84096875
transcript.pyannote[96].speaker SPEAKER_20
transcript.pyannote[96].start 2215.11096875
transcript.pyannote[96].end 2216.08971875
transcript.pyannote[97].speaker SPEAKER_20
transcript.pyannote[97].start 2216.47784375
transcript.pyannote[97].end 2218.95846875
transcript.pyannote[98].speaker SPEAKER_20
transcript.pyannote[98].start 2219.34659375
transcript.pyannote[98].end 2221.28721875
transcript.pyannote[99].speaker SPEAKER_20
transcript.pyannote[99].start 2221.67534375
transcript.pyannote[99].end 2225.21909375
transcript.pyannote[100].speaker SPEAKER_20
transcript.pyannote[100].start 2225.72534375
transcript.pyannote[100].end 2230.80471875
transcript.pyannote[101].speaker SPEAKER_20
transcript.pyannote[101].start 2230.90596875
transcript.pyannote[101].end 2234.11221875
transcript.pyannote[102].speaker SPEAKER_20
transcript.pyannote[102].start 2235.32721875
transcript.pyannote[102].end 2238.46596875
transcript.pyannote[103].speaker SPEAKER_20
transcript.pyannote[103].start 2239.09034375
transcript.pyannote[103].end 2240.45721875
transcript.pyannote[104].speaker SPEAKER_20
transcript.pyannote[104].start 2241.25034375
transcript.pyannote[104].end 2244.87846875
transcript.pyannote[105].speaker SPEAKER_20
transcript.pyannote[105].start 2244.91221875
transcript.pyannote[105].end 2247.49409375
transcript.pyannote[106].speaker SPEAKER_20
transcript.pyannote[106].start 2248.03409375
transcript.pyannote[106].end 2249.09721875
transcript.pyannote[107].speaker SPEAKER_20
transcript.pyannote[107].start 2249.45159375
transcript.pyannote[107].end 2253.13034375
transcript.pyannote[108].speaker SPEAKER_20
transcript.pyannote[108].start 2253.67034375
transcript.pyannote[108].end 2257.16346875
transcript.pyannote[109].speaker SPEAKER_20
transcript.pyannote[109].start 2257.45034375
transcript.pyannote[109].end 2259.12096875
transcript.pyannote[110].speaker SPEAKER_20
transcript.pyannote[110].start 2259.66096875
transcript.pyannote[110].end 2262.19221875
transcript.pyannote[111].speaker SPEAKER_20
transcript.pyannote[111].start 2262.44534375
transcript.pyannote[111].end 2264.68971875
transcript.pyannote[112].speaker SPEAKER_20
transcript.pyannote[112].start 2265.11159375
transcript.pyannote[112].end 2269.38096875
transcript.pyannote[113].speaker SPEAKER_20
transcript.pyannote[113].start 2269.65096875
transcript.pyannote[113].end 2270.32596875
transcript.pyannote[114].speaker SPEAKER_20
transcript.pyannote[114].start 2270.88284375
transcript.pyannote[114].end 2271.50721875
transcript.pyannote[115].speaker SPEAKER_20
transcript.pyannote[115].start 2271.64221875
transcript.pyannote[115].end 2276.08034375
transcript.pyannote[116].speaker SPEAKER_20
transcript.pyannote[116].start 2276.28284375
transcript.pyannote[116].end 2277.46409375
transcript.pyannote[117].speaker SPEAKER_20
transcript.pyannote[117].start 2277.76784375
transcript.pyannote[117].end 2278.89846875
transcript.pyannote[118].speaker SPEAKER_20
transcript.pyannote[118].start 2279.03346875
transcript.pyannote[118].end 2281.27784375
transcript.pyannote[119].speaker SPEAKER_20
transcript.pyannote[119].start 2281.56471875
transcript.pyannote[119].end 2283.79221875
transcript.pyannote[120].speaker SPEAKER_20
transcript.pyannote[120].start 2284.09596875
transcript.pyannote[120].end 2288.48346875
transcript.pyannote[121].speaker SPEAKER_20
transcript.pyannote[121].start 2290.44096875
transcript.pyannote[121].end 2293.52909375
transcript.pyannote[122].speaker SPEAKER_20
transcript.pyannote[122].start 2293.78221875
transcript.pyannote[122].end 2297.86596875
transcript.pyannote[123].speaker SPEAKER_20
transcript.pyannote[123].start 2298.37221875
transcript.pyannote[123].end 2300.29596875
transcript.pyannote[124].speaker SPEAKER_20
transcript.pyannote[124].start 2300.51534375
transcript.pyannote[124].end 2302.54034375
transcript.pyannote[125].speaker SPEAKER_20
transcript.pyannote[125].start 2303.14784375
transcript.pyannote[125].end 2306.60721875
transcript.pyannote[126].speaker SPEAKER_20
transcript.pyannote[126].start 2306.92784375
transcript.pyannote[126].end 2308.80096875
transcript.pyannote[127].speaker SPEAKER_20
transcript.pyannote[127].start 2309.05409375
transcript.pyannote[127].end 2311.61909375
transcript.pyannote[128].speaker SPEAKER_20
transcript.pyannote[128].start 2312.09159375
transcript.pyannote[128].end 2314.55534375
transcript.pyannote[129].speaker SPEAKER_20
transcript.pyannote[129].start 2315.48346875
transcript.pyannote[129].end 2316.63096875
transcript.pyannote[130].speaker SPEAKER_20
transcript.pyannote[130].start 2316.93471875
transcript.pyannote[130].end 2319.16221875
transcript.pyannote[131].speaker SPEAKER_20
transcript.pyannote[131].start 2319.56721875
transcript.pyannote[131].end 2323.61721875
transcript.pyannote[132].speaker SPEAKER_20
transcript.pyannote[132].start 2324.02221875
transcript.pyannote[132].end 2326.19909375
transcript.pyannote[133].speaker SPEAKER_20
transcript.pyannote[133].start 2326.35096875
transcript.pyannote[133].end 2328.64596875
transcript.pyannote[134].speaker SPEAKER_20
transcript.pyannote[134].start 2329.01721875
transcript.pyannote[134].end 2330.48534375
transcript.pyannote[135].speaker SPEAKER_20
transcript.pyannote[135].start 2331.12659375
transcript.pyannote[135].end 2334.09659375
transcript.pyannote[136].speaker SPEAKER_20
transcript.pyannote[136].start 2334.29909375
transcript.pyannote[136].end 2335.98659375
transcript.pyannote[137].speaker SPEAKER_20
transcript.pyannote[137].start 2336.39159375
transcript.pyannote[137].end 2339.09159375
transcript.pyannote[138].speaker SPEAKER_20
transcript.pyannote[138].start 2339.54721875
transcript.pyannote[138].end 2343.66471875
transcript.pyannote[139].speaker SPEAKER_20
transcript.pyannote[139].start 2343.98534375
transcript.pyannote[139].end 2345.25096875
transcript.pyannote[140].speaker SPEAKER_20
transcript.pyannote[140].start 2345.47034375
transcript.pyannote[140].end 2347.29284375
transcript.pyannote[141].speaker SPEAKER_20
transcript.pyannote[141].start 2347.46159375
transcript.pyannote[141].end 2349.57096875
transcript.pyannote[142].speaker SPEAKER_20
transcript.pyannote[142].start 2349.94221875
transcript.pyannote[142].end 2352.16971875
transcript.pyannote[143].speaker SPEAKER_20
transcript.pyannote[143].start 2352.54096875
transcript.pyannote[143].end 2354.32971875
transcript.pyannote[144].speaker SPEAKER_20
transcript.pyannote[144].start 2354.65034375
transcript.pyannote[144].end 2357.31659375
transcript.pyannote[145].speaker SPEAKER_20
transcript.pyannote[145].start 2357.75534375
transcript.pyannote[145].end 2360.25284375
transcript.pyannote[146].speaker SPEAKER_20
transcript.pyannote[146].start 2360.59034375
transcript.pyannote[146].end 2363.39159375
transcript.pyannote[147].speaker SPEAKER_20
transcript.pyannote[147].start 2363.61096875
transcript.pyannote[147].end 2365.24784375
transcript.pyannote[148].speaker SPEAKER_20
transcript.pyannote[148].start 2365.58534375
transcript.pyannote[148].end 2368.06596875
transcript.pyannote[149].speaker SPEAKER_20
transcript.pyannote[149].start 2368.28534375
transcript.pyannote[149].end 2370.10784375
transcript.pyannote[150].speaker SPEAKER_20
transcript.pyannote[150].start 2370.39471875
transcript.pyannote[150].end 2371.44096875
transcript.pyannote[151].speaker SPEAKER_20
transcript.pyannote[151].start 2371.76159375
transcript.pyannote[151].end 2373.92159375
transcript.pyannote[152].speaker SPEAKER_20
transcript.pyannote[152].start 2374.37721875
transcript.pyannote[152].end 2375.86221875
transcript.pyannote[153].speaker SPEAKER_20
transcript.pyannote[153].start 2376.01409375
transcript.pyannote[153].end 2377.51596875
transcript.pyannote[154].speaker SPEAKER_20
transcript.pyannote[154].start 2378.05596875
transcript.pyannote[154].end 2381.34659375
transcript.pyannote[155].speaker SPEAKER_20
transcript.pyannote[155].start 2381.59971875
transcript.pyannote[155].end 2383.30409375
transcript.pyannote[156].speaker SPEAKER_20
transcript.pyannote[156].start 2383.54034375
transcript.pyannote[156].end 2386.79721875
transcript.pyannote[157].speaker SPEAKER_20
transcript.pyannote[157].start 2387.06721875
transcript.pyannote[157].end 2390.37471875
transcript.pyannote[158].speaker SPEAKER_20
transcript.pyannote[158].start 2394.69471875
transcript.pyannote[158].end 2394.71159375
transcript.pyannote[159].speaker SPEAKER_19
transcript.pyannote[159].start 2394.71159375
transcript.pyannote[159].end 2405.88284375
transcript.pyannote[160].speaker SPEAKER_19
transcript.pyannote[160].start 2405.96721875
transcript.pyannote[160].end 2407.94159375
transcript.pyannote[161].speaker SPEAKER_19
transcript.pyannote[161].start 2408.11034375
transcript.pyannote[161].end 2410.65846875
transcript.pyannote[162].speaker SPEAKER_19
transcript.pyannote[162].start 2411.08034375
transcript.pyannote[162].end 2415.68721875
transcript.pyannote[163].speaker SPEAKER_19
transcript.pyannote[163].start 2415.99096875
transcript.pyannote[163].end 2418.52221875
transcript.pyannote[164].speaker SPEAKER_19
transcript.pyannote[164].start 2418.77534375
transcript.pyannote[164].end 2421.54284375
transcript.pyannote[165].speaker SPEAKER_19
transcript.pyannote[165].start 2421.81284375
transcript.pyannote[165].end 2423.71971875
transcript.pyannote[166].speaker SPEAKER_19
transcript.pyannote[166].start 2423.97284375
transcript.pyannote[166].end 2427.92159375
transcript.pyannote[167].speaker SPEAKER_19
transcript.pyannote[167].start 2432.83221875
transcript.pyannote[167].end 2432.84909375
transcript.pyannote[168].speaker SPEAKER_14
transcript.pyannote[168].start 2432.84909375
transcript.pyannote[168].end 2433.16971875
transcript.pyannote[169].speaker SPEAKER_19
transcript.pyannote[169].start 2433.16971875
transcript.pyannote[169].end 2433.20346875
transcript.pyannote[170].speaker SPEAKER_14
transcript.pyannote[170].start 2433.20346875
transcript.pyannote[170].end 2436.57846875
transcript.pyannote[171].speaker SPEAKER_14
transcript.pyannote[171].start 2440.79721875
transcript.pyannote[171].end 2448.66096875
transcript.pyannote[172].speaker SPEAKER_14
transcript.pyannote[172].start 2449.01534375
transcript.pyannote[172].end 2450.65221875
transcript.pyannote[173].speaker SPEAKER_14
transcript.pyannote[173].start 2451.95159375
transcript.pyannote[173].end 2454.56721875
transcript.pyannote[174].speaker SPEAKER_14
transcript.pyannote[174].start 2455.14096875
transcript.pyannote[174].end 2485.04346875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 2465.60346875
transcript.pyannote[175].end 2465.99159375
transcript.pyannote[176].speaker SPEAKER_14
transcript.pyannote[176].start 2485.26284375
transcript.pyannote[176].end 2488.30034375
transcript.pyannote[177].speaker SPEAKER_14
transcript.pyannote[177].start 2488.51971875
transcript.pyannote[177].end 2501.51346875
transcript.pyannote[178].speaker SPEAKER_20
transcript.pyannote[178].start 2501.93534375
transcript.pyannote[178].end 2514.60846875
transcript.pyannote[179].speaker SPEAKER_14
transcript.pyannote[179].start 2511.65534375
transcript.pyannote[179].end 2511.99284375
transcript.pyannote[180].speaker SPEAKER_14
transcript.pyannote[180].start 2512.31346875
transcript.pyannote[180].end 2513.88284375
transcript.pyannote[181].speaker SPEAKER_14
transcript.pyannote[181].start 2514.28784375
transcript.pyannote[181].end 2530.21784375
transcript.pyannote[182].speaker SPEAKER_14
transcript.pyannote[182].start 2530.45409375
transcript.pyannote[182].end 2549.11784375
transcript.pyannote[183].speaker SPEAKER_14
transcript.pyannote[183].start 2549.53971875
transcript.pyannote[183].end 2579.54346875
transcript.pyannote[184].speaker SPEAKER_14
transcript.pyannote[184].start 2579.86409375
transcript.pyannote[184].end 2597.75159375
transcript.pyannote[185].speaker SPEAKER_14
transcript.pyannote[185].start 2598.13971875
transcript.pyannote[185].end 2598.15659375
transcript.pyannote[186].speaker SPEAKER_20
transcript.pyannote[186].start 2598.15659375
transcript.pyannote[186].end 2598.17346875
transcript.pyannote[187].speaker SPEAKER_14
transcript.pyannote[187].start 2598.17346875
transcript.pyannote[187].end 2598.24096875
transcript.pyannote[188].speaker SPEAKER_20
transcript.pyannote[188].start 2598.24096875
transcript.pyannote[188].end 2598.29159375
transcript.pyannote[189].speaker SPEAKER_20
transcript.pyannote[189].start 2598.52784375
transcript.pyannote[189].end 2609.32784375
transcript.pyannote[190].speaker SPEAKER_20
transcript.pyannote[190].start 2609.69909375
transcript.pyannote[190].end 2610.40784375
transcript.pyannote[191].speaker SPEAKER_20
transcript.pyannote[191].start 2610.71159375
transcript.pyannote[191].end 2620.93784375
transcript.pyannote[192].speaker SPEAKER_14
transcript.pyannote[192].start 2619.21659375
transcript.pyannote[192].end 2619.43596875
transcript.pyannote[193].speaker SPEAKER_14
transcript.pyannote[193].start 2620.12784375
transcript.pyannote[193].end 2629.71284375
transcript.pyannote[194].speaker SPEAKER_14
transcript.pyannote[194].start 2630.13471875
transcript.pyannote[194].end 2650.08096875
transcript.pyannote[195].speaker SPEAKER_20
transcript.pyannote[195].start 2650.21596875
transcript.pyannote[195].end 2650.48596875
transcript.pyannote[196].speaker SPEAKER_20
transcript.pyannote[196].start 2650.51971875
transcript.pyannote[196].end 2661.84284375
transcript.pyannote[197].speaker SPEAKER_14
transcript.pyannote[197].start 2660.54346875
transcript.pyannote[197].end 2741.57721875
transcript.pyannote[198].speaker SPEAKER_14
transcript.pyannote[198].start 2741.93159375
transcript.pyannote[198].end 2788.10159375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 2781.89159375
transcript.pyannote[199].end 2782.12784375
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 2782.24596875
transcript.pyannote[200].end 2782.36409375
transcript.pyannote[201].speaker SPEAKER_14
transcript.pyannote[201].start 2788.42221875
transcript.pyannote[201].end 2806.76534375
transcript.pyannote[202].speaker SPEAKER_14
transcript.pyannote[202].start 2807.05221875
transcript.pyannote[202].end 2827.53846875
transcript.pyannote[203].speaker SPEAKER_14
transcript.pyannote[203].start 2827.55534375
transcript.pyannote[203].end 2827.57221875
transcript.pyannote[204].speaker SPEAKER_14
transcript.pyannote[204].start 2827.96034375
transcript.pyannote[204].end 2835.85784375
transcript.pyannote[205].speaker SPEAKER_14
transcript.pyannote[205].start 2836.17846875
transcript.pyannote[205].end 2854.90971875
transcript.pyannote[206].speaker SPEAKER_14
transcript.pyannote[206].start 2855.34846875
transcript.pyannote[206].end 2867.66721875
transcript.pyannote[207].speaker SPEAKER_14
transcript.pyannote[207].start 2868.15659375
transcript.pyannote[207].end 2878.58534375
transcript.pyannote[208].speaker SPEAKER_14
transcript.pyannote[208].start 2879.10846875
transcript.pyannote[208].end 2910.09096875
transcript.pyannote[209].speaker SPEAKER_14
transcript.pyannote[209].start 2910.52971875
transcript.pyannote[209].end 2917.24596875
transcript.pyannote[210].speaker SPEAKER_14
transcript.pyannote[210].start 2917.44846875
transcript.pyannote[210].end 2931.04971875
transcript.pyannote[211].speaker SPEAKER_20
transcript.pyannote[211].start 2931.18471875
transcript.pyannote[211].end 2932.80471875
transcript.pyannote[212].speaker SPEAKER_14
transcript.pyannote[212].start 2932.80471875
transcript.pyannote[212].end 2935.96034375
transcript.pyannote[213].speaker SPEAKER_20
transcript.pyannote[213].start 2933.69909375
transcript.pyannote[213].end 2934.71159375
transcript.pyannote[214].speaker SPEAKER_20
transcript.pyannote[214].start 2935.96034375
transcript.pyannote[214].end 2952.10971875
transcript.pyannote[215].speaker SPEAKER_14
transcript.pyannote[215].start 2936.16284375
transcript.pyannote[215].end 2936.17971875
transcript.pyannote[216].speaker SPEAKER_14
transcript.pyannote[216].start 2936.29784375
transcript.pyannote[216].end 2936.51721875
transcript.pyannote[217].speaker SPEAKER_14
transcript.pyannote[217].start 2950.75971875
transcript.pyannote[217].end 2952.64971875
transcript.pyannote[218].speaker SPEAKER_20
transcript.pyannote[218].start 2952.64971875
transcript.pyannote[218].end 2952.75096875
transcript.pyannote[219].speaker SPEAKER_14
transcript.pyannote[219].start 2952.75096875
transcript.pyannote[219].end 2954.94471875
transcript.pyannote[220].speaker SPEAKER_20
transcript.pyannote[220].start 2952.85221875
transcript.pyannote[220].end 2953.34159375
transcript.pyannote[221].speaker SPEAKER_14
transcript.pyannote[221].start 2955.26534375
transcript.pyannote[221].end 2997.65534375
transcript.pyannote[222].speaker SPEAKER_20
transcript.pyannote[222].start 2993.70659375
transcript.pyannote[222].end 2994.07784375
transcript.pyannote[223].speaker SPEAKER_20
transcript.pyannote[223].start 2994.38159375
transcript.pyannote[223].end 2995.78221875
transcript.pyannote[224].speaker SPEAKER_20
transcript.pyannote[224].start 2996.65971875
transcript.pyannote[224].end 3008.35409375
transcript.pyannote[225].speaker SPEAKER_14
transcript.pyannote[225].start 3007.88159375
transcript.pyannote[225].end 3020.28471875
transcript.pyannote[226].speaker SPEAKER_20
transcript.pyannote[226].start 3011.08784375
transcript.pyannote[226].end 3011.54346875
transcript.pyannote[227].speaker SPEAKER_14
transcript.pyannote[227].start 3020.97659375
transcript.pyannote[227].end 3027.92909375
transcript.pyannote[228].speaker SPEAKER_14
transcript.pyannote[228].start 3028.01346875
transcript.pyannote[228].end 3036.70409375
transcript.pyannote[229].speaker SPEAKER_14
transcript.pyannote[229].start 3036.99096875
transcript.pyannote[229].end 3037.46346875
transcript.pyannote[230].speaker SPEAKER_14
transcript.pyannote[230].start 3037.61534375
transcript.pyannote[230].end 3062.43846875
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 3043.52159375
transcript.pyannote[231].end 3043.53846875
transcript.pyannote[232].speaker SPEAKER_20
transcript.pyannote[232].start 3061.24034375
transcript.pyannote[232].end 3062.21909375
transcript.pyannote[233].speaker SPEAKER_20
transcript.pyannote[233].start 3062.43846875
transcript.pyannote[233].end 3070.58909375
transcript.pyannote[234].speaker SPEAKER_20
transcript.pyannote[234].start 3070.75784375
transcript.pyannote[234].end 3087.71721875
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 3075.36471875
transcript.pyannote[235].end 3075.70221875
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 3080.17409375
transcript.pyannote[236].end 3080.56221875
transcript.pyannote[237].speaker SPEAKER_20
transcript.pyannote[237].start 3088.10534375
transcript.pyannote[237].end 3100.62659375
transcript.pyannote[238].speaker SPEAKER_14
transcript.pyannote[238].start 3088.20659375
transcript.pyannote[238].end 3092.79659375
transcript.pyannote[239].speaker SPEAKER_20
transcript.pyannote[239].start 3100.79534375
transcript.pyannote[239].end 3104.18721875
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 3104.35596875
transcript.pyannote[240].end 3104.92971875
transcript.pyannote[241].speaker SPEAKER_20
transcript.pyannote[241].start 3104.49096875
transcript.pyannote[241].end 3106.97159375
transcript.pyannote[242].speaker SPEAKER_20
transcript.pyannote[242].start 3107.51159375
transcript.pyannote[242].end 3111.76409375
transcript.pyannote[243].speaker SPEAKER_20
transcript.pyannote[243].start 3112.15221875
transcript.pyannote[243].end 3128.62221875
transcript.pyannote[244].speaker SPEAKER_14
transcript.pyannote[244].start 3115.47659375
transcript.pyannote[244].end 3115.66221875
transcript.pyannote[245].speaker SPEAKER_14
transcript.pyannote[245].start 3115.91534375
transcript.pyannote[245].end 3116.82659375
transcript.pyannote[246].speaker SPEAKER_14
transcript.pyannote[246].start 3124.72409375
transcript.pyannote[246].end 3127.27221875
transcript.pyannote[247].speaker SPEAKER_14
transcript.pyannote[247].start 3128.31846875
transcript.pyannote[247].end 3129.28034375
transcript.pyannote[248].speaker SPEAKER_14
transcript.pyannote[248].start 3129.38159375
transcript.pyannote[248].end 3139.75971875
transcript.pyannote[249].speaker SPEAKER_20
transcript.pyannote[249].start 3130.63034375
transcript.pyannote[249].end 3131.55846875
transcript.pyannote[250].speaker SPEAKER_20
transcript.pyannote[250].start 3136.94159375
transcript.pyannote[250].end 3137.39721875
transcript.pyannote[251].speaker SPEAKER_20
transcript.pyannote[251].start 3137.95409375
transcript.pyannote[251].end 3138.69659375
transcript.pyannote[252].speaker SPEAKER_20
transcript.pyannote[252].start 3138.96659375
transcript.pyannote[252].end 3139.94534375
transcript.pyannote[253].speaker SPEAKER_19
transcript.pyannote[253].start 3139.75971875
transcript.pyannote[253].end 3139.79346875
transcript.pyannote[254].speaker SPEAKER_14
transcript.pyannote[254].start 3140.60346875
transcript.pyannote[254].end 3140.63721875
transcript.pyannote[255].speaker SPEAKER_19
transcript.pyannote[255].start 3140.63721875
transcript.pyannote[255].end 3142.72971875
transcript.pyannote[256].speaker SPEAKER_19
transcript.pyannote[256].start 3144.06284375
transcript.pyannote[256].end 3146.47596875
transcript.pyannote[257].speaker SPEAKER_15
transcript.pyannote[257].start 3154.01909375
transcript.pyannote[257].end 3159.53721875
transcript.pyannote[258].speaker SPEAKER_20
transcript.pyannote[258].start 3163.72221875
transcript.pyannote[258].end 3163.73909375
transcript.pyannote[259].speaker SPEAKER_15
transcript.pyannote[259].start 3163.73909375
transcript.pyannote[259].end 3163.82346875
transcript.pyannote[260].speaker SPEAKER_20
transcript.pyannote[260].start 3163.82346875
transcript.pyannote[260].end 3164.27909375
transcript.pyannote[261].speaker SPEAKER_15
transcript.pyannote[261].start 3164.27909375
transcript.pyannote[261].end 3164.29596875
transcript.pyannote[262].speaker SPEAKER_20
transcript.pyannote[262].start 3164.29596875
transcript.pyannote[262].end 3164.34659375
transcript.pyannote[263].speaker SPEAKER_20
transcript.pyannote[263].start 3164.46471875
transcript.pyannote[263].end 3164.49846875
transcript.pyannote[264].speaker SPEAKER_15
transcript.pyannote[264].start 3164.49846875
transcript.pyannote[264].end 3165.34221875
transcript.pyannote[265].speaker SPEAKER_20
transcript.pyannote[265].start 3165.67971875
transcript.pyannote[265].end 3165.84846875
transcript.pyannote[266].speaker SPEAKER_15
transcript.pyannote[266].start 3167.16471875
transcript.pyannote[266].end 3167.41784375
transcript.pyannote[267].speaker SPEAKER_15
transcript.pyannote[267].start 3167.85659375
transcript.pyannote[267].end 3170.08409375
transcript.pyannote[268].speaker SPEAKER_15
transcript.pyannote[268].start 3171.70409375
transcript.pyannote[268].end 3173.93159375
transcript.pyannote[269].speaker SPEAKER_09
transcript.pyannote[269].start 3173.93159375
transcript.pyannote[269].end 3174.04971875
transcript.pyannote[270].speaker SPEAKER_20
transcript.pyannote[270].start 3174.13409375
transcript.pyannote[270].end 3174.15096875
transcript.pyannote[271].speaker SPEAKER_09
transcript.pyannote[271].start 3174.15096875
transcript.pyannote[271].end 3174.23534375
transcript.pyannote[272].speaker SPEAKER_15
transcript.pyannote[272].start 3174.23534375
transcript.pyannote[272].end 3174.87659375
transcript.pyannote[273].speaker SPEAKER_15
transcript.pyannote[273].start 3176.73284375
transcript.pyannote[273].end 3176.95221875
transcript.pyannote[274].speaker SPEAKER_15
transcript.pyannote[274].start 3177.71159375
transcript.pyannote[274].end 3185.84534375
transcript.pyannote[275].speaker SPEAKER_15
transcript.pyannote[275].start 3186.11534375
transcript.pyannote[275].end 3193.42221875
transcript.pyannote[276].speaker SPEAKER_15
transcript.pyannote[276].start 3193.96221875
transcript.pyannote[276].end 3196.05471875
transcript.pyannote[277].speaker SPEAKER_20
transcript.pyannote[277].start 3196.24034375
transcript.pyannote[277].end 3196.59471875
transcript.pyannote[278].speaker SPEAKER_15
transcript.pyannote[278].start 3196.57784375
transcript.pyannote[278].end 3197.74221875
transcript.pyannote[279].speaker SPEAKER_15
transcript.pyannote[279].start 3198.33284375
transcript.pyannote[279].end 3201.64034375
transcript.pyannote[280].speaker SPEAKER_15
transcript.pyannote[280].start 3202.02846875
transcript.pyannote[280].end 3207.02346875
transcript.pyannote[281].speaker SPEAKER_20
transcript.pyannote[281].start 3207.02346875
transcript.pyannote[281].end 3215.52846875
transcript.pyannote[282].speaker SPEAKER_20
transcript.pyannote[282].start 3215.74784375
transcript.pyannote[282].end 3220.30409375
transcript.pyannote[283].speaker SPEAKER_20
transcript.pyannote[283].start 3220.40534375
transcript.pyannote[283].end 3227.17221875
transcript.pyannote[284].speaker SPEAKER_20
transcript.pyannote[284].start 3227.67846875
transcript.pyannote[284].end 3234.12471875
transcript.pyannote[285].speaker SPEAKER_15
transcript.pyannote[285].start 3232.80846875
transcript.pyannote[285].end 3233.31471875
transcript.pyannote[286].speaker SPEAKER_15
transcript.pyannote[286].start 3233.51721875
transcript.pyannote[286].end 3262.03596875
transcript.pyannote[287].speaker SPEAKER_15
transcript.pyannote[287].start 3262.42409375
transcript.pyannote[287].end 3267.43596875
transcript.pyannote[288].speaker SPEAKER_15
transcript.pyannote[288].start 3267.82409375
transcript.pyannote[288].end 3280.32846875
transcript.pyannote[289].speaker SPEAKER_15
transcript.pyannote[289].start 3280.34534375
transcript.pyannote[289].end 3282.13409375
transcript.pyannote[290].speaker SPEAKER_15
transcript.pyannote[290].start 3283.41659375
transcript.pyannote[290].end 3285.54284375
transcript.pyannote[291].speaker SPEAKER_15
transcript.pyannote[291].start 3286.31909375
transcript.pyannote[291].end 3300.83159375
transcript.pyannote[292].speaker SPEAKER_15
transcript.pyannote[292].start 3301.06784375
transcript.pyannote[292].end 3302.63721875
transcript.pyannote[293].speaker SPEAKER_15
transcript.pyannote[293].start 3302.82284375
transcript.pyannote[293].end 3310.28159375
transcript.pyannote[294].speaker SPEAKER_02
transcript.pyannote[294].start 3310.28159375
transcript.pyannote[294].end 3310.60221875
transcript.pyannote[295].speaker SPEAKER_15
transcript.pyannote[295].start 3310.95659375
transcript.pyannote[295].end 3314.31471875
transcript.pyannote[296].speaker SPEAKER_15
transcript.pyannote[296].start 3314.68596875
transcript.pyannote[296].end 3315.07409375
transcript.pyannote[297].speaker SPEAKER_15
transcript.pyannote[297].start 3315.44534375
transcript.pyannote[297].end 3317.97659375
transcript.pyannote[298].speaker SPEAKER_02
transcript.pyannote[298].start 3318.82034375
transcript.pyannote[298].end 3318.92159375
transcript.pyannote[299].speaker SPEAKER_20
transcript.pyannote[299].start 3318.92159375
transcript.pyannote[299].end 3319.02284375
transcript.pyannote[300].speaker SPEAKER_02
transcript.pyannote[300].start 3319.02284375
transcript.pyannote[300].end 3319.15784375
transcript.pyannote[301].speaker SPEAKER_20
transcript.pyannote[301].start 3320.25471875
transcript.pyannote[301].end 3335.13846875
transcript.pyannote[302].speaker SPEAKER_15
transcript.pyannote[302].start 3324.05159375
transcript.pyannote[302].end 3324.96284375
transcript.pyannote[303].speaker SPEAKER_02
transcript.pyannote[303].start 3325.16534375
transcript.pyannote[303].end 3325.60409375
transcript.pyannote[304].speaker SPEAKER_15
transcript.pyannote[304].start 3325.60409375
transcript.pyannote[304].end 3325.67159375
transcript.pyannote[305].speaker SPEAKER_02
transcript.pyannote[305].start 3326.14409375
transcript.pyannote[305].end 3326.41409375
transcript.pyannote[306].speaker SPEAKER_15
transcript.pyannote[306].start 3326.41409375
transcript.pyannote[306].end 3326.46471875
transcript.pyannote[307].speaker SPEAKER_15
transcript.pyannote[307].start 3334.29471875
transcript.pyannote[307].end 3334.80096875
transcript.pyannote[308].speaker SPEAKER_15
transcript.pyannote[308].start 3335.13846875
transcript.pyannote[308].end 3340.92659375
transcript.pyannote[309].speaker SPEAKER_15
transcript.pyannote[309].start 3341.02784375
transcript.pyannote[309].end 3344.38596875
transcript.pyannote[310].speaker SPEAKER_25
transcript.pyannote[310].start 3345.33096875
transcript.pyannote[310].end 3345.68534375
transcript.pyannote[311].speaker SPEAKER_15
transcript.pyannote[311].start 3345.92159375
transcript.pyannote[311].end 3347.92971875
transcript.pyannote[312].speaker SPEAKER_20
transcript.pyannote[312].start 3348.21659375
transcript.pyannote[312].end 3349.21221875
transcript.pyannote[313].speaker SPEAKER_25
transcript.pyannote[313].start 3349.60034375
transcript.pyannote[313].end 3360.28221875
transcript.pyannote[314].speaker SPEAKER_15
transcript.pyannote[314].start 3354.47721875
transcript.pyannote[314].end 3354.51096875
transcript.pyannote[315].speaker SPEAKER_15
transcript.pyannote[315].start 3354.52784375
transcript.pyannote[315].end 3354.54471875
transcript.pyannote[316].speaker SPEAKER_25
transcript.pyannote[316].start 3360.33284375
transcript.pyannote[316].end 3360.43409375
transcript.pyannote[317].speaker SPEAKER_15
transcript.pyannote[317].start 3360.43409375
transcript.pyannote[317].end 3364.46721875
transcript.pyannote[318].speaker SPEAKER_15
transcript.pyannote[318].start 3365.27721875
transcript.pyannote[318].end 3369.49596875
transcript.pyannote[319].speaker SPEAKER_20
transcript.pyannote[319].start 3371.43659375
transcript.pyannote[319].end 3371.95971875
transcript.pyannote[320].speaker SPEAKER_20
transcript.pyannote[320].start 3373.49534375
transcript.pyannote[320].end 3374.89596875
transcript.pyannote[321].speaker SPEAKER_25
transcript.pyannote[321].start 3374.89596875
transcript.pyannote[321].end 3389.99909375
transcript.pyannote[322].speaker SPEAKER_15
transcript.pyannote[322].start 3387.92346875
transcript.pyannote[322].end 3388.22721875
transcript.pyannote[323].speaker SPEAKER_15
transcript.pyannote[323].start 3389.23971875
transcript.pyannote[323].end 3406.26659375
transcript.pyannote[324].speaker SPEAKER_20
transcript.pyannote[324].start 3391.24784375
transcript.pyannote[324].end 3391.26471875
transcript.pyannote[325].speaker SPEAKER_25
transcript.pyannote[325].start 3391.26471875
transcript.pyannote[325].end 3392.15909375
transcript.pyannote[326].speaker SPEAKER_20
transcript.pyannote[326].start 3406.18221875
transcript.pyannote[326].end 3410.89034375
transcript.pyannote[327].speaker SPEAKER_15
transcript.pyannote[327].start 3406.31721875
transcript.pyannote[327].end 3406.99221875
transcript.pyannote[328].speaker SPEAKER_15
transcript.pyannote[328].start 3407.78534375
transcript.pyannote[328].end 3408.19034375
transcript.pyannote[329].speaker SPEAKER_15
transcript.pyannote[329].start 3410.58659375
transcript.pyannote[329].end 3419.02409375
transcript.pyannote[330].speaker SPEAKER_15
transcript.pyannote[330].start 3419.54721875
transcript.pyannote[330].end 3472.14659375
transcript.pyannote[331].speaker SPEAKER_00
transcript.pyannote[331].start 3440.92784375
transcript.pyannote[331].end 3442.73346875
transcript.pyannote[332].speaker SPEAKER_20
transcript.pyannote[332].start 3473.07471875
transcript.pyannote[332].end 3483.23346875
transcript.pyannote[333].speaker SPEAKER_20
transcript.pyannote[333].start 3483.52034375
transcript.pyannote[333].end 3498.75846875
transcript.pyannote[334].speaker SPEAKER_15
transcript.pyannote[334].start 3497.83034375
transcript.pyannote[334].end 3498.15096875
transcript.pyannote[335].speaker SPEAKER_15
transcript.pyannote[335].start 3498.75846875
transcript.pyannote[335].end 3508.57971875
transcript.pyannote[336].speaker SPEAKER_15
transcript.pyannote[336].start 3508.68096875
transcript.pyannote[336].end 3523.58159375
transcript.pyannote[337].speaker SPEAKER_15
transcript.pyannote[337].start 3524.03721875
transcript.pyannote[337].end 3536.45721875
transcript.pyannote[338].speaker SPEAKER_15
transcript.pyannote[338].start 3536.87909375
transcript.pyannote[338].end 3537.21659375
transcript.pyannote[339].speaker SPEAKER_15
transcript.pyannote[339].start 3537.63846875
transcript.pyannote[339].end 3555.47534375
transcript.pyannote[340].speaker SPEAKER_20
transcript.pyannote[340].start 3555.47534375
transcript.pyannote[340].end 3555.49221875
transcript.pyannote[341].speaker SPEAKER_20
transcript.pyannote[341].start 3556.52159375
transcript.pyannote[341].end 3559.12034375
transcript.pyannote[342].speaker SPEAKER_20
transcript.pyannote[342].start 3561.06096875
transcript.pyannote[342].end 3569.83596875
transcript.pyannote[343].speaker SPEAKER_15
transcript.pyannote[343].start 3565.16159375
transcript.pyannote[343].end 3574.03784375
transcript.pyannote[344].speaker SPEAKER_20
transcript.pyannote[344].start 3570.39284375
transcript.pyannote[344].end 3571.27034375
transcript.pyannote[345].speaker SPEAKER_20
transcript.pyannote[345].start 3573.81846875
transcript.pyannote[345].end 3589.02284375
transcript.pyannote[346].speaker SPEAKER_15
transcript.pyannote[346].start 3589.02284375
transcript.pyannote[346].end 3589.09034375
transcript.pyannote[347].speaker SPEAKER_20
transcript.pyannote[347].start 3589.09034375
transcript.pyannote[347].end 3590.59221875
transcript.pyannote[348].speaker SPEAKER_15
transcript.pyannote[348].start 3590.59221875
transcript.pyannote[348].end 3590.71034375
transcript.pyannote[349].speaker SPEAKER_15
transcript.pyannote[349].start 3591.04784375
transcript.pyannote[349].end 3618.65534375
transcript.pyannote[350].speaker SPEAKER_20
transcript.pyannote[350].start 3619.93784375
transcript.pyannote[350].end 3629.33721875
transcript.pyannote[351].speaker SPEAKER_20
transcript.pyannote[351].start 3629.55659375
transcript.pyannote[351].end 3632.35784375
transcript.pyannote[352].speaker SPEAKER_15
transcript.pyannote[352].start 3632.35784375
transcript.pyannote[352].end 3638.87159375
transcript.pyannote[353].speaker SPEAKER_20
transcript.pyannote[353].start 3635.86784375
transcript.pyannote[353].end 3636.30659375
transcript.pyannote[354].speaker SPEAKER_20
transcript.pyannote[354].start 3638.26409375
transcript.pyannote[354].end 3645.03096875
transcript.pyannote[355].speaker SPEAKER_15
transcript.pyannote[355].start 3639.79971875
transcript.pyannote[355].end 3640.28909375
transcript.pyannote[356].speaker SPEAKER_20
transcript.pyannote[356].start 3645.16596875
transcript.pyannote[356].end 3646.78596875
transcript.pyannote[357].speaker SPEAKER_15
transcript.pyannote[357].start 3645.26721875
transcript.pyannote[357].end 3645.77346875
transcript.pyannote[358].speaker SPEAKER_15
transcript.pyannote[358].start 3645.97596875
transcript.pyannote[358].end 3677.04284375
transcript.pyannote[359].speaker SPEAKER_15
transcript.pyannote[359].start 3677.68409375
transcript.pyannote[359].end 3684.33284375
transcript.pyannote[360].speaker SPEAKER_15
transcript.pyannote[360].start 3684.80534375
transcript.pyannote[360].end 3721.27221875
transcript.pyannote[361].speaker SPEAKER_15
transcript.pyannote[361].start 3721.64346875
transcript.pyannote[361].end 3730.45221875
transcript.pyannote[362].speaker SPEAKER_20
transcript.pyannote[362].start 3731.66721875
transcript.pyannote[362].end 3738.82221875
transcript.pyannote[363].speaker SPEAKER_15
transcript.pyannote[363].start 3735.46409375
transcript.pyannote[363].end 3735.78471875
transcript.pyannote[364].speaker SPEAKER_20
transcript.pyannote[364].start 3738.97409375
transcript.pyannote[364].end 3743.19284375
transcript.pyannote[365].speaker SPEAKER_20
transcript.pyannote[365].start 3743.46284375
transcript.pyannote[365].end 3744.22221875
transcript.pyannote[366].speaker SPEAKER_20
transcript.pyannote[366].start 3744.61034375
transcript.pyannote[366].end 3747.46221875
transcript.pyannote[367].speaker SPEAKER_20
transcript.pyannote[367].start 3747.63096875
transcript.pyannote[367].end 3748.96409375
transcript.pyannote[368].speaker SPEAKER_20
transcript.pyannote[368].start 3749.28471875
transcript.pyannote[368].end 3755.41034375
transcript.pyannote[369].speaker SPEAKER_20
transcript.pyannote[369].start 3755.52846875
transcript.pyannote[369].end 3757.63784375
transcript.pyannote[370].speaker SPEAKER_20
transcript.pyannote[370].start 3757.90784375
transcript.pyannote[370].end 3760.27034375
transcript.pyannote[371].speaker SPEAKER_15
transcript.pyannote[371].start 3760.48971875
transcript.pyannote[371].end 3773.65221875
transcript.pyannote[372].speaker SPEAKER_15
transcript.pyannote[372].start 3773.92221875
transcript.pyannote[372].end 3775.77846875
transcript.pyannote[373].speaker SPEAKER_15
transcript.pyannote[373].start 3775.89659375
transcript.pyannote[373].end 3779.67659375
transcript.pyannote[374].speaker SPEAKER_15
transcript.pyannote[374].start 3780.11534375
transcript.pyannote[374].end 3780.48659375
transcript.pyannote[375].speaker SPEAKER_15
transcript.pyannote[375].start 3781.43159375
transcript.pyannote[375].end 3783.67596875
transcript.pyannote[376].speaker SPEAKER_15
transcript.pyannote[376].start 3784.45221875
transcript.pyannote[376].end 3791.06721875
transcript.pyannote[377].speaker SPEAKER_20
transcript.pyannote[377].start 3792.16409375
transcript.pyannote[377].end 3808.19534375
transcript.pyannote[378].speaker SPEAKER_15
transcript.pyannote[378].start 3805.69784375
transcript.pyannote[378].end 3806.13659375
transcript.pyannote[379].speaker SPEAKER_15
transcript.pyannote[379].start 3807.57096875
transcript.pyannote[379].end 3807.85784375
transcript.pyannote[380].speaker SPEAKER_15
transcript.pyannote[380].start 3808.19534375
transcript.pyannote[380].end 3846.09659375
transcript.pyannote[381].speaker SPEAKER_15
transcript.pyannote[381].start 3846.33284375
transcript.pyannote[381].end 3847.49721875
transcript.pyannote[382].speaker SPEAKER_15
transcript.pyannote[382].start 3847.85159375
transcript.pyannote[382].end 3857.85846875
transcript.pyannote[383].speaker SPEAKER_15
transcript.pyannote[383].start 3858.17909375
transcript.pyannote[383].end 3871.59471875
transcript.pyannote[384].speaker SPEAKER_02
transcript.pyannote[384].start 3871.47659375
transcript.pyannote[384].end 3871.49346875
transcript.pyannote[385].speaker SPEAKER_02
transcript.pyannote[385].start 3871.59471875
transcript.pyannote[385].end 3871.64534375
transcript.pyannote[386].speaker SPEAKER_15
transcript.pyannote[386].start 3871.64534375
transcript.pyannote[386].end 3885.19596875
transcript.pyannote[387].speaker SPEAKER_02
transcript.pyannote[387].start 3871.72971875
transcript.pyannote[387].end 3871.89846875
transcript.pyannote[388].speaker SPEAKER_15
transcript.pyannote[388].start 3885.92159375
transcript.pyannote[388].end 3890.81534375
transcript.pyannote[389].speaker SPEAKER_20
transcript.pyannote[389].start 3890.91659375
transcript.pyannote[389].end 3892.03034375
transcript.pyannote[390].speaker SPEAKER_20
transcript.pyannote[390].start 3892.13159375
transcript.pyannote[390].end 3892.43534375
transcript.pyannote[391].speaker SPEAKER_20
transcript.pyannote[391].start 3893.05971875
transcript.pyannote[391].end 3895.21971875
transcript.pyannote[392].speaker SPEAKER_15
transcript.pyannote[392].start 3895.01721875
transcript.pyannote[392].end 3895.32096875
transcript.pyannote[393].speaker SPEAKER_20
transcript.pyannote[393].start 3895.32096875
transcript.pyannote[393].end 3900.53534375
transcript.pyannote[394].speaker SPEAKER_15
transcript.pyannote[394].start 3899.11784375
transcript.pyannote[394].end 3902.20596875
transcript.pyannote[395].speaker SPEAKER_20
transcript.pyannote[395].start 3902.17221875
transcript.pyannote[395].end 3908.34846875
transcript.pyannote[396].speaker SPEAKER_15
transcript.pyannote[396].start 3902.44221875
transcript.pyannote[396].end 3902.91471875
transcript.pyannote[397].speaker SPEAKER_15
transcript.pyannote[397].start 3903.64034375
transcript.pyannote[397].end 3903.70784375
transcript.pyannote[398].speaker SPEAKER_15
transcript.pyannote[398].start 3906.72846875
transcript.pyannote[398].end 3907.96034375
transcript.pyannote[399].speaker SPEAKER_20
transcript.pyannote[399].start 3908.85471875
transcript.pyannote[399].end 3909.24284375
transcript.pyannote[400].speaker SPEAKER_19
transcript.pyannote[400].start 3909.24284375
transcript.pyannote[400].end 3909.25971875
transcript.pyannote[401].speaker SPEAKER_19
transcript.pyannote[401].start 3909.81659375
transcript.pyannote[401].end 3911.97659375
transcript.pyannote[402].speaker SPEAKER_19
transcript.pyannote[402].start 3912.11159375
transcript.pyannote[402].end 3914.81159375
transcript.pyannote[403].speaker SPEAKER_07
transcript.pyannote[403].start 3923.83971875
transcript.pyannote[403].end 3928.29471875
transcript.pyannote[404].speaker SPEAKER_07
transcript.pyannote[404].start 3932.05784375
transcript.pyannote[404].end 3932.73284375
transcript.pyannote[405].speaker SPEAKER_07
transcript.pyannote[405].start 3933.28971875
transcript.pyannote[405].end 3933.61034375
transcript.pyannote[406].speaker SPEAKER_07
transcript.pyannote[406].start 3933.96471875
transcript.pyannote[406].end 3934.62284375
transcript.pyannote[407].speaker SPEAKER_07
transcript.pyannote[407].start 3935.51721875
transcript.pyannote[407].end 3936.93471875
transcript.pyannote[408].speaker SPEAKER_07
transcript.pyannote[408].start 3938.97659375
transcript.pyannote[408].end 3953.32034375
transcript.pyannote[409].speaker SPEAKER_07
transcript.pyannote[409].start 3953.65784375
transcript.pyannote[409].end 3957.38721875
transcript.pyannote[410].speaker SPEAKER_07
transcript.pyannote[410].start 3957.53909375
transcript.pyannote[410].end 3966.88784375
transcript.pyannote[411].speaker SPEAKER_07
transcript.pyannote[411].start 3967.05659375
transcript.pyannote[411].end 3978.53159375
transcript.pyannote[412].speaker SPEAKER_07
transcript.pyannote[412].start 3978.88596875
transcript.pyannote[412].end 3984.57284375
transcript.pyannote[413].speaker SPEAKER_07
transcript.pyannote[413].start 3985.21409375
transcript.pyannote[413].end 3985.60221875
transcript.pyannote[414].speaker SPEAKER_07
transcript.pyannote[414].start 3986.12534375
transcript.pyannote[414].end 3994.14096875
transcript.pyannote[415].speaker SPEAKER_07
transcript.pyannote[415].start 3994.51221875
transcript.pyannote[415].end 3995.20409375
transcript.pyannote[416].speaker SPEAKER_07
transcript.pyannote[416].start 3995.62596875
transcript.pyannote[416].end 4008.02909375
transcript.pyannote[417].speaker SPEAKER_07
transcript.pyannote[417].start 4008.33284375
transcript.pyannote[417].end 4020.88784375
transcript.pyannote[418].speaker SPEAKER_07
transcript.pyannote[418].start 4021.47846875
transcript.pyannote[418].end 4024.95471875
transcript.pyannote[419].speaker SPEAKER_02
transcript.pyannote[419].start 4025.81534375
transcript.pyannote[419].end 4026.38909375
transcript.pyannote[420].speaker SPEAKER_02
transcript.pyannote[420].start 4026.67596875
transcript.pyannote[420].end 4031.04659375
transcript.pyannote[421].speaker SPEAKER_20
transcript.pyannote[421].start 4031.04659375
transcript.pyannote[421].end 4034.91096875
transcript.pyannote[422].speaker SPEAKER_20
transcript.pyannote[422].start 4035.36659375
transcript.pyannote[422].end 4040.66534375
transcript.pyannote[423].speaker SPEAKER_20
transcript.pyannote[423].start 4041.17159375
transcript.pyannote[423].end 4041.54284375
transcript.pyannote[424].speaker SPEAKER_20
transcript.pyannote[424].start 4041.86346875
transcript.pyannote[424].end 4046.33534375
transcript.pyannote[425].speaker SPEAKER_07
transcript.pyannote[425].start 4046.87534375
transcript.pyannote[425].end 4054.51971875
transcript.pyannote[426].speaker SPEAKER_07
transcript.pyannote[426].start 4054.89096875
transcript.pyannote[426].end 4059.36284375
transcript.pyannote[427].speaker SPEAKER_07
transcript.pyannote[427].start 4059.63284375
transcript.pyannote[427].end 4068.79596875
transcript.pyannote[428].speaker SPEAKER_07
transcript.pyannote[428].start 4070.68596875
transcript.pyannote[428].end 4078.70159375
transcript.pyannote[429].speaker SPEAKER_07
transcript.pyannote[429].start 4078.83659375
transcript.pyannote[429].end 4080.99659375
transcript.pyannote[430].speaker SPEAKER_07
transcript.pyannote[430].start 4081.11471875
transcript.pyannote[430].end 4085.28284375
transcript.pyannote[431].speaker SPEAKER_07
transcript.pyannote[431].start 4085.43471875
transcript.pyannote[431].end 4087.30784375
transcript.pyannote[432].speaker SPEAKER_07
transcript.pyannote[432].start 4088.20221875
transcript.pyannote[432].end 4088.65784375
transcript.pyannote[433].speaker SPEAKER_07
transcript.pyannote[433].start 4089.11346875
transcript.pyannote[433].end 4113.81846875
transcript.pyannote[434].speaker SPEAKER_07
transcript.pyannote[434].start 4114.15596875
transcript.pyannote[434].end 4119.31971875
transcript.pyannote[435].speaker SPEAKER_07
transcript.pyannote[435].start 4120.01159375
transcript.pyannote[435].end 4128.82034375
transcript.pyannote[436].speaker SPEAKER_07
transcript.pyannote[436].start 4128.85409375
transcript.pyannote[436].end 4132.48221875
transcript.pyannote[437].speaker SPEAKER_20
transcript.pyannote[437].start 4132.68471875
transcript.pyannote[437].end 4134.99659375
transcript.pyannote[438].speaker SPEAKER_20
transcript.pyannote[438].start 4135.36784375
transcript.pyannote[438].end 4137.35909375
transcript.pyannote[439].speaker SPEAKER_20
transcript.pyannote[439].start 4137.96659375
transcript.pyannote[439].end 4140.83534375
transcript.pyannote[440].speaker SPEAKER_20
transcript.pyannote[440].start 4141.02096875
transcript.pyannote[440].end 4142.50596875
transcript.pyannote[441].speaker SPEAKER_20
transcript.pyannote[441].start 4143.06284375
transcript.pyannote[441].end 4154.03159375
transcript.pyannote[442].speaker SPEAKER_07
transcript.pyannote[442].start 4152.56346875
transcript.pyannote[442].end 4152.58034375
transcript.pyannote[443].speaker SPEAKER_07
transcript.pyannote[443].start 4152.78284375
transcript.pyannote[443].end 4153.71096875
transcript.pyannote[444].speaker SPEAKER_07
transcript.pyannote[444].start 4154.03159375
transcript.pyannote[444].end 4163.68409375
transcript.pyannote[445].speaker SPEAKER_13
transcript.pyannote[445].start 4158.41909375
transcript.pyannote[445].end 4158.80721875
transcript.pyannote[446].speaker SPEAKER_02
transcript.pyannote[446].start 4159.34721875
transcript.pyannote[446].end 4159.38096875
transcript.pyannote[447].speaker SPEAKER_13
transcript.pyannote[447].start 4159.38096875
transcript.pyannote[447].end 4159.81971875
transcript.pyannote[448].speaker SPEAKER_07
transcript.pyannote[448].start 4164.13971875
transcript.pyannote[448].end 4178.09534375
transcript.pyannote[449].speaker SPEAKER_07
transcript.pyannote[449].start 4178.48346875
transcript.pyannote[449].end 4183.66409375
transcript.pyannote[450].speaker SPEAKER_20
transcript.pyannote[450].start 4180.18784375
transcript.pyannote[450].end 4180.50846875
transcript.pyannote[451].speaker SPEAKER_20
transcript.pyannote[451].start 4183.61346875
transcript.pyannote[451].end 4183.63034375
transcript.pyannote[452].speaker SPEAKER_20
transcript.pyannote[452].start 4183.66409375
transcript.pyannote[452].end 4211.67659375
transcript.pyannote[453].speaker SPEAKER_00
transcript.pyannote[453].start 4205.36534375
transcript.pyannote[453].end 4205.41596875
transcript.pyannote[454].speaker SPEAKER_07
transcript.pyannote[454].start 4205.41596875
transcript.pyannote[454].end 4205.75346875
transcript.pyannote[455].speaker SPEAKER_00
transcript.pyannote[455].start 4205.75346875
transcript.pyannote[455].end 4205.78721875
transcript.pyannote[456].speaker SPEAKER_07
transcript.pyannote[456].start 4210.56284375
transcript.pyannote[456].end 4233.76596875
transcript.pyannote[457].speaker SPEAKER_20
transcript.pyannote[457].start 4234.01909375
transcript.pyannote[457].end 4240.81971875
transcript.pyannote[458].speaker SPEAKER_20
transcript.pyannote[458].start 4240.87034375
transcript.pyannote[458].end 4245.24096875
transcript.pyannote[459].speaker SPEAKER_20
transcript.pyannote[459].start 4245.29159375
transcript.pyannote[459].end 4249.74659375
transcript.pyannote[460].speaker SPEAKER_20
transcript.pyannote[460].start 4250.01659375
transcript.pyannote[460].end 4254.03284375
transcript.pyannote[461].speaker SPEAKER_20
transcript.pyannote[461].start 4254.33659375
transcript.pyannote[461].end 4256.98596875
transcript.pyannote[462].speaker SPEAKER_07
transcript.pyannote[462].start 4256.98596875
transcript.pyannote[462].end 4262.20034375
transcript.pyannote[463].speaker SPEAKER_20
transcript.pyannote[463].start 4257.07034375
transcript.pyannote[463].end 4257.55971875
transcript.pyannote[464].speaker SPEAKER_20
transcript.pyannote[464].start 4258.40346875
transcript.pyannote[464].end 4258.89284375
transcript.pyannote[465].speaker SPEAKER_07
transcript.pyannote[465].start 4262.43659375
transcript.pyannote[465].end 4291.09034375
transcript.pyannote[466].speaker SPEAKER_07
transcript.pyannote[466].start 4291.49534375
transcript.pyannote[466].end 4313.93909375
transcript.pyannote[467].speaker SPEAKER_02
transcript.pyannote[467].start 4310.46284375
transcript.pyannote[467].end 4310.51346875
transcript.pyannote[468].speaker SPEAKER_02
transcript.pyannote[468].start 4313.93909375
transcript.pyannote[468].end 4314.20909375
transcript.pyannote[469].speaker SPEAKER_07
transcript.pyannote[469].start 4314.15846875
transcript.pyannote[469].end 4329.63284375
transcript.pyannote[470].speaker SPEAKER_02
transcript.pyannote[470].start 4323.22034375
transcript.pyannote[470].end 4323.49034375
transcript.pyannote[471].speaker SPEAKER_07
transcript.pyannote[471].start 4329.73409375
transcript.pyannote[471].end 4331.59034375
transcript.pyannote[472].speaker SPEAKER_07
transcript.pyannote[472].start 4332.31596875
transcript.pyannote[472].end 4335.03284375
transcript.pyannote[473].speaker SPEAKER_07
transcript.pyannote[473].start 4335.45471875
transcript.pyannote[473].end 4344.82034375
transcript.pyannote[474].speaker SPEAKER_07
transcript.pyannote[474].start 4345.25909375
transcript.pyannote[474].end 4357.78034375
transcript.pyannote[475].speaker SPEAKER_20
transcript.pyannote[475].start 4358.40471875
transcript.pyannote[475].end 4362.03284375
transcript.pyannote[476].speaker SPEAKER_20
transcript.pyannote[476].start 4362.89346875
transcript.pyannote[476].end 4363.60221875
transcript.pyannote[477].speaker SPEAKER_20
transcript.pyannote[477].start 4363.95659375
transcript.pyannote[477].end 4369.32284375
transcript.pyannote[478].speaker SPEAKER_20
transcript.pyannote[478].start 4369.54221875
transcript.pyannote[478].end 4371.61784375
transcript.pyannote[479].speaker SPEAKER_07
transcript.pyannote[479].start 4370.11596875
transcript.pyannote[479].end 4372.61346875
transcript.pyannote[480].speaker SPEAKER_20
transcript.pyannote[480].start 4371.90471875
transcript.pyannote[480].end 4377.03471875
transcript.pyannote[481].speaker SPEAKER_07
transcript.pyannote[481].start 4377.03471875
transcript.pyannote[481].end 4378.11471875
transcript.pyannote[482].speaker SPEAKER_20
transcript.pyannote[482].start 4378.11471875
transcript.pyannote[482].end 4378.23284375
transcript.pyannote[483].speaker SPEAKER_20
transcript.pyannote[483].start 4378.51971875
transcript.pyannote[483].end 4378.58721875
transcript.pyannote[484].speaker SPEAKER_07
transcript.pyannote[484].start 4378.58721875
transcript.pyannote[484].end 4383.70034375
transcript.pyannote[485].speaker SPEAKER_20
transcript.pyannote[485].start 4378.90784375
transcript.pyannote[485].end 4379.27909375
transcript.pyannote[486].speaker SPEAKER_20
transcript.pyannote[486].start 4380.03846875
transcript.pyannote[486].end 4380.10596875
transcript.pyannote[487].speaker SPEAKER_02
transcript.pyannote[487].start 4380.10596875
transcript.pyannote[487].end 4380.13971875
transcript.pyannote[488].speaker SPEAKER_20
transcript.pyannote[488].start 4380.13971875
transcript.pyannote[488].end 4380.17346875
transcript.pyannote[489].speaker SPEAKER_07
transcript.pyannote[489].start 4383.90284375
transcript.pyannote[489].end 4390.24784375
transcript.pyannote[490].speaker SPEAKER_07
transcript.pyannote[490].start 4390.51784375
transcript.pyannote[490].end 4392.82971875
transcript.pyannote[491].speaker SPEAKER_02
transcript.pyannote[491].start 4393.01534375
transcript.pyannote[491].end 4393.42034375
transcript.pyannote[492].speaker SPEAKER_07
transcript.pyannote[492].start 4393.42034375
transcript.pyannote[492].end 4393.47096875
transcript.pyannote[493].speaker SPEAKER_07
transcript.pyannote[493].start 4393.52159375
transcript.pyannote[493].end 4396.12034375
transcript.pyannote[494].speaker SPEAKER_07
transcript.pyannote[494].start 4396.39034375
transcript.pyannote[494].end 4401.14909375
transcript.pyannote[495].speaker SPEAKER_07
transcript.pyannote[495].start 4401.55409375
transcript.pyannote[495].end 4405.50284375
transcript.pyannote[496].speaker SPEAKER_07
transcript.pyannote[496].start 4405.87409375
transcript.pyannote[496].end 4407.40971875
transcript.pyannote[497].speaker SPEAKER_20
transcript.pyannote[497].start 4407.40971875
transcript.pyannote[497].end 4407.42659375
transcript.pyannote[498].speaker SPEAKER_07
transcript.pyannote[498].start 4407.42659375
transcript.pyannote[498].end 4407.98346875
transcript.pyannote[499].speaker SPEAKER_20
transcript.pyannote[499].start 4407.44346875
transcript.pyannote[499].end 4407.96659375
transcript.pyannote[500].speaker SPEAKER_20
transcript.pyannote[500].start 4407.98346875
transcript.pyannote[500].end 4416.91034375
transcript.pyannote[501].speaker SPEAKER_07
transcript.pyannote[501].start 4414.31159375
transcript.pyannote[501].end 4414.73346875
transcript.pyannote[502].speaker SPEAKER_07
transcript.pyannote[502].start 4416.33659375
transcript.pyannote[502].end 4416.65721875
transcript.pyannote[503].speaker SPEAKER_07
transcript.pyannote[503].start 4416.91034375
transcript.pyannote[503].end 4418.44596875
transcript.pyannote[504].speaker SPEAKER_07
transcript.pyannote[504].start 4418.64846875
transcript.pyannote[504].end 4437.59909375
transcript.pyannote[505].speaker SPEAKER_07
transcript.pyannote[505].start 4437.81846875
transcript.pyannote[505].end 4448.78721875
transcript.pyannote[506].speaker SPEAKER_07
transcript.pyannote[506].start 4449.36096875
transcript.pyannote[506].end 4486.03034375
transcript.pyannote[507].speaker SPEAKER_13
transcript.pyannote[507].start 4455.72284375
transcript.pyannote[507].end 4456.04346875
transcript.pyannote[508].speaker SPEAKER_07
transcript.pyannote[508].start 4486.55346875
transcript.pyannote[508].end 4497.70784375
transcript.pyannote[509].speaker SPEAKER_02
transcript.pyannote[509].start 4496.69534375
transcript.pyannote[509].end 4496.74596875
transcript.pyannote[510].speaker SPEAKER_14
transcript.pyannote[510].start 4496.74596875
transcript.pyannote[510].end 4496.76284375
transcript.pyannote[511].speaker SPEAKER_07
transcript.pyannote[511].start 4498.11284375
transcript.pyannote[511].end 4509.28409375
transcript.pyannote[512].speaker SPEAKER_07
transcript.pyannote[512].start 4509.70596875
transcript.pyannote[512].end 4520.55659375
transcript.pyannote[513].speaker SPEAKER_07
transcript.pyannote[513].start 4520.87721875
transcript.pyannote[513].end 4523.05409375
transcript.pyannote[514].speaker SPEAKER_20
transcript.pyannote[514].start 4520.91096875
transcript.pyannote[514].end 4522.98659375
transcript.pyannote[515].speaker SPEAKER_20
transcript.pyannote[515].start 4523.05409375
transcript.pyannote[515].end 4523.08784375
transcript.pyannote[516].speaker SPEAKER_07
transcript.pyannote[516].start 4523.08784375
transcript.pyannote[516].end 4524.08346875
transcript.pyannote[517].speaker SPEAKER_20
transcript.pyannote[517].start 4523.62784375
transcript.pyannote[517].end 4526.71596875
transcript.pyannote[518].speaker SPEAKER_20
transcript.pyannote[518].start 4527.18846875
transcript.pyannote[518].end 4535.91284375
transcript.pyannote[519].speaker SPEAKER_20
transcript.pyannote[519].start 4536.04784375
transcript.pyannote[519].end 4539.59159375
transcript.pyannote[520].speaker SPEAKER_20
transcript.pyannote[520].start 4539.94596875
transcript.pyannote[520].end 4543.45596875
transcript.pyannote[521].speaker SPEAKER_20
transcript.pyannote[521].start 4543.99596875
transcript.pyannote[521].end 4548.21471875
transcript.pyannote[522].speaker SPEAKER_20
transcript.pyannote[522].start 4548.63659375
transcript.pyannote[522].end 4549.64909375
transcript.pyannote[523].speaker SPEAKER_20
transcript.pyannote[523].start 4549.95284375
transcript.pyannote[523].end 4555.87596875
transcript.pyannote[524].speaker SPEAKER_20
transcript.pyannote[524].start 4555.99409375
transcript.pyannote[524].end 4557.56346875
transcript.pyannote[525].speaker SPEAKER_20
transcript.pyannote[525].start 4557.91784375
transcript.pyannote[525].end 4565.51159375
transcript.pyannote[526].speaker SPEAKER_20
transcript.pyannote[526].start 4565.52846875
transcript.pyannote[526].end 4573.25721875
transcript.pyannote[527].speaker SPEAKER_07
transcript.pyannote[527].start 4572.17721875
transcript.pyannote[527].end 4582.26846875
transcript.pyannote[528].speaker SPEAKER_07
transcript.pyannote[528].start 4582.43721875
transcript.pyannote[528].end 4584.14159375
transcript.pyannote[529].speaker SPEAKER_07
transcript.pyannote[529].start 4584.22596875
transcript.pyannote[529].end 4591.61721875
transcript.pyannote[530].speaker SPEAKER_07
transcript.pyannote[530].start 4591.95471875
transcript.pyannote[530].end 4593.52409375
transcript.pyannote[531].speaker SPEAKER_07
transcript.pyannote[531].start 4593.72659375
transcript.pyannote[531].end 4616.59221875
transcript.pyannote[532].speaker SPEAKER_11
transcript.pyannote[532].start 4605.65721875
transcript.pyannote[532].end 4605.69096875
transcript.pyannote[533].speaker SPEAKER_00
transcript.pyannote[533].start 4605.69096875
transcript.pyannote[533].end 4605.70784375
transcript.pyannote[534].speaker SPEAKER_19
transcript.pyannote[534].start 4605.70784375
transcript.pyannote[534].end 4605.82596875
transcript.pyannote[535].speaker SPEAKER_00
transcript.pyannote[535].start 4605.82596875
transcript.pyannote[535].end 4605.87659375
transcript.pyannote[536].speaker SPEAKER_07
transcript.pyannote[536].start 4617.30096875
transcript.pyannote[536].end 4620.03471875
transcript.pyannote[537].speaker SPEAKER_07
transcript.pyannote[537].start 4620.20346875
transcript.pyannote[537].end 4624.70909375
transcript.pyannote[538].speaker SPEAKER_07
transcript.pyannote[538].start 4625.35034375
transcript.pyannote[538].end 4627.15596875
transcript.pyannote[539].speaker SPEAKER_07
transcript.pyannote[539].start 4627.74659375
transcript.pyannote[539].end 4628.64096875
transcript.pyannote[540].speaker SPEAKER_19
transcript.pyannote[540].start 4628.64096875
transcript.pyannote[540].end 4628.70846875
transcript.pyannote[541].speaker SPEAKER_19
transcript.pyannote[541].start 4629.21471875
transcript.pyannote[541].end 4629.23159375
transcript.pyannote[542].speaker SPEAKER_07
transcript.pyannote[542].start 4629.23159375
transcript.pyannote[542].end 4629.73784375
transcript.pyannote[543].speaker SPEAKER_19
transcript.pyannote[543].start 4629.73784375
transcript.pyannote[543].end 4629.80534375
transcript.pyannote[544].speaker SPEAKER_07
transcript.pyannote[544].start 4630.10909375
transcript.pyannote[544].end 4630.12596875
transcript.pyannote[545].speaker SPEAKER_19
transcript.pyannote[545].start 4630.12596875
transcript.pyannote[545].end 4630.48034375
transcript.pyannote[546].speaker SPEAKER_19
transcript.pyannote[546].start 4631.49284375
transcript.pyannote[546].end 4635.84659375
transcript.pyannote[547].speaker SPEAKER_08
transcript.pyannote[547].start 4643.77784375
transcript.pyannote[547].end 4646.59596875
transcript.pyannote[548].speaker SPEAKER_08
transcript.pyannote[548].start 4650.62909375
transcript.pyannote[548].end 4651.16909375
transcript.pyannote[549].speaker SPEAKER_08
transcript.pyannote[549].start 4651.52346875
transcript.pyannote[549].end 4656.61971875
transcript.pyannote[550].speaker SPEAKER_08
transcript.pyannote[550].start 4656.77159375
transcript.pyannote[550].end 4662.69471875
transcript.pyannote[551].speaker SPEAKER_20
transcript.pyannote[551].start 4662.69471875
transcript.pyannote[551].end 4664.24721875
transcript.pyannote[552].speaker SPEAKER_20
transcript.pyannote[552].start 4664.92221875
transcript.pyannote[552].end 4665.86721875
transcript.pyannote[553].speaker SPEAKER_20
transcript.pyannote[553].start 4666.40721875
transcript.pyannote[553].end 4668.58409375
transcript.pyannote[554].speaker SPEAKER_20
transcript.pyannote[554].start 4669.36034375
transcript.pyannote[554].end 4676.95409375
transcript.pyannote[555].speaker SPEAKER_08
transcript.pyannote[555].start 4676.70096875
transcript.pyannote[555].end 4684.05846875
transcript.pyannote[556].speaker SPEAKER_20
transcript.pyannote[556].start 4684.91909375
transcript.pyannote[556].end 4685.62784375
transcript.pyannote[557].speaker SPEAKER_08
transcript.pyannote[557].start 4685.62784375
transcript.pyannote[557].end 4686.92721875
transcript.pyannote[558].speaker SPEAKER_20
transcript.pyannote[558].start 4685.64471875
transcript.pyannote[558].end 4686.11721875
transcript.pyannote[559].speaker SPEAKER_20
transcript.pyannote[559].start 4688.10846875
transcript.pyannote[559].end 4688.95221875
transcript.pyannote[560].speaker SPEAKER_20
transcript.pyannote[560].start 4689.47534375
transcript.pyannote[560].end 4700.64659375
transcript.pyannote[561].speaker SPEAKER_08
transcript.pyannote[561].start 4696.79909375
transcript.pyannote[561].end 4697.17034375
transcript.pyannote[562].speaker SPEAKER_02
transcript.pyannote[562].start 4698.01409375
transcript.pyannote[562].end 4698.06471875
transcript.pyannote[563].speaker SPEAKER_08
transcript.pyannote[563].start 4698.06471875
transcript.pyannote[563].end 4698.97596875
transcript.pyannote[564].speaker SPEAKER_12
transcript.pyannote[564].start 4698.97596875
transcript.pyannote[564].end 4699.53284375
transcript.pyannote[565].speaker SPEAKER_20
transcript.pyannote[565].start 4701.13596875
transcript.pyannote[565].end 4701.15284375
transcript.pyannote[566].speaker SPEAKER_20
transcript.pyannote[566].start 4701.45659375
transcript.pyannote[566].end 4703.88659375
transcript.pyannote[567].speaker SPEAKER_20
transcript.pyannote[567].start 4704.37596875
transcript.pyannote[567].end 4704.39284375
transcript.pyannote[568].speaker SPEAKER_12
transcript.pyannote[568].start 4704.39284375
transcript.pyannote[568].end 4708.79721875
transcript.pyannote[569].speaker SPEAKER_12
transcript.pyannote[569].start 4709.30346875
transcript.pyannote[569].end 4713.48846875
transcript.pyannote[570].speaker SPEAKER_12
transcript.pyannote[570].start 4713.72471875
transcript.pyannote[570].end 4732.42221875
transcript.pyannote[571].speaker SPEAKER_08
transcript.pyannote[571].start 4731.74721875
transcript.pyannote[571].end 4733.02971875
transcript.pyannote[572].speaker SPEAKER_12
transcript.pyannote[572].start 4733.02971875
transcript.pyannote[572].end 4736.11784375
transcript.pyannote[573].speaker SPEAKER_08
transcript.pyannote[573].start 4733.35034375
transcript.pyannote[573].end 4733.53596875
transcript.pyannote[574].speaker SPEAKER_08
transcript.pyannote[574].start 4735.37534375
transcript.pyannote[574].end 4735.99971875
transcript.pyannote[575].speaker SPEAKER_12
transcript.pyannote[575].start 4736.33721875
transcript.pyannote[575].end 4737.36659375
transcript.pyannote[576].speaker SPEAKER_08
transcript.pyannote[576].start 4737.78846875
transcript.pyannote[576].end 4737.82221875
transcript.pyannote[577].speaker SPEAKER_12
transcript.pyannote[577].start 4737.82221875
transcript.pyannote[577].end 4740.97784375
transcript.pyannote[578].speaker SPEAKER_08
transcript.pyannote[578].start 4740.97784375
transcript.pyannote[578].end 4748.14971875
transcript.pyannote[579].speaker SPEAKER_12
transcript.pyannote[579].start 4741.26471875
transcript.pyannote[579].end 4741.29846875
transcript.pyannote[580].speaker SPEAKER_12
transcript.pyannote[580].start 4741.33221875
transcript.pyannote[580].end 4741.58534375
transcript.pyannote[581].speaker SPEAKER_20
transcript.pyannote[581].start 4748.14971875
transcript.pyannote[581].end 4748.16659375
transcript.pyannote[582].speaker SPEAKER_20
transcript.pyannote[582].start 4748.72346875
transcript.pyannote[582].end 4756.21596875
transcript.pyannote[583].speaker SPEAKER_08
transcript.pyannote[583].start 4750.41096875
transcript.pyannote[583].end 4750.56284375
transcript.pyannote[584].speaker SPEAKER_08
transcript.pyannote[584].start 4755.77721875
transcript.pyannote[584].end 4758.29159375
transcript.pyannote[585].speaker SPEAKER_20
transcript.pyannote[585].start 4757.24534375
transcript.pyannote[585].end 4760.41784375
transcript.pyannote[586].speaker SPEAKER_08
transcript.pyannote[586].start 4760.02971875
transcript.pyannote[586].end 4760.38409375
transcript.pyannote[587].speaker SPEAKER_08
transcript.pyannote[587].start 4760.41784375
transcript.pyannote[587].end 4777.15784375
transcript.pyannote[588].speaker SPEAKER_20
transcript.pyannote[588].start 4760.73846875
transcript.pyannote[588].end 4761.26159375
transcript.pyannote[589].speaker SPEAKER_08
transcript.pyannote[589].start 4777.39409375
transcript.pyannote[589].end 4818.04596875
transcript.pyannote[590].speaker SPEAKER_00
transcript.pyannote[590].start 4792.48034375
transcript.pyannote[590].end 4792.86846875
transcript.pyannote[591].speaker SPEAKER_00
transcript.pyannote[591].start 4795.50096875
transcript.pyannote[591].end 4795.56846875
transcript.pyannote[592].speaker SPEAKER_10
transcript.pyannote[592].start 4795.56846875
transcript.pyannote[592].end 4795.72034375
transcript.pyannote[593].speaker SPEAKER_08
transcript.pyannote[593].start 4818.40034375
transcript.pyannote[593].end 4844.99534375
transcript.pyannote[594].speaker SPEAKER_20
transcript.pyannote[594].start 4843.78034375
transcript.pyannote[594].end 4847.18909375
transcript.pyannote[595].speaker SPEAKER_08
transcript.pyannote[595].start 4847.18909375
transcript.pyannote[595].end 4858.54596875
transcript.pyannote[596].speaker SPEAKER_20
transcript.pyannote[596].start 4847.22284375
transcript.pyannote[596].end 4848.97784375
transcript.pyannote[597].speaker SPEAKER_08
transcript.pyannote[597].start 4858.59659375
transcript.pyannote[597].end 4864.60409375
transcript.pyannote[598].speaker SPEAKER_20
transcript.pyannote[598].start 4863.99659375
transcript.pyannote[598].end 4868.87346875
transcript.pyannote[599].speaker SPEAKER_08
transcript.pyannote[599].start 4866.83159375
transcript.pyannote[599].end 4891.04721875
transcript.pyannote[600].speaker SPEAKER_08
transcript.pyannote[600].start 4891.36784375
transcript.pyannote[600].end 4917.70971875
transcript.pyannote[601].speaker SPEAKER_20
transcript.pyannote[601].start 4917.70971875
transcript.pyannote[601].end 4917.94596875
transcript.pyannote[602].speaker SPEAKER_20
transcript.pyannote[602].start 4918.99221875
transcript.pyannote[602].end 4935.91784375
transcript.pyannote[603].speaker SPEAKER_08
transcript.pyannote[603].start 4927.66596875
transcript.pyannote[603].end 4928.05409375
transcript.pyannote[604].speaker SPEAKER_20
transcript.pyannote[604].start 4936.03596875
transcript.pyannote[604].end 4936.10346875
transcript.pyannote[605].speaker SPEAKER_20
transcript.pyannote[605].start 4936.12034375
transcript.pyannote[605].end 4940.03534375
transcript.pyannote[606].speaker SPEAKER_08
transcript.pyannote[606].start 4938.66846875
transcript.pyannote[606].end 4938.98909375
transcript.pyannote[607].speaker SPEAKER_08
transcript.pyannote[607].start 4939.59659375
transcript.pyannote[607].end 4988.09534375
transcript.pyannote[608].speaker SPEAKER_20
transcript.pyannote[608].start 4946.21159375
transcript.pyannote[608].end 4946.61659375
transcript.pyannote[609].speaker SPEAKER_08
transcript.pyannote[609].start 4988.44971875
transcript.pyannote[609].end 4998.08534375
transcript.pyannote[610].speaker SPEAKER_08
transcript.pyannote[610].start 4998.23721875
transcript.pyannote[610].end 4999.31721875
transcript.pyannote[611].speaker SPEAKER_08
transcript.pyannote[611].start 4999.45221875
transcript.pyannote[611].end 5001.44346875
transcript.pyannote[612].speaker SPEAKER_08
transcript.pyannote[612].start 5001.76409375
transcript.pyannote[612].end 5002.05096875
transcript.pyannote[613].speaker SPEAKER_08
transcript.pyannote[613].start 5002.54034375
transcript.pyannote[613].end 5049.01409375
transcript.pyannote[614].speaker SPEAKER_20
transcript.pyannote[614].start 5049.08159375
transcript.pyannote[614].end 5054.31284375
transcript.pyannote[615].speaker SPEAKER_20
transcript.pyannote[615].start 5054.34659375
transcript.pyannote[615].end 5073.44909375
transcript.pyannote[616].speaker SPEAKER_05
transcript.pyannote[616].start 5066.41221875
transcript.pyannote[616].end 5066.69909375
transcript.pyannote[617].speaker SPEAKER_08
transcript.pyannote[617].start 5066.69909375
transcript.pyannote[617].end 5066.74971875
transcript.pyannote[618].speaker SPEAKER_08
transcript.pyannote[618].start 5070.90096875
transcript.pyannote[618].end 5071.18784375
transcript.pyannote[619].speaker SPEAKER_08
transcript.pyannote[619].start 5073.14534375
transcript.pyannote[619].end 5139.21096875
transcript.pyannote[620].speaker SPEAKER_00
transcript.pyannote[620].start 5081.00909375
transcript.pyannote[620].end 5081.32971875
transcript.pyannote[621].speaker SPEAKER_00
transcript.pyannote[621].start 5081.88659375
transcript.pyannote[621].end 5081.90346875
transcript.pyannote[622].speaker SPEAKER_00
transcript.pyannote[622].start 5081.95409375
transcript.pyannote[622].end 5081.97096875
transcript.pyannote[623].speaker SPEAKER_02
transcript.pyannote[623].start 5118.52221875
transcript.pyannote[623].end 5119.02846875
transcript.pyannote[624].speaker SPEAKER_08
transcript.pyannote[624].start 5139.48096875
transcript.pyannote[624].end 5146.95659375
transcript.pyannote[625].speaker SPEAKER_02
transcript.pyannote[625].start 5146.95659375
transcript.pyannote[625].end 5147.20971875
transcript.pyannote[626].speaker SPEAKER_08
transcript.pyannote[626].start 5147.20971875
transcript.pyannote[626].end 5158.43159375
transcript.pyannote[627].speaker SPEAKER_20
transcript.pyannote[627].start 5158.43159375
transcript.pyannote[627].end 5163.54471875
transcript.pyannote[628].speaker SPEAKER_08
transcript.pyannote[628].start 5162.90346875
transcript.pyannote[628].end 5164.74284375
transcript.pyannote[629].speaker SPEAKER_20
transcript.pyannote[629].start 5164.60784375
transcript.pyannote[629].end 5176.52159375
transcript.pyannote[630].speaker SPEAKER_20
transcript.pyannote[630].start 5176.55534375
transcript.pyannote[630].end 5183.37284375
transcript.pyannote[631].speaker SPEAKER_02
transcript.pyannote[631].start 5183.49096875
transcript.pyannote[631].end 5183.77784375
transcript.pyannote[632].speaker SPEAKER_20
transcript.pyannote[632].start 5183.77784375
transcript.pyannote[632].end 5187.69284375
transcript.pyannote[633].speaker SPEAKER_20
transcript.pyannote[633].start 5187.91221875
transcript.pyannote[633].end 5189.71784375
transcript.pyannote[634].speaker SPEAKER_20
transcript.pyannote[634].start 5189.90346875
transcript.pyannote[634].end 5198.64471875
transcript.pyannote[635].speaker SPEAKER_08
transcript.pyannote[635].start 5193.14346875
transcript.pyannote[635].end 5193.66659375
transcript.pyannote[636].speaker SPEAKER_08
transcript.pyannote[636].start 5195.11784375
transcript.pyannote[636].end 5197.58159375
transcript.pyannote[637].speaker SPEAKER_08
transcript.pyannote[637].start 5197.59846875
transcript.pyannote[637].end 5229.57659375
transcript.pyannote[638].speaker SPEAKER_02
transcript.pyannote[638].start 5229.71159375
transcript.pyannote[638].end 5230.09971875
transcript.pyannote[639].speaker SPEAKER_08
transcript.pyannote[639].start 5230.18409375
transcript.pyannote[639].end 5234.94284375
transcript.pyannote[640].speaker SPEAKER_08
transcript.pyannote[640].start 5234.95971875
transcript.pyannote[640].end 5282.59784375
transcript.pyannote[641].speaker SPEAKER_20
transcript.pyannote[641].start 5282.73284375
transcript.pyannote[641].end 5283.01971875
transcript.pyannote[642].speaker SPEAKER_20
transcript.pyannote[642].start 5283.54284375
transcript.pyannote[642].end 5286.14159375
transcript.pyannote[643].speaker SPEAKER_07
transcript.pyannote[643].start 5285.34846875
transcript.pyannote[643].end 5285.61846875
transcript.pyannote[644].speaker SPEAKER_07
transcript.pyannote[644].start 5285.92221875
transcript.pyannote[644].end 5288.50409375
transcript.pyannote[645].speaker SPEAKER_07
transcript.pyannote[645].start 5288.72346875
transcript.pyannote[645].end 5291.17034375
transcript.pyannote[646].speaker SPEAKER_19
transcript.pyannote[646].start 5296.30034375
transcript.pyannote[646].end 5301.17721875
transcript.pyannote[647].speaker SPEAKER_19
transcript.pyannote[647].start 5301.76784375
transcript.pyannote[647].end 5303.43846875
transcript.pyannote[648].speaker SPEAKER_19
transcript.pyannote[648].start 5304.01221875
transcript.pyannote[648].end 5304.56909375
transcript.pyannote[649].speaker SPEAKER_19
transcript.pyannote[649].start 5304.88971875
transcript.pyannote[649].end 5306.91471875
transcript.pyannote[650].speaker SPEAKER_19
transcript.pyannote[650].start 5309.95221875
transcript.pyannote[650].end 5310.50909375
transcript.pyannote[651].speaker SPEAKER_19
transcript.pyannote[651].start 5311.03221875
transcript.pyannote[651].end 5312.61846875
transcript.pyannote[652].speaker SPEAKER_19
transcript.pyannote[652].start 5312.97284375
transcript.pyannote[652].end 5323.33409375
transcript.pyannote[653].speaker SPEAKER_19
transcript.pyannote[653].start 5323.60409375
transcript.pyannote[653].end 5324.09346875
transcript.pyannote[654].speaker SPEAKER_19
transcript.pyannote[654].start 5324.85284375
transcript.pyannote[654].end 5350.03034375
transcript.pyannote[655].speaker SPEAKER_19
transcript.pyannote[655].start 5350.33409375
transcript.pyannote[655].end 5367.73221875
transcript.pyannote[656].speaker SPEAKER_19
transcript.pyannote[656].start 5368.37346875
transcript.pyannote[656].end 5382.37971875
transcript.pyannote[657].speaker SPEAKER_03
transcript.pyannote[657].start 5384.48909375
transcript.pyannote[657].end 5387.81346875
transcript.pyannote[658].speaker SPEAKER_03
transcript.pyannote[658].start 5387.93159375
transcript.pyannote[658].end 5397.71909375
transcript.pyannote[659].speaker SPEAKER_02
transcript.pyannote[659].start 5396.09909375
transcript.pyannote[659].end 5396.18346875
transcript.pyannote[660].speaker SPEAKER_03
transcript.pyannote[660].start 5398.19159375
transcript.pyannote[660].end 5406.71346875
transcript.pyannote[661].speaker SPEAKER_03
transcript.pyannote[661].start 5406.96659375
transcript.pyannote[661].end 5410.51034375
transcript.pyannote[662].speaker SPEAKER_03
transcript.pyannote[662].start 5410.54409375
transcript.pyannote[662].end 5426.82846875
transcript.pyannote[663].speaker SPEAKER_03
transcript.pyannote[663].start 5427.06471875
transcript.pyannote[663].end 5461.99596875
transcript.pyannote[664].speaker SPEAKER_00
transcript.pyannote[664].start 5434.30409375
transcript.pyannote[664].end 5434.75971875
transcript.pyannote[665].speaker SPEAKER_02
transcript.pyannote[665].start 5447.95596875
transcript.pyannote[665].end 5448.39471875
transcript.pyannote[666].speaker SPEAKER_02
transcript.pyannote[666].start 5453.27159375
transcript.pyannote[666].end 5453.81159375
transcript.pyannote[667].speaker SPEAKER_19
transcript.pyannote[667].start 5461.54034375
transcript.pyannote[667].end 5469.74159375
transcript.pyannote[668].speaker SPEAKER_19
transcript.pyannote[668].start 5470.65284375
transcript.pyannote[668].end 5471.14221875
transcript.pyannote[669].speaker SPEAKER_19
transcript.pyannote[669].start 5471.81721875
transcript.pyannote[669].end 5477.01471875
transcript.pyannote[670].speaker SPEAKER_03
transcript.pyannote[670].start 5478.21284375
transcript.pyannote[670].end 5493.02909375
transcript.pyannote[671].speaker SPEAKER_19
transcript.pyannote[671].start 5484.84471875
transcript.pyannote[671].end 5484.96284375
transcript.pyannote[672].speaker SPEAKER_00
transcript.pyannote[672].start 5488.08471875
transcript.pyannote[672].end 5488.50659375
transcript.pyannote[673].speaker SPEAKER_03
transcript.pyannote[673].start 5493.29909375
transcript.pyannote[673].end 5502.00659375
transcript.pyannote[674].speaker SPEAKER_02
transcript.pyannote[674].start 5500.67346875
transcript.pyannote[674].end 5500.96034375
transcript.pyannote[675].speaker SPEAKER_03
transcript.pyannote[675].start 5502.07409375
transcript.pyannote[675].end 5510.29221875
transcript.pyannote[676].speaker SPEAKER_00
transcript.pyannote[676].start 5508.28409375
transcript.pyannote[676].end 5508.67221875
transcript.pyannote[677].speaker SPEAKER_03
transcript.pyannote[677].start 5510.52846875
transcript.pyannote[677].end 5516.53596875
transcript.pyannote[678].speaker SPEAKER_03
transcript.pyannote[678].start 5516.94096875
transcript.pyannote[678].end 5522.91471875
transcript.pyannote[679].speaker SPEAKER_19
transcript.pyannote[679].start 5522.08784375
transcript.pyannote[679].end 5524.90596875
transcript.pyannote[680].speaker SPEAKER_03
transcript.pyannote[680].start 5524.55159375
transcript.pyannote[680].end 5524.95659375
transcript.pyannote[681].speaker SPEAKER_19
transcript.pyannote[681].start 5524.95659375
transcript.pyannote[681].end 5557.59284375
transcript.pyannote[682].speaker SPEAKER_00
transcript.pyannote[682].start 5547.04596875
transcript.pyannote[682].end 5547.97409375
transcript.pyannote[683].speaker SPEAKER_19
transcript.pyannote[683].start 5558.08221875
transcript.pyannote[683].end 5583.83346875
transcript.pyannote[684].speaker SPEAKER_20
transcript.pyannote[684].start 5583.49596875
transcript.pyannote[684].end 5583.71534375
transcript.pyannote[685].speaker SPEAKER_20
transcript.pyannote[685].start 5584.23846875
transcript.pyannote[685].end 5589.52034375
transcript.pyannote[686].speaker SPEAKER_20
transcript.pyannote[686].start 5589.77346875
transcript.pyannote[686].end 5596.65846875
transcript.pyannote[687].speaker SPEAKER_20
transcript.pyannote[687].start 5596.82721875
transcript.pyannote[687].end 5598.34596875
transcript.pyannote[688].speaker SPEAKER_20
transcript.pyannote[688].start 5598.63284375
transcript.pyannote[688].end 5603.71221875
transcript.pyannote[689].speaker SPEAKER_19
transcript.pyannote[689].start 5603.00346875
transcript.pyannote[689].end 5603.67846875
transcript.pyannote[690].speaker SPEAKER_20
transcript.pyannote[690].start 5604.16784375
transcript.pyannote[690].end 5604.97784375
transcript.pyannote[691].speaker SPEAKER_19
transcript.pyannote[691].start 5604.40409375
transcript.pyannote[691].end 5604.69096875
transcript.pyannote[692].speaker SPEAKER_19
transcript.pyannote[692].start 5604.97784375
transcript.pyannote[692].end 5605.50096875
transcript.pyannote[693].speaker SPEAKER_20
transcript.pyannote[693].start 5605.01159375
transcript.pyannote[693].end 5612.25096875
transcript.pyannote[694].speaker SPEAKER_19
transcript.pyannote[694].start 5606.39534375
transcript.pyannote[694].end 5606.93534375
transcript.pyannote[695].speaker SPEAKER_20
transcript.pyannote[695].start 5612.31846875
transcript.pyannote[695].end 5614.81596875
transcript.pyannote[696].speaker SPEAKER_19
transcript.pyannote[696].start 5612.41971875
transcript.pyannote[696].end 5619.18659375
transcript.pyannote[697].speaker SPEAKER_20
transcript.pyannote[697].start 5617.49909375
transcript.pyannote[697].end 5635.31909375
transcript.pyannote[698].speaker SPEAKER_20
transcript.pyannote[698].start 5635.57221875
transcript.pyannote[698].end 5646.96284375
transcript.pyannote[699].speaker SPEAKER_09
transcript.pyannote[699].start 5643.87471875
transcript.pyannote[699].end 5643.89159375
transcript.pyannote[700].speaker SPEAKER_09
transcript.pyannote[700].start 5643.95909375
transcript.pyannote[700].end 5643.99284375
transcript.pyannote[701].speaker SPEAKER_19
transcript.pyannote[701].start 5646.96284375
transcript.pyannote[701].end 5647.48596875
transcript.pyannote[702].speaker SPEAKER_20
transcript.pyannote[702].start 5647.65471875
transcript.pyannote[702].end 5647.67159375
transcript.pyannote[703].speaker SPEAKER_19
transcript.pyannote[703].start 5647.67159375
transcript.pyannote[703].end 5651.72159375
transcript.pyannote[704].speaker SPEAKER_19
transcript.pyannote[704].start 5652.26159375
transcript.pyannote[704].end 5670.45284375
transcript.pyannote[705].speaker SPEAKER_20
transcript.pyannote[705].start 5669.54159375
transcript.pyannote[705].end 5670.23346875
transcript.pyannote[706].speaker SPEAKER_20
transcript.pyannote[706].start 5670.45284375
transcript.pyannote[706].end 5671.11096875
transcript.pyannote[707].speaker SPEAKER_19
transcript.pyannote[707].start 5670.57096875
transcript.pyannote[707].end 5684.79659375
transcript.pyannote[708].speaker SPEAKER_19
transcript.pyannote[708].start 5685.40409375
transcript.pyannote[708].end 5705.02971875
transcript.pyannote[709].speaker SPEAKER_20
transcript.pyannote[709].start 5705.02971875
transcript.pyannote[709].end 5709.24846875
transcript.pyannote[710].speaker SPEAKER_19
transcript.pyannote[710].start 5708.05034375
transcript.pyannote[710].end 5708.48909375
transcript.pyannote[711].speaker SPEAKER_20
transcript.pyannote[711].start 5709.67034375
transcript.pyannote[711].end 5712.55596875
transcript.pyannote[712].speaker SPEAKER_20
transcript.pyannote[712].start 5712.89346875
transcript.pyannote[712].end 5721.16221875
transcript.pyannote[713].speaker SPEAKER_20
transcript.pyannote[713].start 5721.53346875
transcript.pyannote[713].end 5724.60471875
transcript.pyannote[714].speaker SPEAKER_02
transcript.pyannote[714].start 5723.69346875
transcript.pyannote[714].end 5724.06471875
transcript.pyannote[715].speaker SPEAKER_19
transcript.pyannote[715].start 5724.06471875
transcript.pyannote[715].end 5724.13221875
transcript.pyannote[716].speaker SPEAKER_20
transcript.pyannote[716].start 5724.97596875
transcript.pyannote[716].end 5728.97534375
transcript.pyannote[717].speaker SPEAKER_19
transcript.pyannote[717].start 5728.97534375
transcript.pyannote[717].end 5754.32159375
transcript.pyannote[718].speaker SPEAKER_20
transcript.pyannote[718].start 5755.13159375
transcript.pyannote[718].end 5760.05909375
transcript.pyannote[719].speaker SPEAKER_20
transcript.pyannote[719].start 5760.43034375
transcript.pyannote[719].end 5777.25471875
transcript.pyannote[720].speaker SPEAKER_02
transcript.pyannote[720].start 5770.31909375
transcript.pyannote[720].end 5770.35284375
transcript.pyannote[721].speaker SPEAKER_19
transcript.pyannote[721].start 5770.35284375
transcript.pyannote[721].end 5770.57221875
transcript.pyannote[722].speaker SPEAKER_02
transcript.pyannote[722].start 5770.57221875
transcript.pyannote[722].end 5770.58909375
transcript.pyannote[723].speaker SPEAKER_19
transcript.pyannote[723].start 5777.08596875
transcript.pyannote[723].end 5778.04784375
transcript.pyannote[724].speaker SPEAKER_19
transcript.pyannote[724].start 5778.33471875
transcript.pyannote[724].end 5801.06534375
transcript.pyannote[725].speaker SPEAKER_00
transcript.pyannote[725].start 5790.19784375
transcript.pyannote[725].end 5790.65346875
transcript.pyannote[726].speaker SPEAKER_19
transcript.pyannote[726].start 5801.58846875
transcript.pyannote[726].end 5803.63034375
transcript.pyannote[727].speaker SPEAKER_19
transcript.pyannote[727].start 5803.81596875
transcript.pyannote[727].end 5839.16909375
transcript.pyannote[728].speaker SPEAKER_02
transcript.pyannote[728].start 5828.89221875
transcript.pyannote[728].end 5829.01034375
transcript.pyannote[729].speaker SPEAKER_02
transcript.pyannote[729].start 5829.06096875
transcript.pyannote[729].end 5829.41534375
transcript.pyannote[730].speaker SPEAKER_02
transcript.pyannote[730].start 5831.27159375
transcript.pyannote[730].end 5831.77784375
transcript.pyannote[731].speaker SPEAKER_02
transcript.pyannote[731].start 5833.75221875
transcript.pyannote[731].end 5834.08971875
transcript.pyannote[732].speaker SPEAKER_02
transcript.pyannote[732].start 5839.27034375
transcript.pyannote[732].end 5839.69221875
transcript.pyannote[733].speaker SPEAKER_19
transcript.pyannote[733].start 5839.89471875
transcript.pyannote[733].end 5858.17034375
transcript.pyannote[734].speaker SPEAKER_02
transcript.pyannote[734].start 5843.80971875
transcript.pyannote[734].end 5844.43409375
transcript.pyannote[735].speaker SPEAKER_02
transcript.pyannote[735].start 5846.00346875
transcript.pyannote[735].end 5846.49284375
transcript.pyannote[736].speaker SPEAKER_02
transcript.pyannote[736].start 5846.71221875
transcript.pyannote[736].end 5846.83034375
transcript.pyannote[737].speaker SPEAKER_19
transcript.pyannote[737].start 5858.57534375
transcript.pyannote[737].end 5874.65721875
transcript.pyannote[738].speaker SPEAKER_02
transcript.pyannote[738].start 5874.65721875
transcript.pyannote[738].end 5874.82596875
transcript.pyannote[739].speaker SPEAKER_19
transcript.pyannote[739].start 5874.82596875
transcript.pyannote[739].end 5885.03534375
transcript.pyannote[740].speaker SPEAKER_02
transcript.pyannote[740].start 5874.89346875
transcript.pyannote[740].end 5874.91034375
transcript.pyannote[741].speaker SPEAKER_07
transcript.pyannote[741].start 5885.03534375
transcript.pyannote[741].end 5885.52471875
transcript.pyannote[742].speaker SPEAKER_19
transcript.pyannote[742].start 5885.52471875
transcript.pyannote[742].end 5885.96346875
transcript.pyannote[743].speaker SPEAKER_07
transcript.pyannote[743].start 5885.96346875
transcript.pyannote[743].end 5887.80284375
transcript.pyannote[744].speaker SPEAKER_07
transcript.pyannote[744].start 5888.14034375
transcript.pyannote[744].end 5889.82784375
transcript.pyannote[745].speaker SPEAKER_07
transcript.pyannote[745].start 5889.89534375
transcript.pyannote[745].end 5893.18596875
transcript.pyannote[746].speaker SPEAKER_28
transcript.pyannote[746].start 5902.53471875
transcript.pyannote[746].end 5905.36971875
transcript.pyannote[747].speaker SPEAKER_07
transcript.pyannote[747].start 5905.36971875
transcript.pyannote[747].end 5907.04034375
transcript.pyannote[748].speaker SPEAKER_28
transcript.pyannote[748].start 5909.89221875
transcript.pyannote[748].end 5910.61784375
transcript.pyannote[749].speaker SPEAKER_28
transcript.pyannote[749].start 5911.09034375
transcript.pyannote[749].end 5927.37471875
transcript.pyannote[750].speaker SPEAKER_28
transcript.pyannote[750].start 5927.52659375
transcript.pyannote[750].end 5932.74096875
transcript.pyannote[751].speaker SPEAKER_28
transcript.pyannote[751].start 5933.04471875
transcript.pyannote[751].end 5942.96721875
transcript.pyannote[752].speaker SPEAKER_20
transcript.pyannote[752].start 5942.96721875
transcript.pyannote[752].end 5943.00096875
transcript.pyannote[753].speaker SPEAKER_28
transcript.pyannote[753].start 5943.00096875
transcript.pyannote[753].end 5955.13409375
transcript.pyannote[754].speaker SPEAKER_09
transcript.pyannote[754].start 5956.04534375
transcript.pyannote[754].end 5956.41659375
transcript.pyannote[755].speaker SPEAKER_28
transcript.pyannote[755].start 5957.29409375
transcript.pyannote[755].end 5960.77034375
transcript.pyannote[756].speaker SPEAKER_09
transcript.pyannote[756].start 5957.71596875
transcript.pyannote[756].end 5958.69471875
transcript.pyannote[757].speaker SPEAKER_09
transcript.pyannote[757].start 5959.18409375
transcript.pyannote[757].end 5960.34846875
transcript.pyannote[758].speaker SPEAKER_09
transcript.pyannote[758].start 5960.77034375
transcript.pyannote[758].end 5960.97284375
transcript.pyannote[759].speaker SPEAKER_28
transcript.pyannote[759].start 5960.97284375
transcript.pyannote[759].end 5961.05721875
transcript.pyannote[760].speaker SPEAKER_28
transcript.pyannote[760].start 5961.10784375
transcript.pyannote[760].end 5968.75221875
transcript.pyannote[761].speaker SPEAKER_28
transcript.pyannote[761].start 5969.24159375
transcript.pyannote[761].end 5970.86159375
transcript.pyannote[762].speaker SPEAKER_20
transcript.pyannote[762].start 5970.37221875
transcript.pyannote[762].end 5971.28346875
transcript.pyannote[763].speaker SPEAKER_28
transcript.pyannote[763].start 5971.28346875
transcript.pyannote[763].end 5981.32409375
transcript.pyannote[764].speaker SPEAKER_20
transcript.pyannote[764].start 5971.67159375
transcript.pyannote[764].end 5972.43096875
transcript.pyannote[765].speaker SPEAKER_28
transcript.pyannote[765].start 5981.62784375
transcript.pyannote[765].end 5986.58909375
transcript.pyannote[766].speaker SPEAKER_20
transcript.pyannote[766].start 5986.74096875
transcript.pyannote[766].end 5990.14971875
transcript.pyannote[767].speaker SPEAKER_20
transcript.pyannote[767].start 5990.45346875
transcript.pyannote[767].end 5994.33471875
transcript.pyannote[768].speaker SPEAKER_28
transcript.pyannote[768].start 5994.33471875
transcript.pyannote[768].end 5995.17846875
transcript.pyannote[769].speaker SPEAKER_20
transcript.pyannote[769].start 5995.17846875
transcript.pyannote[769].end 5995.21221875
transcript.pyannote[770].speaker SPEAKER_28
transcript.pyannote[770].start 5995.21221875
transcript.pyannote[770].end 5995.22909375
transcript.pyannote[771].speaker SPEAKER_20
transcript.pyannote[771].start 5995.22909375
transcript.pyannote[771].end 5995.27971875
transcript.pyannote[772].speaker SPEAKER_28
transcript.pyannote[772].start 5995.27971875
transcript.pyannote[772].end 6004.96596875
transcript.pyannote[773].speaker SPEAKER_20
transcript.pyannote[773].start 6003.29534375
transcript.pyannote[773].end 6003.36284375
transcript.pyannote[774].speaker SPEAKER_20
transcript.pyannote[774].start 6004.96596875
transcript.pyannote[774].end 6005.79284375
transcript.pyannote[775].speaker SPEAKER_28
transcript.pyannote[775].start 6005.79284375
transcript.pyannote[775].end 6012.57659375
transcript.pyannote[776].speaker SPEAKER_20
transcript.pyannote[776].start 6005.82659375
transcript.pyannote[776].end 6007.58159375
transcript.pyannote[777].speaker SPEAKER_28
transcript.pyannote[777].start 6012.81284375
transcript.pyannote[777].end 6020.76096875
transcript.pyannote[778].speaker SPEAKER_20
transcript.pyannote[778].start 6020.76096875
transcript.pyannote[778].end 6020.77784375
transcript.pyannote[779].speaker SPEAKER_28
transcript.pyannote[779].start 6021.13221875
transcript.pyannote[779].end 6022.97159375
transcript.pyannote[780].speaker SPEAKER_20
transcript.pyannote[780].start 6022.97159375
transcript.pyannote[780].end 6032.69159375
transcript.pyannote[781].speaker SPEAKER_28
transcript.pyannote[781].start 6028.55721875
transcript.pyannote[781].end 6032.45534375
transcript.pyannote[782].speaker SPEAKER_20
transcript.pyannote[782].start 6032.97846875
transcript.pyannote[782].end 6033.92346875
transcript.pyannote[783].speaker SPEAKER_28
transcript.pyannote[783].start 6033.92346875
transcript.pyannote[783].end 6038.37846875
transcript.pyannote[784].speaker SPEAKER_20
transcript.pyannote[784].start 6038.83409375
transcript.pyannote[784].end 6038.85096875
transcript.pyannote[785].speaker SPEAKER_28
transcript.pyannote[785].start 6038.85096875
transcript.pyannote[785].end 6040.01534375
transcript.pyannote[786].speaker SPEAKER_20
transcript.pyannote[786].start 6040.01534375
transcript.pyannote[786].end 6041.58471875
transcript.pyannote[787].speaker SPEAKER_28
transcript.pyannote[787].start 6040.03221875
transcript.pyannote[787].end 6043.03596875
transcript.pyannote[788].speaker SPEAKER_20
transcript.pyannote[788].start 6043.35659375
transcript.pyannote[788].end 6047.25471875
transcript.pyannote[789].speaker SPEAKER_28
transcript.pyannote[789].start 6045.63471875
transcript.pyannote[789].end 6050.10659375
transcript.pyannote[790].speaker SPEAKER_20
transcript.pyannote[790].start 6047.67659375
transcript.pyannote[790].end 6051.20346875
transcript.pyannote[791].speaker SPEAKER_28
transcript.pyannote[791].start 6051.20346875
transcript.pyannote[791].end 6053.68409375
transcript.pyannote[792].speaker SPEAKER_20
transcript.pyannote[792].start 6053.76846875
transcript.pyannote[792].end 6062.84721875
transcript.pyannote[793].speaker SPEAKER_28
transcript.pyannote[793].start 6062.32409375
transcript.pyannote[793].end 6072.66846875
transcript.pyannote[794].speaker SPEAKER_02
transcript.pyannote[794].start 6071.60534375
transcript.pyannote[794].end 6073.05659375
transcript.pyannote[795].speaker SPEAKER_28
transcript.pyannote[795].start 6072.92159375
transcript.pyannote[795].end 6082.38846875
transcript.pyannote[796].speaker SPEAKER_20
transcript.pyannote[796].start 6081.17346875
transcript.pyannote[796].end 6090.35346875
transcript.pyannote[797].speaker SPEAKER_28
transcript.pyannote[797].start 6088.66596875
transcript.pyannote[797].end 6104.49471875
transcript.pyannote[798].speaker SPEAKER_28
transcript.pyannote[798].start 6104.69721875
transcript.pyannote[798].end 6112.34159375
transcript.pyannote[799].speaker SPEAKER_28
transcript.pyannote[799].start 6112.71284375
transcript.pyannote[799].end 6125.36909375
transcript.pyannote[800].speaker SPEAKER_20
transcript.pyannote[800].start 6124.64346875
transcript.pyannote[800].end 6128.55846875
transcript.pyannote[801].speaker SPEAKER_20
transcript.pyannote[801].start 6129.36846875
transcript.pyannote[801].end 6133.38471875
transcript.pyannote[802].speaker SPEAKER_28
transcript.pyannote[802].start 6129.40221875
transcript.pyannote[802].end 6130.73534375
transcript.pyannote[803].speaker SPEAKER_28
transcript.pyannote[803].start 6132.69284375
transcript.pyannote[803].end 6149.46659375
transcript.pyannote[804].speaker SPEAKER_20
transcript.pyannote[804].start 6136.82721875
transcript.pyannote[804].end 6139.22346875
transcript.pyannote[805].speaker SPEAKER_20
transcript.pyannote[805].start 6140.25284375
transcript.pyannote[805].end 6140.72534375
transcript.pyannote[806].speaker SPEAKER_20
transcript.pyannote[806].start 6141.90659375
transcript.pyannote[806].end 6142.39596875
transcript.pyannote[807].speaker SPEAKER_20
transcript.pyannote[807].start 6146.07471875
transcript.pyannote[807].end 6147.08721875
transcript.pyannote[808].speaker SPEAKER_20
transcript.pyannote[808].start 6147.86346875
transcript.pyannote[808].end 6148.58909375
transcript.pyannote[809].speaker SPEAKER_20
transcript.pyannote[809].start 6148.92659375
transcript.pyannote[809].end 6150.49596875
transcript.pyannote[810].speaker SPEAKER_20
transcript.pyannote[810].start 6150.66471875
transcript.pyannote[810].end 6163.96221875
transcript.pyannote[811].speaker SPEAKER_27
transcript.pyannote[811].start 6158.54534375
transcript.pyannote[811].end 6159.03471875
transcript.pyannote[812].speaker SPEAKER_28
transcript.pyannote[812].start 6159.03471875
transcript.pyannote[812].end 6160.55346875
transcript.pyannote[813].speaker SPEAKER_28
transcript.pyannote[813].start 6163.96221875
transcript.pyannote[813].end 6163.97909375
transcript.pyannote[814].speaker SPEAKER_20
transcript.pyannote[814].start 6163.97909375
transcript.pyannote[814].end 6165.56534375
transcript.pyannote[815].speaker SPEAKER_28
transcript.pyannote[815].start 6164.02971875
transcript.pyannote[815].end 6172.97346875
transcript.pyannote[816].speaker SPEAKER_20
transcript.pyannote[816].start 6166.05471875
transcript.pyannote[816].end 6166.51034375
transcript.pyannote[817].speaker SPEAKER_02
transcript.pyannote[817].start 6173.36159375
transcript.pyannote[817].end 6175.62284375
transcript.pyannote[818].speaker SPEAKER_28
transcript.pyannote[818].start 6173.49659375
transcript.pyannote[818].end 6182.28846875
transcript.pyannote[819].speaker SPEAKER_02
transcript.pyannote[819].start 6182.18721875
transcript.pyannote[819].end 6182.25471875
transcript.pyannote[820].speaker SPEAKER_02
transcript.pyannote[820].start 6182.28846875
transcript.pyannote[820].end 6182.52471875
transcript.pyannote[821].speaker SPEAKER_28
transcript.pyannote[821].start 6182.52471875
transcript.pyannote[821].end 6189.98346875
transcript.pyannote[822].speaker SPEAKER_02
transcript.pyannote[822].start 6182.55846875
transcript.pyannote[822].end 6182.62596875
transcript.pyannote[823].speaker SPEAKER_28
transcript.pyannote[823].start 6190.57409375
transcript.pyannote[823].end 6195.46784375
transcript.pyannote[824].speaker SPEAKER_28
transcript.pyannote[824].start 6195.77159375
transcript.pyannote[824].end 6197.22284375
transcript.pyannote[825].speaker SPEAKER_20
transcript.pyannote[825].start 6196.71659375
transcript.pyannote[825].end 6200.29409375
transcript.pyannote[826].speaker SPEAKER_20
transcript.pyannote[826].start 6200.68221875
transcript.pyannote[826].end 6202.38659375
transcript.pyannote[827].speaker SPEAKER_20
transcript.pyannote[827].start 6202.55534375
transcript.pyannote[827].end 6203.95596875
transcript.pyannote[828].speaker SPEAKER_20
transcript.pyannote[828].start 6204.22596875
transcript.pyannote[828].end 6204.93471875
transcript.pyannote[829].speaker SPEAKER_28
transcript.pyannote[829].start 6204.49596875
transcript.pyannote[829].end 6205.23846875
transcript.pyannote[830].speaker SPEAKER_20
transcript.pyannote[830].start 6205.23846875
transcript.pyannote[830].end 6205.69409375
transcript.pyannote[831].speaker SPEAKER_28
transcript.pyannote[831].start 6205.81221875
transcript.pyannote[831].end 6208.84971875
transcript.pyannote[832].speaker SPEAKER_28
transcript.pyannote[832].start 6209.08596875
transcript.pyannote[832].end 6211.53284375
transcript.pyannote[833].speaker SPEAKER_28
transcript.pyannote[833].start 6211.97159375
transcript.pyannote[833].end 6217.86096875
transcript.pyannote[834].speaker SPEAKER_20
transcript.pyannote[834].start 6219.93659375
transcript.pyannote[834].end 6223.04159375
transcript.pyannote[835].speaker SPEAKER_28
transcript.pyannote[835].start 6223.63221875
transcript.pyannote[835].end 6224.37471875
transcript.pyannote[836].speaker SPEAKER_20
transcript.pyannote[836].start 6223.73346875
transcript.pyannote[836].end 6224.76284375
transcript.pyannote[837].speaker SPEAKER_28
transcript.pyannote[837].start 6225.06659375
transcript.pyannote[837].end 6228.88034375
transcript.pyannote[838].speaker SPEAKER_28
transcript.pyannote[838].start 6229.06596875
transcript.pyannote[838].end 6249.38346875
transcript.pyannote[839].speaker SPEAKER_20
transcript.pyannote[839].start 6249.45096875
transcript.pyannote[839].end 6257.11221875
transcript.pyannote[840].speaker SPEAKER_28
transcript.pyannote[840].start 6256.25159375
transcript.pyannote[840].end 6257.26409375
transcript.pyannote[841].speaker SPEAKER_20
transcript.pyannote[841].start 6257.38221875
transcript.pyannote[841].end 6257.65221875
transcript.pyannote[842].speaker SPEAKER_20
transcript.pyannote[842].start 6258.07409375
transcript.pyannote[842].end 6261.16221875
transcript.pyannote[843].speaker SPEAKER_28
transcript.pyannote[843].start 6260.31846875
transcript.pyannote[843].end 6265.56659375
transcript.pyannote[844].speaker SPEAKER_20
transcript.pyannote[844].start 6262.79909375
transcript.pyannote[844].end 6270.86534375
transcript.pyannote[845].speaker SPEAKER_20
transcript.pyannote[845].start 6270.89909375
transcript.pyannote[845].end 6276.55221875
transcript.pyannote[846].speaker SPEAKER_28
transcript.pyannote[846].start 6275.75909375
transcript.pyannote[846].end 6279.23534375
transcript.pyannote[847].speaker SPEAKER_20
transcript.pyannote[847].start 6278.79659375
transcript.pyannote[847].end 6279.67409375
transcript.pyannote[848].speaker SPEAKER_28
transcript.pyannote[848].start 6279.60659375
transcript.pyannote[848].end 6301.91534375
transcript.pyannote[849].speaker SPEAKER_28
transcript.pyannote[849].start 6302.42159375
transcript.pyannote[849].end 6317.84534375
transcript.pyannote[850].speaker SPEAKER_28
transcript.pyannote[850].start 6317.91284375
transcript.pyannote[850].end 6322.51971875
transcript.pyannote[851].speaker SPEAKER_28
transcript.pyannote[851].start 6323.46471875
transcript.pyannote[851].end 6323.78534375
transcript.pyannote[852].speaker SPEAKER_28
transcript.pyannote[852].start 6324.15659375
transcript.pyannote[852].end 6328.67909375
transcript.pyannote[853].speaker SPEAKER_28
transcript.pyannote[853].start 6329.67471875
transcript.pyannote[853].end 6329.79284375
transcript.pyannote[854].speaker SPEAKER_20
transcript.pyannote[854].start 6329.79284375
transcript.pyannote[854].end 6329.92784375
transcript.pyannote[855].speaker SPEAKER_28
transcript.pyannote[855].start 6329.92784375
transcript.pyannote[855].end 6329.97846875
transcript.pyannote[856].speaker SPEAKER_20
transcript.pyannote[856].start 6329.97846875
transcript.pyannote[856].end 6330.01221875
transcript.pyannote[857].speaker SPEAKER_28
transcript.pyannote[857].start 6330.01221875
transcript.pyannote[857].end 6330.02909375
transcript.pyannote[858].speaker SPEAKER_20
transcript.pyannote[858].start 6330.02909375
transcript.pyannote[858].end 6339.24284375
transcript.pyannote[859].speaker SPEAKER_20
transcript.pyannote[859].start 6339.76596875
transcript.pyannote[859].end 6348.03471875
transcript.pyannote[860].speaker SPEAKER_28
transcript.pyannote[860].start 6348.03471875
transcript.pyannote[860].end 6372.36846875
transcript.pyannote[861].speaker SPEAKER_21
transcript.pyannote[861].start 6356.21909375
transcript.pyannote[861].end 6356.89409375
transcript.pyannote[862].speaker SPEAKER_02
transcript.pyannote[862].start 6367.28909375
transcript.pyannote[862].end 6367.44096875
transcript.pyannote[863].speaker SPEAKER_03
transcript.pyannote[863].start 6370.71471875
transcript.pyannote[863].end 6370.73159375
transcript.pyannote[864].speaker SPEAKER_20
transcript.pyannote[864].start 6370.73159375
transcript.pyannote[864].end 6371.35596875
transcript.pyannote[865].speaker SPEAKER_28
transcript.pyannote[865].start 6372.70596875
transcript.pyannote[865].end 6375.89534375
transcript.pyannote[866].speaker SPEAKER_20
transcript.pyannote[866].start 6372.72284375
transcript.pyannote[866].end 6379.11846875
transcript.pyannote[867].speaker SPEAKER_28
transcript.pyannote[867].start 6377.83596875
transcript.pyannote[867].end 6387.92721875
transcript.pyannote[868].speaker SPEAKER_20
transcript.pyannote[868].start 6384.58596875
transcript.pyannote[868].end 6387.91034375
transcript.pyannote[869].speaker SPEAKER_20
transcript.pyannote[869].start 6387.92721875
transcript.pyannote[869].end 6387.96096875
transcript.pyannote[870].speaker SPEAKER_28
transcript.pyannote[870].start 6387.96096875
transcript.pyannote[870].end 6387.97784375
transcript.pyannote[871].speaker SPEAKER_20
transcript.pyannote[871].start 6387.97784375
transcript.pyannote[871].end 6388.11284375
transcript.pyannote[872].speaker SPEAKER_28
transcript.pyannote[872].start 6388.11284375
transcript.pyannote[872].end 6389.15909375
transcript.pyannote[873].speaker SPEAKER_20
transcript.pyannote[873].start 6388.18034375
transcript.pyannote[873].end 6396.92159375
transcript.pyannote[874].speaker SPEAKER_28
transcript.pyannote[874].start 6393.74909375
transcript.pyannote[874].end 6394.13721875
transcript.pyannote[875].speaker SPEAKER_28
transcript.pyannote[875].start 6395.11596875
transcript.pyannote[875].end 6405.67971875
transcript.pyannote[876].speaker SPEAKER_28
transcript.pyannote[876].start 6405.84846875
transcript.pyannote[876].end 6438.28221875
transcript.pyannote[877].speaker SPEAKER_00
transcript.pyannote[877].start 6429.37221875
transcript.pyannote[877].end 6429.62534375
transcript.pyannote[878].speaker SPEAKER_00
transcript.pyannote[878].start 6430.24971875
transcript.pyannote[878].end 6430.31721875
transcript.pyannote[879].speaker SPEAKER_20
transcript.pyannote[879].start 6430.31721875
transcript.pyannote[879].end 6430.80659375
transcript.pyannote[880].speaker SPEAKER_20
transcript.pyannote[880].start 6439.31159375
transcript.pyannote[880].end 6448.27221875
transcript.pyannote[881].speaker SPEAKER_20
transcript.pyannote[881].start 6448.59284375
transcript.pyannote[881].end 6448.62659375
transcript.pyannote[882].speaker SPEAKER_28
transcript.pyannote[882].start 6448.62659375
transcript.pyannote[882].end 6452.94659375
transcript.pyannote[883].speaker SPEAKER_20
transcript.pyannote[883].start 6453.03096875
transcript.pyannote[883].end 6454.88721875
transcript.pyannote[884].speaker SPEAKER_28
transcript.pyannote[884].start 6454.88721875
transcript.pyannote[884].end 6470.83409375
transcript.pyannote[885].speaker SPEAKER_02
transcript.pyannote[885].start 6461.65409375
transcript.pyannote[885].end 6461.83971875
transcript.pyannote[886].speaker SPEAKER_20
transcript.pyannote[886].start 6467.83034375
transcript.pyannote[886].end 6478.10721875
transcript.pyannote[887].speaker SPEAKER_28
transcript.pyannote[887].start 6477.63471875
transcript.pyannote[887].end 6486.61221875
transcript.pyannote[888].speaker SPEAKER_20
transcript.pyannote[888].start 6485.29596875
transcript.pyannote[888].end 6486.51096875
transcript.pyannote[889].speaker SPEAKER_28
transcript.pyannote[889].start 6486.98346875
transcript.pyannote[889].end 6487.40534375
transcript.pyannote[890].speaker SPEAKER_20
transcript.pyannote[890].start 6487.03409375
transcript.pyannote[890].end 6488.14784375
transcript.pyannote[891].speaker SPEAKER_28
transcript.pyannote[891].start 6488.14784375
transcript.pyannote[891].end 6488.51909375
transcript.pyannote[892].speaker SPEAKER_20
transcript.pyannote[892].start 6488.51909375
transcript.pyannote[892].end 6488.70471875
transcript.pyannote[893].speaker SPEAKER_28
transcript.pyannote[893].start 6488.70471875
transcript.pyannote[893].end 6488.72159375
transcript.pyannote[894].speaker SPEAKER_20
transcript.pyannote[894].start 6488.72159375
transcript.pyannote[894].end 6489.02534375
transcript.pyannote[895].speaker SPEAKER_28
transcript.pyannote[895].start 6488.75534375
transcript.pyannote[895].end 6490.15596875
transcript.pyannote[896].speaker SPEAKER_28
transcript.pyannote[896].start 6490.39221875
transcript.pyannote[896].end 6501.12471875
transcript.pyannote[897].speaker SPEAKER_02
transcript.pyannote[897].start 6494.84721875
transcript.pyannote[897].end 6496.21409375
transcript.pyannote[898].speaker SPEAKER_02
transcript.pyannote[898].start 6498.61034375
transcript.pyannote[898].end 6499.20096875
transcript.pyannote[899].speaker SPEAKER_09
transcript.pyannote[899].start 6499.20096875
transcript.pyannote[899].end 6499.36971875
transcript.pyannote[900].speaker SPEAKER_02
transcript.pyannote[900].start 6499.36971875
transcript.pyannote[900].end 6499.57221875
transcript.pyannote[901].speaker SPEAKER_09
transcript.pyannote[901].start 6499.57221875
transcript.pyannote[901].end 6499.79159375
transcript.pyannote[902].speaker SPEAKER_02
transcript.pyannote[902].start 6499.79159375
transcript.pyannote[902].end 6499.99409375
transcript.pyannote[903].speaker SPEAKER_09
transcript.pyannote[903].start 6499.99409375
transcript.pyannote[903].end 6500.12909375
transcript.pyannote[904].speaker SPEAKER_02
transcript.pyannote[904].start 6500.12909375
transcript.pyannote[904].end 6500.24721875
transcript.pyannote[905].speaker SPEAKER_30
transcript.pyannote[905].start 6500.24721875
transcript.pyannote[905].end 6500.90534375
transcript.pyannote[906].speaker SPEAKER_02
transcript.pyannote[906].start 6500.90534375
transcript.pyannote[906].end 6500.95596875
transcript.pyannote[907].speaker SPEAKER_30
transcript.pyannote[907].start 6500.95596875
transcript.pyannote[907].end 6500.97284375
transcript.pyannote[908].speaker SPEAKER_09
transcript.pyannote[908].start 6500.97284375
transcript.pyannote[908].end 6501.02346875
transcript.pyannote[909].speaker SPEAKER_02
transcript.pyannote[909].start 6501.02346875
transcript.pyannote[909].end 6501.10784375
transcript.pyannote[910].speaker SPEAKER_19
transcript.pyannote[910].start 6502.96409375
transcript.pyannote[910].end 6504.65159375
transcript.pyannote[911].speaker SPEAKER_19
transcript.pyannote[911].start 6504.95534375
transcript.pyannote[911].end 6512.83596875
transcript.pyannote[912].speaker SPEAKER_26
transcript.pyannote[912].start 6524.41221875
transcript.pyannote[912].end 6525.84659375
transcript.pyannote[913].speaker SPEAKER_26
transcript.pyannote[913].start 6525.98159375
transcript.pyannote[913].end 6526.35284375
transcript.pyannote[914].speaker SPEAKER_19
transcript.pyannote[914].start 6526.52159375
transcript.pyannote[914].end 6526.55534375
transcript.pyannote[915].speaker SPEAKER_05
transcript.pyannote[915].start 6526.55534375
transcript.pyannote[915].end 6527.41596875
transcript.pyannote[916].speaker SPEAKER_26
transcript.pyannote[916].start 6526.80846875
transcript.pyannote[916].end 6528.63096875
transcript.pyannote[917].speaker SPEAKER_26
transcript.pyannote[917].start 6528.66471875
transcript.pyannote[917].end 6529.00221875
transcript.pyannote[918].speaker SPEAKER_05
transcript.pyannote[918].start 6531.48284375
transcript.pyannote[918].end 6531.97221875
transcript.pyannote[919].speaker SPEAKER_20
transcript.pyannote[919].start 6531.97221875
transcript.pyannote[919].end 6532.02284375
transcript.pyannote[920].speaker SPEAKER_26
transcript.pyannote[920].start 6533.42346875
transcript.pyannote[920].end 6535.31346875
transcript.pyannote[921].speaker SPEAKER_26
transcript.pyannote[921].start 6535.49909375
transcript.pyannote[921].end 6536.44409375
transcript.pyannote[922].speaker SPEAKER_20
transcript.pyannote[922].start 6538.31721875
transcript.pyannote[922].end 6539.81909375
transcript.pyannote[923].speaker SPEAKER_26
transcript.pyannote[923].start 6539.38034375
transcript.pyannote[923].end 6539.68409375
transcript.pyannote[924].speaker SPEAKER_26
transcript.pyannote[924].start 6539.92034375
transcript.pyannote[924].end 6540.17346875
transcript.pyannote[925].speaker SPEAKER_20
transcript.pyannote[925].start 6540.17346875
transcript.pyannote[925].end 6540.89909375
transcript.pyannote[926].speaker SPEAKER_26
transcript.pyannote[926].start 6541.23659375
transcript.pyannote[926].end 6541.97909375
transcript.pyannote[927].speaker SPEAKER_20
transcript.pyannote[927].start 6541.97909375
transcript.pyannote[927].end 6542.28284375
transcript.pyannote[928].speaker SPEAKER_26
transcript.pyannote[928].start 6542.28284375
transcript.pyannote[928].end 6543.88596875
transcript.pyannote[929].speaker SPEAKER_20
transcript.pyannote[929].start 6542.29971875
transcript.pyannote[929].end 6542.33346875
transcript.pyannote[930].speaker SPEAKER_20
transcript.pyannote[930].start 6544.03784375
transcript.pyannote[930].end 6544.39221875
transcript.pyannote[931].speaker SPEAKER_26
transcript.pyannote[931].start 6544.94909375
transcript.pyannote[931].end 6549.84284375
transcript.pyannote[932].speaker SPEAKER_26
transcript.pyannote[932].start 6550.11284375
transcript.pyannote[932].end 6564.35534375
transcript.pyannote[933].speaker SPEAKER_26
transcript.pyannote[933].start 6564.74346875
transcript.pyannote[933].end 6565.13159375
transcript.pyannote[934].speaker SPEAKER_26
transcript.pyannote[934].start 6565.45221875
transcript.pyannote[934].end 6567.94971875
transcript.pyannote[935].speaker SPEAKER_20
transcript.pyannote[935].start 6569.02971875
transcript.pyannote[935].end 6574.90221875
transcript.pyannote[936].speaker SPEAKER_20
transcript.pyannote[936].start 6575.23971875
transcript.pyannote[936].end 6582.59721875
transcript.pyannote[937].speaker SPEAKER_26
transcript.pyannote[937].start 6582.74909375
transcript.pyannote[937].end 6600.88971875
transcript.pyannote[938].speaker SPEAKER_26
transcript.pyannote[938].start 6601.34534375
transcript.pyannote[938].end 6608.78721875
transcript.pyannote[939].speaker SPEAKER_20
transcript.pyannote[939].start 6609.09096875
transcript.pyannote[939].end 6621.74721875
transcript.pyannote[940].speaker SPEAKER_26
transcript.pyannote[940].start 6611.74034375
transcript.pyannote[940].end 6612.07784375
transcript.pyannote[941].speaker SPEAKER_26
transcript.pyannote[941].start 6620.44784375
transcript.pyannote[941].end 6621.71346875
transcript.pyannote[942].speaker SPEAKER_26
transcript.pyannote[942].start 6621.74721875
transcript.pyannote[942].end 6621.84846875
transcript.pyannote[943].speaker SPEAKER_20
transcript.pyannote[943].start 6622.65846875
transcript.pyannote[943].end 6624.43034375
transcript.pyannote[944].speaker SPEAKER_12
transcript.pyannote[944].start 6624.43034375
transcript.pyannote[944].end 6624.98721875
transcript.pyannote[945].speaker SPEAKER_20
transcript.pyannote[945].start 6624.98721875
transcript.pyannote[945].end 6627.16409375
transcript.pyannote[946].speaker SPEAKER_20
transcript.pyannote[946].start 6627.83909375
transcript.pyannote[946].end 6636.56346875
transcript.pyannote[947].speaker SPEAKER_26
transcript.pyannote[947].start 6633.59346875
transcript.pyannote[947].end 6641.38971875
transcript.pyannote[948].speaker SPEAKER_20
transcript.pyannote[948].start 6640.32659375
transcript.pyannote[948].end 6641.28846875
transcript.pyannote[949].speaker SPEAKER_20
transcript.pyannote[949].start 6641.38971875
transcript.pyannote[949].end 6649.13534375
transcript.pyannote[950].speaker SPEAKER_26
transcript.pyannote[950].start 6641.55846875
transcript.pyannote[950].end 6642.58784375
transcript.pyannote[951].speaker SPEAKER_20
transcript.pyannote[951].start 6649.59096875
transcript.pyannote[951].end 6650.92409375
transcript.pyannote[952].speaker SPEAKER_26
transcript.pyannote[952].start 6650.89034375
transcript.pyannote[952].end 6657.30284375
transcript.pyannote[953].speaker SPEAKER_26
transcript.pyannote[953].start 6657.64034375
transcript.pyannote[953].end 6661.58909375
transcript.pyannote[954].speaker SPEAKER_20
transcript.pyannote[954].start 6662.02784375
transcript.pyannote[954].end 6663.91784375
transcript.pyannote[955].speaker SPEAKER_12
transcript.pyannote[955].start 6663.91784375
transcript.pyannote[955].end 6663.93471875
transcript.pyannote[956].speaker SPEAKER_12
transcript.pyannote[956].start 6663.96846875
transcript.pyannote[956].end 6683.05409375
transcript.pyannote[957].speaker SPEAKER_26
transcript.pyannote[957].start 6682.10909375
transcript.pyannote[957].end 6688.26846875
transcript.pyannote[958].speaker SPEAKER_12
transcript.pyannote[958].start 6683.37471875
transcript.pyannote[958].end 6684.20159375
transcript.pyannote[959].speaker SPEAKER_12
transcript.pyannote[959].start 6688.26846875
transcript.pyannote[959].end 6690.93471875
transcript.pyannote[960].speaker SPEAKER_26
transcript.pyannote[960].start 6691.25534375
transcript.pyannote[960].end 6692.84159375
transcript.pyannote[961].speaker SPEAKER_12
transcript.pyannote[961].start 6692.99346875
transcript.pyannote[961].end 6700.24971875
transcript.pyannote[962].speaker SPEAKER_26
transcript.pyannote[962].start 6700.24971875
transcript.pyannote[962].end 6710.15534375
transcript.pyannote[963].speaker SPEAKER_12
transcript.pyannote[963].start 6700.60409375
transcript.pyannote[963].end 6702.13971875
transcript.pyannote[964].speaker SPEAKER_20
transcript.pyannote[964].start 6709.90221875
transcript.pyannote[964].end 6713.24346875
transcript.pyannote[965].speaker SPEAKER_26
transcript.pyannote[965].start 6710.44221875
transcript.pyannote[965].end 6710.74596875
transcript.pyannote[966].speaker SPEAKER_26
transcript.pyannote[966].start 6712.78784375
transcript.pyannote[966].end 6721.42784375
transcript.pyannote[967].speaker SPEAKER_20
transcript.pyannote[967].start 6715.11659375
transcript.pyannote[967].end 6715.85909375
transcript.pyannote[968].speaker SPEAKER_00
transcript.pyannote[968].start 6715.85909375
transcript.pyannote[968].end 6715.92659375
transcript.pyannote[969].speaker SPEAKER_20
transcript.pyannote[969].start 6717.85034375
transcript.pyannote[969].end 6718.15409375
transcript.pyannote[970].speaker SPEAKER_26
transcript.pyannote[970].start 6721.76534375
transcript.pyannote[970].end 6723.68909375
transcript.pyannote[971].speaker SPEAKER_26
transcript.pyannote[971].start 6724.00971875
transcript.pyannote[971].end 6727.26659375
transcript.pyannote[972].speaker SPEAKER_20
transcript.pyannote[972].start 6728.14409375
transcript.pyannote[972].end 6729.05534375
transcript.pyannote[973].speaker SPEAKER_20
transcript.pyannote[973].start 6729.17346875
transcript.pyannote[973].end 6730.18596875
transcript.pyannote[974].speaker SPEAKER_12
transcript.pyannote[974].start 6730.18596875
transcript.pyannote[974].end 6749.44034375
transcript.pyannote[975].speaker SPEAKER_20
transcript.pyannote[975].start 6730.28721875
transcript.pyannote[975].end 6730.43909375
transcript.pyannote[976].speaker SPEAKER_26
transcript.pyannote[976].start 6744.74909375
transcript.pyannote[976].end 6746.28471875
transcript.pyannote[977].speaker SPEAKER_26
transcript.pyannote[977].start 6746.94284375
transcript.pyannote[977].end 6746.97659375
transcript.pyannote[978].speaker SPEAKER_26
transcript.pyannote[978].start 6749.44034375
transcript.pyannote[978].end 6754.99221875
transcript.pyannote[979].speaker SPEAKER_12
transcript.pyannote[979].start 6749.54159375
transcript.pyannote[979].end 6749.87909375
transcript.pyannote[980].speaker SPEAKER_12
transcript.pyannote[980].start 6751.26284375
transcript.pyannote[980].end 6751.44846875
transcript.pyannote[981].speaker SPEAKER_12
transcript.pyannote[981].start 6754.99221875
transcript.pyannote[981].end 6757.45596875
transcript.pyannote[982].speaker SPEAKER_12
transcript.pyannote[982].start 6757.97909375
transcript.pyannote[982].end 6761.72534375
transcript.pyannote[983].speaker SPEAKER_26
transcript.pyannote[983].start 6760.64534375
transcript.pyannote[983].end 6765.69096875
transcript.pyannote[984].speaker SPEAKER_12
transcript.pyannote[984].start 6765.72471875
transcript.pyannote[984].end 6766.73721875
transcript.pyannote[985].speaker SPEAKER_12
transcript.pyannote[985].start 6766.77096875
transcript.pyannote[985].end 6772.69409375
transcript.pyannote[986].speaker SPEAKER_12
transcript.pyannote[986].start 6772.99784375
transcript.pyannote[986].end 6776.33909375
transcript.pyannote[987].speaker SPEAKER_26
transcript.pyannote[987].start 6775.98471875
transcript.pyannote[987].end 6789.26534375
transcript.pyannote[988].speaker SPEAKER_12
transcript.pyannote[988].start 6779.29221875
transcript.pyannote[988].end 6780.16971875
transcript.pyannote[989].speaker SPEAKER_01
transcript.pyannote[989].start 6780.16971875
transcript.pyannote[989].end 6780.18659375
transcript.pyannote[990].speaker SPEAKER_20
transcript.pyannote[990].start 6789.26534375
transcript.pyannote[990].end 6792.21846875
transcript.pyannote[991].speaker SPEAKER_20
transcript.pyannote[991].start 6792.60659375
transcript.pyannote[991].end 6793.97346875
transcript.pyannote[992].speaker SPEAKER_26
transcript.pyannote[992].start 6794.32784375
transcript.pyannote[992].end 6798.91784375
transcript.pyannote[993].speaker SPEAKER_26
transcript.pyannote[993].start 6799.32284375
transcript.pyannote[993].end 6806.05596875
transcript.pyannote[994].speaker SPEAKER_26
transcript.pyannote[994].start 6806.17409375
transcript.pyannote[994].end 6813.17721875
transcript.pyannote[995].speaker SPEAKER_20
transcript.pyannote[995].start 6814.08846875
transcript.pyannote[995].end 6818.94846875
transcript.pyannote[996].speaker SPEAKER_20
transcript.pyannote[996].start 6819.31971875
transcript.pyannote[996].end 6820.99034375
transcript.pyannote[997].speaker SPEAKER_20
transcript.pyannote[997].start 6821.24346875
transcript.pyannote[997].end 6825.20909375
transcript.pyannote[998].speaker SPEAKER_20
transcript.pyannote[998].start 6825.51284375
transcript.pyannote[998].end 6832.14471875
transcript.pyannote[999].speaker SPEAKER_26
transcript.pyannote[999].start 6831.28409375
transcript.pyannote[999].end 6833.19096875
transcript.pyannote[1000].speaker SPEAKER_20
transcript.pyannote[1000].start 6833.25846875
transcript.pyannote[1000].end 6836.26221875
transcript.pyannote[1001].speaker SPEAKER_20
transcript.pyannote[1001].start 6836.56596875
transcript.pyannote[1001].end 6837.94971875
transcript.pyannote[1002].speaker SPEAKER_20
transcript.pyannote[1002].start 6838.43909375
transcript.pyannote[1002].end 6840.19409375
transcript.pyannote[1003].speaker SPEAKER_26
transcript.pyannote[1003].start 6841.15596875
transcript.pyannote[1003].end 6846.45471875
transcript.pyannote[1004].speaker SPEAKER_26
transcript.pyannote[1004].start 6847.21409375
transcript.pyannote[1004].end 6849.07034375
transcript.pyannote[1005].speaker SPEAKER_20
transcript.pyannote[1005].start 6847.34909375
transcript.pyannote[1005].end 6853.55909375
transcript.pyannote[1006].speaker SPEAKER_26
transcript.pyannote[1006].start 6853.79534375
transcript.pyannote[1006].end 6888.77721875
transcript.pyannote[1007].speaker SPEAKER_26
transcript.pyannote[1007].start 6889.51971875
transcript.pyannote[1007].end 6889.97534375
transcript.pyannote[1008].speaker SPEAKER_26
transcript.pyannote[1008].start 6890.63346875
transcript.pyannote[1008].end 6894.64971875
transcript.pyannote[1009].speaker SPEAKER_03
transcript.pyannote[1009].start 6895.93221875
transcript.pyannote[1009].end 6896.84346875
transcript.pyannote[1010].speaker SPEAKER_26
transcript.pyannote[1010].start 6895.94909375
transcript.pyannote[1010].end 6897.21471875
transcript.pyannote[1011].speaker SPEAKER_03
transcript.pyannote[1011].start 6897.16409375
transcript.pyannote[1011].end 6900.82596875
transcript.pyannote[1012].speaker SPEAKER_03
transcript.pyannote[1012].start 6901.09596875
transcript.pyannote[1012].end 6905.60159375
transcript.pyannote[1013].speaker SPEAKER_03
transcript.pyannote[1013].start 6905.95596875
transcript.pyannote[1013].end 6914.12346875
transcript.pyannote[1014].speaker SPEAKER_26
transcript.pyannote[1014].start 6913.06034375
transcript.pyannote[1014].end 6914.68034375
transcript.pyannote[1015].speaker SPEAKER_03
transcript.pyannote[1015].start 6914.15721875
transcript.pyannote[1015].end 6915.64221875
transcript.pyannote[1016].speaker SPEAKER_26
transcript.pyannote[1016].start 6915.96284375
transcript.pyannote[1016].end 6921.81846875
transcript.pyannote[1017].speaker SPEAKER_02
transcript.pyannote[1017].start 6921.81846875
transcript.pyannote[1017].end 6922.17284375
transcript.pyannote[1018].speaker SPEAKER_26
transcript.pyannote[1018].start 6922.18971875
transcript.pyannote[1018].end 6933.64784375
transcript.pyannote[1019].speaker SPEAKER_20
transcript.pyannote[1019].start 6934.60971875
transcript.pyannote[1019].end 6935.01471875
transcript.pyannote[1020].speaker SPEAKER_20
transcript.pyannote[1020].start 6935.35221875
transcript.pyannote[1020].end 6941.25846875
transcript.pyannote[1021].speaker SPEAKER_20
transcript.pyannote[1021].start 6941.91659375
transcript.pyannote[1021].end 6948.85221875
transcript.pyannote[1022].speaker SPEAKER_20
transcript.pyannote[1022].start 6949.20659375
transcript.pyannote[1022].end 6955.45034375
transcript.pyannote[1023].speaker SPEAKER_20
transcript.pyannote[1023].start 6955.48409375
transcript.pyannote[1023].end 6960.81659375
transcript.pyannote[1024].speaker SPEAKER_26
transcript.pyannote[1024].start 6955.82159375
transcript.pyannote[1024].end 6956.04096875
transcript.pyannote[1025].speaker SPEAKER_02
transcript.pyannote[1025].start 6956.04096875
transcript.pyannote[1025].end 6956.05784375
transcript.pyannote[1026].speaker SPEAKER_26
transcript.pyannote[1026].start 6956.05784375
transcript.pyannote[1026].end 6956.14221875
transcript.pyannote[1027].speaker SPEAKER_26
transcript.pyannote[1027].start 6959.90534375
transcript.pyannote[1027].end 6961.08659375
transcript.pyannote[1028].speaker SPEAKER_20
transcript.pyannote[1028].start 6961.59284375
transcript.pyannote[1028].end 6962.99346875
transcript.pyannote[1029].speaker SPEAKER_26
transcript.pyannote[1029].start 6961.62659375
transcript.pyannote[1029].end 6962.23409375
transcript.pyannote[1030].speaker SPEAKER_26
transcript.pyannote[1030].start 6963.24659375
transcript.pyannote[1030].end 6964.12409375
transcript.pyannote[1031].speaker SPEAKER_20
transcript.pyannote[1031].start 6963.82034375
transcript.pyannote[1031].end 6964.86659375
transcript.pyannote[1032].speaker SPEAKER_26
transcript.pyannote[1032].start 6965.55846875
transcript.pyannote[1032].end 6967.76909375
transcript.pyannote[1033].speaker SPEAKER_26
transcript.pyannote[1033].start 6968.57909375
transcript.pyannote[1033].end 6969.10221875
transcript.pyannote[1034].speaker SPEAKER_26
transcript.pyannote[1034].start 6969.87846875
transcript.pyannote[1034].end 6979.51409375
transcript.pyannote[1035].speaker SPEAKER_26
transcript.pyannote[1035].start 6980.30721875
transcript.pyannote[1035].end 6982.12971875
transcript.pyannote[1036].speaker SPEAKER_20
transcript.pyannote[1036].start 6980.89784375
transcript.pyannote[1036].end 6981.40409375
transcript.pyannote[1037].speaker SPEAKER_20
transcript.pyannote[1037].start 6982.11284375
transcript.pyannote[1037].end 6983.63159375
transcript.pyannote[1038].speaker SPEAKER_20
transcript.pyannote[1038].start 6984.01971875
transcript.pyannote[1038].end 6987.56346875
transcript.pyannote[1039].speaker SPEAKER_20
transcript.pyannote[1039].start 6987.68159375
transcript.pyannote[1039].end 6997.24971875
transcript.pyannote[1040].speaker SPEAKER_20
transcript.pyannote[1040].start 6997.46909375
transcript.pyannote[1040].end 7005.34971875
transcript.pyannote[1041].speaker SPEAKER_26
transcript.pyannote[1041].start 7005.34971875
transcript.pyannote[1041].end 7010.53034375
transcript.pyannote[1042].speaker SPEAKER_26
transcript.pyannote[1042].start 7011.07034375
transcript.pyannote[1042].end 7035.18471875
transcript.pyannote[1043].speaker SPEAKER_20
transcript.pyannote[1043].start 7035.77534375
transcript.pyannote[1043].end 7042.50846875
transcript.pyannote[1044].speaker SPEAKER_20
transcript.pyannote[1044].start 7042.82909375
transcript.pyannote[1044].end 7047.97596875
transcript.pyannote[1045].speaker SPEAKER_20
transcript.pyannote[1045].start 7048.27971875
transcript.pyannote[1045].end 7048.92096875
transcript.pyannote[1046].speaker SPEAKER_20
transcript.pyannote[1046].start 7049.20784375
transcript.pyannote[1046].end 7054.20284375
transcript.pyannote[1047].speaker SPEAKER_20
transcript.pyannote[1047].start 7054.69221875
transcript.pyannote[1047].end 7058.70846875
transcript.pyannote[1048].speaker SPEAKER_20
transcript.pyannote[1048].start 7059.11346875
transcript.pyannote[1048].end 7069.32284375
transcript.pyannote[1049].speaker SPEAKER_20
transcript.pyannote[1049].start 7069.49159375
transcript.pyannote[1049].end 7075.87034375
transcript.pyannote[1050].speaker SPEAKER_26
transcript.pyannote[1050].start 7076.37659375
transcript.pyannote[1050].end 7087.63221875
transcript.pyannote[1051].speaker SPEAKER_20
transcript.pyannote[1051].start 7087.86846875
transcript.pyannote[1051].end 7089.40409375
transcript.pyannote[1052].speaker SPEAKER_26
transcript.pyannote[1052].start 7089.40409375
transcript.pyannote[1052].end 7090.18034375
transcript.pyannote[1053].speaker SPEAKER_20
transcript.pyannote[1053].start 7089.42096875
transcript.pyannote[1053].end 7089.60659375
transcript.pyannote[1054].speaker SPEAKER_19
transcript.pyannote[1054].start 7092.00284375
transcript.pyannote[1054].end 7096.20471875
transcript.pyannote[1055].speaker SPEAKER_27
transcript.pyannote[1055].start 7109.26596875
transcript.pyannote[1055].end 7111.45971875
transcript.pyannote[1056].speaker SPEAKER_19
transcript.pyannote[1056].start 7110.29534375
transcript.pyannote[1056].end 7110.39659375
transcript.pyannote[1057].speaker SPEAKER_19
transcript.pyannote[1057].start 7111.52721875
transcript.pyannote[1057].end 7112.42159375
transcript.pyannote[1058].speaker SPEAKER_27
transcript.pyannote[1058].start 7112.05034375
transcript.pyannote[1058].end 7112.20221875
transcript.pyannote[1059].speaker SPEAKER_19
transcript.pyannote[1059].start 7116.40409375
transcript.pyannote[1059].end 7116.96096875
transcript.pyannote[1060].speaker SPEAKER_27
transcript.pyannote[1060].start 7116.96096875
transcript.pyannote[1060].end 7130.35971875
transcript.pyannote[1061].speaker SPEAKER_27
transcript.pyannote[1061].start 7130.78159375
transcript.pyannote[1061].end 7134.44346875
transcript.pyannote[1062].speaker SPEAKER_27
transcript.pyannote[1062].start 7134.84846875
transcript.pyannote[1062].end 7147.55534375
transcript.pyannote[1063].speaker SPEAKER_20
transcript.pyannote[1063].start 7142.22284375
transcript.pyannote[1063].end 7142.27346875
transcript.pyannote[1064].speaker SPEAKER_02
transcript.pyannote[1064].start 7142.27346875
transcript.pyannote[1064].end 7142.47596875
transcript.pyannote[1065].speaker SPEAKER_20
transcript.pyannote[1065].start 7142.47596875
transcript.pyannote[1065].end 7142.57721875
transcript.pyannote[1066].speaker SPEAKER_20
transcript.pyannote[1066].start 7146.62721875
transcript.pyannote[1066].end 7152.90471875
transcript.pyannote[1067].speaker SPEAKER_20
transcript.pyannote[1067].start 7153.10721875
transcript.pyannote[1067].end 7156.21221875
transcript.pyannote[1068].speaker SPEAKER_27
transcript.pyannote[1068].start 7154.55846875
transcript.pyannote[1068].end 7154.82846875
transcript.pyannote[1069].speaker SPEAKER_20
transcript.pyannote[1069].start 7156.51596875
transcript.pyannote[1069].end 7160.05971875
transcript.pyannote[1070].speaker SPEAKER_20
transcript.pyannote[1070].start 7160.22846875
transcript.pyannote[1070].end 7162.92846875
transcript.pyannote[1071].speaker SPEAKER_20
transcript.pyannote[1071].start 7163.23221875
transcript.pyannote[1071].end 7167.19784375
transcript.pyannote[1072].speaker SPEAKER_20
transcript.pyannote[1072].start 7167.51846875
transcript.pyannote[1072].end 7169.20596875
transcript.pyannote[1073].speaker SPEAKER_20
transcript.pyannote[1073].start 7169.29034375
transcript.pyannote[1073].end 7174.60596875
transcript.pyannote[1074].speaker SPEAKER_20
transcript.pyannote[1074].start 7174.69034375
transcript.pyannote[1074].end 7183.22909375
transcript.pyannote[1075].speaker SPEAKER_20
transcript.pyannote[1075].start 7183.53284375
transcript.pyannote[1075].end 7200.45846875
transcript.pyannote[1076].speaker SPEAKER_20
transcript.pyannote[1076].start 7200.82971875
transcript.pyannote[1076].end 7202.41596875
transcript.pyannote[1077].speaker SPEAKER_20
transcript.pyannote[1077].start 7202.83784375
transcript.pyannote[1077].end 7212.70971875
transcript.pyannote[1078].speaker SPEAKER_20
transcript.pyannote[1078].start 7212.97971875
transcript.pyannote[1078].end 7217.16471875
transcript.pyannote[1079].speaker SPEAKER_20
transcript.pyannote[1079].start 7217.31659375
transcript.pyannote[1079].end 7217.55284375
transcript.pyannote[1080].speaker SPEAKER_27
transcript.pyannote[1080].start 7217.55284375
transcript.pyannote[1080].end 7233.82034375
transcript.pyannote[1081].speaker SPEAKER_02
transcript.pyannote[1081].start 7225.02846875
transcript.pyannote[1081].end 7225.24784375
transcript.pyannote[1082].speaker SPEAKER_27
transcript.pyannote[1082].start 7234.24221875
transcript.pyannote[1082].end 7248.48471875
transcript.pyannote[1083].speaker SPEAKER_02
transcript.pyannote[1083].start 7241.00909375
transcript.pyannote[1083].end 7241.51534375
transcript.pyannote[1084].speaker SPEAKER_27
transcript.pyannote[1084].start 7248.61971875
transcript.pyannote[1084].end 7250.69534375
transcript.pyannote[1085].speaker SPEAKER_27
transcript.pyannote[1085].start 7251.42096875
transcript.pyannote[1085].end 7255.04909375
transcript.pyannote[1086].speaker SPEAKER_27
transcript.pyannote[1086].start 7255.13346875
transcript.pyannote[1086].end 7266.87846875
transcript.pyannote[1087].speaker SPEAKER_20
transcript.pyannote[1087].start 7267.23284375
transcript.pyannote[1087].end 7276.44659375
transcript.pyannote[1088].speaker SPEAKER_20
transcript.pyannote[1088].start 7276.63221875
transcript.pyannote[1088].end 7278.77534375
transcript.pyannote[1089].speaker SPEAKER_20
transcript.pyannote[1089].start 7279.31534375
transcript.pyannote[1089].end 7281.37409375
transcript.pyannote[1090].speaker SPEAKER_20
transcript.pyannote[1090].start 7281.91409375
transcript.pyannote[1090].end 7289.55846875
transcript.pyannote[1091].speaker SPEAKER_27
transcript.pyannote[1091].start 7289.77784375
transcript.pyannote[1091].end 7297.72596875
transcript.pyannote[1092].speaker SPEAKER_20
transcript.pyannote[1092].start 7291.43159375
transcript.pyannote[1092].end 7293.40596875
transcript.pyannote[1093].speaker SPEAKER_20
transcript.pyannote[1093].start 7293.99659375
transcript.pyannote[1093].end 7302.11346875
transcript.pyannote[1094].speaker SPEAKER_27
transcript.pyannote[1094].start 7302.19784375
transcript.pyannote[1094].end 7303.36221875
transcript.pyannote[1095].speaker SPEAKER_20
transcript.pyannote[1095].start 7303.36221875
transcript.pyannote[1095].end 7312.86284375
transcript.pyannote[1096].speaker SPEAKER_27
transcript.pyannote[1096].start 7307.41221875
transcript.pyannote[1096].end 7308.74534375
transcript.pyannote[1097].speaker SPEAKER_27
transcript.pyannote[1097].start 7309.67346875
transcript.pyannote[1097].end 7313.95971875
transcript.pyannote[1098].speaker SPEAKER_20
transcript.pyannote[1098].start 7313.25096875
transcript.pyannote[1098].end 7318.39784375
transcript.pyannote[1099].speaker SPEAKER_27
transcript.pyannote[1099].start 7314.80346875
transcript.pyannote[1099].end 7315.05659375
transcript.pyannote[1100].speaker SPEAKER_27
transcript.pyannote[1100].start 7318.56659375
transcript.pyannote[1100].end 7325.55284375
transcript.pyannote[1101].speaker SPEAKER_27
transcript.pyannote[1101].start 7325.89034375
transcript.pyannote[1101].end 7356.13034375
transcript.pyannote[1102].speaker SPEAKER_27
transcript.pyannote[1102].start 7356.80534375
transcript.pyannote[1102].end 7361.88471875
transcript.pyannote[1103].speaker SPEAKER_20
transcript.pyannote[1103].start 7362.49221875
transcript.pyannote[1103].end 7368.70221875
transcript.pyannote[1104].speaker SPEAKER_20
transcript.pyannote[1104].start 7368.98909375
transcript.pyannote[1104].end 7372.31346875
transcript.pyannote[1105].speaker SPEAKER_20
transcript.pyannote[1105].start 7372.66784375
transcript.pyannote[1105].end 7378.69221875
transcript.pyannote[1106].speaker SPEAKER_20
transcript.pyannote[1106].start 7378.72596875
transcript.pyannote[1106].end 7380.46409375
transcript.pyannote[1107].speaker SPEAKER_20
transcript.pyannote[1107].start 7380.75096875
transcript.pyannote[1107].end 7385.74596875
transcript.pyannote[1108].speaker SPEAKER_20
transcript.pyannote[1108].start 7385.96534375
transcript.pyannote[1108].end 7390.75784375
transcript.pyannote[1109].speaker SPEAKER_20
transcript.pyannote[1109].start 7391.09534375
transcript.pyannote[1109].end 7392.24284375
transcript.pyannote[1110].speaker SPEAKER_20
transcript.pyannote[1110].start 7392.51284375
transcript.pyannote[1110].end 7395.14534375
transcript.pyannote[1111].speaker SPEAKER_20
transcript.pyannote[1111].start 7395.24659375
transcript.pyannote[1111].end 7403.46471875
transcript.pyannote[1112].speaker SPEAKER_02
transcript.pyannote[1112].start 7400.56221875
transcript.pyannote[1112].end 7400.76471875
transcript.pyannote[1113].speaker SPEAKER_20
transcript.pyannote[1113].start 7403.78534375
transcript.pyannote[1113].end 7404.47721875
transcript.pyannote[1114].speaker SPEAKER_20
transcript.pyannote[1114].start 7405.03409375
transcript.pyannote[1114].end 7418.33159375
transcript.pyannote[1115].speaker SPEAKER_20
transcript.pyannote[1115].start 7419.00659375
transcript.pyannote[1115].end 7423.51221875
transcript.pyannote[1116].speaker SPEAKER_27
transcript.pyannote[1116].start 7423.61346875
transcript.pyannote[1116].end 7431.07221875
transcript.pyannote[1117].speaker SPEAKER_20
transcript.pyannote[1117].start 7426.88721875
transcript.pyannote[1117].end 7427.51159375
transcript.pyannote[1118].speaker SPEAKER_20
transcript.pyannote[1118].start 7429.80659375
transcript.pyannote[1118].end 7440.99471875
transcript.pyannote[1119].speaker SPEAKER_27
transcript.pyannote[1119].start 7432.00034375
transcript.pyannote[1119].end 7432.40534375
transcript.pyannote[1120].speaker SPEAKER_20
transcript.pyannote[1120].start 7441.11284375
transcript.pyannote[1120].end 7443.59346875
transcript.pyannote[1121].speaker SPEAKER_20
transcript.pyannote[1121].start 7443.82971875
transcript.pyannote[1121].end 7454.59596875
transcript.pyannote[1122].speaker SPEAKER_02
transcript.pyannote[1122].start 7450.56284375
transcript.pyannote[1122].end 7450.61346875
transcript.pyannote[1123].speaker SPEAKER_27
transcript.pyannote[1123].start 7450.61346875
transcript.pyannote[1123].end 7450.88346875
transcript.pyannote[1124].speaker SPEAKER_02
transcript.pyannote[1124].start 7450.88346875
transcript.pyannote[1124].end 7450.90034375
transcript.pyannote[1125].speaker SPEAKER_27
transcript.pyannote[1125].start 7454.59596875
transcript.pyannote[1125].end 7461.27846875
transcript.pyannote[1126].speaker SPEAKER_20
transcript.pyannote[1126].start 7458.56159375
transcript.pyannote[1126].end 7459.01721875
transcript.pyannote[1127].speaker SPEAKER_27
transcript.pyannote[1127].start 7461.54846875
transcript.pyannote[1127].end 7494.47159375
transcript.pyannote[1128].speaker SPEAKER_00
transcript.pyannote[1128].start 7466.77971875
transcript.pyannote[1128].end 7467.53909375
transcript.pyannote[1129].speaker SPEAKER_20
transcript.pyannote[1129].start 7490.84346875
transcript.pyannote[1129].end 7491.02909375
transcript.pyannote[1130].speaker SPEAKER_02
transcript.pyannote[1130].start 7491.02909375
transcript.pyannote[1130].end 7491.06284375
transcript.pyannote[1131].speaker SPEAKER_20
transcript.pyannote[1131].start 7493.18909375
transcript.pyannote[1131].end 7496.27721875
transcript.pyannote[1132].speaker SPEAKER_27
transcript.pyannote[1132].start 7495.21409375
transcript.pyannote[1132].end 7505.54159375
transcript.pyannote[1133].speaker SPEAKER_27
transcript.pyannote[1133].start 7505.76096875
transcript.pyannote[1133].end 7507.14471875
transcript.pyannote[1134].speaker SPEAKER_27
transcript.pyannote[1134].start 7507.46534375
transcript.pyannote[1134].end 7509.97971875
transcript.pyannote[1135].speaker SPEAKER_27
transcript.pyannote[1135].start 7510.43534375
transcript.pyannote[1135].end 7533.09846875
transcript.pyannote[1136].speaker SPEAKER_20
transcript.pyannote[1136].start 7527.58034375
transcript.pyannote[1136].end 7528.08659375
transcript.pyannote[1137].speaker SPEAKER_00
transcript.pyannote[1137].start 7528.08659375
transcript.pyannote[1137].end 7528.17096875
transcript.pyannote[1138].speaker SPEAKER_00
transcript.pyannote[1138].start 7528.25534375
transcript.pyannote[1138].end 7528.50846875
transcript.pyannote[1139].speaker SPEAKER_20
transcript.pyannote[1139].start 7528.50846875
transcript.pyannote[1139].end 7529.95971875
transcript.pyannote[1140].speaker SPEAKER_20
transcript.pyannote[1140].start 7530.26346875
transcript.pyannote[1140].end 7530.98909375
transcript.pyannote[1141].speaker SPEAKER_20
transcript.pyannote[1141].start 7531.29284375
transcript.pyannote[1141].end 7536.81096875
transcript.pyannote[1142].speaker SPEAKER_27
transcript.pyannote[1142].start 7536.60846875
transcript.pyannote[1142].end 7536.69284375
transcript.pyannote[1143].speaker SPEAKER_27
transcript.pyannote[1143].start 7536.81096875
transcript.pyannote[1143].end 7536.84471875
transcript.pyannote[1144].speaker SPEAKER_20
transcript.pyannote[1144].start 7536.84471875
transcript.pyannote[1144].end 7540.64159375
transcript.pyannote[1145].speaker SPEAKER_20
transcript.pyannote[1145].start 7540.94534375
transcript.pyannote[1145].end 7545.72096875
transcript.pyannote[1146].speaker SPEAKER_05
transcript.pyannote[1146].start 7545.88971875
transcript.pyannote[1146].end 7546.31159375
transcript.pyannote[1147].speaker SPEAKER_20
transcript.pyannote[1147].start 7546.09221875
transcript.pyannote[1147].end 7546.63221875
transcript.pyannote[1148].speaker SPEAKER_20
transcript.pyannote[1148].start 7547.25659375
transcript.pyannote[1148].end 7551.76221875
transcript.pyannote[1149].speaker SPEAKER_20
transcript.pyannote[1149].start 7551.96471875
transcript.pyannote[1149].end 7552.40346875
transcript.pyannote[1150].speaker SPEAKER_20
transcript.pyannote[1150].start 7552.90971875
transcript.pyannote[1150].end 7554.02346875
transcript.pyannote[1151].speaker SPEAKER_20
transcript.pyannote[1151].start 7554.41159375
transcript.pyannote[1151].end 7559.71034375
transcript.pyannote[1152].speaker SPEAKER_20
transcript.pyannote[1152].start 7559.91284375
transcript.pyannote[1152].end 7565.41409375
transcript.pyannote[1153].speaker SPEAKER_20
transcript.pyannote[1153].start 7566.08909375
transcript.pyannote[1153].end 7575.65721875
transcript.pyannote[1154].speaker SPEAKER_20
transcript.pyannote[1154].start 7575.79221875
transcript.pyannote[1154].end 7579.52159375
transcript.pyannote[1155].speaker SPEAKER_00
transcript.pyannote[1155].start 7577.85096875
transcript.pyannote[1155].end 7578.05346875
transcript.pyannote[1156].speaker SPEAKER_20
transcript.pyannote[1156].start 7579.75784375
transcript.pyannote[1156].end 7582.42409375
transcript.pyannote[1157].speaker SPEAKER_20
transcript.pyannote[1157].start 7582.71096875
transcript.pyannote[1157].end 7587.72284375
transcript.pyannote[1158].speaker SPEAKER_20
transcript.pyannote[1158].start 7587.90846875
transcript.pyannote[1158].end 7595.65409375
transcript.pyannote[1159].speaker SPEAKER_27
transcript.pyannote[1159].start 7592.85284375
transcript.pyannote[1159].end 7593.71346875
transcript.pyannote[1160].speaker SPEAKER_27
transcript.pyannote[1160].start 7595.90721875
transcript.pyannote[1160].end 7600.90221875
transcript.pyannote[1161].speaker SPEAKER_20
transcript.pyannote[1161].start 7596.02534375
transcript.pyannote[1161].end 7596.49784375
transcript.pyannote[1162].speaker SPEAKER_20
transcript.pyannote[1162].start 7599.23159375
transcript.pyannote[1162].end 7599.70409375
transcript.pyannote[1163].speaker SPEAKER_20
transcript.pyannote[1163].start 7600.48034375
transcript.pyannote[1163].end 7607.16284375
transcript.pyannote[1164].speaker SPEAKER_27
transcript.pyannote[1164].start 7601.10471875
transcript.pyannote[1164].end 7603.28159375
transcript.pyannote[1165].speaker SPEAKER_20
transcript.pyannote[1165].start 7607.56784375
transcript.pyannote[1165].end 7611.43221875
transcript.pyannote[1166].speaker SPEAKER_20
transcript.pyannote[1166].start 7611.44909375
transcript.pyannote[1166].end 7617.20346875
transcript.pyannote[1167].speaker SPEAKER_27
transcript.pyannote[1167].start 7617.38909375
transcript.pyannote[1167].end 7656.52221875
transcript.pyannote[1168].speaker SPEAKER_02
transcript.pyannote[1168].start 7640.03534375
transcript.pyannote[1168].end 7640.05221875
transcript.pyannote[1169].speaker SPEAKER_02
transcript.pyannote[1169].start 7641.57096875
transcript.pyannote[1169].end 7641.65534375
transcript.pyannote[1170].speaker SPEAKER_27
transcript.pyannote[1170].start 7656.55596875
transcript.pyannote[1170].end 7674.37596875
transcript.pyannote[1171].speaker SPEAKER_21
transcript.pyannote[1171].start 7673.02596875
transcript.pyannote[1171].end 7701.13971875
transcript.pyannote[1172].speaker SPEAKER_21
transcript.pyannote[1172].start 7702.16909375
transcript.pyannote[1172].end 7708.41284375
transcript.pyannote[1173].speaker SPEAKER_21
transcript.pyannote[1173].start 7709.27346875
transcript.pyannote[1173].end 7718.03159375
transcript.pyannote[1174].speaker SPEAKER_21
transcript.pyannote[1174].start 7718.18346875
transcript.pyannote[1174].end 7722.53721875
transcript.pyannote[1175].speaker SPEAKER_21
transcript.pyannote[1175].start 7723.06034375
transcript.pyannote[1175].end 7733.05034375
transcript.pyannote[1176].speaker SPEAKER_21
transcript.pyannote[1176].start 7733.20221875
transcript.pyannote[1176].end 7736.03721875
transcript.pyannote[1177].speaker SPEAKER_21
transcript.pyannote[1177].start 7736.57721875
transcript.pyannote[1177].end 7742.90534375
transcript.pyannote[1178].speaker SPEAKER_21
transcript.pyannote[1178].start 7743.29346875
transcript.pyannote[1178].end 7747.02284375
transcript.pyannote[1179].speaker SPEAKER_21
transcript.pyannote[1179].start 7747.09034375
transcript.pyannote[1179].end 7752.15284375
transcript.pyannote[1180].speaker SPEAKER_21
transcript.pyannote[1180].start 7752.23721875
transcript.pyannote[1180].end 7752.82784375
transcript.pyannote[1181].speaker SPEAKER_27
transcript.pyannote[1181].start 7753.58721875
transcript.pyannote[1181].end 7760.35409375
transcript.pyannote[1182].speaker SPEAKER_21
transcript.pyannote[1182].start 7754.16096875
transcript.pyannote[1182].end 7755.78096875
transcript.pyannote[1183].speaker SPEAKER_09
transcript.pyannote[1183].start 7759.25721875
transcript.pyannote[1183].end 7759.44284375
transcript.pyannote[1184].speaker SPEAKER_02
transcript.pyannote[1184].start 7759.44284375
transcript.pyannote[1184].end 7759.71284375
transcript.pyannote[1185].speaker SPEAKER_19
transcript.pyannote[1185].start 7759.71284375
transcript.pyannote[1185].end 7764.18471875
transcript.pyannote[1186].speaker SPEAKER_12
transcript.pyannote[1186].start 7778.78159375
transcript.pyannote[1186].end 7778.86596875
transcript.pyannote[1187].speaker SPEAKER_12
transcript.pyannote[1187].start 7778.96721875
transcript.pyannote[1187].end 7778.98409375
transcript.pyannote[1188].speaker SPEAKER_12
transcript.pyannote[1188].start 7779.01784375
transcript.pyannote[1188].end 7779.27096875
transcript.pyannote[1189].speaker SPEAKER_12
transcript.pyannote[1189].start 7779.28784375
transcript.pyannote[1189].end 7779.32159375
transcript.pyannote[1190].speaker SPEAKER_12
transcript.pyannote[1190].start 7779.33846875
transcript.pyannote[1190].end 7779.40596875
transcript.pyannote[1191].speaker SPEAKER_12
transcript.pyannote[1191].start 7780.31721875
transcript.pyannote[1191].end 7780.40159375
transcript.pyannote[1192].speaker SPEAKER_12
transcript.pyannote[1192].start 7780.87409375
transcript.pyannote[1192].end 7783.18596875
transcript.pyannote[1193].speaker SPEAKER_12
transcript.pyannote[1193].start 7783.21971875
transcript.pyannote[1193].end 7787.03346875
transcript.pyannote[1194].speaker SPEAKER_12
transcript.pyannote[1194].start 7787.05034375
transcript.pyannote[1194].end 7787.08409375
transcript.pyannote[1195].speaker SPEAKER_12
transcript.pyannote[1195].start 7787.10096875
transcript.pyannote[1195].end 7789.59846875
transcript.pyannote[1196].speaker SPEAKER_12
transcript.pyannote[1196].start 7790.98221875
transcript.pyannote[1196].end 7791.03284375
transcript.pyannote[1197].speaker SPEAKER_12
transcript.pyannote[1197].start 7794.30659375
transcript.pyannote[1197].end 7794.81284375
transcript.pyannote[1198].speaker SPEAKER_19
transcript.pyannote[1198].start 8387.19284375
transcript.pyannote[1198].end 8389.38659375
transcript.pyannote[1199].speaker SPEAKER_13
transcript.pyannote[1199].start 8394.17909375
transcript.pyannote[1199].end 8399.14034375
transcript.pyannote[1200].speaker SPEAKER_13
transcript.pyannote[1200].start 8402.88659375
transcript.pyannote[1200].end 8418.54659375
transcript.pyannote[1201].speaker SPEAKER_20
transcript.pyannote[1201].start 8418.54659375
transcript.pyannote[1201].end 8419.03596875
transcript.pyannote[1202].speaker SPEAKER_13
transcript.pyannote[1202].start 8419.45784375
transcript.pyannote[1202].end 8420.06534375
transcript.pyannote[1203].speaker SPEAKER_13
transcript.pyannote[1203].start 8420.36909375
transcript.pyannote[1203].end 8420.74034375
transcript.pyannote[1204].speaker SPEAKER_13
transcript.pyannote[1204].start 8420.97659375
transcript.pyannote[1204].end 8457.29159375
transcript.pyannote[1205].speaker SPEAKER_13
transcript.pyannote[1205].start 8457.56159375
transcript.pyannote[1205].end 8546.79659375
transcript.pyannote[1206].speaker SPEAKER_20
transcript.pyannote[1206].start 8546.79659375
transcript.pyannote[1206].end 8546.84721875
transcript.pyannote[1207].speaker SPEAKER_02
transcript.pyannote[1207].start 8546.84721875
transcript.pyannote[1207].end 8547.01596875
transcript.pyannote[1208].speaker SPEAKER_20
transcript.pyannote[1208].start 8547.01596875
transcript.pyannote[1208].end 8547.03284375
transcript.pyannote[1209].speaker SPEAKER_02
transcript.pyannote[1209].start 8547.03284375
transcript.pyannote[1209].end 8547.04971875
transcript.pyannote[1210].speaker SPEAKER_20
transcript.pyannote[1210].start 8547.99471875
transcript.pyannote[1210].end 8548.21409375
transcript.pyannote[1211].speaker SPEAKER_20
transcript.pyannote[1211].start 8549.74971875
transcript.pyannote[1211].end 8550.52596875
transcript.pyannote[1212].speaker SPEAKER_20
transcript.pyannote[1212].start 8550.84659375
transcript.pyannote[1212].end 8554.99784375
transcript.pyannote[1213].speaker SPEAKER_20
transcript.pyannote[1213].start 8555.52096875
transcript.pyannote[1213].end 8557.93409375
transcript.pyannote[1214].speaker SPEAKER_13
transcript.pyannote[1214].start 8556.75284375
transcript.pyannote[1214].end 8559.38534375
transcript.pyannote[1215].speaker SPEAKER_13
transcript.pyannote[1215].start 8559.58784375
transcript.pyannote[1215].end 8588.59596875
transcript.pyannote[1216].speaker SPEAKER_13
transcript.pyannote[1216].start 8588.95034375
transcript.pyannote[1216].end 8626.09221875
transcript.pyannote[1217].speaker SPEAKER_13
transcript.pyannote[1217].start 8627.10471875
transcript.pyannote[1217].end 8699.81909375
transcript.pyannote[1218].speaker SPEAKER_13
transcript.pyannote[1218].start 8700.07221875
transcript.pyannote[1218].end 8716.60971875
transcript.pyannote[1219].speaker SPEAKER_13
transcript.pyannote[1219].start 8717.06534375
transcript.pyannote[1219].end 8718.85409375
transcript.pyannote[1220].speaker SPEAKER_13
transcript.pyannote[1220].start 8719.19159375
transcript.pyannote[1220].end 8760.31596875
transcript.pyannote[1221].speaker SPEAKER_20
transcript.pyannote[1221].start 8760.77159375
transcript.pyannote[1221].end 8767.58909375
transcript.pyannote[1222].speaker SPEAKER_13
transcript.pyannote[1222].start 8766.77909375
transcript.pyannote[1222].end 8775.13221875
transcript.pyannote[1223].speaker SPEAKER_13
transcript.pyannote[1223].start 8775.72284375
transcript.pyannote[1223].end 8782.42221875
transcript.pyannote[1224].speaker SPEAKER_13
transcript.pyannote[1224].start 8782.59096875
transcript.pyannote[1224].end 8783.13096875
transcript.pyannote[1225].speaker SPEAKER_13
transcript.pyannote[1225].start 8783.35034375
transcript.pyannote[1225].end 8803.46534375
transcript.pyannote[1226].speaker SPEAKER_02
transcript.pyannote[1226].start 8803.22909375
transcript.pyannote[1226].end 8803.68471875
transcript.pyannote[1227].speaker SPEAKER_13
transcript.pyannote[1227].start 8803.68471875
transcript.pyannote[1227].end 8828.03534375
transcript.pyannote[1228].speaker SPEAKER_13
transcript.pyannote[1228].start 8828.06909375
transcript.pyannote[1228].end 8828.79471875
transcript.pyannote[1229].speaker SPEAKER_13
transcript.pyannote[1229].start 8829.43596875
transcript.pyannote[1229].end 8849.38221875
transcript.pyannote[1230].speaker SPEAKER_13
transcript.pyannote[1230].start 8849.98971875
transcript.pyannote[1230].end 8864.01284375
transcript.pyannote[1231].speaker SPEAKER_13
transcript.pyannote[1231].start 8864.55284375
transcript.pyannote[1231].end 8886.84471875
transcript.pyannote[1232].speaker SPEAKER_13
transcript.pyannote[1232].start 8887.08096875
transcript.pyannote[1232].end 8898.58971875
transcript.pyannote[1233].speaker SPEAKER_13
transcript.pyannote[1233].start 8898.84284375
transcript.pyannote[1233].end 8901.89721875
transcript.pyannote[1234].speaker SPEAKER_13
transcript.pyannote[1234].start 8902.26846875
transcript.pyannote[1234].end 8903.58471875
transcript.pyannote[1235].speaker SPEAKER_13
transcript.pyannote[1235].start 8903.85471875
transcript.pyannote[1235].end 8907.29721875
transcript.pyannote[1236].speaker SPEAKER_20
transcript.pyannote[1236].start 8908.03971875
transcript.pyannote[1236].end 8914.13159375
transcript.pyannote[1237].speaker SPEAKER_20
transcript.pyannote[1237].start 8914.33409375
transcript.pyannote[1237].end 8918.24909375
transcript.pyannote[1238].speaker SPEAKER_20
transcript.pyannote[1238].start 8918.40096875
transcript.pyannote[1238].end 8923.93596875
transcript.pyannote[1239].speaker SPEAKER_13
transcript.pyannote[1239].start 8922.36659375
transcript.pyannote[1239].end 8926.43346875
transcript.pyannote[1240].speaker SPEAKER_20
transcript.pyannote[1240].start 8924.17221875
transcript.pyannote[1240].end 8938.36409375
transcript.pyannote[1241].speaker SPEAKER_13
transcript.pyannote[1241].start 8926.73721875
transcript.pyannote[1241].end 8927.02409375
transcript.pyannote[1242].speaker SPEAKER_13
transcript.pyannote[1242].start 8927.04096875
transcript.pyannote[1242].end 8927.07471875
transcript.pyannote[1243].speaker SPEAKER_13
transcript.pyannote[1243].start 8938.36409375
transcript.pyannote[1243].end 8956.26846875
transcript.pyannote[1244].speaker SPEAKER_20
transcript.pyannote[1244].start 8938.38096875
transcript.pyannote[1244].end 8940.22034375
transcript.pyannote[1245].speaker SPEAKER_20
transcript.pyannote[1245].start 8956.97721875
transcript.pyannote[1245].end 8968.14846875
transcript.pyannote[1246].speaker SPEAKER_13
transcript.pyannote[1246].start 8966.27534375
transcript.pyannote[1246].end 8982.42471875
transcript.pyannote[1247].speaker SPEAKER_20
transcript.pyannote[1247].start 8971.65846875
transcript.pyannote[1247].end 8972.21534375
transcript.pyannote[1248].speaker SPEAKER_13
transcript.pyannote[1248].start 8983.84221875
transcript.pyannote[1248].end 8993.19096875
transcript.pyannote[1249].speaker SPEAKER_13
transcript.pyannote[1249].start 8994.01784375
transcript.pyannote[1249].end 9011.16284375
transcript.pyannote[1250].speaker SPEAKER_13
transcript.pyannote[1250].start 9011.39909375
transcript.pyannote[1250].end 9013.23846875
transcript.pyannote[1251].speaker SPEAKER_13
transcript.pyannote[1251].start 9013.39034375
transcript.pyannote[1251].end 9029.75909375
transcript.pyannote[1252].speaker SPEAKER_13
transcript.pyannote[1252].start 9029.84346875
transcript.pyannote[1252].end 9031.39596875
transcript.pyannote[1253].speaker SPEAKER_13
transcript.pyannote[1253].start 9031.73346875
transcript.pyannote[1253].end 9035.53034375
transcript.pyannote[1254].speaker SPEAKER_13
transcript.pyannote[1254].start 9035.76659375
transcript.pyannote[1254].end 9049.43534375
transcript.pyannote[1255].speaker SPEAKER_13
transcript.pyannote[1255].start 9050.09346875
transcript.pyannote[1255].end 9070.52909375
transcript.pyannote[1256].speaker SPEAKER_13
transcript.pyannote[1256].start 9071.18721875
transcript.pyannote[1256].end 9073.02659375
transcript.pyannote[1257].speaker SPEAKER_20
transcript.pyannote[1257].start 9071.20409375
transcript.pyannote[1257].end 9071.25471875
transcript.pyannote[1258].speaker SPEAKER_20
transcript.pyannote[1258].start 9071.27159375
transcript.pyannote[1258].end 9072.43596875
transcript.pyannote[1259].speaker SPEAKER_20
transcript.pyannote[1259].start 9072.55409375
transcript.pyannote[1259].end 9072.68909375
transcript.pyannote[1260].speaker SPEAKER_20
transcript.pyannote[1260].start 9072.70596875
transcript.pyannote[1260].end 9072.72284375
transcript.pyannote[1261].speaker SPEAKER_20
transcript.pyannote[1261].start 9073.02659375
transcript.pyannote[1261].end 9073.65096875
transcript.pyannote[1262].speaker SPEAKER_13
transcript.pyannote[1262].start 9073.65096875
transcript.pyannote[1262].end 9082.05471875
transcript.pyannote[1263].speaker SPEAKER_20
transcript.pyannote[1263].start 9073.70159375
transcript.pyannote[1263].end 9074.89971875
transcript.pyannote[1264].speaker SPEAKER_13
transcript.pyannote[1264].start 9082.32471875
transcript.pyannote[1264].end 9085.17659375
transcript.pyannote[1265].speaker SPEAKER_13
transcript.pyannote[1265].start 9085.61534375
transcript.pyannote[1265].end 9088.34909375
transcript.pyannote[1266].speaker SPEAKER_13
transcript.pyannote[1266].start 9089.66534375
transcript.pyannote[1266].end 9099.65534375
transcript.pyannote[1267].speaker SPEAKER_20
transcript.pyannote[1267].start 9100.48221875
transcript.pyannote[1267].end 9100.78596875
transcript.pyannote[1268].speaker SPEAKER_20
transcript.pyannote[1268].start 9101.54534375
transcript.pyannote[1268].end 9104.44784375
transcript.pyannote[1269].speaker SPEAKER_13
transcript.pyannote[1269].start 9103.40159375
transcript.pyannote[1269].end 9109.29096875
transcript.pyannote[1270].speaker SPEAKER_20
transcript.pyannote[1270].start 9109.29096875
transcript.pyannote[1270].end 9109.30784375
transcript.pyannote[1271].speaker SPEAKER_20
transcript.pyannote[1271].start 9110.64096875
transcript.pyannote[1271].end 9127.04346875
transcript.pyannote[1272].speaker SPEAKER_13
transcript.pyannote[1272].start 9127.04346875
transcript.pyannote[1272].end 9157.21596875
transcript.pyannote[1273].speaker SPEAKER_20
transcript.pyannote[1273].start 9127.09409375
transcript.pyannote[1273].end 9127.14471875
transcript.pyannote[1274].speaker SPEAKER_00
transcript.pyannote[1274].start 9140.64471875
transcript.pyannote[1274].end 9140.71221875
transcript.pyannote[1275].speaker SPEAKER_10
transcript.pyannote[1275].start 9140.71221875
transcript.pyannote[1275].end 9141.75846875
transcript.pyannote[1276].speaker SPEAKER_00
transcript.pyannote[1276].start 9141.75846875
transcript.pyannote[1276].end 9141.80909375
transcript.pyannote[1277].speaker SPEAKER_13
transcript.pyannote[1277].start 9159.79784375
transcript.pyannote[1277].end 9160.16909375
transcript.pyannote[1278].speaker SPEAKER_13
transcript.pyannote[1278].start 9160.97909375
transcript.pyannote[1278].end 9177.11159375
transcript.pyannote[1279].speaker SPEAKER_13
transcript.pyannote[1279].start 9177.31409375
transcript.pyannote[1279].end 9206.10284375
transcript.pyannote[1280].speaker SPEAKER_13
transcript.pyannote[1280].start 9207.26721875
transcript.pyannote[1280].end 9215.48534375
transcript.pyannote[1281].speaker SPEAKER_13
transcript.pyannote[1281].start 9216.36284375
transcript.pyannote[1281].end 9217.02096875
transcript.pyannote[1282].speaker SPEAKER_13
transcript.pyannote[1282].start 9218.15159375
transcript.pyannote[1282].end 9219.94034375
transcript.pyannote[1283].speaker SPEAKER_13
transcript.pyannote[1283].start 9219.95721875
transcript.pyannote[1283].end 9220.00784375
transcript.pyannote[1284].speaker SPEAKER_13
transcript.pyannote[1284].start 9220.42971875
transcript.pyannote[1284].end 9246.02909375
transcript.pyannote[1285].speaker SPEAKER_13
transcript.pyannote[1285].start 9246.21471875
transcript.pyannote[1285].end 9260.17034375
transcript.pyannote[1286].speaker SPEAKER_13
transcript.pyannote[1286].start 9261.06471875
transcript.pyannote[1286].end 9310.18784375
transcript.pyannote[1287].speaker SPEAKER_13
transcript.pyannote[1287].start 9310.99784375
transcript.pyannote[1287].end 9327.63659375
transcript.pyannote[1288].speaker SPEAKER_13
transcript.pyannote[1288].start 9328.15971875
transcript.pyannote[1288].end 9338.60534375
transcript.pyannote[1289].speaker SPEAKER_20
transcript.pyannote[1289].start 9337.47471875
transcript.pyannote[1289].end 9337.52534375
transcript.pyannote[1290].speaker SPEAKER_20
transcript.pyannote[1290].start 9337.87971875
transcript.pyannote[1290].end 9340.00596875
transcript.pyannote[1291].speaker SPEAKER_13
transcript.pyannote[1291].start 9340.00596875
transcript.pyannote[1291].end 9401.16096875
transcript.pyannote[1292].speaker SPEAKER_02
transcript.pyannote[1292].start 9345.01784375
transcript.pyannote[1292].end 9348.27471875
transcript.pyannote[1293].speaker SPEAKER_13
transcript.pyannote[1293].start 9401.41409375
transcript.pyannote[1293].end 9419.14971875
transcript.pyannote[1294].speaker SPEAKER_13
transcript.pyannote[1294].start 9419.43659375
transcript.pyannote[1294].end 9421.32659375
transcript.pyannote[1295].speaker SPEAKER_19
transcript.pyannote[1295].start 9421.32659375
transcript.pyannote[1295].end 9431.45159375
transcript.pyannote[1296].speaker SPEAKER_13
transcript.pyannote[1296].start 9421.86659375
transcript.pyannote[1296].end 9423.21659375
transcript.pyannote[1297].speaker SPEAKER_13
transcript.pyannote[1297].start 9424.49909375
transcript.pyannote[1297].end 9428.68409375
transcript.pyannote[1298].speaker SPEAKER_13
transcript.pyannote[1298].start 9431.89034375
transcript.pyannote[1298].end 9449.03534375
transcript.pyannote[1299].speaker SPEAKER_19
transcript.pyannote[1299].start 9432.71721875
transcript.pyannote[1299].end 9433.05471875
transcript.pyannote[1300].speaker SPEAKER_13
transcript.pyannote[1300].start 9449.45721875
transcript.pyannote[1300].end 9475.30971875
transcript.pyannote[1301].speaker SPEAKER_20
transcript.pyannote[1301].start 9474.83721875
transcript.pyannote[1301].end 9480.54096875
transcript.pyannote[1302].speaker SPEAKER_13
transcript.pyannote[1302].start 9478.46534375
transcript.pyannote[1302].end 9496.03221875
transcript.pyannote[1303].speaker SPEAKER_20
transcript.pyannote[1303].start 9481.04721875
transcript.pyannote[1303].end 9483.96659375
transcript.pyannote[1304].speaker SPEAKER_02
transcript.pyannote[1304].start 9483.96659375
transcript.pyannote[1304].end 9484.01721875
transcript.pyannote[1305].speaker SPEAKER_13
transcript.pyannote[1305].start 9496.42034375
transcript.pyannote[1305].end 9502.02284375
transcript.pyannote[1306].speaker SPEAKER_19
transcript.pyannote[1306].start 9502.02284375
transcript.pyannote[1306].end 9503.08596875
transcript.pyannote[1307].speaker SPEAKER_19
transcript.pyannote[1307].start 9503.28846875
transcript.pyannote[1307].end 9506.19096875
transcript.pyannote[1308].speaker SPEAKER_19
transcript.pyannote[1308].start 9507.18659375
transcript.pyannote[1308].end 9507.47346875
transcript.pyannote[1309].speaker SPEAKER_19
transcript.pyannote[1309].start 9508.31721875
transcript.pyannote[1309].end 9511.54034375
transcript.pyannote[1310].speaker SPEAKER_01
transcript.pyannote[1310].start 9520.53471875
transcript.pyannote[1310].end 9522.40784375
transcript.pyannote[1311].speaker SPEAKER_19
transcript.pyannote[1311].start 9522.54284375
transcript.pyannote[1311].end 9523.36971875
transcript.pyannote[1312].speaker SPEAKER_19
transcript.pyannote[1312].start 9526.67721875
transcript.pyannote[1312].end 9527.04846875
transcript.pyannote[1313].speaker SPEAKER_01
transcript.pyannote[1313].start 9527.04846875
transcript.pyannote[1313].end 9528.22971875
transcript.pyannote[1314].speaker SPEAKER_19
transcript.pyannote[1314].start 9527.11596875
transcript.pyannote[1314].end 9527.18346875
transcript.pyannote[1315].speaker SPEAKER_01
transcript.pyannote[1315].start 9529.03971875
transcript.pyannote[1315].end 9529.98471875
transcript.pyannote[1316].speaker SPEAKER_01
transcript.pyannote[1316].start 9530.37284375
transcript.pyannote[1316].end 9531.90846875
transcript.pyannote[1317].speaker SPEAKER_01
transcript.pyannote[1317].start 9531.95909375
transcript.pyannote[1317].end 9533.69721875
transcript.pyannote[1318].speaker SPEAKER_20
transcript.pyannote[1318].start 9533.37659375
transcript.pyannote[1318].end 9533.64659375
transcript.pyannote[1319].speaker SPEAKER_01
transcript.pyannote[1319].start 9534.25409375
transcript.pyannote[1319].end 9537.29159375
transcript.pyannote[1320].speaker SPEAKER_01
transcript.pyannote[1320].start 9538.05096875
transcript.pyannote[1320].end 9539.45159375
transcript.pyannote[1321].speaker SPEAKER_01
transcript.pyannote[1321].start 9539.92409375
transcript.pyannote[1321].end 9544.83471875
transcript.pyannote[1322].speaker SPEAKER_01
transcript.pyannote[1322].start 9545.12159375
transcript.pyannote[1322].end 9554.04846875
transcript.pyannote[1323].speaker SPEAKER_01
transcript.pyannote[1323].start 9555.06096875
transcript.pyannote[1323].end 9558.13221875
transcript.pyannote[1324].speaker SPEAKER_01
transcript.pyannote[1324].start 9558.57096875
transcript.pyannote[1324].end 9559.63409375
transcript.pyannote[1325].speaker SPEAKER_00
transcript.pyannote[1325].start 9558.63846875
transcript.pyannote[1325].end 9558.84096875
transcript.pyannote[1326].speaker SPEAKER_01
transcript.pyannote[1326].start 9560.17409375
transcript.pyannote[1326].end 9565.48971875
transcript.pyannote[1327].speaker SPEAKER_01
transcript.pyannote[1327].start 9566.33346875
transcript.pyannote[1327].end 9568.12221875
transcript.pyannote[1328].speaker SPEAKER_01
transcript.pyannote[1328].start 9569.05034375
transcript.pyannote[1328].end 9569.91096875
transcript.pyannote[1329].speaker SPEAKER_01
transcript.pyannote[1329].start 9570.43409375
transcript.pyannote[1329].end 9571.85159375
transcript.pyannote[1330].speaker SPEAKER_01
transcript.pyannote[1330].start 9572.27346875
transcript.pyannote[1330].end 9573.87659375
transcript.pyannote[1331].speaker SPEAKER_01
transcript.pyannote[1331].start 9574.48409375
transcript.pyannote[1331].end 9576.64409375
transcript.pyannote[1332].speaker SPEAKER_01
transcript.pyannote[1332].start 9577.36971875
transcript.pyannote[1332].end 9590.71784375
transcript.pyannote[1333].speaker SPEAKER_01
transcript.pyannote[1333].start 9591.52784375
transcript.pyannote[1333].end 9593.92409375
transcript.pyannote[1334].speaker SPEAKER_20
transcript.pyannote[1334].start 9594.32909375
transcript.pyannote[1334].end 9599.71221875
transcript.pyannote[1335].speaker SPEAKER_01
transcript.pyannote[1335].start 9597.68721875
transcript.pyannote[1335].end 9602.66534375
transcript.pyannote[1336].speaker SPEAKER_20
transcript.pyannote[1336].start 9602.58096875
transcript.pyannote[1336].end 9603.05346875
transcript.pyannote[1337].speaker SPEAKER_01
transcript.pyannote[1337].start 9603.05346875
transcript.pyannote[1337].end 9605.58471875
transcript.pyannote[1338].speaker SPEAKER_20
transcript.pyannote[1338].start 9604.65659375
transcript.pyannote[1338].end 9607.32284375
transcript.pyannote[1339].speaker SPEAKER_01
transcript.pyannote[1339].start 9607.32284375
transcript.pyannote[1339].end 9609.87096875
transcript.pyannote[1340].speaker SPEAKER_20
transcript.pyannote[1340].start 9607.67721875
transcript.pyannote[1340].end 9608.06534375
transcript.pyannote[1341].speaker SPEAKER_20
transcript.pyannote[1341].start 9609.66846875
transcript.pyannote[1341].end 9610.27596875
transcript.pyannote[1342].speaker SPEAKER_01
transcript.pyannote[1342].start 9610.27596875
transcript.pyannote[1342].end 9614.62971875
transcript.pyannote[1343].speaker SPEAKER_01
transcript.pyannote[1343].start 9615.05159375
transcript.pyannote[1343].end 9627.60659375
transcript.pyannote[1344].speaker SPEAKER_20
transcript.pyannote[1344].start 9616.75596875
transcript.pyannote[1344].end 9617.17784375
transcript.pyannote[1345].speaker SPEAKER_00
transcript.pyannote[1345].start 9617.17784375
transcript.pyannote[1345].end 9617.21159375
transcript.pyannote[1346].speaker SPEAKER_02
transcript.pyannote[1346].start 9619.01721875
transcript.pyannote[1346].end 9619.70909375
transcript.pyannote[1347].speaker SPEAKER_02
transcript.pyannote[1347].start 9626.67846875
transcript.pyannote[1347].end 9627.08346875
transcript.pyannote[1348].speaker SPEAKER_01
transcript.pyannote[1348].start 9628.48409375
transcript.pyannote[1348].end 9631.45409375
transcript.pyannote[1349].speaker SPEAKER_02
transcript.pyannote[1349].start 9629.61471875
transcript.pyannote[1349].end 9631.31909375
transcript.pyannote[1350].speaker SPEAKER_01
transcript.pyannote[1350].start 9632.01096875
transcript.pyannote[1350].end 9637.90034375
transcript.pyannote[1351].speaker SPEAKER_01
transcript.pyannote[1351].start 9638.54159375
transcript.pyannote[1351].end 9640.26284375
transcript.pyannote[1352].speaker SPEAKER_01
transcript.pyannote[1352].start 9641.84909375
transcript.pyannote[1352].end 9642.82784375
transcript.pyannote[1353].speaker SPEAKER_01
transcript.pyannote[1353].start 9643.46909375
transcript.pyannote[1353].end 9646.77659375
transcript.pyannote[1354].speaker SPEAKER_01
transcript.pyannote[1354].start 9647.36721875
transcript.pyannote[1354].end 9648.43034375
transcript.pyannote[1355].speaker SPEAKER_01
transcript.pyannote[1355].start 9648.91971875
transcript.pyannote[1355].end 9649.76346875
transcript.pyannote[1356].speaker SPEAKER_01
transcript.pyannote[1356].start 9650.30346875
transcript.pyannote[1356].end 9651.55221875
transcript.pyannote[1357].speaker SPEAKER_01
transcript.pyannote[1357].start 9651.88971875
transcript.pyannote[1357].end 9653.64471875
transcript.pyannote[1358].speaker SPEAKER_01
transcript.pyannote[1358].start 9654.10034375
transcript.pyannote[1358].end 9654.89346875
transcript.pyannote[1359].speaker SPEAKER_01
transcript.pyannote[1359].start 9655.09596875
transcript.pyannote[1359].end 9661.74471875
transcript.pyannote[1360].speaker SPEAKER_01
transcript.pyannote[1360].start 9662.75721875
transcript.pyannote[1360].end 9664.98471875
transcript.pyannote[1361].speaker SPEAKER_20
transcript.pyannote[1361].start 9664.69784375
transcript.pyannote[1361].end 9665.30534375
transcript.pyannote[1362].speaker SPEAKER_01
transcript.pyannote[1362].start 9665.38971875
transcript.pyannote[1362].end 9665.84534375
transcript.pyannote[1363].speaker SPEAKER_20
transcript.pyannote[1363].start 9665.84534375
transcript.pyannote[1363].end 9666.53721875
transcript.pyannote[1364].speaker SPEAKER_01
transcript.pyannote[1364].start 9666.53721875
transcript.pyannote[1364].end 9667.53284375
transcript.pyannote[1365].speaker SPEAKER_20
transcript.pyannote[1365].start 9667.53284375
transcript.pyannote[1365].end 9667.66784375
transcript.pyannote[1366].speaker SPEAKER_01
transcript.pyannote[1366].start 9667.66784375
transcript.pyannote[1366].end 9668.78159375
transcript.pyannote[1367].speaker SPEAKER_20
transcript.pyannote[1367].start 9668.78159375
transcript.pyannote[1367].end 9669.37221875
transcript.pyannote[1368].speaker SPEAKER_01
transcript.pyannote[1368].start 9669.28784375
transcript.pyannote[1368].end 9672.79784375
transcript.pyannote[1369].speaker SPEAKER_20
transcript.pyannote[1369].start 9672.79784375
transcript.pyannote[1369].end 9675.86909375
transcript.pyannote[1370].speaker SPEAKER_20
transcript.pyannote[1370].start 9676.15596875
transcript.pyannote[1370].end 9677.52284375
transcript.pyannote[1371].speaker SPEAKER_20
transcript.pyannote[1371].start 9677.59034375
transcript.pyannote[1371].end 9681.64034375
transcript.pyannote[1372].speaker SPEAKER_20
transcript.pyannote[1372].start 9681.97784375
transcript.pyannote[1372].end 9686.28096875
transcript.pyannote[1373].speaker SPEAKER_20
transcript.pyannote[1373].start 9686.68596875
transcript.pyannote[1373].end 9689.89221875
transcript.pyannote[1374].speaker SPEAKER_20
transcript.pyannote[1374].start 9690.33096875
transcript.pyannote[1374].end 9695.22471875
transcript.pyannote[1375].speaker SPEAKER_20
transcript.pyannote[1375].start 9695.56221875
transcript.pyannote[1375].end 9698.21159375
transcript.pyannote[1376].speaker SPEAKER_01
transcript.pyannote[1376].start 9699.10596875
transcript.pyannote[1376].end 9704.82659375
transcript.pyannote[1377].speaker SPEAKER_01
transcript.pyannote[1377].start 9705.29909375
transcript.pyannote[1377].end 9708.80909375
transcript.pyannote[1378].speaker SPEAKER_02
transcript.pyannote[1378].start 9706.96971875
transcript.pyannote[1378].end 9707.29034375
transcript.pyannote[1379].speaker SPEAKER_00
transcript.pyannote[1379].start 9707.29034375
transcript.pyannote[1379].end 9707.34096875
transcript.pyannote[1380].speaker SPEAKER_01
transcript.pyannote[1380].start 9708.92721875
transcript.pyannote[1380].end 9714.81659375
transcript.pyannote[1381].speaker SPEAKER_00
transcript.pyannote[1381].start 9710.31096875
transcript.pyannote[1381].end 9710.32784375
transcript.pyannote[1382].speaker SPEAKER_02
transcript.pyannote[1382].start 9710.32784375
transcript.pyannote[1382].end 9710.91846875
transcript.pyannote[1383].speaker SPEAKER_02
transcript.pyannote[1383].start 9713.98971875
transcript.pyannote[1383].end 9714.32721875
transcript.pyannote[1384].speaker SPEAKER_01
transcript.pyannote[1384].start 9715.37346875
transcript.pyannote[1384].end 9718.41096875
transcript.pyannote[1385].speaker SPEAKER_02
transcript.pyannote[1385].start 9717.87096875
transcript.pyannote[1385].end 9718.36034375
transcript.pyannote[1386].speaker SPEAKER_01
transcript.pyannote[1386].start 9719.11971875
transcript.pyannote[1386].end 9720.80721875
transcript.pyannote[1387].speaker SPEAKER_01
transcript.pyannote[1387].start 9721.68471875
transcript.pyannote[1387].end 9722.56221875
transcript.pyannote[1388].speaker SPEAKER_01
transcript.pyannote[1388].start 9723.15284375
transcript.pyannote[1388].end 9724.87409375
transcript.pyannote[1389].speaker SPEAKER_01
transcript.pyannote[1389].start 9725.49846875
transcript.pyannote[1389].end 9728.72159375
transcript.pyannote[1390].speaker SPEAKER_01
transcript.pyannote[1390].start 9728.78909375
transcript.pyannote[1390].end 9728.80596875
transcript.pyannote[1391].speaker SPEAKER_02
transcript.pyannote[1391].start 9728.80596875
transcript.pyannote[1391].end 9729.16034375
transcript.pyannote[1392].speaker SPEAKER_01
transcript.pyannote[1392].start 9729.27846875
transcript.pyannote[1392].end 9732.02909375
transcript.pyannote[1393].speaker SPEAKER_01
transcript.pyannote[1393].start 9732.45096875
transcript.pyannote[1393].end 9733.41284375
transcript.pyannote[1394].speaker SPEAKER_01
transcript.pyannote[1394].start 9734.84721875
transcript.pyannote[1394].end 9739.62284375
transcript.pyannote[1395].speaker SPEAKER_01
transcript.pyannote[1395].start 9739.97721875
transcript.pyannote[1395].end 9753.59534375
transcript.pyannote[1396].speaker SPEAKER_01
transcript.pyannote[1396].start 9754.69221875
transcript.pyannote[1396].end 9757.39221875
transcript.pyannote[1397].speaker SPEAKER_01
transcript.pyannote[1397].start 9758.08409375
transcript.pyannote[1397].end 9758.65784375
transcript.pyannote[1398].speaker SPEAKER_01
transcript.pyannote[1398].start 9758.91096875
transcript.pyannote[1398].end 9760.12596875
transcript.pyannote[1399].speaker SPEAKER_01
transcript.pyannote[1399].start 9760.98659375
transcript.pyannote[1399].end 9762.25221875
transcript.pyannote[1400].speaker SPEAKER_01
transcript.pyannote[1400].start 9763.51784375
transcript.pyannote[1400].end 9764.44596875
transcript.pyannote[1401].speaker SPEAKER_01
transcript.pyannote[1401].start 9765.20534375
transcript.pyannote[1401].end 9766.85909375
transcript.pyannote[1402].speaker SPEAKER_01
transcript.pyannote[1402].start 9767.70284375
transcript.pyannote[1402].end 9768.54659375
transcript.pyannote[1403].speaker SPEAKER_01
transcript.pyannote[1403].start 9768.96846875
transcript.pyannote[1403].end 9773.77784375
transcript.pyannote[1404].speaker SPEAKER_20
transcript.pyannote[1404].start 9773.10284375
transcript.pyannote[1404].end 9773.11971875
transcript.pyannote[1405].speaker SPEAKER_09
transcript.pyannote[1405].start 9773.11971875
transcript.pyannote[1405].end 9773.15346875
transcript.pyannote[1406].speaker SPEAKER_20
transcript.pyannote[1406].start 9773.15346875
transcript.pyannote[1406].end 9775.78596875
transcript.pyannote[1407].speaker SPEAKER_20
transcript.pyannote[1407].start 9776.91659375
transcript.pyannote[1407].end 9778.82346875
transcript.pyannote[1408].speaker SPEAKER_09
transcript.pyannote[1408].start 9777.59159375
transcript.pyannote[1408].end 9778.60409375
transcript.pyannote[1409].speaker SPEAKER_20
transcript.pyannote[1409].start 9779.17784375
transcript.pyannote[1409].end 9780.05534375
transcript.pyannote[1410].speaker SPEAKER_09
transcript.pyannote[1410].start 9779.32971875
transcript.pyannote[1410].end 9781.67534375
transcript.pyannote[1411].speaker SPEAKER_20
transcript.pyannote[1411].start 9781.55721875
transcript.pyannote[1411].end 9781.69221875
transcript.pyannote[1412].speaker SPEAKER_09
transcript.pyannote[1412].start 9781.69221875
transcript.pyannote[1412].end 9781.72596875
transcript.pyannote[1413].speaker SPEAKER_20
transcript.pyannote[1413].start 9781.72596875
transcript.pyannote[1413].end 9781.81034375
transcript.pyannote[1414].speaker SPEAKER_09
transcript.pyannote[1414].start 9781.81034375
transcript.pyannote[1414].end 9781.94534375
transcript.pyannote[1415].speaker SPEAKER_01
transcript.pyannote[1415].start 9781.94534375
transcript.pyannote[1415].end 9782.01284375
transcript.pyannote[1416].speaker SPEAKER_01
transcript.pyannote[1416].start 9782.89034375
transcript.pyannote[1416].end 9784.13909375
transcript.pyannote[1417].speaker SPEAKER_09
transcript.pyannote[1417].start 9782.97471875
transcript.pyannote[1417].end 9783.46409375
transcript.pyannote[1418].speaker SPEAKER_01
transcript.pyannote[1418].start 9784.83096875
transcript.pyannote[1418].end 9787.27784375
transcript.pyannote[1419].speaker SPEAKER_09
transcript.pyannote[1419].start 9786.48471875
transcript.pyannote[1419].end 9788.30721875
transcript.pyannote[1420].speaker SPEAKER_02
transcript.pyannote[1420].start 9788.32409375
transcript.pyannote[1420].end 9788.34096875
transcript.pyannote[1421].speaker SPEAKER_01
transcript.pyannote[1421].start 9788.34096875
transcript.pyannote[1421].end 9788.62784375
transcript.pyannote[1422].speaker SPEAKER_09
transcript.pyannote[1422].start 9788.62784375
transcript.pyannote[1422].end 9798.90471875
transcript.pyannote[1423].speaker SPEAKER_01
transcript.pyannote[1423].start 9799.71471875
transcript.pyannote[1423].end 9800.89596875
transcript.pyannote[1424].speaker SPEAKER_09
transcript.pyannote[1424].start 9801.19971875
transcript.pyannote[1424].end 9802.14471875
transcript.pyannote[1425].speaker SPEAKER_09
transcript.pyannote[1425].start 9802.44846875
transcript.pyannote[1425].end 9806.36346875
transcript.pyannote[1426].speaker SPEAKER_01
transcript.pyannote[1426].start 9805.18221875
transcript.pyannote[1426].end 9807.12284375
transcript.pyannote[1427].speaker SPEAKER_01
transcript.pyannote[1427].start 9807.66284375
transcript.pyannote[1427].end 9810.54846875
transcript.pyannote[1428].speaker SPEAKER_01
transcript.pyannote[1428].start 9810.95346875
transcript.pyannote[1428].end 9811.71284375
transcript.pyannote[1429].speaker SPEAKER_09
transcript.pyannote[1429].start 9810.98721875
transcript.pyannote[1429].end 9811.49346875
transcript.pyannote[1430].speaker SPEAKER_01
transcript.pyannote[1430].start 9812.01659375
transcript.pyannote[1430].end 9817.16346875
transcript.pyannote[1431].speaker SPEAKER_09
transcript.pyannote[1431].start 9814.59846875
transcript.pyannote[1431].end 9814.98659375
transcript.pyannote[1432].speaker SPEAKER_09
transcript.pyannote[1432].start 9816.18471875
transcript.pyannote[1432].end 9816.31971875
transcript.pyannote[1433].speaker SPEAKER_09
transcript.pyannote[1433].start 9817.45034375
transcript.pyannote[1433].end 9819.66096875
transcript.pyannote[1434].speaker SPEAKER_01
transcript.pyannote[1434].start 9818.27721875
transcript.pyannote[1434].end 9823.79534375
transcript.pyannote[1435].speaker SPEAKER_09
transcript.pyannote[1435].start 9823.98096875
transcript.pyannote[1435].end 9830.93346875
transcript.pyannote[1436].speaker SPEAKER_01
transcript.pyannote[1436].start 9829.02659375
transcript.pyannote[1436].end 9831.70971875
transcript.pyannote[1437].speaker SPEAKER_09
transcript.pyannote[1437].start 9831.87846875
transcript.pyannote[1437].end 9832.23284375
transcript.pyannote[1438].speaker SPEAKER_01
transcript.pyannote[1438].start 9832.23284375
transcript.pyannote[1438].end 9835.11846875
transcript.pyannote[1439].speaker SPEAKER_01
transcript.pyannote[1439].start 9835.67534375
transcript.pyannote[1439].end 9836.94096875
transcript.pyannote[1440].speaker SPEAKER_01
transcript.pyannote[1440].start 9837.12659375
transcript.pyannote[1440].end 9837.91971875
transcript.pyannote[1441].speaker SPEAKER_01
transcript.pyannote[1441].start 9839.33721875
transcript.pyannote[1441].end 9840.06284375
transcript.pyannote[1442].speaker SPEAKER_01
transcript.pyannote[1442].start 9840.73784375
transcript.pyannote[1442].end 9841.95284375
transcript.pyannote[1443].speaker SPEAKER_01
transcript.pyannote[1443].start 9843.10034375
transcript.pyannote[1443].end 9844.73721875
transcript.pyannote[1444].speaker SPEAKER_01
transcript.pyannote[1444].start 9845.31096875
transcript.pyannote[1444].end 9845.73284375
transcript.pyannote[1445].speaker SPEAKER_01
transcript.pyannote[1445].start 9846.34034375
transcript.pyannote[1445].end 9846.94784375
transcript.pyannote[1446].speaker SPEAKER_01
transcript.pyannote[1446].start 9848.16284375
transcript.pyannote[1446].end 9848.75346875
transcript.pyannote[1447].speaker SPEAKER_01
transcript.pyannote[1447].start 9849.73221875
transcript.pyannote[1447].end 9850.13721875
transcript.pyannote[1448].speaker SPEAKER_01
transcript.pyannote[1448].start 9850.81221875
transcript.pyannote[1448].end 9853.79909375
transcript.pyannote[1449].speaker SPEAKER_01
transcript.pyannote[1449].start 9854.96346875
transcript.pyannote[1449].end 9857.30909375
transcript.pyannote[1450].speaker SPEAKER_01
transcript.pyannote[1450].start 9858.81096875
transcript.pyannote[1450].end 9859.50284375
transcript.pyannote[1451].speaker SPEAKER_01
transcript.pyannote[1451].start 9861.24096875
transcript.pyannote[1451].end 9862.21971875
transcript.pyannote[1452].speaker SPEAKER_01
transcript.pyannote[1452].start 9862.52346875
transcript.pyannote[1452].end 9863.51909375
transcript.pyannote[1453].speaker SPEAKER_01
transcript.pyannote[1453].start 9864.05909375
transcript.pyannote[1453].end 9865.07159375
transcript.pyannote[1454].speaker SPEAKER_01
transcript.pyannote[1454].start 9865.79721875
transcript.pyannote[1454].end 9866.69159375
transcript.pyannote[1455].speaker SPEAKER_01
transcript.pyannote[1455].start 9867.83909375
transcript.pyannote[1455].end 9868.96971875
transcript.pyannote[1456].speaker SPEAKER_01
transcript.pyannote[1456].start 9870.06659375
transcript.pyannote[1456].end 9871.66971875
transcript.pyannote[1457].speaker SPEAKER_01
transcript.pyannote[1457].start 9872.85096875
transcript.pyannote[1457].end 9873.88034375
transcript.pyannote[1458].speaker SPEAKER_01
transcript.pyannote[1458].start 9874.20096875
transcript.pyannote[1458].end 9876.76596875
transcript.pyannote[1459].speaker SPEAKER_01
transcript.pyannote[1459].start 9877.12034375
transcript.pyannote[1459].end 9878.26784375
transcript.pyannote[1460].speaker SPEAKER_01
transcript.pyannote[1460].start 9879.38159375
transcript.pyannote[1460].end 9881.76096875
transcript.pyannote[1461].speaker SPEAKER_01
transcript.pyannote[1461].start 9882.70596875
transcript.pyannote[1461].end 9884.79846875
transcript.pyannote[1462].speaker SPEAKER_01
transcript.pyannote[1462].start 9885.37221875
transcript.pyannote[1462].end 9886.40159375
transcript.pyannote[1463].speaker SPEAKER_01
transcript.pyannote[1463].start 9887.14409375
transcript.pyannote[1463].end 9887.93721875
transcript.pyannote[1464].speaker SPEAKER_01
transcript.pyannote[1464].start 9889.06784375
transcript.pyannote[1464].end 9892.00409375
transcript.pyannote[1465].speaker SPEAKER_01
transcript.pyannote[1465].start 9893.16846875
transcript.pyannote[1465].end 9893.48909375
transcript.pyannote[1466].speaker SPEAKER_01
transcript.pyannote[1466].start 9895.04159375
transcript.pyannote[1466].end 9897.50534375
transcript.pyannote[1467].speaker SPEAKER_01
transcript.pyannote[1467].start 9897.89346875
transcript.pyannote[1467].end 9899.58096875
transcript.pyannote[1468].speaker SPEAKER_01
transcript.pyannote[1468].start 9900.01971875
transcript.pyannote[1468].end 9903.20909375
transcript.pyannote[1469].speaker SPEAKER_01
transcript.pyannote[1469].start 9904.06971875
transcript.pyannote[1469].end 9908.05221875
transcript.pyannote[1470].speaker SPEAKER_01
transcript.pyannote[1470].start 9908.60909375
transcript.pyannote[1470].end 9909.43596875
transcript.pyannote[1471].speaker SPEAKER_01
transcript.pyannote[1471].start 9910.48221875
transcript.pyannote[1471].end 9913.90784375
transcript.pyannote[1472].speaker SPEAKER_01
transcript.pyannote[1472].start 9914.70096875
transcript.pyannote[1472].end 9916.84409375
transcript.pyannote[1473].speaker SPEAKER_01
transcript.pyannote[1473].start 9917.56971875
transcript.pyannote[1473].end 9918.58221875
transcript.pyannote[1474].speaker SPEAKER_01
transcript.pyannote[1474].start 9919.32471875
transcript.pyannote[1474].end 9920.08409375
transcript.pyannote[1475].speaker SPEAKER_01
transcript.pyannote[1475].start 9920.38784375
transcript.pyannote[1475].end 9922.96971875
transcript.pyannote[1476].speaker SPEAKER_01
transcript.pyannote[1476].start 9923.27346875
transcript.pyannote[1476].end 9925.12971875
transcript.pyannote[1477].speaker SPEAKER_01
transcript.pyannote[1477].start 9926.34471875
transcript.pyannote[1477].end 9928.92659375
transcript.pyannote[1478].speaker SPEAKER_01
transcript.pyannote[1478].start 9929.56784375
transcript.pyannote[1478].end 9930.96846875
transcript.pyannote[1479].speaker SPEAKER_01
transcript.pyannote[1479].start 9931.45784375
transcript.pyannote[1479].end 9932.55471875
transcript.pyannote[1480].speaker SPEAKER_20
transcript.pyannote[1480].start 9932.95971875
transcript.pyannote[1480].end 9932.99346875
transcript.pyannote[1481].speaker SPEAKER_01
transcript.pyannote[1481].start 9932.99346875
transcript.pyannote[1481].end 9933.48284375
transcript.pyannote[1482].speaker SPEAKER_20
transcript.pyannote[1482].start 9933.53346875
transcript.pyannote[1482].end 9933.80346875
transcript.pyannote[1483].speaker SPEAKER_01
transcript.pyannote[1483].start 9933.97221875
transcript.pyannote[1483].end 9934.02284375
transcript.pyannote[1484].speaker SPEAKER_01
transcript.pyannote[1484].start 9934.03971875
transcript.pyannote[1484].end 9934.07346875
transcript.pyannote[1485].speaker SPEAKER_20
transcript.pyannote[1485].start 9934.39409375
transcript.pyannote[1485].end 9939.86159375
transcript.pyannote[1486].speaker SPEAKER_20
transcript.pyannote[1486].start 9939.99659375
transcript.pyannote[1486].end 9946.24034375
transcript.pyannote[1487].speaker SPEAKER_01
transcript.pyannote[1487].start 9940.04721875
transcript.pyannote[1487].end 9940.40159375
transcript.pyannote[1488].speaker SPEAKER_20
transcript.pyannote[1488].start 9946.49346875
transcript.pyannote[1488].end 9954.23909375
transcript.pyannote[1489].speaker SPEAKER_01
transcript.pyannote[1489].start 9953.44596875
transcript.pyannote[1489].end 9959.33534375
transcript.pyannote[1490].speaker SPEAKER_20
transcript.pyannote[1490].start 9955.35284375
transcript.pyannote[1490].end 9962.20409375
transcript.pyannote[1491].speaker SPEAKER_01
transcript.pyannote[1491].start 9961.02284375
transcript.pyannote[1491].end 9963.67221875
transcript.pyannote[1492].speaker SPEAKER_20
transcript.pyannote[1492].start 9962.45721875
transcript.pyannote[1492].end 9964.12784375
transcript.pyannote[1493].speaker SPEAKER_20
transcript.pyannote[1493].start 9964.60034375
transcript.pyannote[1493].end 9969.86534375
transcript.pyannote[1494].speaker SPEAKER_01
transcript.pyannote[1494].start 9965.61284375
transcript.pyannote[1494].end 9966.27096875
transcript.pyannote[1495].speaker SPEAKER_01
transcript.pyannote[1495].start 9969.98346875
transcript.pyannote[1495].end 9972.58221875
transcript.pyannote[1496].speaker SPEAKER_20
transcript.pyannote[1496].start 9971.56971875
transcript.pyannote[1496].end 9971.97471875
transcript.pyannote[1497].speaker SPEAKER_20
transcript.pyannote[1497].start 9972.58221875
transcript.pyannote[1497].end 9972.59909375
transcript.pyannote[1498].speaker SPEAKER_01
transcript.pyannote[1498].start 9972.59909375
transcript.pyannote[1498].end 9972.70034375
transcript.pyannote[1499].speaker SPEAKER_20
transcript.pyannote[1499].start 9972.61596875
transcript.pyannote[1499].end 9972.90284375
transcript.pyannote[1500].speaker SPEAKER_01
transcript.pyannote[1500].start 9972.83534375
transcript.pyannote[1500].end 9975.63659375
transcript.pyannote[1501].speaker SPEAKER_19
transcript.pyannote[1501].start 9973.66221875
transcript.pyannote[1501].end 9974.80971875
transcript.pyannote[1502].speaker SPEAKER_01
transcript.pyannote[1502].start 9975.97409375
transcript.pyannote[1502].end 9976.02471875
transcript.pyannote[1503].speaker SPEAKER_01
transcript.pyannote[1503].start 9976.04159375
transcript.pyannote[1503].end 9976.21034375
transcript.pyannote[1504].speaker SPEAKER_19
transcript.pyannote[1504].start 9976.76721875
transcript.pyannote[1504].end 9978.62346875
transcript.pyannote[1505].speaker SPEAKER_19
transcript.pyannote[1505].start 9979.04534375
transcript.pyannote[1505].end 9979.70346875
transcript.pyannote[1506].speaker SPEAKER_19
transcript.pyannote[1506].start 9980.09159375
transcript.pyannote[1506].end 9980.68221875
transcript.pyannote[1507].speaker SPEAKER_19
transcript.pyannote[1507].start 9981.37409375
transcript.pyannote[1507].end 9982.84221875
transcript.pyannote[1508].speaker SPEAKER_30
transcript.pyannote[1508].start 9990.58784375
transcript.pyannote[1508].end 9992.59596875
transcript.pyannote[1509].speaker SPEAKER_19
transcript.pyannote[1509].start 9992.81534375
transcript.pyannote[1509].end 9993.50721875
transcript.pyannote[1510].speaker SPEAKER_19
transcript.pyannote[1510].start 9997.27034375
transcript.pyannote[1510].end 9997.72596875
transcript.pyannote[1511].speaker SPEAKER_30
transcript.pyannote[1511].start 9997.72596875
transcript.pyannote[1511].end 10009.11659375
transcript.pyannote[1512].speaker SPEAKER_02
transcript.pyannote[1512].start 10009.13346875
transcript.pyannote[1512].end 10009.16721875
transcript.pyannote[1513].speaker SPEAKER_02
transcript.pyannote[1513].start 10009.18409375
transcript.pyannote[1513].end 10009.20096875
transcript.pyannote[1514].speaker SPEAKER_30
transcript.pyannote[1514].start 10009.20096875
transcript.pyannote[1514].end 10009.23471875
transcript.pyannote[1515].speaker SPEAKER_30
transcript.pyannote[1515].start 10009.36971875
transcript.pyannote[1515].end 10017.99284375
transcript.pyannote[1516].speaker SPEAKER_30
transcript.pyannote[1516].start 10018.39784375
transcript.pyannote[1516].end 10021.57034375
transcript.pyannote[1517].speaker SPEAKER_20
transcript.pyannote[1517].start 10022.51534375
transcript.pyannote[1517].end 10025.04659375
transcript.pyannote[1518].speaker SPEAKER_30
transcript.pyannote[1518].start 10025.50221875
transcript.pyannote[1518].end 10028.77596875
transcript.pyannote[1519].speaker SPEAKER_20
transcript.pyannote[1519].start 10027.02096875
transcript.pyannote[1519].end 10030.07534375
transcript.pyannote[1520].speaker SPEAKER_30
transcript.pyannote[1520].start 10030.07534375
transcript.pyannote[1520].end 10037.97284375
transcript.pyannote[1521].speaker SPEAKER_20
transcript.pyannote[1521].start 10030.88534375
transcript.pyannote[1521].end 10031.74596875
transcript.pyannote[1522].speaker SPEAKER_20
transcript.pyannote[1522].start 10033.18034375
transcript.pyannote[1522].end 10033.45034375
transcript.pyannote[1523].speaker SPEAKER_20
transcript.pyannote[1523].start 10037.36534375
transcript.pyannote[1523].end 10038.73221875
transcript.pyannote[1524].speaker SPEAKER_30
transcript.pyannote[1524].start 10038.73221875
transcript.pyannote[1524].end 10038.96846875
transcript.pyannote[1525].speaker SPEAKER_20
transcript.pyannote[1525].start 10038.78284375
transcript.pyannote[1525].end 10044.26721875
transcript.pyannote[1526].speaker SPEAKER_30
transcript.pyannote[1526].start 10041.53346875
transcript.pyannote[1526].end 10053.41346875
transcript.pyannote[1527].speaker SPEAKER_20
transcript.pyannote[1527].start 10054.96596875
transcript.pyannote[1527].end 10059.87659375
transcript.pyannote[1528].speaker SPEAKER_30
transcript.pyannote[1528].start 10058.45909375
transcript.pyannote[1528].end 10058.88096875
transcript.pyannote[1529].speaker SPEAKER_20
transcript.pyannote[1529].start 10060.31534375
transcript.pyannote[1529].end 10061.59784375
transcript.pyannote[1530].speaker SPEAKER_20
transcript.pyannote[1530].start 10062.05346875
transcript.pyannote[1530].end 10065.37784375
transcript.pyannote[1531].speaker SPEAKER_30
transcript.pyannote[1531].start 10063.77471875
transcript.pyannote[1531].end 10118.93909375
transcript.pyannote[1532].speaker SPEAKER_20
transcript.pyannote[1532].start 10119.46221875
transcript.pyannote[1532].end 10128.50721875
transcript.pyannote[1533].speaker SPEAKER_30
transcript.pyannote[1533].start 10121.16659375
transcript.pyannote[1533].end 10121.40284375
transcript.pyannote[1534].speaker SPEAKER_30
transcript.pyannote[1534].start 10123.59659375
transcript.pyannote[1534].end 10123.93409375
transcript.pyannote[1535].speaker SPEAKER_30
transcript.pyannote[1535].start 10126.29659375
transcript.pyannote[1535].end 10126.81971875
transcript.pyannote[1536].speaker SPEAKER_30
transcript.pyannote[1536].start 10128.50721875
transcript.pyannote[1536].end 10129.45221875
transcript.pyannote[1537].speaker SPEAKER_20
transcript.pyannote[1537].start 10128.74346875
transcript.pyannote[1537].end 10131.94971875
transcript.pyannote[1538].speaker SPEAKER_30
transcript.pyannote[1538].start 10130.68409375
transcript.pyannote[1538].end 10132.01721875
transcript.pyannote[1539].speaker SPEAKER_20
transcript.pyannote[1539].start 10132.47284375
transcript.pyannote[1539].end 10136.43846875
transcript.pyannote[1540].speaker SPEAKER_30
transcript.pyannote[1540].start 10135.49346875
transcript.pyannote[1540].end 10135.81409375
transcript.pyannote[1541].speaker SPEAKER_20
transcript.pyannote[1541].start 10136.67471875
transcript.pyannote[1541].end 10138.54784375
transcript.pyannote[1542].speaker SPEAKER_30
transcript.pyannote[1542].start 10137.77159375
transcript.pyannote[1542].end 10139.30721875
transcript.pyannote[1543].speaker SPEAKER_20
transcript.pyannote[1543].start 10140.13409375
transcript.pyannote[1543].end 10158.02159375
transcript.pyannote[1544].speaker SPEAKER_30
transcript.pyannote[1544].start 10143.82971875
transcript.pyannote[1544].end 10144.35284375
transcript.pyannote[1545].speaker SPEAKER_30
transcript.pyannote[1545].start 10146.54659375
transcript.pyannote[1545].end 10147.76159375
transcript.pyannote[1546].speaker SPEAKER_30
transcript.pyannote[1546].start 10152.99284375
transcript.pyannote[1546].end 10153.38096875
transcript.pyannote[1547].speaker SPEAKER_20
transcript.pyannote[1547].start 10158.17346875
transcript.pyannote[1547].end 10158.20721875
transcript.pyannote[1548].speaker SPEAKER_30
transcript.pyannote[1548].start 10158.20721875
transcript.pyannote[1548].end 10165.32846875
transcript.pyannote[1549].speaker SPEAKER_20
transcript.pyannote[1549].start 10158.24096875
transcript.pyannote[1549].end 10158.74721875
transcript.pyannote[1550].speaker SPEAKER_20
transcript.pyannote[1550].start 10161.12659375
transcript.pyannote[1550].end 10161.98721875
transcript.pyannote[1551].speaker SPEAKER_20
transcript.pyannote[1551].start 10165.32846875
transcript.pyannote[1551].end 10168.09596875
transcript.pyannote[1552].speaker SPEAKER_20
transcript.pyannote[1552].start 10169.02409375
transcript.pyannote[1552].end 10171.53846875
transcript.pyannote[1553].speaker SPEAKER_30
transcript.pyannote[1553].start 10171.11659375
transcript.pyannote[1553].end 10171.77471875
transcript.pyannote[1554].speaker SPEAKER_20
transcript.pyannote[1554].start 10172.85471875
transcript.pyannote[1554].end 10173.46221875
transcript.pyannote[1555].speaker SPEAKER_30
transcript.pyannote[1555].start 10173.46221875
transcript.pyannote[1555].end 10175.72346875
transcript.pyannote[1556].speaker SPEAKER_20
transcript.pyannote[1556].start 10177.12409375
transcript.pyannote[1556].end 10178.72721875
transcript.pyannote[1557].speaker SPEAKER_20
transcript.pyannote[1557].start 10179.33471875
transcript.pyannote[1557].end 10179.38534375
transcript.pyannote[1558].speaker SPEAKER_30
transcript.pyannote[1558].start 10179.38534375
transcript.pyannote[1558].end 10179.70596875
transcript.pyannote[1559].speaker SPEAKER_20
transcript.pyannote[1559].start 10179.40221875
transcript.pyannote[1559].end 10179.62159375
transcript.pyannote[1560].speaker SPEAKER_20
transcript.pyannote[1560].start 10179.87471875
transcript.pyannote[1560].end 10191.18096875
transcript.pyannote[1561].speaker SPEAKER_30
transcript.pyannote[1561].start 10182.81096875
transcript.pyannote[1561].end 10183.89096875
transcript.pyannote[1562].speaker SPEAKER_30
transcript.pyannote[1562].start 10185.25784375
transcript.pyannote[1562].end 10185.71346875
transcript.pyannote[1563].speaker SPEAKER_30
transcript.pyannote[1563].start 10186.25346875
transcript.pyannote[1563].end 10187.56971875
transcript.pyannote[1564].speaker SPEAKER_30
transcript.pyannote[1564].start 10187.83971875
transcript.pyannote[1564].end 10192.04159375
transcript.pyannote[1565].speaker SPEAKER_20
transcript.pyannote[1565].start 10191.88971875
transcript.pyannote[1565].end 10198.40346875
transcript.pyannote[1566].speaker SPEAKER_30
transcript.pyannote[1566].start 10194.35346875
transcript.pyannote[1566].end 10194.67409375
transcript.pyannote[1567].speaker SPEAKER_20
transcript.pyannote[1567].start 10198.57221875
transcript.pyannote[1567].end 10200.47909375
transcript.pyannote[1568].speaker SPEAKER_30
transcript.pyannote[1568].start 10200.17534375
transcript.pyannote[1568].end 10202.68971875
transcript.pyannote[1569].speaker SPEAKER_20
transcript.pyannote[1569].start 10203.39846875
transcript.pyannote[1569].end 10207.41471875
transcript.pyannote[1570].speaker SPEAKER_30
transcript.pyannote[1570].start 10204.90034375
transcript.pyannote[1570].end 10205.20409375
transcript.pyannote[1571].speaker SPEAKER_20
transcript.pyannote[1571].start 10207.54971875
transcript.pyannote[1571].end 10209.99659375
transcript.pyannote[1572].speaker SPEAKER_30
transcript.pyannote[1572].start 10207.56659375
transcript.pyannote[1572].end 10207.92096875
transcript.pyannote[1573].speaker SPEAKER_30
transcript.pyannote[1573].start 10209.67596875
transcript.pyannote[1573].end 10211.76846875
transcript.pyannote[1574].speaker SPEAKER_20
transcript.pyannote[1574].start 10212.00471875
transcript.pyannote[1574].end 10221.33659375
transcript.pyannote[1575].speaker SPEAKER_30
transcript.pyannote[1575].start 10213.57409375
transcript.pyannote[1575].end 10219.05846875
transcript.pyannote[1576].speaker SPEAKER_30
transcript.pyannote[1576].start 10221.33659375
transcript.pyannote[1576].end 10221.45471875
transcript.pyannote[1577].speaker SPEAKER_20
transcript.pyannote[1577].start 10221.45471875
transcript.pyannote[1577].end 10226.60159375
transcript.pyannote[1578].speaker SPEAKER_30
transcript.pyannote[1578].start 10225.06596875
transcript.pyannote[1578].end 10239.07221875
transcript.pyannote[1579].speaker SPEAKER_20
transcript.pyannote[1579].start 10233.46971875
transcript.pyannote[1579].end 10233.63846875
transcript.pyannote[1580].speaker SPEAKER_20
transcript.pyannote[1580].start 10234.07721875
transcript.pyannote[1580].end 10235.68034375
transcript.pyannote[1581].speaker SPEAKER_20
transcript.pyannote[1581].start 10238.07659375
transcript.pyannote[1581].end 10238.54909375
transcript.pyannote[1582].speaker SPEAKER_20
transcript.pyannote[1582].start 10239.46034375
transcript.pyannote[1582].end 10243.72971875
transcript.pyannote[1583].speaker SPEAKER_30
transcript.pyannote[1583].start 10243.30784375
transcript.pyannote[1583].end 10247.07096875
transcript.pyannote[1584].speaker SPEAKER_20
transcript.pyannote[1584].start 10246.66596875
transcript.pyannote[1584].end 10246.98659375
transcript.pyannote[1585].speaker SPEAKER_20
transcript.pyannote[1585].start 10247.07096875
transcript.pyannote[1585].end 10247.40846875
transcript.pyannote[1586].speaker SPEAKER_30
transcript.pyannote[1586].start 10247.40846875
transcript.pyannote[1586].end 10248.57284375
transcript.pyannote[1587].speaker SPEAKER_30
transcript.pyannote[1587].start 10248.82596875
transcript.pyannote[1587].end 10251.71159375
transcript.pyannote[1588].speaker SPEAKER_20
transcript.pyannote[1588].start 10252.65659375
transcript.pyannote[1588].end 10260.58784375
transcript.pyannote[1589].speaker SPEAKER_30
transcript.pyannote[1589].start 10258.29284375
transcript.pyannote[1589].end 10258.76534375
transcript.pyannote[1590].speaker SPEAKER_30
transcript.pyannote[1590].start 10259.84534375
transcript.pyannote[1590].end 10265.32971875
transcript.pyannote[1591].speaker SPEAKER_20
transcript.pyannote[1591].start 10263.40596875
transcript.pyannote[1591].end 10269.83534375
transcript.pyannote[1592].speaker SPEAKER_20
transcript.pyannote[1592].start 10270.07159375
transcript.pyannote[1592].end 10276.06221875
transcript.pyannote[1593].speaker SPEAKER_30
transcript.pyannote[1593].start 10272.36659375
transcript.pyannote[1593].end 10272.70409375
transcript.pyannote[1594].speaker SPEAKER_30
transcript.pyannote[1594].start 10274.93159375
transcript.pyannote[1594].end 10278.42471875
transcript.pyannote[1595].speaker SPEAKER_20
transcript.pyannote[1595].start 10278.79596875
transcript.pyannote[1595].end 10281.37784375
transcript.pyannote[1596].speaker SPEAKER_30
transcript.pyannote[1596].start 10280.46659375
transcript.pyannote[1596].end 10293.19034375
transcript.pyannote[1597].speaker SPEAKER_20
transcript.pyannote[1597].start 10281.44534375
transcript.pyannote[1597].end 10281.88409375
transcript.pyannote[1598].speaker SPEAKER_20
transcript.pyannote[1598].start 10290.99659375
transcript.pyannote[1598].end 10292.05971875
transcript.pyannote[1599].speaker SPEAKER_20
transcript.pyannote[1599].start 10292.54909375
transcript.pyannote[1599].end 10296.24471875
transcript.pyannote[1600].speaker SPEAKER_30
transcript.pyannote[1600].start 10295.58659375
transcript.pyannote[1600].end 10302.04971875
transcript.pyannote[1601].speaker SPEAKER_20
transcript.pyannote[1601].start 10301.03721875
transcript.pyannote[1601].end 10301.13846875
transcript.pyannote[1602].speaker SPEAKER_20
transcript.pyannote[1602].start 10301.34096875
transcript.pyannote[1602].end 10304.61471875
transcript.pyannote[1603].speaker SPEAKER_30
transcript.pyannote[1603].start 10304.61471875
transcript.pyannote[1603].end 10304.93534375
transcript.pyannote[1604].speaker SPEAKER_20
transcript.pyannote[1604].start 10304.91846875
transcript.pyannote[1604].end 10307.26409375
transcript.pyannote[1605].speaker SPEAKER_30
transcript.pyannote[1605].start 10306.82534375
transcript.pyannote[1605].end 10318.35096875
transcript.pyannote[1606].speaker SPEAKER_30
transcript.pyannote[1606].start 10318.63784375
transcript.pyannote[1606].end 10323.53159375
transcript.pyannote[1607].speaker SPEAKER_30
transcript.pyannote[1607].start 10323.59909375
transcript.pyannote[1607].end 10325.82659375
transcript.pyannote[1608].speaker SPEAKER_30
transcript.pyannote[1608].start 10326.28221875
transcript.pyannote[1608].end 10327.00784375
transcript.pyannote[1609].speaker SPEAKER_20
transcript.pyannote[1609].start 10327.19346875
transcript.pyannote[1609].end 10330.85534375
transcript.pyannote[1610].speaker SPEAKER_30
transcript.pyannote[1610].start 10328.27346875
transcript.pyannote[1610].end 10329.84284375
transcript.pyannote[1611].speaker SPEAKER_30
transcript.pyannote[1611].start 10329.91034375
transcript.pyannote[1611].end 10334.44971875
transcript.pyannote[1612].speaker SPEAKER_30
transcript.pyannote[1612].start 10334.73659375
transcript.pyannote[1612].end 10338.78659375
transcript.pyannote[1613].speaker SPEAKER_30
transcript.pyannote[1613].start 10339.07346875
transcript.pyannote[1613].end 10340.03534375
transcript.pyannote[1614].speaker SPEAKER_30
transcript.pyannote[1614].start 10340.52471875
transcript.pyannote[1614].end 10341.55409375
transcript.pyannote[1615].speaker SPEAKER_20
transcript.pyannote[1615].start 10340.67659375
transcript.pyannote[1615].end 10344.55784375
transcript.pyannote[1616].speaker SPEAKER_30
transcript.pyannote[1616].start 10343.34284375
transcript.pyannote[1616].end 10343.66346875
transcript.pyannote[1617].speaker SPEAKER_30
transcript.pyannote[1617].start 10343.93346875
transcript.pyannote[1617].end 10344.65909375
transcript.pyannote[1618].speaker SPEAKER_20
transcript.pyannote[1618].start 10344.91221875
transcript.pyannote[1618].end 10348.86096875
transcript.pyannote[1619].speaker SPEAKER_30
transcript.pyannote[1619].start 10345.24971875
transcript.pyannote[1619].end 10345.60409375
transcript.pyannote[1620].speaker SPEAKER_30
transcript.pyannote[1620].start 10347.32534375
transcript.pyannote[1620].end 10354.59846875
transcript.pyannote[1621].speaker SPEAKER_20
transcript.pyannote[1621].start 10355.61096875
transcript.pyannote[1621].end 10361.09534375
transcript.pyannote[1622].speaker SPEAKER_30
transcript.pyannote[1622].start 10361.09534375
transcript.pyannote[1622].end 10367.22096875
transcript.pyannote[1623].speaker SPEAKER_20
transcript.pyannote[1623].start 10362.54659375
transcript.pyannote[1623].end 10362.81659375
transcript.pyannote[1624].speaker SPEAKER_20
transcript.pyannote[1624].start 10364.62221875
transcript.pyannote[1624].end 10367.32221875
transcript.pyannote[1625].speaker SPEAKER_30
transcript.pyannote[1625].start 10367.32221875
transcript.pyannote[1625].end 10369.39784375
transcript.pyannote[1626].speaker SPEAKER_20
transcript.pyannote[1626].start 10368.09846875
transcript.pyannote[1626].end 10369.27971875
transcript.pyannote[1627].speaker SPEAKER_20
transcript.pyannote[1627].start 10369.39784375
transcript.pyannote[1627].end 10369.41471875
transcript.pyannote[1628].speaker SPEAKER_20
transcript.pyannote[1628].start 10369.46534375
transcript.pyannote[1628].end 10374.44346875
transcript.pyannote[1629].speaker SPEAKER_30
transcript.pyannote[1629].start 10371.67596875
transcript.pyannote[1629].end 10373.80221875
transcript.pyannote[1630].speaker SPEAKER_30
transcript.pyannote[1630].start 10374.05534375
transcript.pyannote[1630].end 10374.47721875
transcript.pyannote[1631].speaker SPEAKER_20
transcript.pyannote[1631].start 10374.47721875
transcript.pyannote[1631].end 10376.68784375
transcript.pyannote[1632].speaker SPEAKER_30
transcript.pyannote[1632].start 10375.91159375
transcript.pyannote[1632].end 10383.30284375
transcript.pyannote[1633].speaker SPEAKER_20
transcript.pyannote[1633].start 10383.64034375
transcript.pyannote[1633].end 10385.86784375
transcript.pyannote[1634].speaker SPEAKER_30
transcript.pyannote[1634].start 10385.88471875
transcript.pyannote[1634].end 10390.82909375
transcript.pyannote[1635].speaker SPEAKER_30
transcript.pyannote[1635].start 10390.99784375
transcript.pyannote[1635].end 10406.05034375
transcript.pyannote[1636].speaker SPEAKER_30
transcript.pyannote[1636].start 10407.11346875
transcript.pyannote[1636].end 10408.48034375
transcript.pyannote[1637].speaker SPEAKER_20
transcript.pyannote[1637].start 10409.54346875
transcript.pyannote[1637].end 10414.47096875
transcript.pyannote[1638].speaker SPEAKER_30
transcript.pyannote[1638].start 10412.37846875
transcript.pyannote[1638].end 10416.59721875
transcript.pyannote[1639].speaker SPEAKER_20
transcript.pyannote[1639].start 10415.73659375
transcript.pyannote[1639].end 10419.71909375
transcript.pyannote[1640].speaker SPEAKER_30
transcript.pyannote[1640].start 10418.30159375
transcript.pyannote[1640].end 10418.53784375
transcript.pyannote[1641].speaker SPEAKER_30
transcript.pyannote[1641].start 10419.71909375
transcript.pyannote[1641].end 10426.63784375
transcript.pyannote[1642].speaker SPEAKER_30
transcript.pyannote[1642].start 10426.75596875
transcript.pyannote[1642].end 10427.00909375
transcript.pyannote[1643].speaker SPEAKER_30
transcript.pyannote[1643].start 10427.09346875
transcript.pyannote[1643].end 10428.44346875
transcript.pyannote[1644].speaker SPEAKER_19
transcript.pyannote[1644].start 10429.28721875
transcript.pyannote[1644].end 10431.85221875
transcript.pyannote[1645].speaker SPEAKER_19
transcript.pyannote[1645].start 10432.49346875
transcript.pyannote[1645].end 10432.81409375
transcript.pyannote[1646].speaker SPEAKER_19
transcript.pyannote[1646].start 10433.33721875
transcript.pyannote[1646].end 10440.52596875
transcript.pyannote[1647].speaker SPEAKER_02
transcript.pyannote[1647].start 10440.99846875
transcript.pyannote[1647].end 10441.03221875
transcript.pyannote[1648].speaker SPEAKER_19
transcript.pyannote[1648].start 10444.71096875
transcript.pyannote[1648].end 10445.03159375
transcript.pyannote[1649].speaker SPEAKER_24
transcript.pyannote[1649].start 10451.51159375
transcript.pyannote[1649].end 10453.46909375
transcript.pyannote[1650].speaker SPEAKER_19
transcript.pyannote[1650].start 10453.90784375
transcript.pyannote[1650].end 10454.63346875
transcript.pyannote[1651].speaker SPEAKER_19
transcript.pyannote[1651].start 10459.57784375
transcript.pyannote[1651].end 10459.99971875
transcript.pyannote[1652].speaker SPEAKER_24
transcript.pyannote[1652].start 10459.99971875
transcript.pyannote[1652].end 10460.06721875
transcript.pyannote[1653].speaker SPEAKER_24
transcript.pyannote[1653].start 10460.94471875
transcript.pyannote[1653].end 10478.14034375
transcript.pyannote[1654].speaker SPEAKER_24
transcript.pyannote[1654].start 10478.78159375
transcript.pyannote[1654].end 10481.95409375
transcript.pyannote[1655].speaker SPEAKER_24
transcript.pyannote[1655].start 10482.13971875
transcript.pyannote[1655].end 10504.53284375
transcript.pyannote[1656].speaker SPEAKER_20
transcript.pyannote[1656].start 10502.00159375
transcript.pyannote[1656].end 10503.08159375
transcript.pyannote[1657].speaker SPEAKER_20
transcript.pyannote[1657].start 10503.23346875
transcript.pyannote[1657].end 10505.46096875
transcript.pyannote[1658].speaker SPEAKER_20
transcript.pyannote[1658].start 10506.20346875
transcript.pyannote[1658].end 10506.96284375
transcript.pyannote[1659].speaker SPEAKER_20
transcript.pyannote[1659].start 10507.28346875
transcript.pyannote[1659].end 10508.68409375
transcript.pyannote[1660].speaker SPEAKER_24
transcript.pyannote[1660].start 10507.77284375
transcript.pyannote[1660].end 10509.00471875
transcript.pyannote[1661].speaker SPEAKER_20
transcript.pyannote[1661].start 10508.93721875
transcript.pyannote[1661].end 10513.13909375
transcript.pyannote[1662].speaker SPEAKER_24
transcript.pyannote[1662].start 10511.65409375
transcript.pyannote[1662].end 10526.21721875
transcript.pyannote[1663].speaker SPEAKER_20
transcript.pyannote[1663].start 10517.72909375
transcript.pyannote[1663].end 10518.10034375
transcript.pyannote[1664].speaker SPEAKER_28
transcript.pyannote[1664].start 10518.10034375
transcript.pyannote[1664].end 10518.11721875
transcript.pyannote[1665].speaker SPEAKER_20
transcript.pyannote[1665].start 10527.43221875
transcript.pyannote[1665].end 10532.88284375
transcript.pyannote[1666].speaker SPEAKER_24
transcript.pyannote[1666].start 10532.88284375
transcript.pyannote[1666].end 10536.46034375
transcript.pyannote[1667].speaker SPEAKER_24
transcript.pyannote[1667].start 10536.51096875
transcript.pyannote[1667].end 10536.52784375
transcript.pyannote[1668].speaker SPEAKER_24
transcript.pyannote[1668].start 10536.56159375
transcript.pyannote[1668].end 10538.50221875
transcript.pyannote[1669].speaker SPEAKER_24
transcript.pyannote[1669].start 10539.36284375
transcript.pyannote[1669].end 10541.87721875
transcript.pyannote[1670].speaker SPEAKER_24
transcript.pyannote[1670].start 10542.78846875
transcript.pyannote[1670].end 10545.69096875
transcript.pyannote[1671].speaker SPEAKER_20
transcript.pyannote[1671].start 10543.07534375
transcript.pyannote[1671].end 10549.67346875
transcript.pyannote[1672].speaker SPEAKER_24
transcript.pyannote[1672].start 10548.89721875
transcript.pyannote[1672].end 10552.72784375
transcript.pyannote[1673].speaker SPEAKER_20
transcript.pyannote[1673].start 10550.61846875
transcript.pyannote[1673].end 10553.23409375
transcript.pyannote[1674].speaker SPEAKER_24
transcript.pyannote[1674].start 10553.23409375
transcript.pyannote[1674].end 10553.30159375
transcript.pyannote[1675].speaker SPEAKER_20
transcript.pyannote[1675].start 10553.30159375
transcript.pyannote[1675].end 10553.31846875
transcript.pyannote[1676].speaker SPEAKER_24
transcript.pyannote[1676].start 10553.31846875
transcript.pyannote[1676].end 10555.34346875
transcript.pyannote[1677].speaker SPEAKER_24
transcript.pyannote[1677].start 10555.56284375
transcript.pyannote[1677].end 10559.73096875
transcript.pyannote[1678].speaker SPEAKER_24
transcript.pyannote[1678].start 10560.38909375
transcript.pyannote[1678].end 10565.41784375
transcript.pyannote[1679].speaker SPEAKER_20
transcript.pyannote[1679].start 10564.64159375
transcript.pyannote[1679].end 10568.60721875
transcript.pyannote[1680].speaker SPEAKER_20
transcript.pyannote[1680].start 10569.06284375
transcript.pyannote[1680].end 10577.90534375
transcript.pyannote[1681].speaker SPEAKER_24
transcript.pyannote[1681].start 10577.77034375
transcript.pyannote[1681].end 10583.22096875
transcript.pyannote[1682].speaker SPEAKER_20
transcript.pyannote[1682].start 10583.64284375
transcript.pyannote[1682].end 10608.09471875
transcript.pyannote[1683].speaker SPEAKER_24
transcript.pyannote[1683].start 10594.83096875
transcript.pyannote[1683].end 10597.04159375
transcript.pyannote[1684].speaker SPEAKER_24
transcript.pyannote[1684].start 10607.68971875
transcript.pyannote[1684].end 10609.93409375
transcript.pyannote[1685].speaker SPEAKER_20
transcript.pyannote[1685].start 10608.14534375
transcript.pyannote[1685].end 10608.17909375
transcript.pyannote[1686].speaker SPEAKER_20
transcript.pyannote[1686].start 10608.41534375
transcript.pyannote[1686].end 10612.98846875
transcript.pyannote[1687].speaker SPEAKER_24
transcript.pyannote[1687].start 10611.52034375
transcript.pyannote[1687].end 10636.44471875
transcript.pyannote[1688].speaker SPEAKER_20
transcript.pyannote[1688].start 10635.88784375
transcript.pyannote[1688].end 10642.38471875
transcript.pyannote[1689].speaker SPEAKER_24
transcript.pyannote[1689].start 10641.96284375
transcript.pyannote[1689].end 10665.38534375
transcript.pyannote[1690].speaker SPEAKER_24
transcript.pyannote[1690].start 10665.57096875
transcript.pyannote[1690].end 10675.83096875
transcript.pyannote[1691].speaker SPEAKER_24
transcript.pyannote[1691].start 10676.10096875
transcript.pyannote[1691].end 10681.28159375
transcript.pyannote[1692].speaker SPEAKER_24
transcript.pyannote[1692].start 10681.75409375
transcript.pyannote[1692].end 10684.99409375
transcript.pyannote[1693].speaker SPEAKER_20
transcript.pyannote[1693].start 10686.19221875
transcript.pyannote[1693].end 10690.57971875
transcript.pyannote[1694].speaker SPEAKER_24
transcript.pyannote[1694].start 10686.22596875
transcript.pyannote[1694].end 10686.54659375
transcript.pyannote[1695].speaker SPEAKER_24
transcript.pyannote[1695].start 10690.49534375
transcript.pyannote[1695].end 10696.75596875
transcript.pyannote[1696].speaker SPEAKER_02
transcript.pyannote[1696].start 10696.75596875
transcript.pyannote[1696].end 10696.90784375
transcript.pyannote[1697].speaker SPEAKER_24
transcript.pyannote[1697].start 10696.90784375
transcript.pyannote[1697].end 10701.24471875
transcript.pyannote[1698].speaker SPEAKER_02
transcript.pyannote[1698].start 10700.78909375
transcript.pyannote[1698].end 10700.94096875
transcript.pyannote[1699].speaker SPEAKER_24
transcript.pyannote[1699].start 10701.76784375
transcript.pyannote[1699].end 10708.31534375
transcript.pyannote[1700].speaker SPEAKER_24
transcript.pyannote[1700].start 10709.36159375
transcript.pyannote[1700].end 10713.83346875
transcript.pyannote[1701].speaker SPEAKER_20
transcript.pyannote[1701].start 10713.39471875
transcript.pyannote[1701].end 10720.36409375
transcript.pyannote[1702].speaker SPEAKER_20
transcript.pyannote[1702].start 10720.88721875
transcript.pyannote[1702].end 10723.09784375
transcript.pyannote[1703].speaker SPEAKER_02
transcript.pyannote[1703].start 10721.39346875
transcript.pyannote[1703].end 10722.74346875
transcript.pyannote[1704].speaker SPEAKER_02
transcript.pyannote[1704].start 10723.60409375
transcript.pyannote[1704].end 10725.46034375
transcript.pyannote[1705].speaker SPEAKER_03
transcript.pyannote[1705].start 10725.19034375
transcript.pyannote[1705].end 10726.86096875
transcript.pyannote[1706].speaker SPEAKER_03
transcript.pyannote[1706].start 10727.24909375
transcript.pyannote[1706].end 10730.45534375
transcript.pyannote[1707].speaker SPEAKER_03
transcript.pyannote[1707].start 10731.01221875
transcript.pyannote[1707].end 10732.39596875
transcript.pyannote[1708].speaker SPEAKER_03
transcript.pyannote[1708].start 10732.69971875
transcript.pyannote[1708].end 10733.84721875
transcript.pyannote[1709].speaker SPEAKER_03
transcript.pyannote[1709].start 10734.35346875
transcript.pyannote[1709].end 10734.89346875
transcript.pyannote[1710].speaker SPEAKER_03
transcript.pyannote[1710].start 10735.02846875
transcript.pyannote[1710].end 10742.47034375
transcript.pyannote[1711].speaker SPEAKER_03
transcript.pyannote[1711].start 10742.99346875
transcript.pyannote[1711].end 10745.84534375
transcript.pyannote[1712].speaker SPEAKER_03
transcript.pyannote[1712].start 10746.33471875
transcript.pyannote[1712].end 10748.44409375
transcript.pyannote[1713].speaker SPEAKER_03
transcript.pyannote[1713].start 10748.83221875
transcript.pyannote[1713].end 10749.59159375
transcript.pyannote[1714].speaker SPEAKER_24
transcript.pyannote[1714].start 10749.01784375
transcript.pyannote[1714].end 10756.81409375
transcript.pyannote[1715].speaker SPEAKER_03
transcript.pyannote[1715].start 10750.73909375
transcript.pyannote[1715].end 10751.49846875
transcript.pyannote[1716].speaker SPEAKER_03
transcript.pyannote[1716].start 10754.80596875
transcript.pyannote[1716].end 10754.99159375
transcript.pyannote[1717].speaker SPEAKER_03
transcript.pyannote[1717].start 10757.10096875
transcript.pyannote[1717].end 10762.63596875
transcript.pyannote[1718].speaker SPEAKER_03
transcript.pyannote[1718].start 10762.95659375
transcript.pyannote[1718].end 10764.35721875
transcript.pyannote[1719].speaker SPEAKER_24
transcript.pyannote[1719].start 10763.83409375
transcript.pyannote[1719].end 10764.40784375
transcript.pyannote[1720].speaker SPEAKER_03
transcript.pyannote[1720].start 10764.40784375
transcript.pyannote[1720].end 10764.86346875
transcript.pyannote[1721].speaker SPEAKER_24
transcript.pyannote[1721].start 10764.86346875
transcript.pyannote[1721].end 10764.91409375
transcript.pyannote[1722].speaker SPEAKER_03
transcript.pyannote[1722].start 10764.91409375
transcript.pyannote[1722].end 10764.96471875
transcript.pyannote[1723].speaker SPEAKER_24
transcript.pyannote[1723].start 10764.96471875
transcript.pyannote[1723].end 10765.55534375
transcript.pyannote[1724].speaker SPEAKER_03
transcript.pyannote[1724].start 10765.55534375
transcript.pyannote[1724].end 10765.58909375
transcript.pyannote[1725].speaker SPEAKER_24
transcript.pyannote[1725].start 10765.58909375
transcript.pyannote[1725].end 10765.74096875
transcript.pyannote[1726].speaker SPEAKER_03
transcript.pyannote[1726].start 10765.74096875
transcript.pyannote[1726].end 10765.75784375
transcript.pyannote[1727].speaker SPEAKER_24
transcript.pyannote[1727].start 10765.75784375
transcript.pyannote[1727].end 10771.54596875
transcript.pyannote[1728].speaker SPEAKER_03
transcript.pyannote[1728].start 10765.90971875
transcript.pyannote[1728].end 10766.38221875
transcript.pyannote[1729].speaker SPEAKER_03
transcript.pyannote[1729].start 10767.25971875
transcript.pyannote[1729].end 10767.96846875
transcript.pyannote[1730].speaker SPEAKER_02
transcript.pyannote[1730].start 10767.96846875
transcript.pyannote[1730].end 10768.00221875
transcript.pyannote[1731].speaker SPEAKER_03
transcript.pyannote[1731].start 10768.00221875
transcript.pyannote[1731].end 10768.15409375
transcript.pyannote[1732].speaker SPEAKER_02
transcript.pyannote[1732].start 10771.46159375
transcript.pyannote[1732].end 10772.50784375
transcript.pyannote[1733].speaker SPEAKER_24
transcript.pyannote[1733].start 10771.59659375
transcript.pyannote[1733].end 10807.30409375
transcript.pyannote[1734].speaker SPEAKER_24
transcript.pyannote[1734].start 10807.52346875
transcript.pyannote[1734].end 10809.95346875
transcript.pyannote[1735].speaker SPEAKER_24
transcript.pyannote[1735].start 10810.20659375
transcript.pyannote[1735].end 10811.37096875
transcript.pyannote[1736].speaker SPEAKER_24
transcript.pyannote[1736].start 10811.57346875
transcript.pyannote[1736].end 10812.46784375
transcript.pyannote[1737].speaker SPEAKER_24
transcript.pyannote[1737].start 10812.68721875
transcript.pyannote[1737].end 10815.40409375
transcript.pyannote[1738].speaker SPEAKER_24
transcript.pyannote[1738].start 10815.99471875
transcript.pyannote[1738].end 10816.26471875
transcript.pyannote[1739].speaker SPEAKER_20
transcript.pyannote[1739].start 10818.82971875
transcript.pyannote[1739].end 10822.74471875
transcript.pyannote[1740].speaker SPEAKER_24
transcript.pyannote[1740].start 10821.12471875
transcript.pyannote[1740].end 10836.21096875
transcript.pyannote[1741].speaker SPEAKER_24
transcript.pyannote[1741].start 10836.70034375
transcript.pyannote[1741].end 10839.04596875
transcript.pyannote[1742].speaker SPEAKER_24
transcript.pyannote[1742].start 10839.31596875
transcript.pyannote[1742].end 10848.09096875
transcript.pyannote[1743].speaker SPEAKER_24
transcript.pyannote[1743].start 10848.27659375
transcript.pyannote[1743].end 10856.10659375
transcript.pyannote[1744].speaker SPEAKER_20
transcript.pyannote[1744].start 10856.20784375
transcript.pyannote[1744].end 10862.26596875
transcript.pyannote[1745].speaker SPEAKER_24
transcript.pyannote[1745].start 10859.49846875
transcript.pyannote[1745].end 10860.03846875
transcript.pyannote[1746].speaker SPEAKER_03
transcript.pyannote[1746].start 10860.03846875
transcript.pyannote[1746].end 10860.51096875
transcript.pyannote[1747].speaker SPEAKER_03
transcript.pyannote[1747].start 10862.58659375
transcript.pyannote[1747].end 10871.47971875
transcript.pyannote[1748].speaker SPEAKER_24
transcript.pyannote[1748].start 10867.91909375
transcript.pyannote[1748].end 10869.16784375
transcript.pyannote[1749].speaker SPEAKER_24
transcript.pyannote[1749].start 10870.29846875
transcript.pyannote[1749].end 10881.57096875
transcript.pyannote[1750].speaker SPEAKER_02
transcript.pyannote[1750].start 10880.69346875
transcript.pyannote[1750].end 10882.00971875
transcript.pyannote[1751].speaker SPEAKER_24
transcript.pyannote[1751].start 10881.68909375
transcript.pyannote[1751].end 10897.90596875
transcript.pyannote[1752].speaker SPEAKER_24
transcript.pyannote[1752].start 10898.46284375
transcript.pyannote[1752].end 10904.72346875
transcript.pyannote[1753].speaker SPEAKER_24
transcript.pyannote[1753].start 10905.29721875
transcript.pyannote[1753].end 10906.14096875
transcript.pyannote[1754].speaker SPEAKER_19
transcript.pyannote[1754].start 10907.20409375
transcript.pyannote[1754].end 10908.94221875
transcript.pyannote[1755].speaker SPEAKER_19
transcript.pyannote[1755].start 10908.97596875
transcript.pyannote[1755].end 10908.99284375
transcript.pyannote[1756].speaker SPEAKER_19
transcript.pyannote[1756].start 10909.22909375
transcript.pyannote[1756].end 10910.89971875
transcript.pyannote[1757].speaker SPEAKER_19
transcript.pyannote[1757].start 10911.94596875
transcript.pyannote[1757].end 10916.67096875
transcript.pyannote[1758].speaker SPEAKER_06
transcript.pyannote[1758].start 10919.53971875
transcript.pyannote[1758].end 10921.07534375
transcript.pyannote[1759].speaker SPEAKER_20
transcript.pyannote[1759].start 10928.73659375
transcript.pyannote[1759].end 10929.05721875
transcript.pyannote[1760].speaker SPEAKER_20
transcript.pyannote[1760].start 10935.18284375
transcript.pyannote[1760].end 10935.45284375
transcript.pyannote[1761].speaker SPEAKER_20
transcript.pyannote[1761].start 10938.22034375
transcript.pyannote[1761].end 10945.66221875
transcript.pyannote[1762].speaker SPEAKER_06
transcript.pyannote[1762].start 10944.17721875
transcript.pyannote[1762].end 10944.29534375
transcript.pyannote[1763].speaker SPEAKER_06
transcript.pyannote[1763].start 10945.66221875
transcript.pyannote[1763].end 10946.03346875
transcript.pyannote[1764].speaker SPEAKER_20
transcript.pyannote[1764].start 10946.01659375
transcript.pyannote[1764].end 10950.85971875
transcript.pyannote[1765].speaker SPEAKER_06
transcript.pyannote[1765].start 10948.49721875
transcript.pyannote[1765].end 10949.62784375
transcript.pyannote[1766].speaker SPEAKER_06
transcript.pyannote[1766].start 10950.18471875
transcript.pyannote[1766].end 10952.64846875
transcript.pyannote[1767].speaker SPEAKER_20
transcript.pyannote[1767].start 10951.16346875
transcript.pyannote[1767].end 10951.87221875
transcript.pyannote[1768].speaker SPEAKER_20
transcript.pyannote[1768].start 10952.64846875
transcript.pyannote[1768].end 10953.01971875
transcript.pyannote[1769].speaker SPEAKER_06
transcript.pyannote[1769].start 10953.01971875
transcript.pyannote[1769].end 10953.05346875
transcript.pyannote[1770].speaker SPEAKER_06
transcript.pyannote[1770].start 10953.10409375
transcript.pyannote[1770].end 10954.26846875
transcript.pyannote[1771].speaker SPEAKER_06
transcript.pyannote[1771].start 10954.62284375
transcript.pyannote[1771].end 10955.50034375
transcript.pyannote[1772].speaker SPEAKER_20
transcript.pyannote[1772].start 10954.72409375
transcript.pyannote[1772].end 10955.14596875
transcript.pyannote[1773].speaker SPEAKER_20
transcript.pyannote[1773].start 10955.93909375
transcript.pyannote[1773].end 10955.95596875
transcript.pyannote[1774].speaker SPEAKER_06
transcript.pyannote[1774].start 10955.95596875
transcript.pyannote[1774].end 10960.46159375
transcript.pyannote[1775].speaker SPEAKER_06
transcript.pyannote[1775].start 10960.78221875
transcript.pyannote[1775].end 10963.68471875
transcript.pyannote[1776].speaker SPEAKER_06
transcript.pyannote[1776].start 10963.88721875
transcript.pyannote[1776].end 10972.13909375
transcript.pyannote[1777].speaker SPEAKER_20
transcript.pyannote[1777].start 10970.01284375
transcript.pyannote[1777].end 10970.18159375
transcript.pyannote[1778].speaker SPEAKER_20
transcript.pyannote[1778].start 10972.13909375
transcript.pyannote[1778].end 10985.41971875
transcript.pyannote[1779].speaker SPEAKER_06
transcript.pyannote[1779].start 10983.63096875
transcript.pyannote[1779].end 10985.94284375
transcript.pyannote[1780].speaker SPEAKER_06
transcript.pyannote[1780].start 10986.17909375
transcript.pyannote[1780].end 10987.32659375
transcript.pyannote[1781].speaker SPEAKER_20
transcript.pyannote[1781].start 10986.88784375
transcript.pyannote[1781].end 10992.82784375
transcript.pyannote[1782].speaker SPEAKER_06
transcript.pyannote[1782].start 10990.07721875
transcript.pyannote[1782].end 10992.76034375
transcript.pyannote[1783].speaker SPEAKER_06
transcript.pyannote[1783].start 10993.01346875
transcript.pyannote[1783].end 10994.86971875
transcript.pyannote[1784].speaker SPEAKER_20
transcript.pyannote[1784].start 10993.09784375
transcript.pyannote[1784].end 10994.85284375
transcript.pyannote[1785].speaker SPEAKER_20
transcript.pyannote[1785].start 10994.86971875
transcript.pyannote[1785].end 10994.88659375
transcript.pyannote[1786].speaker SPEAKER_06
transcript.pyannote[1786].start 10995.37596875
transcript.pyannote[1786].end 11006.83409375
transcript.pyannote[1787].speaker SPEAKER_20
transcript.pyannote[1787].start 11007.66096875
transcript.pyannote[1787].end 11012.62221875
transcript.pyannote[1788].speaker SPEAKER_06
transcript.pyannote[1788].start 11007.72846875
transcript.pyannote[1788].end 11009.71971875
transcript.pyannote[1789].speaker SPEAKER_06
transcript.pyannote[1789].start 11011.72784375
transcript.pyannote[1789].end 11014.57971875
transcript.pyannote[1790].speaker SPEAKER_20
transcript.pyannote[1790].start 11013.17909375
transcript.pyannote[1790].end 11028.23159375
transcript.pyannote[1791].speaker SPEAKER_06
transcript.pyannote[1791].start 11014.83284375
transcript.pyannote[1791].end 11017.33034375
transcript.pyannote[1792].speaker SPEAKER_06
transcript.pyannote[1792].start 11018.30909375
transcript.pyannote[1792].end 11020.16534375
transcript.pyannote[1793].speaker SPEAKER_06
transcript.pyannote[1793].start 11022.37596875
transcript.pyannote[1793].end 11023.70909375
transcript.pyannote[1794].speaker SPEAKER_06
transcript.pyannote[1794].start 11025.09284375
transcript.pyannote[1794].end 11036.07846875
transcript.pyannote[1795].speaker SPEAKER_20
transcript.pyannote[1795].start 11028.72096875
transcript.pyannote[1795].end 11030.22284375
transcript.pyannote[1796].speaker SPEAKER_05
transcript.pyannote[1796].start 11033.68221875
transcript.pyannote[1796].end 11035.13346875
transcript.pyannote[1797].speaker SPEAKER_06
transcript.pyannote[1797].start 11036.71971875
transcript.pyannote[1797].end 11038.30596875
transcript.pyannote[1798].speaker SPEAKER_06
transcript.pyannote[1798].start 11039.01471875
transcript.pyannote[1798].end 11043.23346875
transcript.pyannote[1799].speaker SPEAKER_20
transcript.pyannote[1799].start 11044.31346875
transcript.pyannote[1799].end 11052.02534375
transcript.pyannote[1800].speaker SPEAKER_06
transcript.pyannote[1800].start 11052.02534375
transcript.pyannote[1800].end 11052.46409375
transcript.pyannote[1801].speaker SPEAKER_20
transcript.pyannote[1801].start 11052.46409375
transcript.pyannote[1801].end 11052.86909375
transcript.pyannote[1802].speaker SPEAKER_06
transcript.pyannote[1802].start 11052.86909375
transcript.pyannote[1802].end 11059.85534375
transcript.pyannote[1803].speaker SPEAKER_02
transcript.pyannote[1803].start 11052.95346875
transcript.pyannote[1803].end 11053.49346875
transcript.pyannote[1804].speaker SPEAKER_06
transcript.pyannote[1804].start 11060.14221875
transcript.pyannote[1804].end 11079.04221875
transcript.pyannote[1805].speaker SPEAKER_00
transcript.pyannote[1805].start 11070.68909375
transcript.pyannote[1805].end 11070.99284375
transcript.pyannote[1806].speaker SPEAKER_20
transcript.pyannote[1806].start 11079.27846875
transcript.pyannote[1806].end 11088.52596875
transcript.pyannote[1807].speaker SPEAKER_06
transcript.pyannote[1807].start 11079.95346875
transcript.pyannote[1807].end 11080.42596875
transcript.pyannote[1808].speaker SPEAKER_06
transcript.pyannote[1808].start 11083.91909375
transcript.pyannote[1808].end 11085.79221875
transcript.pyannote[1809].speaker SPEAKER_06
transcript.pyannote[1809].start 11086.63596875
transcript.pyannote[1809].end 11094.53346875
transcript.pyannote[1810].speaker SPEAKER_20
transcript.pyannote[1810].start 11089.38659375
transcript.pyannote[1810].end 11089.85909375
transcript.pyannote[1811].speaker SPEAKER_20
transcript.pyannote[1811].start 11094.43221875
transcript.pyannote[1811].end 11096.72721875
transcript.pyannote[1812].speaker SPEAKER_06
transcript.pyannote[1812].start 11095.32659375
transcript.pyannote[1812].end 11095.98471875
transcript.pyannote[1813].speaker SPEAKER_20
transcript.pyannote[1813].start 11097.45284375
transcript.pyannote[1813].end 11100.50721875
transcript.pyannote[1814].speaker SPEAKER_02
transcript.pyannote[1814].start 11100.84471875
transcript.pyannote[1814].end 11101.24971875
transcript.pyannote[1815].speaker SPEAKER_02
transcript.pyannote[1815].start 11101.35096875
transcript.pyannote[1815].end 11101.48596875
transcript.pyannote[1816].speaker SPEAKER_20
transcript.pyannote[1816].start 11101.43534375
transcript.pyannote[1816].end 11101.51971875
transcript.pyannote[1817].speaker SPEAKER_06
transcript.pyannote[1817].start 11101.48596875
transcript.pyannote[1817].end 11114.47971875
transcript.pyannote[1818].speaker SPEAKER_02
transcript.pyannote[1818].start 11101.51971875
transcript.pyannote[1818].end 11102.85284375
transcript.pyannote[1819].speaker SPEAKER_20
transcript.pyannote[1819].start 11102.85284375
transcript.pyannote[1819].end 11102.97096875
transcript.pyannote[1820].speaker SPEAKER_02
transcript.pyannote[1820].start 11102.97096875
transcript.pyannote[1820].end 11103.15659375
transcript.pyannote[1821].speaker SPEAKER_06
transcript.pyannote[1821].start 11115.25596875
transcript.pyannote[1821].end 11117.04471875
transcript.pyannote[1822].speaker SPEAKER_06
transcript.pyannote[1822].start 11117.24721875
transcript.pyannote[1822].end 11120.06534375
transcript.pyannote[1823].speaker SPEAKER_20
transcript.pyannote[1823].start 11117.39909375
transcript.pyannote[1823].end 11117.71971875
transcript.pyannote[1824].speaker SPEAKER_20
transcript.pyannote[1824].start 11119.25534375
transcript.pyannote[1824].end 11126.03909375
transcript.pyannote[1825].speaker SPEAKER_06
transcript.pyannote[1825].start 11120.68971875
transcript.pyannote[1825].end 11122.95096875
transcript.pyannote[1826].speaker SPEAKER_06
transcript.pyannote[1826].start 11125.14471875
transcript.pyannote[1826].end 11128.94159375
transcript.pyannote[1827].speaker SPEAKER_20
transcript.pyannote[1827].start 11127.77721875
transcript.pyannote[1827].end 11128.36784375
transcript.pyannote[1828].speaker SPEAKER_20
transcript.pyannote[1828].start 11128.94159375
transcript.pyannote[1828].end 11129.05971875
transcript.pyannote[1829].speaker SPEAKER_20
transcript.pyannote[1829].start 11129.07659375
transcript.pyannote[1829].end 11134.57784375
transcript.pyannote[1830].speaker SPEAKER_20
transcript.pyannote[1830].start 11135.37096875
transcript.pyannote[1830].end 11135.80971875
transcript.pyannote[1831].speaker SPEAKER_20
transcript.pyannote[1831].start 11136.40034375
transcript.pyannote[1831].end 11153.66346875
transcript.pyannote[1832].speaker SPEAKER_06
transcript.pyannote[1832].start 11136.43409375
transcript.pyannote[1832].end 11138.34096875
transcript.pyannote[1833].speaker SPEAKER_06
transcript.pyannote[1833].start 11153.66346875
transcript.pyannote[1833].end 11173.55909375
transcript.pyannote[1834].speaker SPEAKER_20
transcript.pyannote[1834].start 11173.15409375
transcript.pyannote[1834].end 11174.87534375
transcript.pyannote[1835].speaker SPEAKER_06
transcript.pyannote[1835].start 11174.36909375
transcript.pyannote[1835].end 11178.36846875
transcript.pyannote[1836].speaker SPEAKER_20
transcript.pyannote[1836].start 11179.39784375
transcript.pyannote[1836].end 11180.35971875
transcript.pyannote[1837].speaker SPEAKER_06
transcript.pyannote[1837].start 11180.35971875
transcript.pyannote[1837].end 11184.49409375
transcript.pyannote[1838].speaker SPEAKER_20
transcript.pyannote[1838].start 11181.99659375
transcript.pyannote[1838].end 11182.67159375
transcript.pyannote[1839].speaker SPEAKER_06
transcript.pyannote[1839].start 11187.16034375
transcript.pyannote[1839].end 11188.57784375
transcript.pyannote[1840].speaker SPEAKER_06
transcript.pyannote[1840].start 11189.33721875
transcript.pyannote[1840].end 11189.35409375
transcript.pyannote[1841].speaker SPEAKER_20
transcript.pyannote[1841].start 11189.35409375
transcript.pyannote[1841].end 11191.17659375
transcript.pyannote[1842].speaker SPEAKER_20
transcript.pyannote[1842].start 11192.05409375
transcript.pyannote[1842].end 11196.00284375
transcript.pyannote[1843].speaker SPEAKER_20
transcript.pyannote[1843].start 11196.08721875
transcript.pyannote[1843].end 11200.33971875
transcript.pyannote[1844].speaker SPEAKER_06
transcript.pyannote[1844].start 11199.27659375
transcript.pyannote[1844].end 11305.67346875
transcript.pyannote[1845].speaker SPEAKER_20
transcript.pyannote[1845].start 11204.84534375
transcript.pyannote[1845].end 11205.36846875
transcript.pyannote[1846].speaker SPEAKER_20
transcript.pyannote[1846].start 11209.18221875
transcript.pyannote[1846].end 11210.53221875
transcript.pyannote[1847].speaker SPEAKER_17
transcript.pyannote[1847].start 11210.53221875
transcript.pyannote[1847].end 11210.58284375
transcript.pyannote[1848].speaker SPEAKER_17
transcript.pyannote[1848].start 11210.98784375
transcript.pyannote[1848].end 11211.00471875
transcript.pyannote[1849].speaker SPEAKER_20
transcript.pyannote[1849].start 11211.00471875
transcript.pyannote[1849].end 11211.49409375
transcript.pyannote[1850].speaker SPEAKER_17
transcript.pyannote[1850].start 11211.49409375
transcript.pyannote[1850].end 11211.52784375
transcript.pyannote[1851].speaker SPEAKER_20
transcript.pyannote[1851].start 11212.10159375
transcript.pyannote[1851].end 11212.74284375
transcript.pyannote[1852].speaker SPEAKER_00
transcript.pyannote[1852].start 11212.74284375
transcript.pyannote[1852].end 11212.77659375
transcript.pyannote[1853].speaker SPEAKER_00
transcript.pyannote[1853].start 11218.81784375
transcript.pyannote[1853].end 11219.05409375
transcript.pyannote[1854].speaker SPEAKER_02
transcript.pyannote[1854].start 11219.05409375
transcript.pyannote[1854].end 11219.08784375
transcript.pyannote[1855].speaker SPEAKER_00
transcript.pyannote[1855].start 11219.08784375
transcript.pyannote[1855].end 11219.23971875
transcript.pyannote[1856].speaker SPEAKER_06
transcript.pyannote[1856].start 11306.19659375
transcript.pyannote[1856].end 11307.74909375
transcript.pyannote[1857].speaker SPEAKER_06
transcript.pyannote[1857].start 11308.50846875
transcript.pyannote[1857].end 11309.31846875
transcript.pyannote[1858].speaker SPEAKER_06
transcript.pyannote[1858].start 11309.77409375
transcript.pyannote[1858].end 11311.05659375
transcript.pyannote[1859].speaker SPEAKER_20
transcript.pyannote[1859].start 11311.05659375
transcript.pyannote[1859].end 11311.46159375
transcript.pyannote[1860].speaker SPEAKER_06
transcript.pyannote[1860].start 11311.46159375
transcript.pyannote[1860].end 11311.51221875
transcript.pyannote[1861].speaker SPEAKER_20
transcript.pyannote[1861].start 11311.51221875
transcript.pyannote[1861].end 11311.63034375
transcript.pyannote[1862].speaker SPEAKER_06
transcript.pyannote[1862].start 11311.63034375
transcript.pyannote[1862].end 11312.47409375
transcript.pyannote[1863].speaker SPEAKER_20
transcript.pyannote[1863].start 11312.47409375
transcript.pyannote[1863].end 11312.49096875
transcript.pyannote[1864].speaker SPEAKER_06
transcript.pyannote[1864].start 11312.49096875
transcript.pyannote[1864].end 11323.17284375
transcript.pyannote[1865].speaker SPEAKER_20
transcript.pyannote[1865].start 11312.64284375
transcript.pyannote[1865].end 11313.67221875
transcript.pyannote[1866].speaker SPEAKER_20
transcript.pyannote[1866].start 11318.46471875
transcript.pyannote[1866].end 11321.63721875
transcript.pyannote[1867].speaker SPEAKER_20
transcript.pyannote[1867].start 11323.17284375
transcript.pyannote[1867].end 11325.46784375
transcript.pyannote[1868].speaker SPEAKER_06
transcript.pyannote[1868].start 11323.44284375
transcript.pyannote[1868].end 11325.33284375
transcript.pyannote[1869].speaker SPEAKER_20
transcript.pyannote[1869].start 11325.75471875
transcript.pyannote[1869].end 11327.93159375
transcript.pyannote[1870].speaker SPEAKER_06
transcript.pyannote[1870].start 11327.03721875
transcript.pyannote[1870].end 11330.88471875
transcript.pyannote[1871].speaker SPEAKER_20
transcript.pyannote[1871].start 11329.99034375
transcript.pyannote[1871].end 11334.49596875
transcript.pyannote[1872].speaker SPEAKER_06
transcript.pyannote[1872].start 11331.93096875
transcript.pyannote[1872].end 11340.99284375
transcript.pyannote[1873].speaker SPEAKER_20
transcript.pyannote[1873].start 11341.87034375
transcript.pyannote[1873].end 11353.46346875
transcript.pyannote[1874].speaker SPEAKER_06
transcript.pyannote[1874].start 11350.71284375
transcript.pyannote[1874].end 11382.47159375
transcript.pyannote[1875].speaker SPEAKER_20
transcript.pyannote[1875].start 11354.08784375
transcript.pyannote[1875].end 11354.52659375
transcript.pyannote[1876].speaker SPEAKER_20
transcript.pyannote[1876].start 11382.47159375
transcript.pyannote[1876].end 11382.75846875
transcript.pyannote[1877].speaker SPEAKER_06
transcript.pyannote[1877].start 11382.75846875
transcript.pyannote[1877].end 11384.98596875
transcript.pyannote[1878].speaker SPEAKER_06
transcript.pyannote[1878].start 11385.37409375
transcript.pyannote[1878].end 11403.12659375
transcript.pyannote[1879].speaker SPEAKER_06
transcript.pyannote[1879].start 11403.21096875
transcript.pyannote[1879].end 11406.38346875
transcript.pyannote[1880].speaker SPEAKER_06
transcript.pyannote[1880].start 11406.70409375
transcript.pyannote[1880].end 11407.58159375
transcript.pyannote[1881].speaker SPEAKER_06
transcript.pyannote[1881].start 11408.29034375
transcript.pyannote[1881].end 11409.92721875
transcript.pyannote[1882].speaker SPEAKER_20
transcript.pyannote[1882].start 11409.20159375
transcript.pyannote[1882].end 11409.85971875
transcript.pyannote[1883].speaker SPEAKER_20
transcript.pyannote[1883].start 11410.12971875
transcript.pyannote[1883].end 11410.65284375
transcript.pyannote[1884].speaker SPEAKER_06
transcript.pyannote[1884].start 11410.65284375
transcript.pyannote[1884].end 11421.03096875
transcript.pyannote[1885].speaker SPEAKER_06
transcript.pyannote[1885].start 11421.43596875
transcript.pyannote[1885].end 11424.55784375
transcript.pyannote[1886].speaker SPEAKER_06
transcript.pyannote[1886].start 11425.33409375
transcript.pyannote[1886].end 11426.83596875
transcript.pyannote[1887].speaker SPEAKER_06
transcript.pyannote[1887].start 11426.97096875
transcript.pyannote[1887].end 11428.38846875
transcript.pyannote[1888].speaker SPEAKER_06
transcript.pyannote[1888].start 11429.16471875
transcript.pyannote[1888].end 11432.91096875
transcript.pyannote[1889].speaker SPEAKER_06
transcript.pyannote[1889].start 11433.31596875
transcript.pyannote[1889].end 11439.03659375
transcript.pyannote[1890].speaker SPEAKER_06
transcript.pyannote[1890].start 11439.96471875
transcript.pyannote[1890].end 11440.75784375
transcript.pyannote[1891].speaker SPEAKER_06
transcript.pyannote[1891].start 11441.11221875
transcript.pyannote[1891].end 11449.36409375
transcript.pyannote[1892].speaker SPEAKER_06
transcript.pyannote[1892].start 11449.97159375
transcript.pyannote[1892].end 11454.61221875
transcript.pyannote[1893].speaker SPEAKER_06
transcript.pyannote[1893].start 11455.20284375
transcript.pyannote[1893].end 11457.97034375
transcript.pyannote[1894].speaker SPEAKER_20
transcript.pyannote[1894].start 11457.97034375
transcript.pyannote[1894].end 11458.52721875
transcript.pyannote[1895].speaker SPEAKER_20
transcript.pyannote[1895].start 11458.84784375
transcript.pyannote[1895].end 11472.33096875
transcript.pyannote[1896].speaker SPEAKER_06
transcript.pyannote[1896].start 11467.94346875
transcript.pyannote[1896].end 11480.48159375
transcript.pyannote[1897].speaker SPEAKER_20
transcript.pyannote[1897].start 11480.00909375
transcript.pyannote[1897].end 11483.90721875
transcript.pyannote[1898].speaker SPEAKER_06
transcript.pyannote[1898].start 11481.10596875
transcript.pyannote[1898].end 11499.11159375
transcript.pyannote[1899].speaker SPEAKER_05
transcript.pyannote[1899].start 11493.05346875
transcript.pyannote[1899].end 11493.07034375
transcript.pyannote[1900].speaker SPEAKER_20
transcript.pyannote[1900].start 11493.07034375
transcript.pyannote[1900].end 11495.11221875
transcript.pyannote[1901].speaker SPEAKER_00
transcript.pyannote[1901].start 11495.11221875
transcript.pyannote[1901].end 11495.21346875
transcript.pyannote[1902].speaker SPEAKER_06
transcript.pyannote[1902].start 11499.43221875
transcript.pyannote[1902].end 11522.02784375
transcript.pyannote[1903].speaker SPEAKER_10
transcript.pyannote[1903].start 11517.38721875
transcript.pyannote[1903].end 11517.94409375
transcript.pyannote[1904].speaker SPEAKER_06
transcript.pyannote[1904].start 11522.38221875
transcript.pyannote[1904].end 11524.96409375
transcript.pyannote[1905].speaker SPEAKER_20
transcript.pyannote[1905].start 11524.96409375
transcript.pyannote[1905].end 11525.41971875
transcript.pyannote[1906].speaker SPEAKER_06
transcript.pyannote[1906].start 11525.41971875
transcript.pyannote[1906].end 11527.03971875
transcript.pyannote[1907].speaker SPEAKER_20
transcript.pyannote[1907].start 11525.52096875
transcript.pyannote[1907].end 11525.53784375
transcript.pyannote[1908].speaker SPEAKER_19
transcript.pyannote[1908].start 11525.53784375
transcript.pyannote[1908].end 11527.09034375
transcript.pyannote[1909].speaker SPEAKER_06
transcript.pyannote[1909].start 11527.09034375
transcript.pyannote[1909].end 11527.10721875
transcript.pyannote[1910].speaker SPEAKER_19
transcript.pyannote[1910].start 11528.23784375
transcript.pyannote[1910].end 11530.43159375
transcript.pyannote[1911].speaker SPEAKER_19
transcript.pyannote[1911].start 11530.90409375
transcript.pyannote[1911].end 11535.07221875
transcript.pyannote[1912].speaker SPEAKER_10
transcript.pyannote[1912].start 11535.07221875
transcript.pyannote[1912].end 11535.13971875
transcript.pyannote[1913].speaker SPEAKER_19
transcript.pyannote[1913].start 11535.54471875
transcript.pyannote[1913].end 11535.96659375
transcript.pyannote[1914].speaker SPEAKER_10
transcript.pyannote[1914].start 11535.96659375
transcript.pyannote[1914].end 11645.90721875
transcript.pyannote[1915].speaker SPEAKER_10
transcript.pyannote[1915].start 11646.53159375
transcript.pyannote[1915].end 11705.84721875
transcript.pyannote[1916].speaker SPEAKER_19
transcript.pyannote[1916].start 11705.84721875
transcript.pyannote[1916].end 11706.04971875
transcript.pyannote[1917].speaker SPEAKER_19
transcript.pyannote[1917].start 11706.20159375
transcript.pyannote[1917].end 11709.99846875
transcript.pyannote[1918].speaker SPEAKER_29
transcript.pyannote[1918].start 11716.39409375
transcript.pyannote[1918].end 11724.39284375
transcript.pyannote[1919].speaker SPEAKER_19
transcript.pyannote[1919].start 11725.94534375
transcript.pyannote[1919].end 11727.73409375
transcript.pyannote[1920].speaker SPEAKER_19
transcript.pyannote[1920].start 11728.35846875
transcript.pyannote[1920].end 11731.86846875
transcript.pyannote[1921].speaker SPEAKER_19
transcript.pyannote[1921].start 11732.15534375
transcript.pyannote[1921].end 11735.02409375
transcript.pyannote[1922].speaker SPEAKER_17
transcript.pyannote[1922].start 11735.02409375
transcript.pyannote[1922].end 11735.04096875
transcript.pyannote[1923].speaker SPEAKER_19
transcript.pyannote[1923].start 11735.04096875
transcript.pyannote[1923].end 11735.39534375
transcript.pyannote[1924].speaker SPEAKER_17
transcript.pyannote[1924].start 11736.49221875
transcript.pyannote[1924].end 11755.24034375
transcript.pyannote[1925].speaker SPEAKER_02
transcript.pyannote[1925].start 11744.03534375
transcript.pyannote[1925].end 11744.25471875
transcript.pyannote[1926].speaker SPEAKER_17
transcript.pyannote[1926].start 11755.64534375
transcript.pyannote[1926].end 11757.73784375
transcript.pyannote[1927].speaker SPEAKER_17
transcript.pyannote[1927].start 11758.53096875
transcript.pyannote[1927].end 11759.42534375
transcript.pyannote[1928].speaker SPEAKER_17
transcript.pyannote[1928].start 11760.26909375
transcript.pyannote[1928].end 11760.82596875
transcript.pyannote[1929].speaker SPEAKER_17
transcript.pyannote[1929].start 11761.60221875
transcript.pyannote[1929].end 11762.19284375
transcript.pyannote[1930].speaker SPEAKER_15
transcript.pyannote[1930].start 11761.77096875
transcript.pyannote[1930].end 11765.23034375
transcript.pyannote[1931].speaker SPEAKER_17
transcript.pyannote[1931].start 11765.46659375
transcript.pyannote[1931].end 11768.60534375
transcript.pyannote[1932].speaker SPEAKER_17
transcript.pyannote[1932].start 11768.84159375
transcript.pyannote[1932].end 11786.20596875
transcript.pyannote[1933].speaker SPEAKER_17
transcript.pyannote[1933].start 11786.56034375
transcript.pyannote[1933].end 11791.89284375
transcript.pyannote[1934].speaker SPEAKER_17
transcript.pyannote[1934].start 11792.11221875
transcript.pyannote[1934].end 11828.51159375
transcript.pyannote[1935].speaker SPEAKER_19
transcript.pyannote[1935].start 11829.38909375
transcript.pyannote[1935].end 11834.82284375
transcript.pyannote[1936].speaker SPEAKER_17
transcript.pyannote[1936].start 11829.57471875
transcript.pyannote[1936].end 11830.08096875
transcript.pyannote[1937].speaker SPEAKER_17
transcript.pyannote[1937].start 11835.48096875
transcript.pyannote[1937].end 11836.18971875
transcript.pyannote[1938].speaker SPEAKER_19
transcript.pyannote[1938].start 11836.35846875
transcript.pyannote[1938].end 11837.64096875
transcript.pyannote[1939].speaker SPEAKER_29
transcript.pyannote[1939].start 11838.78846875
transcript.pyannote[1939].end 11845.31909375
transcript.pyannote[1940].speaker SPEAKER_19
transcript.pyannote[1940].start 11846.24721875
transcript.pyannote[1940].end 11851.66409375
transcript.pyannote[1941].speaker SPEAKER_29
transcript.pyannote[1941].start 11852.47409375
transcript.pyannote[1941].end 11872.74096875
transcript.pyannote[1942].speaker SPEAKER_19
transcript.pyannote[1942].start 11873.80409375
transcript.pyannote[1942].end 11873.82096875
transcript.pyannote[1943].speaker SPEAKER_29
transcript.pyannote[1943].start 11873.82096875
transcript.pyannote[1943].end 11873.83784375
transcript.pyannote[1944].speaker SPEAKER_19
transcript.pyannote[1944].start 11873.83784375
transcript.pyannote[1944].end 11874.15846875
transcript.pyannote[1945].speaker SPEAKER_19
transcript.pyannote[1945].start 11874.74909375
transcript.pyannote[1945].end 11875.23846875
transcript.pyannote[1946].speaker SPEAKER_19
transcript.pyannote[1946].start 11876.14971875
transcript.pyannote[1946].end 11878.68096875
transcript.pyannote[1947].speaker SPEAKER_29
transcript.pyannote[1947].start 11878.20846875
transcript.pyannote[1947].end 11878.86659375
transcript.pyannote[1948].speaker SPEAKER_02
transcript.pyannote[1948].start 11878.86659375
transcript.pyannote[1948].end 11878.88346875
transcript.pyannote[1949].speaker SPEAKER_29
transcript.pyannote[1949].start 11878.88346875
transcript.pyannote[1949].end 11878.90034375
transcript.pyannote[1950].speaker SPEAKER_19
transcript.pyannote[1950].start 11878.95096875
transcript.pyannote[1950].end 11885.36346875
transcript.pyannote[1951].speaker SPEAKER_19
transcript.pyannote[1951].start 11894.20596875
transcript.pyannote[1951].end 11895.13409375
transcript.pyannote[1952].speaker SPEAKER_19
transcript.pyannote[1952].start 11895.67409375
transcript.pyannote[1952].end 11896.51784375
transcript.pyannote[1953].speaker SPEAKER_15
transcript.pyannote[1953].start 11900.85471875
transcript.pyannote[1953].end 12016.97159375
transcript.pyannote[1954].speaker SPEAKER_15
transcript.pyannote[1954].start 12017.69721875
transcript.pyannote[1954].end 12019.04721875
transcript.pyannote[1955].speaker SPEAKER_15
transcript.pyannote[1955].start 12020.48159375
transcript.pyannote[1955].end 12022.06784375
transcript.pyannote[1956].speaker SPEAKER_15
transcript.pyannote[1956].start 12022.45596875
transcript.pyannote[1956].end 12022.75971875
transcript.pyannote[1957].speaker SPEAKER_20
transcript.pyannote[1957].start 12022.75971875
transcript.pyannote[1957].end 12022.82721875
transcript.pyannote[1958].speaker SPEAKER_15
transcript.pyannote[1958].start 12023.06346875
transcript.pyannote[1958].end 12044.03909375
transcript.pyannote[1959].speaker SPEAKER_02
transcript.pyannote[1959].start 12039.07784375
transcript.pyannote[1959].end 12039.38159375
transcript.pyannote[1960].speaker SPEAKER_20
transcript.pyannote[1960].start 12039.38159375
transcript.pyannote[1960].end 12039.44909375
transcript.pyannote[1961].speaker SPEAKER_20
transcript.pyannote[1961].start 12044.03909375
transcript.pyannote[1961].end 12069.97596875
transcript.pyannote[1962].speaker SPEAKER_02
transcript.pyannote[1962].start 12049.00034375
transcript.pyannote[1962].end 12049.81034375
transcript.pyannote[1963].speaker SPEAKER_15
transcript.pyannote[1963].start 12049.81034375
transcript.pyannote[1963].end 12049.82721875
transcript.pyannote[1964].speaker SPEAKER_15
transcript.pyannote[1964].start 12054.06284375
transcript.pyannote[1964].end 12055.96971875
transcript.pyannote[1965].speaker SPEAKER_00
transcript.pyannote[1965].start 12055.96971875
transcript.pyannote[1965].end 12056.45909375
transcript.pyannote[1966].speaker SPEAKER_15
transcript.pyannote[1966].start 12069.97596875
transcript.pyannote[1966].end 12071.10659375
transcript.pyannote[1967].speaker SPEAKER_20
transcript.pyannote[1967].start 12071.10659375
transcript.pyannote[1967].end 12071.12346875
transcript.pyannote[1968].speaker SPEAKER_15
transcript.pyannote[1968].start 12071.59596875
transcript.pyannote[1968].end 12073.78971875
transcript.pyannote[1969].speaker SPEAKER_15
transcript.pyannote[1969].start 12073.80659375
transcript.pyannote[1969].end 12092.97659375
transcript.pyannote[1970].speaker SPEAKER_00
transcript.pyannote[1970].start 12084.30284375
transcript.pyannote[1970].end 12084.31971875
transcript.pyannote[1971].speaker SPEAKER_09
transcript.pyannote[1971].start 12084.31971875
transcript.pyannote[1971].end 12085.33221875
transcript.pyannote[1972].speaker SPEAKER_00
transcript.pyannote[1972].start 12088.69034375
transcript.pyannote[1972].end 12088.72409375
transcript.pyannote[1973].speaker SPEAKER_09
transcript.pyannote[1973].start 12088.72409375
transcript.pyannote[1973].end 12089.02784375
transcript.pyannote[1974].speaker SPEAKER_02
transcript.pyannote[1974].start 12089.02784375
transcript.pyannote[1974].end 12089.38221875
transcript.pyannote[1975].speaker SPEAKER_09
transcript.pyannote[1975].start 12089.38221875
transcript.pyannote[1975].end 12089.43284375
transcript.pyannote[1976].speaker SPEAKER_20
transcript.pyannote[1976].start 12092.97659375
transcript.pyannote[1976].end 12093.07784375
transcript.pyannote[1977].speaker SPEAKER_20
transcript.pyannote[1977].start 12093.41534375
transcript.pyannote[1977].end 12098.96721875
transcript.pyannote[1978].speaker SPEAKER_20
transcript.pyannote[1978].start 12099.27096875
transcript.pyannote[1978].end 12100.73909375
transcript.pyannote[1979].speaker SPEAKER_20
transcript.pyannote[1979].start 12101.29596875
transcript.pyannote[1979].end 12111.79221875
transcript.pyannote[1980].speaker SPEAKER_20
transcript.pyannote[1980].start 12112.07909375
transcript.pyannote[1980].end 12125.71409375
transcript.pyannote[1981].speaker SPEAKER_02
transcript.pyannote[1981].start 12125.57909375
transcript.pyannote[1981].end 12125.69721875
transcript.pyannote[1982].speaker SPEAKER_02
transcript.pyannote[1982].start 12125.71409375
transcript.pyannote[1982].end 12125.88284375
transcript.pyannote[1983].speaker SPEAKER_20
transcript.pyannote[1983].start 12125.88284375
transcript.pyannote[1983].end 12129.19034375
transcript.pyannote[1984].speaker SPEAKER_20
transcript.pyannote[1984].start 12129.24096875
transcript.pyannote[1984].end 12136.96971875
transcript.pyannote[1985].speaker SPEAKER_15
transcript.pyannote[1985].start 12135.02909375
transcript.pyannote[1985].end 12135.82221875
transcript.pyannote[1986].speaker SPEAKER_15
transcript.pyannote[1986].start 12136.96971875
transcript.pyannote[1986].end 12140.37846875
transcript.pyannote[1987].speaker SPEAKER_05
transcript.pyannote[1987].start 12138.10034375
transcript.pyannote[1987].end 12138.43784375
transcript.pyannote[1988].speaker SPEAKER_15
transcript.pyannote[1988].start 12140.69909375
transcript.pyannote[1988].end 12155.95409375
transcript.pyannote[1989].speaker SPEAKER_00
transcript.pyannote[1989].start 12142.08284375
transcript.pyannote[1989].end 12142.15034375
transcript.pyannote[1990].speaker SPEAKER_05
transcript.pyannote[1990].start 12142.15034375
transcript.pyannote[1990].end 12142.57221875
transcript.pyannote[1991].speaker SPEAKER_00
transcript.pyannote[1991].start 12142.57221875
transcript.pyannote[1991].end 12142.67346875
transcript.pyannote[1992].speaker SPEAKER_00
transcript.pyannote[1992].start 12143.24721875
transcript.pyannote[1992].end 12143.31471875
transcript.pyannote[1993].speaker SPEAKER_05
transcript.pyannote[1993].start 12143.31471875
transcript.pyannote[1993].end 12145.79534375
transcript.pyannote[1994].speaker SPEAKER_05
transcript.pyannote[1994].start 12146.62221875
transcript.pyannote[1994].end 12146.97659375
transcript.pyannote[1995].speaker SPEAKER_20
transcript.pyannote[1995].start 12146.97659375
transcript.pyannote[1995].end 12147.06096875
transcript.pyannote[1996].speaker SPEAKER_00
transcript.pyannote[1996].start 12147.06096875
transcript.pyannote[1996].end 12147.09471875
transcript.pyannote[1997].speaker SPEAKER_20
transcript.pyannote[1997].start 12153.81096875
transcript.pyannote[1997].end 12167.96909375
transcript.pyannote[1998].speaker SPEAKER_15
transcript.pyannote[1998].start 12165.97784375
transcript.pyannote[1998].end 12167.81721875
transcript.pyannote[1999].speaker SPEAKER_15
transcript.pyannote[1999].start 12167.96909375
transcript.pyannote[1999].end 12168.32346875
transcript.pyannote[2000].speaker SPEAKER_20
transcript.pyannote[2000].start 12168.32346875
transcript.pyannote[2000].end 12168.55971875
transcript.pyannote[2001].speaker SPEAKER_15
transcript.pyannote[2001].start 12168.55971875
transcript.pyannote[2001].end 12176.60909375
transcript.pyannote[2002].speaker SPEAKER_20
transcript.pyannote[2002].start 12168.62721875
transcript.pyannote[2002].end 12169.13346875
transcript.pyannote[2003].speaker SPEAKER_15
transcript.pyannote[2003].start 12176.84534375
transcript.pyannote[2003].end 12196.99409375
transcript.pyannote[2004].speaker SPEAKER_02
transcript.pyannote[2004].start 12182.11034375
transcript.pyannote[2004].end 12182.65034375
transcript.pyannote[2005].speaker SPEAKER_15
transcript.pyannote[2005].start 12197.43284375
transcript.pyannote[2005].end 12199.96409375
transcript.pyannote[2006].speaker SPEAKER_02
transcript.pyannote[2006].start 12200.20034375
transcript.pyannote[2006].end 12200.50409375
transcript.pyannote[2007].speaker SPEAKER_15
transcript.pyannote[2007].start 12200.50409375
transcript.pyannote[2007].end 12208.82346875
transcript.pyannote[2008].speaker SPEAKER_15
transcript.pyannote[2008].start 12209.71784375
transcript.pyannote[2008].end 12210.47721875
transcript.pyannote[2009].speaker SPEAKER_15
transcript.pyannote[2009].start 12211.20284375
transcript.pyannote[2009].end 12228.36471875
transcript.pyannote[2010].speaker SPEAKER_15
transcript.pyannote[2010].start 12228.83721875
transcript.pyannote[2010].end 12229.02284375
transcript.pyannote[2011].speaker SPEAKER_20
transcript.pyannote[2011].start 12229.02284375
transcript.pyannote[2011].end 12238.79346875
transcript.pyannote[2012].speaker SPEAKER_20
transcript.pyannote[2012].start 12239.01284375
transcript.pyannote[2012].end 12240.36284375
transcript.pyannote[2013].speaker SPEAKER_20
transcript.pyannote[2013].start 12240.46409375
transcript.pyannote[2013].end 12245.96534375
transcript.pyannote[2014].speaker SPEAKER_15
transcript.pyannote[2014].start 12245.96534375
transcript.pyannote[2014].end 12254.52096875
transcript.pyannote[2015].speaker SPEAKER_20
transcript.pyannote[2015].start 12246.58971875
transcript.pyannote[2015].end 12246.87659375
transcript.pyannote[2016].speaker SPEAKER_20
transcript.pyannote[2016].start 12248.85096875
transcript.pyannote[2016].end 12251.85471875
transcript.pyannote[2017].speaker SPEAKER_20
transcript.pyannote[2017].start 12254.52096875
transcript.pyannote[2017].end 12262.70534375
transcript.pyannote[2018].speaker SPEAKER_15
transcript.pyannote[2018].start 12261.20346875
transcript.pyannote[2018].end 12272.37471875
transcript.pyannote[2019].speaker SPEAKER_02
transcript.pyannote[2019].start 12263.09346875
transcript.pyannote[2019].end 12263.43096875
transcript.pyannote[2020].speaker SPEAKER_02
transcript.pyannote[2020].start 12264.19034375
transcript.pyannote[2020].end 12264.98346875
transcript.pyannote[2021].speaker SPEAKER_20
transcript.pyannote[2021].start 12264.98346875
transcript.pyannote[2021].end 12265.47284375
transcript.pyannote[2022].speaker SPEAKER_20
transcript.pyannote[2022].start 12270.02909375
transcript.pyannote[2022].end 12296.03346875
transcript.pyannote[2023].speaker SPEAKER_09
transcript.pyannote[2023].start 12275.95221875
transcript.pyannote[2023].end 12276.03659375
transcript.pyannote[2024].speaker SPEAKER_15
transcript.pyannote[2024].start 12276.03659375
transcript.pyannote[2024].end 12276.67784375
transcript.pyannote[2025].speaker SPEAKER_09
transcript.pyannote[2025].start 12276.67784375
transcript.pyannote[2025].end 12276.77909375
transcript.pyannote[2026].speaker SPEAKER_09
transcript.pyannote[2026].start 12277.06596875
transcript.pyannote[2026].end 12277.11659375
transcript.pyannote[2027].speaker SPEAKER_15
transcript.pyannote[2027].start 12277.11659375
transcript.pyannote[2027].end 12277.15034375
transcript.pyannote[2028].speaker SPEAKER_09
transcript.pyannote[2028].start 12277.15034375
transcript.pyannote[2028].end 12278.48346875
transcript.pyannote[2029].speaker SPEAKER_15
transcript.pyannote[2029].start 12278.48346875
transcript.pyannote[2029].end 12278.56784375
transcript.pyannote[2030].speaker SPEAKER_15
transcript.pyannote[2030].start 12280.87971875
transcript.pyannote[2030].end 12281.16659375
transcript.pyannote[2031].speaker SPEAKER_15
transcript.pyannote[2031].start 12283.46159375
transcript.pyannote[2031].end 12283.91721875
transcript.pyannote[2032].speaker SPEAKER_15
transcript.pyannote[2032].start 12287.79846875
transcript.pyannote[2032].end 12288.11909375
transcript.pyannote[2033].speaker SPEAKER_13
transcript.pyannote[2033].start 12288.11909375
transcript.pyannote[2033].end 12288.13596875
transcript.pyannote[2034].speaker SPEAKER_02
transcript.pyannote[2034].start 12288.13596875
transcript.pyannote[2034].end 12288.16971875
transcript.pyannote[2035].speaker SPEAKER_15
transcript.pyannote[2035].start 12293.21534375
transcript.pyannote[2035].end 12293.28284375
transcript.pyannote[2036].speaker SPEAKER_15
transcript.pyannote[2036].start 12293.29971875
transcript.pyannote[2036].end 12293.48534375
transcript.pyannote[2037].speaker SPEAKER_13
transcript.pyannote[2037].start 12295.34159375
transcript.pyannote[2037].end 12306.59721875
transcript.pyannote[2038].speaker SPEAKER_20
transcript.pyannote[2038].start 12299.49284375
transcript.pyannote[2038].end 12302.10846875
transcript.pyannote[2039].speaker SPEAKER_20
transcript.pyannote[2039].start 12302.63159375
transcript.pyannote[2039].end 12315.05159375
transcript.pyannote[2040].speaker SPEAKER_20
transcript.pyannote[2040].start 12315.50721875
transcript.pyannote[2040].end 12318.47721875
transcript.pyannote[2041].speaker SPEAKER_15
transcript.pyannote[2041].start 12315.57471875
transcript.pyannote[2041].end 12316.09784375
transcript.pyannote[2042].speaker SPEAKER_15
transcript.pyannote[2042].start 12317.07659375
transcript.pyannote[2042].end 12321.46409375
transcript.pyannote[2043].speaker SPEAKER_20
transcript.pyannote[2043].start 12319.43909375
transcript.pyannote[2043].end 12331.75784375
transcript.pyannote[2044].speaker SPEAKER_15
transcript.pyannote[2044].start 12331.75784375
transcript.pyannote[2044].end 12363.02721875
transcript.pyannote[2045].speaker SPEAKER_20
transcript.pyannote[2045].start 12331.80846875
transcript.pyannote[2045].end 12332.21346875
transcript.pyannote[2046].speaker SPEAKER_13
transcript.pyannote[2046].start 12337.44471875
transcript.pyannote[2046].end 12338.05221875
transcript.pyannote[2047].speaker SPEAKER_13
transcript.pyannote[2047].start 12342.11909375
transcript.pyannote[2047].end 12342.52409375
transcript.pyannote[2048].speaker SPEAKER_00
transcript.pyannote[2048].start 12353.39159375
transcript.pyannote[2048].end 12353.84721875
transcript.pyannote[2049].speaker SPEAKER_00
transcript.pyannote[2049].start 12354.03284375
transcript.pyannote[2049].end 12354.16784375
transcript.pyannote[2050].speaker SPEAKER_20
transcript.pyannote[2050].start 12354.16784375
transcript.pyannote[2050].end 12354.96096875
transcript.pyannote[2051].speaker SPEAKER_00
transcript.pyannote[2051].start 12354.96096875
transcript.pyannote[2051].end 12355.02846875
transcript.pyannote[2052].speaker SPEAKER_26
transcript.pyannote[2052].start 12355.02846875
transcript.pyannote[2052].end 12355.87221875
transcript.pyannote[2053].speaker SPEAKER_26
transcript.pyannote[2053].start 12357.99846875
transcript.pyannote[2053].end 12358.96034375
transcript.pyannote[2054].speaker SPEAKER_19
transcript.pyannote[2054].start 12358.96034375
transcript.pyannote[2054].end 12358.97721875
transcript.pyannote[2055].speaker SPEAKER_19
transcript.pyannote[2055].start 12360.56346875
transcript.pyannote[2055].end 12363.24659375
transcript.pyannote[2056].speaker SPEAKER_19
transcript.pyannote[2056].start 12363.56721875
transcript.pyannote[2056].end 12367.95471875
transcript.pyannote[2057].speaker SPEAKER_11
transcript.pyannote[2057].start 12373.03409375
transcript.pyannote[2057].end 12374.50221875
transcript.pyannote[2058].speaker SPEAKER_11
transcript.pyannote[2058].start 12375.24471875
transcript.pyannote[2058].end 12379.24409375
transcript.pyannote[2059].speaker SPEAKER_11
transcript.pyannote[2059].start 12382.77096875
transcript.pyannote[2059].end 12429.26159375
transcript.pyannote[2060].speaker SPEAKER_11
transcript.pyannote[2060].start 12429.46409375
transcript.pyannote[2060].end 12455.43471875
transcript.pyannote[2061].speaker SPEAKER_20
transcript.pyannote[2061].start 12455.97471875
transcript.pyannote[2061].end 12462.87659375
transcript.pyannote[2062].speaker SPEAKER_20
transcript.pyannote[2062].start 12463.11284375
transcript.pyannote[2062].end 12464.86784375
transcript.pyannote[2063].speaker SPEAKER_20
transcript.pyannote[2063].start 12464.93534375
transcript.pyannote[2063].end 12469.00221875
transcript.pyannote[2064].speaker SPEAKER_20
transcript.pyannote[2064].start 12469.44096875
transcript.pyannote[2064].end 12475.24596875
transcript.pyannote[2065].speaker SPEAKER_20
transcript.pyannote[2065].start 12475.90409375
transcript.pyannote[2065].end 12483.17721875
transcript.pyannote[2066].speaker SPEAKER_11
transcript.pyannote[2066].start 12477.82784375
transcript.pyannote[2066].end 12478.87409375
transcript.pyannote[2067].speaker SPEAKER_02
transcript.pyannote[2067].start 12478.87409375
transcript.pyannote[2067].end 12478.89096875
transcript.pyannote[2068].speaker SPEAKER_02
transcript.pyannote[2068].start 12483.17721875
transcript.pyannote[2068].end 12483.44721875
transcript.pyannote[2069].speaker SPEAKER_20
transcript.pyannote[2069].start 12483.44721875
transcript.pyannote[2069].end 12498.97221875
transcript.pyannote[2070].speaker SPEAKER_11
transcript.pyannote[2070].start 12491.26034375
transcript.pyannote[2070].end 12492.25596875
transcript.pyannote[2071].speaker SPEAKER_11
transcript.pyannote[2071].start 12498.97221875
transcript.pyannote[2071].end 12521.26409375
transcript.pyannote[2072].speaker SPEAKER_20
transcript.pyannote[2072].start 12513.82221875
transcript.pyannote[2072].end 12515.10471875
transcript.pyannote[2073].speaker SPEAKER_20
transcript.pyannote[2073].start 12517.21409375
transcript.pyannote[2073].end 12517.63596875
transcript.pyannote[2074].speaker SPEAKER_20
transcript.pyannote[2074].start 12520.89284375
transcript.pyannote[2074].end 12539.05034375
transcript.pyannote[2075].speaker SPEAKER_11
transcript.pyannote[2075].start 12523.74471875
transcript.pyannote[2075].end 12525.85409375
transcript.pyannote[2076].speaker SPEAKER_11
transcript.pyannote[2076].start 12531.55784375
transcript.pyannote[2076].end 12533.16096875
transcript.pyannote[2077].speaker SPEAKER_20
transcript.pyannote[2077].start 12539.55659375
transcript.pyannote[2077].end 12562.33784375
transcript.pyannote[2078].speaker SPEAKER_02
transcript.pyannote[2078].start 12554.32221875
transcript.pyannote[2078].end 12554.69346875
transcript.pyannote[2079].speaker SPEAKER_11
transcript.pyannote[2079].start 12562.33784375
transcript.pyannote[2079].end 12587.93721875
transcript.pyannote[2080].speaker SPEAKER_20
transcript.pyannote[2080].start 12562.38846875
transcript.pyannote[2080].end 12562.87784375
transcript.pyannote[2081].speaker SPEAKER_20
transcript.pyannote[2081].start 12564.76784375
transcript.pyannote[2081].end 12565.44284375
transcript.pyannote[2082].speaker SPEAKER_00
transcript.pyannote[2082].start 12573.62721875
transcript.pyannote[2082].end 12574.01534375
transcript.pyannote[2083].speaker SPEAKER_02
transcript.pyannote[2083].start 12582.30096875
transcript.pyannote[2083].end 12582.40221875
transcript.pyannote[2084].speaker SPEAKER_00
transcript.pyannote[2084].start 12582.55409375
transcript.pyannote[2084].end 12582.58784375
transcript.pyannote[2085].speaker SPEAKER_11
transcript.pyannote[2085].start 12588.81471875
transcript.pyannote[2085].end 12604.44096875
transcript.pyannote[2086].speaker SPEAKER_00
transcript.pyannote[2086].start 12592.15596875
transcript.pyannote[2086].end 12592.37534375
transcript.pyannote[2087].speaker SPEAKER_00
transcript.pyannote[2087].start 12597.53909375
transcript.pyannote[2087].end 12597.92721875
transcript.pyannote[2088].speaker SPEAKER_11
transcript.pyannote[2088].start 12604.54221875
transcript.pyannote[2088].end 12607.20846875
transcript.pyannote[2089].speaker SPEAKER_11
transcript.pyannote[2089].start 12607.30971875
transcript.pyannote[2089].end 12637.33034375
transcript.pyannote[2090].speaker SPEAKER_11
transcript.pyannote[2090].start 12637.73534375
transcript.pyannote[2090].end 12663.13221875
transcript.pyannote[2091].speaker SPEAKER_11
transcript.pyannote[2091].start 12663.18284375
transcript.pyannote[2091].end 12693.00096875
transcript.pyannote[2092].speaker SPEAKER_20
transcript.pyannote[2092].start 12692.49471875
transcript.pyannote[2092].end 12693.25409375
transcript.pyannote[2093].speaker SPEAKER_20
transcript.pyannote[2093].start 12693.28784375
transcript.pyannote[2093].end 12699.02534375
transcript.pyannote[2094].speaker SPEAKER_02
transcript.pyannote[2094].start 12698.26596875
transcript.pyannote[2094].end 12698.40096875
transcript.pyannote[2095].speaker SPEAKER_11
transcript.pyannote[2095].start 12698.40096875
transcript.pyannote[2095].end 12698.82284375
transcript.pyannote[2096].speaker SPEAKER_02
transcript.pyannote[2096].start 12698.82284375
transcript.pyannote[2096].end 12699.21096875
transcript.pyannote[2097].speaker SPEAKER_11
transcript.pyannote[2097].start 12699.02534375
transcript.pyannote[2097].end 12699.16034375
transcript.pyannote[2098].speaker SPEAKER_20
transcript.pyannote[2098].start 12699.16034375
transcript.pyannote[2098].end 12699.59909375
transcript.pyannote[2099].speaker SPEAKER_20
transcript.pyannote[2099].start 12700.00409375
transcript.pyannote[2099].end 12700.34159375
transcript.pyannote[2100].speaker SPEAKER_02
transcript.pyannote[2100].start 12700.34159375
transcript.pyannote[2100].end 12701.01659375
transcript.pyannote[2101].speaker SPEAKER_20
transcript.pyannote[2101].start 12701.53971875
transcript.pyannote[2101].end 12701.57346875
transcript.pyannote[2102].speaker SPEAKER_11
transcript.pyannote[2102].start 12701.57346875
transcript.pyannote[2102].end 12712.33971875
transcript.pyannote[2103].speaker SPEAKER_02
transcript.pyannote[2103].start 12706.11284375
transcript.pyannote[2103].end 12706.14659375
transcript.pyannote[2104].speaker SPEAKER_20
transcript.pyannote[2104].start 12706.14659375
transcript.pyannote[2104].end 12706.56846875
transcript.pyannote[2105].speaker SPEAKER_02
transcript.pyannote[2105].start 12706.56846875
transcript.pyannote[2105].end 12706.66971875
transcript.pyannote[2106].speaker SPEAKER_20
transcript.pyannote[2106].start 12711.32721875
transcript.pyannote[2106].end 12716.65971875
transcript.pyannote[2107].speaker SPEAKER_11
transcript.pyannote[2107].start 12715.12409375
transcript.pyannote[2107].end 12715.37721875
transcript.pyannote[2108].speaker SPEAKER_11
transcript.pyannote[2108].start 12715.57971875
transcript.pyannote[2108].end 12715.66409375
transcript.pyannote[2109].speaker SPEAKER_02
transcript.pyannote[2109].start 12715.66409375
transcript.pyannote[2109].end 12716.37284375
transcript.pyannote[2110].speaker SPEAKER_20
transcript.pyannote[2110].start 12717.16596875
transcript.pyannote[2110].end 12721.97534375
transcript.pyannote[2111].speaker SPEAKER_11
transcript.pyannote[2111].start 12721.97534375
transcript.pyannote[2111].end 12737.48346875
transcript.pyannote[2112].speaker SPEAKER_20
transcript.pyannote[2112].start 12734.68221875
transcript.pyannote[2112].end 12735.07034375
transcript.pyannote[2113].speaker SPEAKER_20
transcript.pyannote[2113].start 12735.79596875
transcript.pyannote[2113].end 12736.84221875
transcript.pyannote[2114].speaker SPEAKER_20
transcript.pyannote[2114].start 12737.78721875
transcript.pyannote[2114].end 12737.80409375
transcript.pyannote[2115].speaker SPEAKER_11
transcript.pyannote[2115].start 12737.80409375
transcript.pyannote[2115].end 12739.03596875
transcript.pyannote[2116].speaker SPEAKER_19
transcript.pyannote[2116].start 12739.03596875
transcript.pyannote[2116].end 12739.96409375
transcript.pyannote[2117].speaker SPEAKER_11
transcript.pyannote[2117].start 12739.08659375
transcript.pyannote[2117].end 12740.08221875
transcript.pyannote[2118].speaker SPEAKER_19
transcript.pyannote[2118].start 12740.08221875
transcript.pyannote[2118].end 12741.11159375
transcript.pyannote[2119].speaker SPEAKER_19
transcript.pyannote[2119].start 12742.14096875
transcript.pyannote[2119].end 12743.71034375
transcript.pyannote[2120].speaker SPEAKER_19
transcript.pyannote[2120].start 12744.55409375
transcript.pyannote[2120].end 12746.71409375
transcript.pyannote[2121].speaker SPEAKER_23
transcript.pyannote[2121].start 12761.22659375
transcript.pyannote[2121].end 12762.17159375
transcript.pyannote[2122].speaker SPEAKER_23
transcript.pyannote[2122].start 12762.45846875
transcript.pyannote[2122].end 12763.31909375
transcript.pyannote[2123].speaker SPEAKER_19
transcript.pyannote[2123].start 12763.48784375
transcript.pyannote[2123].end 12764.28096875
transcript.pyannote[2124].speaker SPEAKER_19
transcript.pyannote[2124].start 12768.19596875
transcript.pyannote[2124].end 12768.65159375
transcript.pyannote[2125].speaker SPEAKER_20
transcript.pyannote[2125].start 12768.65159375
transcript.pyannote[2125].end 12768.66846875
transcript.pyannote[2126].speaker SPEAKER_04
transcript.pyannote[2126].start 12769.27596875
transcript.pyannote[2126].end 12774.86159375
transcript.pyannote[2127].speaker SPEAKER_04
transcript.pyannote[2127].start 12775.57034375
transcript.pyannote[2127].end 12780.58221875
transcript.pyannote[2128].speaker SPEAKER_04
transcript.pyannote[2128].start 12780.91971875
transcript.pyannote[2128].end 12783.06284375
transcript.pyannote[2129].speaker SPEAKER_04
transcript.pyannote[2129].start 12783.51846875
transcript.pyannote[2129].end 12796.10721875
transcript.pyannote[2130].speaker SPEAKER_04
transcript.pyannote[2130].start 12796.47846875
transcript.pyannote[2130].end 12806.67096875
transcript.pyannote[2131].speaker SPEAKER_04
transcript.pyannote[2131].start 12807.41346875
transcript.pyannote[2131].end 12808.67909375
transcript.pyannote[2132].speaker SPEAKER_04
transcript.pyannote[2132].start 12808.83096875
transcript.pyannote[2132].end 12812.10471875
transcript.pyannote[2133].speaker SPEAKER_04
transcript.pyannote[2133].start 12812.23971875
transcript.pyannote[2133].end 12817.67346875
transcript.pyannote[2134].speaker SPEAKER_04
transcript.pyannote[2134].start 12817.85909375
transcript.pyannote[2134].end 12823.54596875
transcript.pyannote[2135].speaker SPEAKER_20
transcript.pyannote[2135].start 12824.91284375
transcript.pyannote[2135].end 12825.11534375
transcript.pyannote[2136].speaker SPEAKER_20
transcript.pyannote[2136].start 12825.33471875
transcript.pyannote[2136].end 12832.94534375
transcript.pyannote[2137].speaker SPEAKER_04
transcript.pyannote[2137].start 12832.94534375
transcript.pyannote[2137].end 12840.58971875
transcript.pyannote[2138].speaker SPEAKER_20
transcript.pyannote[2138].start 12832.96221875
transcript.pyannote[2138].end 12833.60346875
transcript.pyannote[2139].speaker SPEAKER_04
transcript.pyannote[2139].start 12840.72471875
transcript.pyannote[2139].end 12844.89284375
transcript.pyannote[2140].speaker SPEAKER_04
transcript.pyannote[2140].start 12845.31471875
transcript.pyannote[2140].end 12865.19346875
transcript.pyannote[2141].speaker SPEAKER_20
transcript.pyannote[2141].start 12866.79659375
transcript.pyannote[2141].end 12869.51346875
transcript.pyannote[2142].speaker SPEAKER_20
transcript.pyannote[2142].start 12869.78346875
transcript.pyannote[2142].end 12871.80846875
transcript.pyannote[2143].speaker SPEAKER_04
transcript.pyannote[2143].start 12869.88471875
transcript.pyannote[2143].end 12870.98159375
transcript.pyannote[2144].speaker SPEAKER_04
transcript.pyannote[2144].start 12871.03221875
transcript.pyannote[2144].end 12873.58034375
transcript.pyannote[2145].speaker SPEAKER_04
transcript.pyannote[2145].start 12873.73221875
transcript.pyannote[2145].end 12875.53784375
transcript.pyannote[2146].speaker SPEAKER_04
transcript.pyannote[2146].start 12876.09471875
transcript.pyannote[2146].end 12878.74409375
transcript.pyannote[2147].speaker SPEAKER_04
transcript.pyannote[2147].start 12878.84534375
transcript.pyannote[2147].end 12881.49471875
transcript.pyannote[2148].speaker SPEAKER_20
transcript.pyannote[2148].start 12881.49471875
transcript.pyannote[2148].end 12887.26596875
transcript.pyannote[2149].speaker SPEAKER_20
transcript.pyannote[2149].start 12887.33346875
transcript.pyannote[2149].end 12888.21096875
transcript.pyannote[2150].speaker SPEAKER_20
transcript.pyannote[2150].start 12888.34596875
transcript.pyannote[2150].end 12892.54784375
transcript.pyannote[2151].speaker SPEAKER_04
transcript.pyannote[2151].start 12892.54784375
transcript.pyannote[2151].end 12894.99471875
transcript.pyannote[2152].speaker SPEAKER_20
transcript.pyannote[2152].start 12892.56471875
transcript.pyannote[2152].end 12892.71659375
transcript.pyannote[2153].speaker SPEAKER_20
transcript.pyannote[2153].start 12892.76721875
transcript.pyannote[2153].end 12892.81784375
transcript.pyannote[2154].speaker SPEAKER_20
transcript.pyannote[2154].start 12892.95284375
transcript.pyannote[2154].end 12893.35784375
transcript.pyannote[2155].speaker SPEAKER_20
transcript.pyannote[2155].start 12894.99471875
transcript.pyannote[2155].end 12898.90971875
transcript.pyannote[2156].speaker SPEAKER_04
transcript.pyannote[2156].start 12895.31534375
transcript.pyannote[2156].end 12896.95221875
transcript.pyannote[2157].speaker SPEAKER_04
transcript.pyannote[2157].start 12898.67346875
transcript.pyannote[2157].end 12902.06534375
transcript.pyannote[2158].speaker SPEAKER_04
transcript.pyannote[2158].start 12902.50409375
transcript.pyannote[2158].end 12923.17596875
transcript.pyannote[2159].speaker SPEAKER_04
transcript.pyannote[2159].start 12923.47971875
transcript.pyannote[2159].end 12924.49221875
transcript.pyannote[2160].speaker SPEAKER_20
transcript.pyannote[2160].start 12928.18784375
transcript.pyannote[2160].end 12928.99784375
transcript.pyannote[2161].speaker SPEAKER_20
transcript.pyannote[2161].start 12930.83721875
transcript.pyannote[2161].end 12938.48159375
transcript.pyannote[2162].speaker SPEAKER_04
transcript.pyannote[2162].start 12937.53659375
transcript.pyannote[2162].end 12943.69596875
transcript.pyannote[2163].speaker SPEAKER_04
transcript.pyannote[2163].start 12944.10096875
transcript.pyannote[2163].end 12947.13846875
transcript.pyannote[2164].speaker SPEAKER_04
transcript.pyannote[2164].start 12947.54346875
transcript.pyannote[2164].end 12953.65221875
transcript.pyannote[2165].speaker SPEAKER_04
transcript.pyannote[2165].start 12954.88409375
transcript.pyannote[2165].end 12956.62221875
transcript.pyannote[2166].speaker SPEAKER_20
transcript.pyannote[2166].start 12955.39034375
transcript.pyannote[2166].end 12960.84096875
transcript.pyannote[2167].speaker SPEAKER_20
transcript.pyannote[2167].start 12961.76909375
transcript.pyannote[2167].end 12967.62471875
transcript.pyannote[2168].speaker SPEAKER_20
transcript.pyannote[2168].start 12967.99596875
transcript.pyannote[2168].end 12969.21096875
transcript.pyannote[2169].speaker SPEAKER_20
transcript.pyannote[2169].start 12969.58221875
transcript.pyannote[2169].end 12971.30346875
transcript.pyannote[2170].speaker SPEAKER_04
transcript.pyannote[2170].start 12969.75096875
transcript.pyannote[2170].end 12972.68721875
transcript.pyannote[2171].speaker SPEAKER_20
transcript.pyannote[2171].start 12972.02909375
transcript.pyannote[2171].end 12972.40034375
transcript.pyannote[2172].speaker SPEAKER_20
transcript.pyannote[2172].start 12972.56909375
transcript.pyannote[2172].end 12977.15909375
transcript.pyannote[2173].speaker SPEAKER_04
transcript.pyannote[2173].start 12977.15909375
transcript.pyannote[2173].end 12977.17596875
transcript.pyannote[2174].speaker SPEAKER_04
transcript.pyannote[2174].start 12977.41221875
transcript.pyannote[2174].end 12980.31471875
transcript.pyannote[2175].speaker SPEAKER_04
transcript.pyannote[2175].start 12980.60159375
transcript.pyannote[2175].end 12983.52096875
transcript.pyannote[2176].speaker SPEAKER_04
transcript.pyannote[2176].start 12984.19596875
transcript.pyannote[2176].end 12986.22096875
transcript.pyannote[2177].speaker SPEAKER_04
transcript.pyannote[2177].start 12987.65534375
transcript.pyannote[2177].end 12988.75221875
transcript.pyannote[2178].speaker SPEAKER_04
transcript.pyannote[2178].start 12989.69721875
transcript.pyannote[2178].end 12990.40596875
transcript.pyannote[2179].speaker SPEAKER_04
transcript.pyannote[2179].start 12990.55784375
transcript.pyannote[2179].end 12991.73909375
transcript.pyannote[2180].speaker SPEAKER_04
transcript.pyannote[2180].start 12992.48159375
transcript.pyannote[2180].end 12993.32534375
transcript.pyannote[2181].speaker SPEAKER_04
transcript.pyannote[2181].start 12993.84846875
transcript.pyannote[2181].end 12995.50221875
transcript.pyannote[2182].speaker SPEAKER_04
transcript.pyannote[2182].start 12996.63284375
transcript.pyannote[2182].end 12998.18534375
transcript.pyannote[2183].speaker SPEAKER_04
transcript.pyannote[2183].start 12998.64096875
transcript.pyannote[2183].end 13000.41284375
transcript.pyannote[2184].speaker SPEAKER_04
transcript.pyannote[2184].start 13000.51409375
transcript.pyannote[2184].end 13002.45471875
transcript.pyannote[2185].speaker SPEAKER_04
transcript.pyannote[2185].start 13002.77534375
transcript.pyannote[2185].end 13006.70721875
transcript.pyannote[2186].speaker SPEAKER_04
transcript.pyannote[2186].start 13007.06159375
transcript.pyannote[2186].end 13008.78284375
transcript.pyannote[2187].speaker SPEAKER_20
transcript.pyannote[2187].start 13009.37346875
transcript.pyannote[2187].end 13010.18346875
transcript.pyannote[2188].speaker SPEAKER_20
transcript.pyannote[2188].start 13010.63909375
transcript.pyannote[2188].end 13021.60784375
transcript.pyannote[2189].speaker SPEAKER_04
transcript.pyannote[2189].start 13021.91159375
transcript.pyannote[2189].end 13024.39221875
transcript.pyannote[2190].speaker SPEAKER_04
transcript.pyannote[2190].start 13025.13471875
transcript.pyannote[2190].end 13027.44659375
transcript.pyannote[2191].speaker SPEAKER_04
transcript.pyannote[2191].start 13028.17221875
transcript.pyannote[2191].end 13029.38721875
transcript.pyannote[2192].speaker SPEAKER_04
transcript.pyannote[2192].start 13030.09596875
transcript.pyannote[2192].end 13036.27221875
transcript.pyannote[2193].speaker SPEAKER_04
transcript.pyannote[2193].start 13036.91346875
transcript.pyannote[2193].end 13042.68471875
transcript.pyannote[2194].speaker SPEAKER_04
transcript.pyannote[2194].start 13042.87034375
transcript.pyannote[2194].end 13050.12659375
transcript.pyannote[2195].speaker SPEAKER_04
transcript.pyannote[2195].start 13050.46409375
transcript.pyannote[2195].end 13051.62846875
transcript.pyannote[2196].speaker SPEAKER_20
transcript.pyannote[2196].start 13056.20159375
transcript.pyannote[2196].end 13057.51784375
transcript.pyannote[2197].speaker SPEAKER_04
transcript.pyannote[2197].start 13056.67409375
transcript.pyannote[2197].end 13058.32784375
transcript.pyannote[2198].speaker SPEAKER_20
transcript.pyannote[2198].start 13057.61909375
transcript.pyannote[2198].end 13058.41221875
transcript.pyannote[2199].speaker SPEAKER_20
transcript.pyannote[2199].start 13058.42909375
transcript.pyannote[2199].end 13062.07409375
transcript.pyannote[2200].speaker SPEAKER_04
transcript.pyannote[2200].start 13063.59284375
transcript.pyannote[2200].end 13067.30534375
transcript.pyannote[2201].speaker SPEAKER_04
transcript.pyannote[2201].start 13069.02659375
transcript.pyannote[2201].end 13070.44409375
transcript.pyannote[2202].speaker SPEAKER_04
transcript.pyannote[2202].start 13070.83221875
transcript.pyannote[2202].end 13072.72221875
transcript.pyannote[2203].speaker SPEAKER_04
transcript.pyannote[2203].start 13074.25784375
transcript.pyannote[2203].end 13075.03409375
transcript.pyannote[2204].speaker SPEAKER_04
transcript.pyannote[2204].start 13075.27034375
transcript.pyannote[2204].end 13076.02971875
transcript.pyannote[2205].speaker SPEAKER_04
transcript.pyannote[2205].start 13076.62034375
transcript.pyannote[2205].end 13081.41284375
transcript.pyannote[2206].speaker SPEAKER_04
transcript.pyannote[2206].start 13082.29034375
transcript.pyannote[2206].end 13088.56784375
transcript.pyannote[2207].speaker SPEAKER_04
transcript.pyannote[2207].start 13088.87159375
transcript.pyannote[2207].end 13097.47784375
transcript.pyannote[2208].speaker SPEAKER_04
transcript.pyannote[2208].start 13099.50284375
transcript.pyannote[2208].end 13100.46471875
transcript.pyannote[2209].speaker SPEAKER_04
transcript.pyannote[2209].start 13101.03846875
transcript.pyannote[2209].end 13102.37159375
transcript.pyannote[2210].speaker SPEAKER_04
transcript.pyannote[2210].start 13103.23221875
transcript.pyannote[2210].end 13111.75409375
transcript.pyannote[2211].speaker SPEAKER_04
transcript.pyannote[2211].start 13111.88909375
transcript.pyannote[2211].end 13116.79971875
transcript.pyannote[2212].speaker SPEAKER_04
transcript.pyannote[2212].start 13117.33971875
transcript.pyannote[2212].end 13118.68971875
transcript.pyannote[2213].speaker SPEAKER_04
transcript.pyannote[2213].start 13119.48284375
transcript.pyannote[2213].end 13121.30534375
transcript.pyannote[2214].speaker SPEAKER_04
transcript.pyannote[2214].start 13121.84534375
transcript.pyannote[2214].end 13123.33034375
transcript.pyannote[2215].speaker SPEAKER_04
transcript.pyannote[2215].start 13124.08971875
transcript.pyannote[2215].end 13125.62534375
transcript.pyannote[2216].speaker SPEAKER_04
transcript.pyannote[2216].start 13126.80659375
transcript.pyannote[2216].end 13127.63346875
transcript.pyannote[2217].speaker SPEAKER_04
transcript.pyannote[2217].start 13128.15659375
transcript.pyannote[2217].end 13130.16471875
transcript.pyannote[2218].speaker SPEAKER_04
transcript.pyannote[2218].start 13130.29971875
transcript.pyannote[2218].end 13132.45971875
transcript.pyannote[2219].speaker SPEAKER_04
transcript.pyannote[2219].start 13132.71284375
transcript.pyannote[2219].end 13137.47159375
transcript.pyannote[2220].speaker SPEAKER_04
transcript.pyannote[2220].start 13138.04534375
transcript.pyannote[2220].end 13139.42909375
transcript.pyannote[2221].speaker SPEAKER_04
transcript.pyannote[2221].start 13140.49221875
transcript.pyannote[2221].end 13141.23471875
transcript.pyannote[2222].speaker SPEAKER_04
transcript.pyannote[2222].start 13142.70284375
transcript.pyannote[2222].end 13143.78284375
transcript.pyannote[2223].speaker SPEAKER_04
transcript.pyannote[2223].start 13144.20471875
transcript.pyannote[2223].end 13145.55471875
transcript.pyannote[2224].speaker SPEAKER_04
transcript.pyannote[2224].start 13147.09034375
transcript.pyannote[2224].end 13148.06909375
transcript.pyannote[2225].speaker SPEAKER_04
transcript.pyannote[2225].start 13148.82846875
transcript.pyannote[2225].end 13149.28409375
transcript.pyannote[2226].speaker SPEAKER_04
transcript.pyannote[2226].start 13149.77346875
transcript.pyannote[2226].end 13151.49471875
transcript.pyannote[2227].speaker SPEAKER_04
transcript.pyannote[2227].start 13151.93346875
transcript.pyannote[2227].end 13153.82346875
transcript.pyannote[2228].speaker SPEAKER_20
transcript.pyannote[2228].start 13155.17346875
transcript.pyannote[2228].end 13158.81846875
transcript.pyannote[2229].speaker SPEAKER_04
transcript.pyannote[2229].start 13160.21909375
transcript.pyannote[2229].end 13163.40846875
transcript.pyannote[2230].speaker SPEAKER_20
transcript.pyannote[2230].start 13163.29034375
transcript.pyannote[2230].end 13166.14221875
transcript.pyannote[2231].speaker SPEAKER_20
transcript.pyannote[2231].start 13166.31096875
transcript.pyannote[2231].end 13167.81284375
transcript.pyannote[2232].speaker SPEAKER_04
transcript.pyannote[2232].start 13167.42471875
transcript.pyannote[2232].end 13172.16659375
transcript.pyannote[2233].speaker SPEAKER_04
transcript.pyannote[2233].start 13172.75721875
transcript.pyannote[2233].end 13175.08596875
transcript.pyannote[2234].speaker SPEAKER_04
transcript.pyannote[2234].start 13175.99721875
transcript.pyannote[2234].end 13177.70159375
transcript.pyannote[2235].speaker SPEAKER_04
transcript.pyannote[2235].start 13178.10659375
transcript.pyannote[2235].end 13185.26159375
transcript.pyannote[2236].speaker SPEAKER_04
transcript.pyannote[2236].start 13185.93659375
transcript.pyannote[2236].end 13188.46784375
transcript.pyannote[2237].speaker SPEAKER_04
transcript.pyannote[2237].start 13188.95721875
transcript.pyannote[2237].end 13190.54346875
transcript.pyannote[2238].speaker SPEAKER_04
transcript.pyannote[2238].start 13191.40409375
transcript.pyannote[2238].end 13193.05784375
transcript.pyannote[2239].speaker SPEAKER_04
transcript.pyannote[2239].start 13193.34471875
transcript.pyannote[2239].end 13195.50471875
transcript.pyannote[2240].speaker SPEAKER_04
transcript.pyannote[2240].start 13195.77471875
transcript.pyannote[2240].end 13204.22909375
transcript.pyannote[2241].speaker SPEAKER_04
transcript.pyannote[2241].start 13204.85346875
transcript.pyannote[2241].end 13206.43971875
transcript.pyannote[2242].speaker SPEAKER_04
transcript.pyannote[2242].start 13207.23284375
transcript.pyannote[2242].end 13209.61221875
transcript.pyannote[2243].speaker SPEAKER_04
transcript.pyannote[2243].start 13209.94971875
transcript.pyannote[2243].end 13211.94096875
transcript.pyannote[2244].speaker SPEAKER_04
transcript.pyannote[2244].start 13212.64971875
transcript.pyannote[2244].end 13214.18534375
transcript.pyannote[2245].speaker SPEAKER_04
transcript.pyannote[2245].start 13214.67471875
transcript.pyannote[2245].end 13220.83409375
transcript.pyannote[2246].speaker SPEAKER_04
transcript.pyannote[2246].start 13225.99784375
transcript.pyannote[2246].end 13226.97659375
transcript.pyannote[2247].speaker SPEAKER_20
transcript.pyannote[2247].start 13226.97659375
transcript.pyannote[2247].end 13227.68534375
transcript.pyannote[2248].speaker SPEAKER_02
transcript.pyannote[2248].start 13228.25909375
transcript.pyannote[2248].end 13228.73159375
transcript.pyannote[2249].speaker SPEAKER_20
transcript.pyannote[2249].start 13228.73159375
transcript.pyannote[2249].end 13231.09409375
transcript.pyannote[2250].speaker SPEAKER_20
transcript.pyannote[2250].start 13231.51596875
transcript.pyannote[2250].end 13235.76846875
transcript.pyannote[2251].speaker SPEAKER_20
transcript.pyannote[2251].start 13236.13971875
transcript.pyannote[2251].end 13238.01284375
transcript.pyannote[2252].speaker SPEAKER_20
transcript.pyannote[2252].start 13238.99159375
transcript.pyannote[2252].end 13241.99534375
transcript.pyannote[2253].speaker SPEAKER_20
transcript.pyannote[2253].start 13242.50159375
transcript.pyannote[2253].end 13243.04159375
transcript.pyannote[2254].speaker SPEAKER_20
transcript.pyannote[2254].start 13243.24409375
transcript.pyannote[2254].end 13246.21409375
transcript.pyannote[2255].speaker SPEAKER_04
transcript.pyannote[2255].start 13243.81784375
transcript.pyannote[2255].end 13245.37034375
transcript.pyannote[2256].speaker SPEAKER_04
transcript.pyannote[2256].start 13246.16346875
transcript.pyannote[2256].end 13247.66534375
transcript.pyannote[2257].speaker SPEAKER_04
transcript.pyannote[2257].start 13248.52596875
transcript.pyannote[2257].end 13251.02346875
transcript.pyannote[2258].speaker SPEAKER_04
transcript.pyannote[2258].start 13251.51284375
transcript.pyannote[2258].end 13254.75284375
transcript.pyannote[2259].speaker SPEAKER_04
transcript.pyannote[2259].start 13255.27596875
transcript.pyannote[2259].end 13256.77784375
transcript.pyannote[2260].speaker SPEAKER_04
transcript.pyannote[2260].start 13257.82409375
transcript.pyannote[2260].end 13259.71409375
transcript.pyannote[2261].speaker SPEAKER_04
transcript.pyannote[2261].start 13260.76034375
transcript.pyannote[2261].end 13262.16096875
transcript.pyannote[2262].speaker SPEAKER_04
transcript.pyannote[2262].start 13264.67534375
transcript.pyannote[2262].end 13266.39659375
transcript.pyannote[2263].speaker SPEAKER_04
transcript.pyannote[2263].start 13266.97034375
transcript.pyannote[2263].end 13273.18034375
transcript.pyannote[2264].speaker SPEAKER_19
transcript.pyannote[2264].start 13275.69471875
transcript.pyannote[2264].end 13278.61409375
transcript.pyannote[2265].speaker SPEAKER_19
transcript.pyannote[2265].start 13278.88409375
transcript.pyannote[2265].end 13280.63909375
transcript.pyannote[2266].speaker SPEAKER_19
transcript.pyannote[2266].start 13281.31409375
transcript.pyannote[2266].end 13284.33471875
transcript.pyannote[2267].speaker SPEAKER_19
transcript.pyannote[2267].start 13285.75221875
transcript.pyannote[2267].end 13286.17409375
transcript.pyannote[2268].speaker SPEAKER_19
transcript.pyannote[2268].start 13286.71409375
transcript.pyannote[2268].end 13290.46034375
transcript.pyannote[2269].speaker SPEAKER_19
transcript.pyannote[2269].start 13290.66284375
transcript.pyannote[2269].end 13296.80534375
transcript.pyannote[2270].speaker SPEAKER_05
transcript.pyannote[2270].start 13305.29346875
transcript.pyannote[2270].end 13307.25096875
transcript.pyannote[2271].speaker SPEAKER_05
transcript.pyannote[2271].start 13307.70659375
transcript.pyannote[2271].end 13308.51659375
transcript.pyannote[2272].speaker SPEAKER_05
transcript.pyannote[2272].start 13312.39784375
transcript.pyannote[2272].end 13346.18159375
transcript.pyannote[2273].speaker SPEAKER_20
transcript.pyannote[2273].start 13312.46534375
transcript.pyannote[2273].end 13313.03909375
transcript.pyannote[2274].speaker SPEAKER_05
transcript.pyannote[2274].start 13346.46846875
transcript.pyannote[2274].end 13456.12221875
transcript.pyannote[2275].speaker SPEAKER_02
transcript.pyannote[2275].start 13456.17284375
transcript.pyannote[2275].end 13456.54409375
transcript.pyannote[2276].speaker SPEAKER_05
transcript.pyannote[2276].start 13456.67909375
transcript.pyannote[2276].end 13464.05346875
transcript.pyannote[2277].speaker SPEAKER_02
transcript.pyannote[2277].start 13464.05346875
transcript.pyannote[2277].end 13464.35721875
transcript.pyannote[2278].speaker SPEAKER_05
transcript.pyannote[2278].start 13464.35721875
transcript.pyannote[2278].end 13493.51721875
transcript.pyannote[2279].speaker SPEAKER_20
transcript.pyannote[2279].start 13493.61846875
transcript.pyannote[2279].end 13497.21284375
transcript.pyannote[2280].speaker SPEAKER_20
transcript.pyannote[2280].start 13497.46596875
transcript.pyannote[2280].end 13503.99659375
transcript.pyannote[2281].speaker SPEAKER_05
transcript.pyannote[2281].start 13502.54534375
transcript.pyannote[2281].end 13555.83659375
transcript.pyannote[2282].speaker SPEAKER_05
transcript.pyannote[2282].start 13556.30909375
transcript.pyannote[2282].end 13563.63284375
transcript.pyannote[2283].speaker SPEAKER_20
transcript.pyannote[2283].start 13561.03409375
transcript.pyannote[2283].end 13574.23034375
transcript.pyannote[2284].speaker SPEAKER_05
transcript.pyannote[2284].start 13567.41284375
transcript.pyannote[2284].end 13567.78409375
transcript.pyannote[2285].speaker SPEAKER_20
transcript.pyannote[2285].start 13574.24721875
transcript.pyannote[2285].end 13576.66034375
transcript.pyannote[2286].speaker SPEAKER_20
transcript.pyannote[2286].start 13576.96409375
transcript.pyannote[2286].end 13583.61284375
transcript.pyannote[2287].speaker SPEAKER_02
transcript.pyannote[2287].start 13581.87471875
transcript.pyannote[2287].end 13582.31346875
transcript.pyannote[2288].speaker SPEAKER_20
transcript.pyannote[2288].start 13583.98409375
transcript.pyannote[2288].end 13588.91159375
transcript.pyannote[2289].speaker SPEAKER_20
transcript.pyannote[2289].start 13589.19846875
transcript.pyannote[2289].end 13590.54846875
transcript.pyannote[2290].speaker SPEAKER_05
transcript.pyannote[2290].start 13589.33346875
transcript.pyannote[2290].end 13589.62034375
transcript.pyannote[2291].speaker SPEAKER_05
transcript.pyannote[2291].start 13589.78909375
transcript.pyannote[2291].end 13674.97409375
transcript.pyannote[2292].speaker SPEAKER_02
transcript.pyannote[2292].start 13662.04784375
transcript.pyannote[2292].end 13662.11534375
transcript.pyannote[2293].speaker SPEAKER_19
transcript.pyannote[2293].start 13674.97409375
transcript.pyannote[2293].end 13675.29471875
transcript.pyannote[2294].speaker SPEAKER_05
transcript.pyannote[2294].start 13676.37471875
transcript.pyannote[2294].end 13676.39159375
transcript.pyannote[2295].speaker SPEAKER_19
transcript.pyannote[2295].start 13676.39159375
transcript.pyannote[2295].end 13677.84284375
transcript.pyannote[2296].speaker SPEAKER_19
transcript.pyannote[2296].start 13678.18034375
transcript.pyannote[2296].end 13680.89721875
transcript.pyannote[2297].speaker SPEAKER_18
transcript.pyannote[2297].start 13703.64471875
transcript.pyannote[2297].end 13707.74534375
transcript.pyannote[2298].speaker SPEAKER_18
transcript.pyannote[2298].start 13709.55096875
transcript.pyannote[2298].end 13711.42409375
transcript.pyannote[2299].speaker SPEAKER_18
transcript.pyannote[2299].start 13711.84596875
transcript.pyannote[2299].end 13711.96409375
transcript.pyannote[2300].speaker SPEAKER_20
transcript.pyannote[2300].start 13711.96409375
transcript.pyannote[2300].end 13712.65596875
transcript.pyannote[2301].speaker SPEAKER_18
transcript.pyannote[2301].start 13713.68534375
transcript.pyannote[2301].end 13724.48534375
transcript.pyannote[2302].speaker SPEAKER_18
transcript.pyannote[2302].start 13724.70471875
transcript.pyannote[2302].end 13730.00346875
transcript.pyannote[2303].speaker SPEAKER_20
transcript.pyannote[2303].start 13728.65346875
transcript.pyannote[2303].end 13729.07534375
transcript.pyannote[2304].speaker SPEAKER_18
transcript.pyannote[2304].start 13730.61096875
transcript.pyannote[2304].end 13735.01534375
transcript.pyannote[2305].speaker SPEAKER_20
transcript.pyannote[2305].start 13732.85534375
transcript.pyannote[2305].end 13733.20971875
transcript.pyannote[2306].speaker SPEAKER_18
transcript.pyannote[2306].start 13735.79159375
transcript.pyannote[2306].end 13735.80846875
transcript.pyannote[2307].speaker SPEAKER_20
transcript.pyannote[2307].start 13735.80846875
transcript.pyannote[2307].end 13738.17096875
transcript.pyannote[2308].speaker SPEAKER_20
transcript.pyannote[2308].start 13738.57596875
transcript.pyannote[2308].end 13741.25909375
transcript.pyannote[2309].speaker SPEAKER_18
transcript.pyannote[2309].start 13738.60971875
transcript.pyannote[2309].end 13741.03971875
transcript.pyannote[2310].speaker SPEAKER_20
transcript.pyannote[2310].start 13741.52909375
transcript.pyannote[2310].end 13746.10221875
transcript.pyannote[2311].speaker SPEAKER_00
transcript.pyannote[2311].start 13743.41909375
transcript.pyannote[2311].end 13743.43596875
transcript.pyannote[2312].speaker SPEAKER_18
transcript.pyannote[2312].start 13743.43596875
transcript.pyannote[2312].end 13744.85346875
transcript.pyannote[2313].speaker SPEAKER_18
transcript.pyannote[2313].start 13746.10221875
transcript.pyannote[2313].end 13746.25409375
transcript.pyannote[2314].speaker SPEAKER_20
transcript.pyannote[2314].start 13746.25409375
transcript.pyannote[2314].end 13746.33846875
transcript.pyannote[2315].speaker SPEAKER_18
transcript.pyannote[2315].start 13746.33846875
transcript.pyannote[2315].end 13749.47721875
transcript.pyannote[2316].speaker SPEAKER_20
transcript.pyannote[2316].start 13748.97096875
transcript.pyannote[2316].end 13753.15596875
transcript.pyannote[2317].speaker SPEAKER_18
transcript.pyannote[2317].start 13751.31659375
transcript.pyannote[2317].end 13766.90909375
transcript.pyannote[2318].speaker SPEAKER_18
transcript.pyannote[2318].start 13767.31409375
transcript.pyannote[2318].end 13773.05159375
transcript.pyannote[2319].speaker SPEAKER_18
transcript.pyannote[2319].start 13773.15284375
transcript.pyannote[2319].end 13773.16971875
transcript.pyannote[2320].speaker SPEAKER_20
transcript.pyannote[2320].start 13773.16971875
transcript.pyannote[2320].end 13781.47221875
transcript.pyannote[2321].speaker SPEAKER_18
transcript.pyannote[2321].start 13773.18659375
transcript.pyannote[2321].end 13773.55784375
transcript.pyannote[2322].speaker SPEAKER_20
transcript.pyannote[2322].start 13781.92784375
transcript.pyannote[2322].end 13787.24346875
transcript.pyannote[2323].speaker SPEAKER_20
transcript.pyannote[2323].start 13787.64846875
transcript.pyannote[2323].end 13791.10784375
transcript.pyannote[2324].speaker SPEAKER_20
transcript.pyannote[2324].start 13791.49596875
transcript.pyannote[2324].end 13792.96409375
transcript.pyannote[2325].speaker SPEAKER_18
transcript.pyannote[2325].start 13792.96409375
transcript.pyannote[2325].end 13798.46534375
transcript.pyannote[2326].speaker SPEAKER_20
transcript.pyannote[2326].start 13795.83284375
transcript.pyannote[2326].end 13795.96784375
transcript.pyannote[2327].speaker SPEAKER_18
transcript.pyannote[2327].start 13798.53284375
transcript.pyannote[2327].end 13809.07971875
transcript.pyannote[2328].speaker SPEAKER_13
transcript.pyannote[2328].start 13798.71846875
transcript.pyannote[2328].end 13798.76909375
transcript.pyannote[2329].speaker SPEAKER_02
transcript.pyannote[2329].start 13800.79409375
transcript.pyannote[2329].end 13800.81096875
transcript.pyannote[2330].speaker SPEAKER_13
transcript.pyannote[2330].start 13800.81096875
transcript.pyannote[2330].end 13801.51971875
transcript.pyannote[2331].speaker SPEAKER_02
transcript.pyannote[2331].start 13801.51971875
transcript.pyannote[2331].end 13801.53659375
transcript.pyannote[2332].speaker SPEAKER_13
transcript.pyannote[2332].start 13802.34659375
transcript.pyannote[2332].end 13802.38034375
transcript.pyannote[2333].speaker SPEAKER_02
transcript.pyannote[2333].start 13803.02159375
transcript.pyannote[2333].end 13803.03846875
transcript.pyannote[2334].speaker SPEAKER_13
transcript.pyannote[2334].start 13803.03846875
transcript.pyannote[2334].end 13803.35909375
transcript.pyannote[2335].speaker SPEAKER_20
transcript.pyannote[2335].start 13803.35909375
transcript.pyannote[2335].end 13803.39284375
transcript.pyannote[2336].speaker SPEAKER_20
transcript.pyannote[2336].start 13807.89846875
transcript.pyannote[2336].end 13808.55659375
transcript.pyannote[2337].speaker SPEAKER_20
transcript.pyannote[2337].start 13809.45096875
transcript.pyannote[2337].end 13812.13409375
transcript.pyannote[2338].speaker SPEAKER_20
transcript.pyannote[2338].start 13812.43784375
transcript.pyannote[2338].end 13814.49659375
transcript.pyannote[2339].speaker SPEAKER_20
transcript.pyannote[2339].start 13814.88471875
transcript.pyannote[2339].end 13819.27221875
transcript.pyannote[2340].speaker SPEAKER_18
transcript.pyannote[2340].start 13818.56346875
transcript.pyannote[2340].end 13819.15409375
transcript.pyannote[2341].speaker SPEAKER_20
transcript.pyannote[2341].start 13820.01471875
transcript.pyannote[2341].end 13820.62221875
transcript.pyannote[2342].speaker SPEAKER_20
transcript.pyannote[2342].start 13820.94284375
transcript.pyannote[2342].end 13823.65971875
transcript.pyannote[2343].speaker SPEAKER_18
transcript.pyannote[2343].start 13822.05659375
transcript.pyannote[2343].end 13822.19159375
transcript.pyannote[2344].speaker SPEAKER_18
transcript.pyannote[2344].start 13822.66409375
transcript.pyannote[2344].end 13824.68909375
transcript.pyannote[2345].speaker SPEAKER_20
transcript.pyannote[2345].start 13823.94659375
transcript.pyannote[2345].end 13824.36846875
transcript.pyannote[2346].speaker SPEAKER_20
transcript.pyannote[2346].start 13824.68909375
transcript.pyannote[2346].end 13826.32596875
transcript.pyannote[2347].speaker SPEAKER_18
transcript.pyannote[2347].start 13825.60034375
transcript.pyannote[2347].end 13829.51534375
transcript.pyannote[2348].speaker SPEAKER_20
transcript.pyannote[2348].start 13826.81534375
transcript.pyannote[2348].end 13827.67596875
transcript.pyannote[2349].speaker SPEAKER_20
transcript.pyannote[2349].start 13830.46034375
transcript.pyannote[2349].end 13836.90659375
transcript.pyannote[2350].speaker SPEAKER_18
transcript.pyannote[2350].start 13836.70409375
transcript.pyannote[2350].end 13836.75471875
transcript.pyannote[2351].speaker SPEAKER_29
transcript.pyannote[2351].start 13836.75471875
transcript.pyannote[2351].end 13836.90659375
transcript.pyannote[2352].speaker SPEAKER_18
transcript.pyannote[2352].start 13836.90659375
transcript.pyannote[2352].end 13836.97409375
transcript.pyannote[2353].speaker SPEAKER_20
transcript.pyannote[2353].start 13836.97409375
transcript.pyannote[2353].end 13837.98659375
transcript.pyannote[2354].speaker SPEAKER_29
transcript.pyannote[2354].start 13838.30721875
transcript.pyannote[2354].end 13842.45846875
transcript.pyannote[2355].speaker SPEAKER_20
transcript.pyannote[2355].start 13843.01534375
transcript.pyannote[2355].end 13843.36971875
transcript.pyannote[2356].speaker SPEAKER_20
transcript.pyannote[2356].start 13844.51721875
transcript.pyannote[2356].end 13852.46534375
transcript.pyannote[2357].speaker SPEAKER_20
transcript.pyannote[2357].start 13852.97159375
transcript.pyannote[2357].end 13853.57909375
transcript.pyannote[2358].speaker SPEAKER_20
transcript.pyannote[2358].start 13854.11909375
transcript.pyannote[2358].end 13854.92909375
transcript.pyannote[2359].speaker SPEAKER_20
transcript.pyannote[2359].start 13855.08096875
transcript.pyannote[2359].end 13857.03846875
transcript.pyannote[2360].speaker SPEAKER_18
transcript.pyannote[2360].start 13856.41409375
transcript.pyannote[2360].end 13859.26596875
transcript.pyannote[2361].speaker SPEAKER_20
transcript.pyannote[2361].start 13858.28721875
transcript.pyannote[2361].end 13859.41784375
transcript.pyannote[2362].speaker SPEAKER_20
transcript.pyannote[2362].start 13859.55284375
transcript.pyannote[2362].end 13862.91096875
transcript.pyannote[2363].speaker SPEAKER_18
transcript.pyannote[2363].start 13860.97034375
transcript.pyannote[2363].end 13861.47659375
transcript.pyannote[2364].speaker SPEAKER_18
transcript.pyannote[2364].start 13862.91096875
transcript.pyannote[2364].end 13862.96159375
transcript.pyannote[2365].speaker SPEAKER_20
transcript.pyannote[2365].start 13862.96159375
transcript.pyannote[2365].end 13863.02909375
transcript.pyannote[2366].speaker SPEAKER_18
transcript.pyannote[2366].start 13863.02909375
transcript.pyannote[2366].end 13865.08784375
transcript.pyannote[2367].speaker SPEAKER_20
transcript.pyannote[2367].start 13864.02471875
transcript.pyannote[2367].end 13865.37471875
transcript.pyannote[2368].speaker SPEAKER_18
transcript.pyannote[2368].start 13865.47596875
transcript.pyannote[2368].end 13871.60159375
transcript.pyannote[2369].speaker SPEAKER_20
transcript.pyannote[2369].start 13865.57721875
transcript.pyannote[2369].end 13865.67846875
transcript.pyannote[2370].speaker SPEAKER_20
transcript.pyannote[2370].start 13872.42846875
transcript.pyannote[2370].end 13873.10346875
transcript.pyannote[2371].speaker SPEAKER_20
transcript.pyannote[2371].start 13873.35659375
transcript.pyannote[2371].end 13877.11971875
transcript.pyannote[2372].speaker SPEAKER_18
transcript.pyannote[2372].start 13873.94721875
transcript.pyannote[2372].end 13879.68471875
transcript.pyannote[2373].speaker SPEAKER_18
transcript.pyannote[2373].start 13879.90409375
transcript.pyannote[2373].end 13880.08971875
transcript.pyannote[2374].speaker SPEAKER_18
transcript.pyannote[2374].start 13881.30471875
transcript.pyannote[2374].end 13883.63346875
transcript.pyannote[2375].speaker SPEAKER_18
transcript.pyannote[2375].start 13884.08909375
transcript.pyannote[2375].end 13886.19846875
transcript.pyannote[2376].speaker SPEAKER_20
transcript.pyannote[2376].start 13886.60346875
transcript.pyannote[2376].end 13887.86909375
transcript.pyannote[2377].speaker SPEAKER_18
transcript.pyannote[2377].start 13887.86909375
transcript.pyannote[2377].end 13888.07159375
transcript.pyannote[2378].speaker SPEAKER_20
transcript.pyannote[2378].start 13888.07159375
transcript.pyannote[2378].end 13888.13909375
transcript.pyannote[2379].speaker SPEAKER_18
transcript.pyannote[2379].start 13889.18534375
transcript.pyannote[2379].end 13889.47221875
transcript.pyannote[2380].speaker SPEAKER_18
transcript.pyannote[2380].start 13890.80534375
transcript.pyannote[2380].end 13896.03659375
transcript.pyannote[2381].speaker SPEAKER_20
transcript.pyannote[2381].start 13891.36221875
transcript.pyannote[2381].end 13891.58159375
transcript.pyannote[2382].speaker SPEAKER_20
transcript.pyannote[2382].start 13892.96534375
transcript.pyannote[2382].end 13895.86784375
transcript.pyannote[2383].speaker SPEAKER_02
transcript.pyannote[2383].start 13895.86784375
transcript.pyannote[2383].end 13895.91846875
transcript.pyannote[2384].speaker SPEAKER_18
transcript.pyannote[2384].start 13896.30659375
transcript.pyannote[2384].end 13904.11971875
transcript.pyannote[2385].speaker SPEAKER_18
transcript.pyannote[2385].start 13904.54159375
transcript.pyannote[2385].end 13906.22909375
transcript.pyannote[2386].speaker SPEAKER_18
transcript.pyannote[2386].start 13907.86596875
transcript.pyannote[2386].end 13908.67596875
transcript.pyannote[2387].speaker SPEAKER_20
transcript.pyannote[2387].start 13910.04284375
transcript.pyannote[2387].end 13913.87346875
transcript.pyannote[2388].speaker SPEAKER_18
transcript.pyannote[2388].start 13914.10971875
transcript.pyannote[2388].end 13914.43034375
transcript.pyannote[2389].speaker SPEAKER_20
transcript.pyannote[2389].start 13914.43034375
transcript.pyannote[2389].end 13914.46409375
transcript.pyannote[2390].speaker SPEAKER_18
transcript.pyannote[2390].start 13914.85221875
transcript.pyannote[2390].end 13925.58471875
transcript.pyannote[2391].speaker SPEAKER_18
transcript.pyannote[2391].start 13925.83784375
transcript.pyannote[2391].end 13927.69409375
transcript.pyannote[2392].speaker SPEAKER_18
transcript.pyannote[2392].start 13927.82909375
transcript.pyannote[2392].end 13940.06346875
transcript.pyannote[2393].speaker SPEAKER_18
transcript.pyannote[2393].start 13940.63721875
transcript.pyannote[2393].end 13944.94034375
transcript.pyannote[2394].speaker SPEAKER_02
transcript.pyannote[2394].start 13945.14284375
transcript.pyannote[2394].end 13945.19346875
transcript.pyannote[2395].speaker SPEAKER_18
transcript.pyannote[2395].start 13945.19346875
transcript.pyannote[2395].end 13945.41284375
transcript.pyannote[2396].speaker SPEAKER_02
transcript.pyannote[2396].start 13945.41284375
transcript.pyannote[2396].end 13945.46346875
transcript.pyannote[2397].speaker SPEAKER_18
transcript.pyannote[2397].start 13946.71221875
transcript.pyannote[2397].end 13959.33471875
transcript.pyannote[2398].speaker SPEAKER_20
transcript.pyannote[2398].start 13948.12971875
transcript.pyannote[2398].end 13949.85096875
transcript.pyannote[2399].speaker SPEAKER_20
transcript.pyannote[2399].start 13951.11659375
transcript.pyannote[2399].end 13952.83784375
transcript.pyannote[2400].speaker SPEAKER_20
transcript.pyannote[2400].start 13953.46221875
transcript.pyannote[2400].end 13953.79971875
transcript.pyannote[2401].speaker SPEAKER_18
transcript.pyannote[2401].start 13960.36409375
transcript.pyannote[2401].end 13964.97096875
transcript.pyannote[2402].speaker SPEAKER_18
transcript.pyannote[2402].start 13965.81471875
transcript.pyannote[2402].end 13969.02096875
transcript.pyannote[2403].speaker SPEAKER_18
transcript.pyannote[2403].start 13969.37534375
transcript.pyannote[2403].end 13969.72971875
transcript.pyannote[2404].speaker SPEAKER_18
transcript.pyannote[2404].start 13970.91096875
transcript.pyannote[2404].end 13980.34409375
transcript.pyannote[2405].speaker SPEAKER_18
transcript.pyannote[2405].start 13981.01909375
transcript.pyannote[2405].end 14001.55596875
transcript.pyannote[2406].speaker SPEAKER_18
transcript.pyannote[2406].start 14001.92721875
transcript.pyannote[2406].end 14006.21346875
transcript.pyannote[2407].speaker SPEAKER_18
transcript.pyannote[2407].start 14006.50034375
transcript.pyannote[2407].end 14014.63409375
transcript.pyannote[2408].speaker SPEAKER_18
transcript.pyannote[2408].start 14015.02221875
transcript.pyannote[2408].end 14018.21159375
transcript.pyannote[2409].speaker SPEAKER_18
transcript.pyannote[2409].start 14018.48159375
transcript.pyannote[2409].end 14021.33346875
transcript.pyannote[2410].speaker SPEAKER_20
transcript.pyannote[2410].start 14021.33346875
transcript.pyannote[2410].end 14023.39221875
transcript.pyannote[2411].speaker SPEAKER_18
transcript.pyannote[2411].start 14023.84784375
transcript.pyannote[2411].end 14038.76534375
transcript.pyannote[2412].speaker SPEAKER_00
transcript.pyannote[2412].start 14031.81284375
transcript.pyannote[2412].end 14031.86346875
transcript.pyannote[2413].speaker SPEAKER_20
transcript.pyannote[2413].start 14031.86346875
transcript.pyannote[2413].end 14032.13346875
transcript.pyannote[2414].speaker SPEAKER_00
transcript.pyannote[2414].start 14032.13346875
transcript.pyannote[2414].end 14032.31909375
transcript.pyannote[2415].speaker SPEAKER_00
transcript.pyannote[2415].start 14033.44971875
transcript.pyannote[2415].end 14033.46659375
transcript.pyannote[2416].speaker SPEAKER_20
transcript.pyannote[2416].start 14033.46659375
transcript.pyannote[2416].end 14033.77034375
transcript.pyannote[2417].speaker SPEAKER_20
transcript.pyannote[2417].start 14035.40721875
transcript.pyannote[2417].end 14036.48721875
transcript.pyannote[2418].speaker SPEAKER_20
transcript.pyannote[2418].start 14037.97221875
transcript.pyannote[2418].end 14045.29596875
transcript.pyannote[2419].speaker SPEAKER_18
transcript.pyannote[2419].start 14040.33471875
transcript.pyannote[2419].end 14040.68909375
transcript.pyannote[2420].speaker SPEAKER_18
transcript.pyannote[2420].start 14045.46471875
transcript.pyannote[2420].end 14048.67096875
transcript.pyannote[2421].speaker SPEAKER_20
transcript.pyannote[2421].start 14049.22784375
transcript.pyannote[2421].end 14049.27846875
transcript.pyannote[2422].speaker SPEAKER_18
transcript.pyannote[2422].start 14049.27846875
transcript.pyannote[2422].end 14050.64534375
transcript.pyannote[2423].speaker SPEAKER_18
transcript.pyannote[2423].start 14052.07971875
transcript.pyannote[2423].end 14053.19346875
transcript.pyannote[2424].speaker SPEAKER_20
transcript.pyannote[2424].start 14056.26471875
transcript.pyannote[2424].end 14064.06096875
transcript.pyannote[2425].speaker SPEAKER_20
transcript.pyannote[2425].start 14064.56721875
transcript.pyannote[2425].end 14069.51159375
transcript.pyannote[2426].speaker SPEAKER_20
transcript.pyannote[2426].start 14070.01784375
transcript.pyannote[2426].end 14072.26221875
transcript.pyannote[2427].speaker SPEAKER_20
transcript.pyannote[2427].start 14072.65034375
transcript.pyannote[2427].end 14079.29909375
transcript.pyannote[2428].speaker SPEAKER_02
transcript.pyannote[2428].start 14076.58221875
transcript.pyannote[2428].end 14076.97034375
transcript.pyannote[2429].speaker SPEAKER_06
transcript.pyannote[2429].start 14076.97034375
transcript.pyannote[2429].end 14076.98721875
transcript.pyannote[2430].speaker SPEAKER_20
transcript.pyannote[2430].start 14079.51846875
transcript.pyannote[2430].end 14081.17221875
transcript.pyannote[2431].speaker SPEAKER_20
transcript.pyannote[2431].start 14081.25659375
transcript.pyannote[2431].end 14081.27346875
transcript.pyannote[2432].speaker SPEAKER_20
transcript.pyannote[2432].start 14081.29034375
transcript.pyannote[2432].end 14081.99909375
transcript.pyannote[2433].speaker SPEAKER_20
transcript.pyannote[2433].start 14082.40409375
transcript.pyannote[2433].end 14085.22221875
transcript.pyannote[2434].speaker SPEAKER_20
transcript.pyannote[2434].start 14085.52596875
transcript.pyannote[2434].end 14090.41971875
transcript.pyannote[2435].speaker SPEAKER_18
transcript.pyannote[2435].start 14089.81221875
transcript.pyannote[2435].end 14096.52846875
transcript.pyannote[2436].speaker SPEAKER_20
transcript.pyannote[2436].start 14094.53721875
transcript.pyannote[2436].end 14096.03909375
transcript.pyannote[2437].speaker SPEAKER_19
transcript.pyannote[2437].start 14096.03909375
transcript.pyannote[2437].end 14096.51159375
transcript.pyannote[2438].speaker SPEAKER_20
transcript.pyannote[2438].start 14096.52846875
transcript.pyannote[2438].end 14096.54534375
transcript.pyannote[2439].speaker SPEAKER_19
transcript.pyannote[2439].start 14096.54534375
transcript.pyannote[2439].end 14096.69721875
transcript.pyannote[2440].speaker SPEAKER_18
transcript.pyannote[2440].start 14097.77721875
transcript.pyannote[2440].end 14097.96284375
transcript.pyannote[2441].speaker SPEAKER_19
transcript.pyannote[2441].start 14097.96284375
transcript.pyannote[2441].end 14100.25784375
transcript.pyannote[2442].speaker SPEAKER_19
transcript.pyannote[2442].start 14101.75971875
transcript.pyannote[2442].end 14103.75096875
transcript.pyannote[2443].speaker SPEAKER_16
transcript.pyannote[2443].start 14124.01784375
transcript.pyannote[2443].end 14124.47346875
transcript.pyannote[2444].speaker SPEAKER_16
transcript.pyannote[2444].start 14124.76034375
transcript.pyannote[2444].end 14131.91534375
transcript.pyannote[2445].speaker SPEAKER_29
transcript.pyannote[2445].start 14138.47971875
transcript.pyannote[2445].end 14139.07034375
transcript.pyannote[2446].speaker SPEAKER_16
transcript.pyannote[2446].start 14139.34034375
transcript.pyannote[2446].end 14157.05909375
transcript.pyannote[2447].speaker SPEAKER_16
transcript.pyannote[2447].start 14157.56534375
transcript.pyannote[2447].end 14169.00659375
transcript.pyannote[2448].speaker SPEAKER_29
transcript.pyannote[2448].start 14169.58034375
transcript.pyannote[2448].end 14182.43909375
transcript.pyannote[2449].speaker SPEAKER_16
transcript.pyannote[2449].start 14180.63346875
transcript.pyannote[2449].end 14180.80221875
transcript.pyannote[2450].speaker SPEAKER_16
transcript.pyannote[2450].start 14182.21971875
transcript.pyannote[2450].end 14185.74659375
transcript.pyannote[2451].speaker SPEAKER_29
transcript.pyannote[2451].start 14185.74659375
transcript.pyannote[2451].end 14186.20221875
transcript.pyannote[2452].speaker SPEAKER_16
transcript.pyannote[2452].start 14186.23596875
transcript.pyannote[2452].end 14186.72534375
transcript.pyannote[2453].speaker SPEAKER_16
transcript.pyannote[2453].start 14187.21471875
transcript.pyannote[2453].end 14202.60471875
transcript.pyannote[2454].speaker SPEAKER_29
transcript.pyannote[2454].start 14203.16159375
transcript.pyannote[2454].end 14204.02221875
transcript.pyannote[2455].speaker SPEAKER_16
transcript.pyannote[2455].start 14204.02221875
transcript.pyannote[2455].end 14211.95346875
transcript.pyannote[2456].speaker SPEAKER_16
transcript.pyannote[2456].start 14212.78034375
transcript.pyannote[2456].end 14220.35721875
transcript.pyannote[2457].speaker SPEAKER_29
transcript.pyannote[2457].start 14220.98159375
transcript.pyannote[2457].end 14221.43721875
transcript.pyannote[2458].speaker SPEAKER_16
transcript.pyannote[2458].start 14221.74096875
transcript.pyannote[2458].end 14223.22596875
transcript.pyannote[2459].speaker SPEAKER_16
transcript.pyannote[2459].start 14223.85034375
transcript.pyannote[2459].end 14227.22534375
transcript.pyannote[2460].speaker SPEAKER_16
transcript.pyannote[2460].start 14227.71471875
transcript.pyannote[2460].end 14228.37284375
transcript.pyannote[2461].speaker SPEAKER_16
transcript.pyannote[2461].start 14229.03096875
transcript.pyannote[2461].end 14254.84971875
transcript.pyannote[2462].speaker SPEAKER_16
transcript.pyannote[2462].start 14255.06909375
transcript.pyannote[2462].end 14257.33034375
transcript.pyannote[2463].speaker SPEAKER_16
transcript.pyannote[2463].start 14257.61721875
transcript.pyannote[2463].end 14263.13534375
transcript.pyannote[2464].speaker SPEAKER_29
transcript.pyannote[2464].start 14263.45596875
transcript.pyannote[2464].end 14265.29534375
transcript.pyannote[2465].speaker SPEAKER_16
transcript.pyannote[2465].start 14265.26159375
transcript.pyannote[2465].end 14267.40471875
transcript.pyannote[2466].speaker SPEAKER_16
transcript.pyannote[2466].start 14267.59034375
transcript.pyannote[2466].end 14299.66971875
transcript.pyannote[2467].speaker SPEAKER_16
transcript.pyannote[2467].start 14300.53034375
transcript.pyannote[2467].end 14301.76221875
transcript.pyannote[2468].speaker SPEAKER_16
transcript.pyannote[2468].start 14302.09971875
transcript.pyannote[2468].end 14320.76346875
transcript.pyannote[2469].speaker SPEAKER_16
transcript.pyannote[2469].start 14321.18534375
transcript.pyannote[2469].end 14321.87721875
transcript.pyannote[2470].speaker SPEAKER_16
transcript.pyannote[2470].start 14323.07534375
transcript.pyannote[2470].end 14341.03034375
transcript.pyannote[2471].speaker SPEAKER_16
transcript.pyannote[2471].start 14341.48596875
transcript.pyannote[2471].end 14417.94659375
transcript.pyannote[2472].speaker SPEAKER_16
transcript.pyannote[2472].start 14418.01409375
transcript.pyannote[2472].end 14494.12034375
transcript.pyannote[2473].speaker SPEAKER_29
transcript.pyannote[2473].start 14494.81221875
transcript.pyannote[2473].end 14509.59471875
transcript.pyannote[2474].speaker SPEAKER_16
transcript.pyannote[2474].start 14509.25721875
transcript.pyannote[2474].end 14511.94034375
transcript.pyannote[2475].speaker SPEAKER_16
transcript.pyannote[2475].start 14512.34534375
transcript.pyannote[2475].end 14513.27346875
transcript.pyannote[2476].speaker SPEAKER_16
transcript.pyannote[2476].start 14514.16784375
transcript.pyannote[2476].end 14533.43909375
transcript.pyannote[2477].speaker SPEAKER_16
transcript.pyannote[2477].start 14533.92846875
transcript.pyannote[2477].end 14549.04846875
transcript.pyannote[2478].speaker SPEAKER_16
transcript.pyannote[2478].start 14549.62221875
transcript.pyannote[2478].end 14552.33909375
transcript.pyannote[2479].speaker SPEAKER_16
transcript.pyannote[2479].start 14552.79471875
transcript.pyannote[2479].end 14556.37221875
transcript.pyannote[2480].speaker SPEAKER_16
transcript.pyannote[2480].start 14556.81096875
transcript.pyannote[2480].end 14557.53659375
transcript.pyannote[2481].speaker SPEAKER_02
transcript.pyannote[2481].start 14557.60409375
transcript.pyannote[2481].end 14557.97534375
transcript.pyannote[2482].speaker SPEAKER_16
transcript.pyannote[2482].start 14557.97534375
transcript.pyannote[2482].end 14558.71784375
transcript.pyannote[2483].speaker SPEAKER_16
transcript.pyannote[2483].start 14559.17346875
transcript.pyannote[2483].end 14562.73409375
transcript.pyannote[2484].speaker SPEAKER_16
transcript.pyannote[2484].start 14562.97034375
transcript.pyannote[2484].end 14575.35659375
transcript.pyannote[2485].speaker SPEAKER_29
transcript.pyannote[2485].start 14576.28471875
transcript.pyannote[2485].end 14593.27784375
transcript.pyannote[2486].speaker SPEAKER_16
transcript.pyannote[2486].start 14578.90034375
transcript.pyannote[2486].end 14580.40221875
transcript.pyannote[2487].speaker SPEAKER_16
transcript.pyannote[2487].start 14594.00346875
transcript.pyannote[2487].end 14600.39909375
transcript.pyannote[2488].speaker SPEAKER_16
transcript.pyannote[2488].start 14600.43284375
transcript.pyannote[2488].end 14601.31034375
transcript.pyannote[2489].speaker SPEAKER_16
transcript.pyannote[2489].start 14601.37784375
transcript.pyannote[2489].end 14616.00846875
transcript.pyannote[2490].speaker SPEAKER_29
transcript.pyannote[2490].start 14617.35846875
transcript.pyannote[2490].end 14618.10096875
transcript.pyannote[2491].speaker SPEAKER_16
transcript.pyannote[2491].start 14617.62846875
transcript.pyannote[2491].end 14617.88159375
transcript.pyannote[2492].speaker SPEAKER_29
transcript.pyannote[2492].start 14618.37096875
transcript.pyannote[2492].end 14622.53909375
transcript.pyannote[2493].speaker SPEAKER_16
transcript.pyannote[2493].start 14619.88971875
transcript.pyannote[2493].end 14622.47159375
transcript.pyannote[2494].speaker SPEAKER_16
transcript.pyannote[2494].start 14622.53909375
transcript.pyannote[2494].end 14625.07034375
transcript.pyannote[2495].speaker SPEAKER_16
transcript.pyannote[2495].start 14625.39096875
transcript.pyannote[2495].end 14637.45659375
transcript.pyannote[2496].speaker SPEAKER_29
transcript.pyannote[2496].start 14637.79409375
transcript.pyannote[2496].end 14641.91159375
transcript.pyannote[2497].speaker SPEAKER_16
transcript.pyannote[2497].start 14639.16096875
transcript.pyannote[2497].end 14640.79784375
transcript.pyannote[2498].speaker SPEAKER_16
transcript.pyannote[2498].start 14641.96221875
transcript.pyannote[2498].end 14643.80159375
transcript.pyannote[2499].speaker SPEAKER_16
transcript.pyannote[2499].start 14643.83534375
transcript.pyannote[2499].end 14643.85221875
transcript.pyannote[2500].speaker SPEAKER_29
transcript.pyannote[2500].start 14643.85221875
transcript.pyannote[2500].end 14648.59409375
transcript.pyannote[2501].speaker SPEAKER_16
transcript.pyannote[2501].start 14644.78034375
transcript.pyannote[2501].end 14646.51846875
transcript.pyannote[2502].speaker SPEAKER_16
transcript.pyannote[2502].start 14648.59409375
transcript.pyannote[2502].end 14649.65721875
transcript.pyannote[2503].speaker SPEAKER_16
transcript.pyannote[2503].start 14649.79221875
transcript.pyannote[2503].end 14655.83346875
transcript.pyannote[2504].speaker SPEAKER_16
transcript.pyannote[2504].start 14657.11596875
transcript.pyannote[2504].end 14665.60409375
transcript.pyannote[2505].speaker SPEAKER_16
transcript.pyannote[2505].start 14666.61659375
transcript.pyannote[2505].end 14667.17346875
transcript.pyannote[2506].speaker SPEAKER_16
transcript.pyannote[2506].start 14667.83159375
transcript.pyannote[2506].end 14670.34596875
transcript.pyannote[2507].speaker SPEAKER_16
transcript.pyannote[2507].start 14670.91971875
transcript.pyannote[2507].end 14671.51034375
transcript.pyannote[2508].speaker SPEAKER_16
transcript.pyannote[2508].start 14671.89846875
transcript.pyannote[2508].end 14673.92346875
transcript.pyannote[2509].speaker SPEAKER_16
transcript.pyannote[2509].start 14674.58159375
transcript.pyannote[2509].end 14680.11659375
transcript.pyannote[2510].speaker SPEAKER_29
transcript.pyannote[2510].start 14680.57221875
transcript.pyannote[2510].end 14687.50784375
transcript.pyannote[2511].speaker SPEAKER_16
transcript.pyannote[2511].start 14686.61346875
transcript.pyannote[2511].end 14687.30534375
transcript.pyannote[2512].speaker SPEAKER_16
transcript.pyannote[2512].start 14687.62596875
transcript.pyannote[2512].end 14688.14909375
transcript.pyannote[2513].speaker SPEAKER_16
transcript.pyannote[2513].start 14688.63846875
transcript.pyannote[2513].end 14695.91159375
transcript.pyannote[2514].speaker SPEAKER_29
transcript.pyannote[2514].start 14696.31659375
transcript.pyannote[2514].end 14697.05909375
transcript.pyannote[2515].speaker SPEAKER_16
transcript.pyannote[2515].start 14697.04221875
transcript.pyannote[2515].end 14703.20159375
transcript.pyannote[2516].speaker SPEAKER_16
transcript.pyannote[2516].start 14703.31971875
transcript.pyannote[2516].end 14723.63721875
transcript.pyannote[2517].speaker SPEAKER_16
transcript.pyannote[2517].start 14723.94096875
transcript.pyannote[2517].end 14725.61159375
transcript.pyannote[2518].speaker SPEAKER_16
transcript.pyannote[2518].start 14726.06721875
transcript.pyannote[2518].end 14735.78721875
transcript.pyannote[2519].speaker SPEAKER_16
transcript.pyannote[2519].start 14736.14159375
transcript.pyannote[2519].end 14764.84596875
transcript.pyannote[2520].speaker SPEAKER_16
transcript.pyannote[2520].start 14765.33534375
transcript.pyannote[2520].end 14765.87534375
transcript.pyannote[2521].speaker SPEAKER_16
transcript.pyannote[2521].start 14766.01034375
transcript.pyannote[2521].end 14768.59221875
transcript.pyannote[2522].speaker SPEAKER_16
transcript.pyannote[2522].start 14768.92971875
transcript.pyannote[2522].end 14782.80096875
transcript.pyannote[2523].speaker SPEAKER_16
transcript.pyannote[2523].start 14783.22284375
transcript.pyannote[2523].end 14783.66159375
transcript.pyannote[2524].speaker SPEAKER_16
transcript.pyannote[2524].start 14783.93159375
transcript.pyannote[2524].end 14784.99471875
transcript.pyannote[2525].speaker SPEAKER_16
transcript.pyannote[2525].start 14786.15909375
transcript.pyannote[2525].end 14786.44596875
transcript.pyannote[2526].speaker SPEAKER_16
transcript.pyannote[2526].start 14787.01971875
transcript.pyannote[2526].end 14789.33159375
transcript.pyannote[2527].speaker SPEAKER_16
transcript.pyannote[2527].start 14791.72784375
transcript.pyannote[2527].end 14827.84034375
transcript.pyannote[2528].speaker SPEAKER_16
transcript.pyannote[2528].start 14828.49846875
transcript.pyannote[2528].end 14843.16284375
transcript.pyannote[2529].speaker SPEAKER_16
transcript.pyannote[2529].start 14843.31471875
transcript.pyannote[2529].end 14846.95971875
transcript.pyannote[2530].speaker SPEAKER_29
transcript.pyannote[2530].start 14847.11159375
transcript.pyannote[2530].end 14847.76971875
transcript.pyannote[2531].speaker SPEAKER_19
transcript.pyannote[2531].start 14848.88346875
transcript.pyannote[2531].end 14850.60471875
transcript.pyannote[2532].speaker SPEAKER_19
transcript.pyannote[2532].start 14851.54971875
transcript.pyannote[2532].end 14854.01346875
transcript.pyannote[2533].speaker SPEAKER_23
transcript.pyannote[2533].start 14861.21909375
transcript.pyannote[2533].end 14862.21471875
transcript.pyannote[2534].speaker SPEAKER_23
transcript.pyannote[2534].start 14862.92346875
transcript.pyannote[2534].end 14863.96971875
transcript.pyannote[2535].speaker SPEAKER_23
transcript.pyannote[2535].start 14864.45909375
transcript.pyannote[2535].end 14865.13409375
transcript.pyannote[2536].speaker SPEAKER_19
transcript.pyannote[2536].start 14865.28596875
transcript.pyannote[2536].end 14866.24784375
transcript.pyannote[2537].speaker SPEAKER_19
transcript.pyannote[2537].start 14871.17534375
transcript.pyannote[2537].end 14871.19221875
transcript.pyannote[2538].speaker SPEAKER_20
transcript.pyannote[2538].start 14871.19221875
transcript.pyannote[2538].end 14871.78284375
transcript.pyannote[2539].speaker SPEAKER_23
transcript.pyannote[2539].start 14872.10346875
transcript.pyannote[2539].end 14872.33971875
transcript.pyannote[2540].speaker SPEAKER_23
transcript.pyannote[2540].start 14872.60971875
transcript.pyannote[2540].end 14874.83721875
transcript.pyannote[2541].speaker SPEAKER_23
transcript.pyannote[2541].start 14876.64284375
transcript.pyannote[2541].end 14877.25034375
transcript.pyannote[2542].speaker SPEAKER_23
transcript.pyannote[2542].start 14877.65534375
transcript.pyannote[2542].end 14878.12784375
transcript.pyannote[2543].speaker SPEAKER_02
transcript.pyannote[2543].start 14878.26284375
transcript.pyannote[2543].end 14878.63409375
transcript.pyannote[2544].speaker SPEAKER_23
transcript.pyannote[2544].start 14879.08971875
transcript.pyannote[2544].end 14886.14346875
transcript.pyannote[2545].speaker SPEAKER_20
transcript.pyannote[2545].start 14886.24471875
transcript.pyannote[2545].end 14887.13909375
transcript.pyannote[2546].speaker SPEAKER_23
transcript.pyannote[2546].start 14886.36284375
transcript.pyannote[2546].end 14887.66221875
transcript.pyannote[2547].speaker SPEAKER_20
transcript.pyannote[2547].start 14887.25721875
transcript.pyannote[2547].end 14895.01971875
transcript.pyannote[2548].speaker SPEAKER_20
transcript.pyannote[2548].start 14895.32346875
transcript.pyannote[2548].end 14897.48346875
transcript.pyannote[2549].speaker SPEAKER_23
transcript.pyannote[2549].start 14895.35721875
transcript.pyannote[2549].end 14895.71159375
transcript.pyannote[2550].speaker SPEAKER_23
transcript.pyannote[2550].start 14897.48346875
transcript.pyannote[2550].end 14899.03596875
transcript.pyannote[2551].speaker SPEAKER_20
transcript.pyannote[2551].start 14899.81221875
transcript.pyannote[2551].end 14901.11159375
transcript.pyannote[2552].speaker SPEAKER_23
transcript.pyannote[2552].start 14900.16659375
transcript.pyannote[2552].end 14902.66409375
transcript.pyannote[2553].speaker SPEAKER_20
transcript.pyannote[2553].start 14902.07346875
transcript.pyannote[2553].end 14907.94596875
transcript.pyannote[2554].speaker SPEAKER_23
transcript.pyannote[2554].start 14907.65909375
transcript.pyannote[2554].end 14909.02596875
transcript.pyannote[2555].speaker SPEAKER_20
transcript.pyannote[2555].start 14909.02596875
transcript.pyannote[2555].end 14921.19284375
transcript.pyannote[2556].speaker SPEAKER_23
transcript.pyannote[2556].start 14909.66721875
transcript.pyannote[2556].end 14910.02159375
transcript.pyannote[2557].speaker SPEAKER_23
transcript.pyannote[2557].start 14920.34909375
transcript.pyannote[2557].end 14924.07846875
transcript.pyannote[2558].speaker SPEAKER_20
transcript.pyannote[2558].start 14922.15471875
transcript.pyannote[2558].end 14924.95596875
transcript.pyannote[2559].speaker SPEAKER_23
transcript.pyannote[2559].start 14924.33159375
transcript.pyannote[2559].end 14930.47409375
transcript.pyannote[2560].speaker SPEAKER_20
transcript.pyannote[2560].start 14930.50784375
transcript.pyannote[2560].end 14936.05971875
transcript.pyannote[2561].speaker SPEAKER_23
transcript.pyannote[2561].start 14931.30096875
transcript.pyannote[2561].end 14931.63846875
transcript.pyannote[2562].speaker SPEAKER_23
transcript.pyannote[2562].start 14935.72221875
transcript.pyannote[2562].end 14946.33659375
transcript.pyannote[2563].speaker SPEAKER_20
transcript.pyannote[2563].start 14938.54034375
transcript.pyannote[2563].end 14944.17659375
transcript.pyannote[2564].speaker SPEAKER_23
transcript.pyannote[2564].start 14947.45034375
transcript.pyannote[2564].end 14948.12534375
transcript.pyannote[2565].speaker SPEAKER_20
transcript.pyannote[2565].start 14948.98596875
transcript.pyannote[2565].end 14949.82971875
transcript.pyannote[2566].speaker SPEAKER_23
transcript.pyannote[2566].start 14949.03659375
transcript.pyannote[2566].end 14950.30221875
transcript.pyannote[2567].speaker SPEAKER_20
transcript.pyannote[2567].start 14950.47096875
transcript.pyannote[2567].end 14956.15784375
transcript.pyannote[2568].speaker SPEAKER_23
transcript.pyannote[2568].start 14956.09034375
transcript.pyannote[2568].end 14956.37721875
transcript.pyannote[2569].speaker SPEAKER_20
transcript.pyannote[2569].start 14956.34346875
transcript.pyannote[2569].end 14957.32221875
transcript.pyannote[2570].speaker SPEAKER_20
transcript.pyannote[2570].start 14957.98034375
transcript.pyannote[2570].end 14959.85346875
transcript.pyannote[2571].speaker SPEAKER_23
transcript.pyannote[2571].start 14960.44409375
transcript.pyannote[2571].end 14964.25784375
transcript.pyannote[2572].speaker SPEAKER_23
transcript.pyannote[2572].start 14964.39284375
transcript.pyannote[2572].end 14966.40096875
transcript.pyannote[2573].speaker SPEAKER_23
transcript.pyannote[2573].start 14967.54846875
transcript.pyannote[2573].end 14968.84784375
transcript.pyannote[2574].speaker SPEAKER_23
transcript.pyannote[2574].start 14969.74221875
transcript.pyannote[2574].end 14971.42971875
transcript.pyannote[2575].speaker SPEAKER_23
transcript.pyannote[2575].start 14971.71659375
transcript.pyannote[2575].end 14973.13409375
transcript.pyannote[2576].speaker SPEAKER_20
transcript.pyannote[2576].start 14973.64034375
transcript.pyannote[2576].end 14975.19284375
transcript.pyannote[2577].speaker SPEAKER_23
transcript.pyannote[2577].start 14975.54721875
transcript.pyannote[2577].end 14976.67784375
transcript.pyannote[2578].speaker SPEAKER_20
transcript.pyannote[2578].start 14977.40346875
transcript.pyannote[2578].end 14977.90971875
transcript.pyannote[2579].speaker SPEAKER_20
transcript.pyannote[2579].start 14978.33159375
transcript.pyannote[2579].end 14982.33096875
transcript.pyannote[2580].speaker SPEAKER_23
transcript.pyannote[2580].start 14978.44971875
transcript.pyannote[2580].end 14978.77034375
transcript.pyannote[2581].speaker SPEAKER_23
transcript.pyannote[2581].start 14982.82034375
transcript.pyannote[2581].end 14983.42784375
transcript.pyannote[2582].speaker SPEAKER_20
transcript.pyannote[2582].start 14983.42784375
transcript.pyannote[2582].end 14983.64721875
transcript.pyannote[2583].speaker SPEAKER_23
transcript.pyannote[2583].start 14983.64721875
transcript.pyannote[2583].end 14984.64284375
transcript.pyannote[2584].speaker SPEAKER_20
transcript.pyannote[2584].start 14984.96346875
transcript.pyannote[2584].end 14985.13221875
transcript.pyannote[2585].speaker SPEAKER_23
transcript.pyannote[2585].start 14985.40221875
transcript.pyannote[2585].end 14985.63846875
transcript.pyannote[2586].speaker SPEAKER_20
transcript.pyannote[2586].start 14985.80721875
transcript.pyannote[2586].end 14989.40159375
transcript.pyannote[2587].speaker SPEAKER_23
transcript.pyannote[2587].start 14989.18221875
transcript.pyannote[2587].end 14995.96596875
transcript.pyannote[2588].speaker SPEAKER_20
transcript.pyannote[2588].start 14992.59096875
transcript.pyannote[2588].end 14993.85659375
transcript.pyannote[2589].speaker SPEAKER_20
transcript.pyannote[2589].start 14994.85221875
transcript.pyannote[2589].end 14998.83471875
transcript.pyannote[2590].speaker SPEAKER_20
transcript.pyannote[2590].start 14999.40846875
transcript.pyannote[2590].end 15000.25221875
transcript.pyannote[2591].speaker SPEAKER_23
transcript.pyannote[2591].start 15000.06659375
transcript.pyannote[2591].end 15004.48784375
transcript.pyannote[2592].speaker SPEAKER_20
transcript.pyannote[2592].start 15003.03659375
transcript.pyannote[2592].end 15008.11596875
transcript.pyannote[2593].speaker SPEAKER_23
transcript.pyannote[2593].start 15008.11596875
transcript.pyannote[2593].end 15010.34346875
transcript.pyannote[2594].speaker SPEAKER_20
transcript.pyannote[2594].start 15008.18346875
transcript.pyannote[2594].end 15009.36471875
transcript.pyannote[2595].speaker SPEAKER_23
transcript.pyannote[2595].start 15011.10284375
transcript.pyannote[2595].end 15015.40596875
transcript.pyannote[2596].speaker SPEAKER_23
transcript.pyannote[2596].start 15016.01346875
transcript.pyannote[2596].end 15016.41846875
transcript.pyannote[2597].speaker SPEAKER_23
transcript.pyannote[2597].start 15016.73909375
transcript.pyannote[2597].end 15018.94971875
transcript.pyannote[2598].speaker SPEAKER_23
transcript.pyannote[2598].start 15018.96659375
transcript.pyannote[2598].end 15018.98346875
transcript.pyannote[2599].speaker SPEAKER_23
transcript.pyannote[2599].start 15019.23659375
transcript.pyannote[2599].end 15024.83909375
transcript.pyannote[2600].speaker SPEAKER_02
transcript.pyannote[2600].start 15019.48971875
transcript.pyannote[2600].end 15021.34596875
transcript.pyannote[2601].speaker SPEAKER_02
transcript.pyannote[2601].start 15022.52721875
transcript.pyannote[2601].end 15023.21909375
transcript.pyannote[2602].speaker SPEAKER_02
transcript.pyannote[2602].start 15023.89409375
transcript.pyannote[2602].end 15025.69971875
transcript.pyannote[2603].speaker SPEAKER_23
transcript.pyannote[2603].start 15025.17659375
transcript.pyannote[2603].end 15033.14159375
transcript.pyannote[2604].speaker SPEAKER_20
transcript.pyannote[2604].start 15027.99471875
transcript.pyannote[2604].end 15028.99034375
transcript.pyannote[2605].speaker SPEAKER_20
transcript.pyannote[2605].start 15029.66534375
transcript.pyannote[2605].end 15030.42471875
transcript.pyannote[2606].speaker SPEAKER_20
transcript.pyannote[2606].start 15032.58471875
transcript.pyannote[2606].end 15035.53784375
transcript.pyannote[2607].speaker SPEAKER_23
transcript.pyannote[2607].start 15033.86721875
transcript.pyannote[2607].end 15034.82909375
transcript.pyannote[2608].speaker SPEAKER_23
transcript.pyannote[2608].start 15036.29721875
transcript.pyannote[2608].end 15040.78596875
transcript.pyannote[2609].speaker SPEAKER_20
transcript.pyannote[2609].start 15037.73159375
transcript.pyannote[2609].end 15038.49096875
transcript.pyannote[2610].speaker SPEAKER_20
transcript.pyannote[2610].start 15041.05596875
transcript.pyannote[2610].end 15042.11909375
transcript.pyannote[2611].speaker SPEAKER_23
transcript.pyannote[2611].start 15042.30471875
transcript.pyannote[2611].end 15043.53659375
transcript.pyannote[2612].speaker SPEAKER_23
transcript.pyannote[2612].start 15044.19471875
transcript.pyannote[2612].end 15044.58284375
transcript.pyannote[2613].speaker SPEAKER_20
transcript.pyannote[2613].start 15044.75159375
transcript.pyannote[2613].end 15044.95409375
transcript.pyannote[2614].speaker SPEAKER_23
transcript.pyannote[2614].start 15045.67971875
transcript.pyannote[2614].end 15046.69221875
transcript.pyannote[2615].speaker SPEAKER_23
transcript.pyannote[2615].start 15047.78909375
transcript.pyannote[2615].end 15049.13909375
transcript.pyannote[2616].speaker SPEAKER_23
transcript.pyannote[2616].start 15050.11784375
transcript.pyannote[2616].end 15052.24409375
transcript.pyannote[2617].speaker SPEAKER_23
transcript.pyannote[2617].start 15052.48034375
transcript.pyannote[2617].end 15053.71221875
transcript.pyannote[2618].speaker SPEAKER_23
transcript.pyannote[2618].start 15054.28596875
transcript.pyannote[2618].end 15056.69909375
transcript.pyannote[2619].speaker SPEAKER_23
transcript.pyannote[2619].start 15057.27284375
transcript.pyannote[2619].end 15061.18784375
transcript.pyannote[2620].speaker SPEAKER_23
transcript.pyannote[2620].start 15061.59284375
transcript.pyannote[2620].end 15061.60971875
transcript.pyannote[2621].speaker SPEAKER_02
transcript.pyannote[2621].start 15061.60971875
transcript.pyannote[2621].end 15061.86284375
transcript.pyannote[2622].speaker SPEAKER_23
transcript.pyannote[2622].start 15061.82909375
transcript.pyannote[2622].end 15063.06096875
transcript.pyannote[2623].speaker SPEAKER_23
transcript.pyannote[2623].start 15063.58409375
transcript.pyannote[2623].end 15064.46159375
transcript.pyannote[2624].speaker SPEAKER_20
transcript.pyannote[2624].start 15067.24596875
transcript.pyannote[2624].end 15077.42159375
transcript.pyannote[2625].speaker SPEAKER_23
transcript.pyannote[2625].start 15067.38096875
transcript.pyannote[2625].end 15068.95034375
transcript.pyannote[2626].speaker SPEAKER_23
transcript.pyannote[2626].start 15076.32471875
transcript.pyannote[2626].end 15082.26471875
transcript.pyannote[2627].speaker SPEAKER_20
transcript.pyannote[2627].start 15079.51409375
transcript.pyannote[2627].end 15079.54784375
transcript.pyannote[2628].speaker SPEAKER_23
transcript.pyannote[2628].start 15082.97346875
transcript.pyannote[2628].end 15084.22221875
transcript.pyannote[2629].speaker SPEAKER_20
transcript.pyannote[2629].start 15083.46284375
transcript.pyannote[2629].end 15088.52534375
transcript.pyannote[2630].speaker SPEAKER_23
transcript.pyannote[2630].start 15084.54284375
transcript.pyannote[2630].end 15085.67346875
transcript.pyannote[2631].speaker SPEAKER_23
transcript.pyannote[2631].start 15086.68596875
transcript.pyannote[2631].end 15087.25971875
transcript.pyannote[2632].speaker SPEAKER_23
transcript.pyannote[2632].start 15088.25534375
transcript.pyannote[2632].end 15089.14971875
transcript.pyannote[2633].speaker SPEAKER_20
transcript.pyannote[2633].start 15089.08221875
transcript.pyannote[2633].end 15092.47409375
transcript.pyannote[2634].speaker SPEAKER_23
transcript.pyannote[2634].start 15090.75284375
transcript.pyannote[2634].end 15093.40221875
transcript.pyannote[2635].speaker SPEAKER_20
transcript.pyannote[2635].start 15093.18284375
transcript.pyannote[2635].end 15109.04534375
transcript.pyannote[2636].speaker SPEAKER_23
transcript.pyannote[2636].start 15109.04534375
transcript.pyannote[2636].end 15115.54221875
transcript.pyannote[2637].speaker SPEAKER_23
transcript.pyannote[2637].start 15115.96409375
transcript.pyannote[2637].end 15130.62846875
transcript.pyannote[2638].speaker SPEAKER_00
transcript.pyannote[2638].start 15119.79471875
transcript.pyannote[2638].end 15120.04784375
transcript.pyannote[2639].speaker SPEAKER_01
transcript.pyannote[2639].start 15120.04784375
transcript.pyannote[2639].end 15120.35159375
transcript.pyannote[2640].speaker SPEAKER_00
transcript.pyannote[2640].start 15120.35159375
transcript.pyannote[2640].end 15120.79034375
transcript.pyannote[2641].speaker SPEAKER_01
transcript.pyannote[2641].start 15120.79034375
transcript.pyannote[2641].end 15121.85346875
transcript.pyannote[2642].speaker SPEAKER_00
transcript.pyannote[2642].start 15121.85346875
transcript.pyannote[2642].end 15121.87034375
transcript.pyannote[2643].speaker SPEAKER_23
transcript.pyannote[2643].start 15131.25284375
transcript.pyannote[2643].end 15135.23534375
transcript.pyannote[2644].speaker SPEAKER_23
transcript.pyannote[2644].start 15135.84284375
transcript.pyannote[2644].end 15138.89721875
transcript.pyannote[2645].speaker SPEAKER_23
transcript.pyannote[2645].start 15139.58909375
transcript.pyannote[2645].end 15147.62159375
transcript.pyannote[2646].speaker SPEAKER_23
transcript.pyannote[2646].start 15147.67221875
transcript.pyannote[2646].end 15148.87034375
transcript.pyannote[2647].speaker SPEAKER_23
transcript.pyannote[2647].start 15149.30909375
transcript.pyannote[2647].end 15150.15284375
transcript.pyannote[2648].speaker SPEAKER_23
transcript.pyannote[2648].start 15151.51971875
transcript.pyannote[2648].end 15154.42221875
transcript.pyannote[2649].speaker SPEAKER_23
transcript.pyannote[2649].start 15154.77659375
transcript.pyannote[2649].end 15156.19409375
transcript.pyannote[2650].speaker SPEAKER_20
transcript.pyannote[2650].start 15156.19409375
transcript.pyannote[2650].end 15156.21096875
transcript.pyannote[2651].speaker SPEAKER_23
transcript.pyannote[2651].start 15157.37534375
transcript.pyannote[2651].end 15157.78034375
transcript.pyannote[2652].speaker SPEAKER_20
transcript.pyannote[2652].start 15159.50159375
transcript.pyannote[2652].end 15160.88534375
transcript.pyannote[2653].speaker SPEAKER_20
transcript.pyannote[2653].start 15160.96971875
transcript.pyannote[2653].end 15161.03721875
transcript.pyannote[2654].speaker SPEAKER_20
transcript.pyannote[2654].start 15161.20596875
transcript.pyannote[2654].end 15161.27346875
transcript.pyannote[2655].speaker SPEAKER_23
transcript.pyannote[2655].start 15161.27346875
transcript.pyannote[2655].end 15161.45909375
transcript.pyannote[2656].speaker SPEAKER_20
transcript.pyannote[2656].start 15161.45909375
transcript.pyannote[2656].end 15161.67846875
transcript.pyannote[2657].speaker SPEAKER_23
transcript.pyannote[2657].start 15161.67846875
transcript.pyannote[2657].end 15167.06159375
transcript.pyannote[2658].speaker SPEAKER_20
transcript.pyannote[2658].start 15163.14659375
transcript.pyannote[2658].end 15165.45846875
transcript.pyannote[2659].speaker SPEAKER_20
transcript.pyannote[2659].start 15166.50471875
transcript.pyannote[2659].end 15172.61346875
transcript.pyannote[2660].speaker SPEAKER_20
transcript.pyannote[2660].start 15173.35596875
transcript.pyannote[2660].end 15178.92471875
transcript.pyannote[2661].speaker SPEAKER_23
transcript.pyannote[2661].start 15178.92471875
transcript.pyannote[2661].end 15179.70096875
transcript.pyannote[2662].speaker SPEAKER_20
transcript.pyannote[2662].start 15179.70096875
transcript.pyannote[2662].end 15182.73846875
transcript.pyannote[2663].speaker SPEAKER_23
transcript.pyannote[2663].start 15181.64159375
transcript.pyannote[2663].end 15194.98971875
transcript.pyannote[2664].speaker SPEAKER_23
transcript.pyannote[2664].start 15196.08659375
transcript.pyannote[2664].end 15205.14846875
transcript.pyannote[2665].speaker SPEAKER_23
transcript.pyannote[2665].start 15205.58721875
transcript.pyannote[2665].end 15213.80534375
transcript.pyannote[2666].speaker SPEAKER_20
transcript.pyannote[2666].start 15214.12596875
transcript.pyannote[2666].end 15214.42971875
transcript.pyannote[2667].speaker SPEAKER_23
transcript.pyannote[2667].start 15214.85159375
transcript.pyannote[2667].end 15215.20596875
transcript.pyannote[2668].speaker SPEAKER_20
transcript.pyannote[2668].start 15216.40409375
transcript.pyannote[2668].end 15222.49596875
transcript.pyannote[2669].speaker SPEAKER_20
transcript.pyannote[2669].start 15222.93471875
transcript.pyannote[2669].end 15224.74034375
transcript.pyannote[2670].speaker SPEAKER_20
transcript.pyannote[2670].start 15225.28034375
transcript.pyannote[2670].end 15226.93409375
transcript.pyannote[2671].speaker SPEAKER_20
transcript.pyannote[2671].start 15227.05221875
transcript.pyannote[2671].end 15228.26721875
transcript.pyannote[2672].speaker SPEAKER_20
transcript.pyannote[2672].start 15228.92534375
transcript.pyannote[2672].end 15230.93346875
transcript.pyannote[2673].speaker SPEAKER_20
transcript.pyannote[2673].start 15231.28784375
transcript.pyannote[2673].end 15233.07659375
transcript.pyannote[2674].speaker SPEAKER_20
transcript.pyannote[2674].start 15233.32971875
transcript.pyannote[2674].end 15236.51909375
transcript.pyannote[2675].speaker SPEAKER_23
transcript.pyannote[2675].start 15236.16471875
transcript.pyannote[2675].end 15247.48784375
transcript.pyannote[2676].speaker SPEAKER_20
transcript.pyannote[2676].start 15240.85596875
transcript.pyannote[2676].end 15241.02471875
transcript.pyannote[2677].speaker SPEAKER_02
transcript.pyannote[2677].start 15241.02471875
transcript.pyannote[2677].end 15242.56034375
transcript.pyannote[2678].speaker SPEAKER_02
transcript.pyannote[2678].start 15242.59409375
transcript.pyannote[2678].end 15242.62784375
transcript.pyannote[2679].speaker SPEAKER_02
transcript.pyannote[2679].start 15242.99909375
transcript.pyannote[2679].end 15243.40409375
transcript.pyannote[2680].speaker SPEAKER_02
transcript.pyannote[2680].start 15244.36596875
transcript.pyannote[2680].end 15244.82159375
transcript.pyannote[2681].speaker SPEAKER_02
transcript.pyannote[2681].start 15247.40346875
transcript.pyannote[2681].end 15247.74096875
transcript.pyannote[2682].speaker SPEAKER_23
transcript.pyannote[2682].start 15247.74096875
transcript.pyannote[2682].end 15254.44034375
transcript.pyannote[2683].speaker SPEAKER_23
transcript.pyannote[2683].start 15254.59221875
transcript.pyannote[2683].end 15255.08159375
transcript.pyannote[2684].speaker SPEAKER_23
transcript.pyannote[2684].start 15255.57096875
transcript.pyannote[2684].end 15262.52346875
transcript.pyannote[2685].speaker SPEAKER_23
transcript.pyannote[2685].start 15262.94534375
transcript.pyannote[2685].end 15269.22284375
transcript.pyannote[2686].speaker SPEAKER_23
transcript.pyannote[2686].start 15269.40846875
transcript.pyannote[2686].end 15285.37221875
transcript.pyannote[2687].speaker SPEAKER_02
transcript.pyannote[2687].start 15279.48284375
transcript.pyannote[2687].end 15279.92159375
transcript.pyannote[2688].speaker SPEAKER_02
transcript.pyannote[2688].start 15281.77784375
transcript.pyannote[2688].end 15283.09409375
transcript.pyannote[2689].speaker SPEAKER_00
transcript.pyannote[2689].start 15283.09409375
transcript.pyannote[2689].end 15283.11096875
transcript.pyannote[2690].speaker SPEAKER_23
transcript.pyannote[2690].start 15286.18221875
transcript.pyannote[2690].end 15289.35471875
transcript.pyannote[2691].speaker SPEAKER_23
transcript.pyannote[2691].start 15289.84409375
transcript.pyannote[2691].end 15290.46846875
transcript.pyannote[2692].speaker SPEAKER_23
transcript.pyannote[2692].start 15290.99159375
transcript.pyannote[2692].end 15301.45409375
transcript.pyannote[2693].speaker SPEAKER_23
transcript.pyannote[2693].start 15302.07846875
transcript.pyannote[2693].end 15302.73659375
transcript.pyannote[2694].speaker SPEAKER_23
transcript.pyannote[2694].start 15303.12471875
transcript.pyannote[2694].end 15304.62659375
transcript.pyannote[2695].speaker SPEAKER_23
transcript.pyannote[2695].start 15305.18346875
transcript.pyannote[2695].end 15306.17909375
transcript.pyannote[2696].speaker SPEAKER_23
transcript.pyannote[2696].start 15306.63471875
transcript.pyannote[2696].end 15312.40596875
transcript.pyannote[2697].speaker SPEAKER_20
transcript.pyannote[2697].start 15311.89971875
transcript.pyannote[2697].end 15313.26659375
transcript.pyannote[2698].speaker SPEAKER_23
transcript.pyannote[2698].start 15313.43534375
transcript.pyannote[2698].end 15315.44346875
transcript.pyannote[2699].speaker SPEAKER_23
transcript.pyannote[2699].start 15315.64596875
transcript.pyannote[2699].end 15317.01284375
transcript.pyannote[2700].speaker SPEAKER_23
transcript.pyannote[2700].start 15317.58659375
transcript.pyannote[2700].end 15317.77221875
transcript.pyannote[2701].speaker SPEAKER_23
transcript.pyannote[2701].start 15318.00846875
transcript.pyannote[2701].end 15321.06284375
transcript.pyannote[2702].speaker SPEAKER_23
transcript.pyannote[2702].start 15321.82221875
transcript.pyannote[2702].end 15323.22284375
transcript.pyannote[2703].speaker SPEAKER_23
transcript.pyannote[2703].start 15323.79659375
transcript.pyannote[2703].end 15329.33159375
transcript.pyannote[2704].speaker SPEAKER_23
transcript.pyannote[2704].start 15329.97284375
transcript.pyannote[2704].end 15332.82471875
transcript.pyannote[2705].speaker SPEAKER_23
transcript.pyannote[2705].start 15333.44909375
transcript.pyannote[2705].end 15334.32659375
transcript.pyannote[2706].speaker SPEAKER_02
transcript.pyannote[2706].start 15334.71471875
transcript.pyannote[2706].end 15335.13659375
transcript.pyannote[2707].speaker SPEAKER_23
transcript.pyannote[2707].start 15335.13659375
transcript.pyannote[2707].end 15335.55846875
transcript.pyannote[2708].speaker SPEAKER_23
transcript.pyannote[2708].start 15335.87909375
transcript.pyannote[2708].end 15345.48096875
transcript.pyannote[2709].speaker SPEAKER_23
transcript.pyannote[2709].start 15345.98721875
transcript.pyannote[2709].end 15360.41534375
transcript.pyannote[2710].speaker SPEAKER_23
transcript.pyannote[2710].start 15360.71909375
transcript.pyannote[2710].end 15361.69784375
transcript.pyannote[2711].speaker SPEAKER_23
transcript.pyannote[2711].start 15362.28846875
transcript.pyannote[2711].end 15363.18284375
transcript.pyannote[2712].speaker SPEAKER_23
transcript.pyannote[2712].start 15364.00971875
transcript.pyannote[2712].end 15365.02221875
transcript.pyannote[2713].speaker SPEAKER_20
transcript.pyannote[2713].start 15366.01784375
transcript.pyannote[2713].end 15374.50596875
transcript.pyannote[2714].speaker SPEAKER_23
transcript.pyannote[2714].start 15373.02096875
transcript.pyannote[2714].end 15373.24034375
transcript.pyannote[2715].speaker SPEAKER_00
transcript.pyannote[2715].start 15373.24034375
transcript.pyannote[2715].end 15373.30784375
transcript.pyannote[2716].speaker SPEAKER_20
transcript.pyannote[2716].start 15374.89409375
transcript.pyannote[2716].end 15379.26471875
transcript.pyannote[2717].speaker SPEAKER_20
transcript.pyannote[2717].start 15379.61909375
transcript.pyannote[2717].end 15391.65096875
transcript.pyannote[2718].speaker SPEAKER_20
transcript.pyannote[2718].start 15392.07284375
transcript.pyannote[2718].end 15403.54784375
transcript.pyannote[2719].speaker SPEAKER_23
transcript.pyannote[2719].start 15401.05034375
transcript.pyannote[2719].end 15401.53971875
transcript.pyannote[2720].speaker SPEAKER_23
transcript.pyannote[2720].start 15402.68721875
transcript.pyannote[2720].end 15409.45409375
transcript.pyannote[2721].speaker SPEAKER_20
transcript.pyannote[2721].start 15406.80471875
transcript.pyannote[2721].end 15415.71471875
transcript.pyannote[2722].speaker SPEAKER_23
transcript.pyannote[2722].start 15410.14596875
transcript.pyannote[2722].end 15410.39909375
transcript.pyannote[2723].speaker SPEAKER_23
transcript.pyannote[2723].start 15412.00221875
transcript.pyannote[2723].end 15412.35659375
transcript.pyannote[2724].speaker SPEAKER_23
transcript.pyannote[2724].start 15414.68534375
transcript.pyannote[2724].end 15418.93784375
transcript.pyannote[2725].speaker SPEAKER_02
transcript.pyannote[2725].start 15418.93784375
transcript.pyannote[2725].end 15419.19096875
transcript.pyannote[2726].speaker SPEAKER_23
transcript.pyannote[2726].start 15419.19096875
transcript.pyannote[2726].end 15422.12721875
transcript.pyannote[2727].speaker SPEAKER_02
transcript.pyannote[2727].start 15419.20784375
transcript.pyannote[2727].end 15420.05159375
transcript.pyannote[2728].speaker SPEAKER_23
transcript.pyannote[2728].start 15422.29596875
transcript.pyannote[2728].end 15425.35034375
transcript.pyannote[2729].speaker SPEAKER_23
transcript.pyannote[2729].start 15425.65409375
transcript.pyannote[2729].end 15431.77971875
transcript.pyannote[2730].speaker SPEAKER_00
transcript.pyannote[2730].start 15429.13034375
transcript.pyannote[2730].end 15430.32846875
transcript.pyannote[2731].speaker SPEAKER_23
transcript.pyannote[2731].start 15432.06659375
transcript.pyannote[2731].end 15436.09971875
transcript.pyannote[2732].speaker SPEAKER_23
transcript.pyannote[2732].start 15436.63971875
transcript.pyannote[2732].end 15439.40721875
transcript.pyannote[2733].speaker SPEAKER_23
transcript.pyannote[2733].start 15440.26784375
transcript.pyannote[2733].end 15440.52096875
transcript.pyannote[2734].speaker SPEAKER_02
transcript.pyannote[2734].start 15440.82471875
transcript.pyannote[2734].end 15441.85409375
transcript.pyannote[2735].speaker SPEAKER_23
transcript.pyannote[2735].start 15441.34784375
transcript.pyannote[2735].end 15446.24159375
transcript.pyannote[2736].speaker SPEAKER_23
transcript.pyannote[2736].start 15446.79846875
transcript.pyannote[2736].end 15447.03471875
transcript.pyannote[2737].speaker SPEAKER_23
transcript.pyannote[2737].start 15449.00909375
transcript.pyannote[2737].end 15449.36346875
transcript.pyannote[2738].speaker SPEAKER_23
transcript.pyannote[2738].start 15449.71784375
transcript.pyannote[2738].end 15453.07596875
transcript.pyannote[2739].speaker SPEAKER_23
transcript.pyannote[2739].start 15454.05471875
transcript.pyannote[2739].end 15456.13034375
transcript.pyannote[2740].speaker SPEAKER_23
transcript.pyannote[2740].start 15456.67034375
transcript.pyannote[2740].end 15458.50971875
transcript.pyannote[2741].speaker SPEAKER_23
transcript.pyannote[2741].start 15458.98221875
transcript.pyannote[2741].end 15462.28971875
transcript.pyannote[2742].speaker SPEAKER_23
transcript.pyannote[2742].start 15462.37409375
transcript.pyannote[2742].end 15467.47034375
transcript.pyannote[2743].speaker SPEAKER_02
transcript.pyannote[2743].start 15468.21284375
transcript.pyannote[2743].end 15468.33096875
transcript.pyannote[2744].speaker SPEAKER_23
transcript.pyannote[2744].start 15468.33096875
transcript.pyannote[2744].end 15477.52784375
transcript.pyannote[2745].speaker SPEAKER_23
transcript.pyannote[2745].start 15477.86534375
transcript.pyannote[2745].end 15488.37846875
transcript.pyannote[2746].speaker SPEAKER_23
transcript.pyannote[2746].start 15489.17159375
transcript.pyannote[2746].end 15489.54284375
transcript.pyannote[2747].speaker SPEAKER_23
transcript.pyannote[2747].start 15490.21784375
transcript.pyannote[2747].end 15491.68596875
transcript.pyannote[2748].speaker SPEAKER_23
transcript.pyannote[2748].start 15492.15846875
transcript.pyannote[2748].end 15494.53784375
transcript.pyannote[2749].speaker SPEAKER_02
transcript.pyannote[2749].start 15496.84971875
transcript.pyannote[2749].end 15496.86659375
transcript.pyannote[2750].speaker SPEAKER_23
transcript.pyannote[2750].start 15496.86659375
transcript.pyannote[2750].end 15498.75659375
transcript.pyannote[2751].speaker SPEAKER_23
transcript.pyannote[2751].start 15500.00534375
transcript.pyannote[2751].end 15503.22846875
transcript.pyannote[2752].speaker SPEAKER_23
transcript.pyannote[2752].start 15503.66721875
transcript.pyannote[2752].end 15504.10596875
transcript.pyannote[2753].speaker SPEAKER_20
transcript.pyannote[2753].start 15504.74721875
transcript.pyannote[2753].end 15506.26596875
transcript.pyannote[2754].speaker SPEAKER_20
transcript.pyannote[2754].start 15506.82284375
transcript.pyannote[2754].end 15510.38346875
transcript.pyannote[2755].speaker SPEAKER_20
transcript.pyannote[2755].start 15510.40034375
transcript.pyannote[2755].end 15518.58471875
transcript.pyannote[2756].speaker SPEAKER_23
transcript.pyannote[2756].start 15518.26409375
transcript.pyannote[2756].end 15530.27909375
transcript.pyannote[2757].speaker SPEAKER_20
transcript.pyannote[2757].start 15521.58846875
transcript.pyannote[2757].end 15522.61784375
transcript.pyannote[2758].speaker SPEAKER_20
transcript.pyannote[2758].start 15525.28409375
transcript.pyannote[2758].end 15526.26284375
transcript.pyannote[2759].speaker SPEAKER_20
transcript.pyannote[2759].start 15526.80284375
transcript.pyannote[2759].end 15529.01346875
transcript.pyannote[2760].speaker SPEAKER_20
transcript.pyannote[2760].start 15529.85721875
transcript.pyannote[2760].end 15535.76346875
transcript.pyannote[2761].speaker SPEAKER_23
transcript.pyannote[2761].start 15535.76346875
transcript.pyannote[2761].end 15538.75034375
transcript.pyannote[2762].speaker SPEAKER_23
transcript.pyannote[2762].start 15539.18909375
transcript.pyannote[2762].end 15541.12971875
transcript.pyannote[2763].speaker SPEAKER_23
transcript.pyannote[2763].start 15541.31534375
transcript.pyannote[2763].end 15542.96909375
transcript.pyannote[2764].speaker SPEAKER_23
transcript.pyannote[2764].start 15543.28971875
transcript.pyannote[2764].end 15544.31909375
transcript.pyannote[2765].speaker SPEAKER_23
transcript.pyannote[2765].start 15544.97721875
transcript.pyannote[2765].end 15545.50034375
transcript.pyannote[2766].speaker SPEAKER_23
transcript.pyannote[2766].start 15545.80409375
transcript.pyannote[2766].end 15548.26784375
transcript.pyannote[2767].speaker SPEAKER_23
transcript.pyannote[2767].start 15548.62221875
transcript.pyannote[2767].end 15551.28846875
transcript.pyannote[2768].speaker SPEAKER_23
transcript.pyannote[2768].start 15551.52471875
transcript.pyannote[2768].end 15552.40221875
transcript.pyannote[2769].speaker SPEAKER_23
transcript.pyannote[2769].start 15553.11096875
transcript.pyannote[2769].end 15555.84471875
transcript.pyannote[2770].speaker SPEAKER_23
transcript.pyannote[2770].start 15556.18221875
transcript.pyannote[2770].end 15556.90784375
transcript.pyannote[2771].speaker SPEAKER_23
transcript.pyannote[2771].start 15557.44784375
transcript.pyannote[2771].end 15558.81471875
transcript.pyannote[2772].speaker SPEAKER_23
transcript.pyannote[2772].start 15559.50659375
transcript.pyannote[2772].end 15561.85221875
transcript.pyannote[2773].speaker SPEAKER_23
transcript.pyannote[2773].start 15562.25721875
transcript.pyannote[2773].end 15566.27346875
transcript.pyannote[2774].speaker SPEAKER_23
transcript.pyannote[2774].start 15567.18471875
transcript.pyannote[2774].end 15568.19721875
transcript.pyannote[2775].speaker SPEAKER_23
transcript.pyannote[2775].start 15568.65284375
transcript.pyannote[2775].end 15580.49909375
transcript.pyannote[2776].speaker SPEAKER_23
transcript.pyannote[2776].start 15580.76909375
transcript.pyannote[2776].end 15584.26221875
transcript.pyannote[2777].speaker SPEAKER_23
transcript.pyannote[2777].start 15584.90346875
transcript.pyannote[2777].end 15586.20284375
transcript.pyannote[2778].speaker SPEAKER_12
transcript.pyannote[2778].start 15586.20284375
transcript.pyannote[2778].end 15607.41471875
transcript.pyannote[2779].speaker SPEAKER_23
transcript.pyannote[2779].start 15590.05034375
transcript.pyannote[2779].end 15590.42159375
transcript.pyannote[2780].speaker SPEAKER_23
transcript.pyannote[2780].start 15607.88721875
transcript.pyannote[2780].end 15613.99596875
transcript.pyannote[2781].speaker SPEAKER_23
transcript.pyannote[2781].start 15614.40096875
transcript.pyannote[2781].end 15633.09846875
transcript.pyannote[2782].speaker SPEAKER_23
transcript.pyannote[2782].start 15633.48659375
transcript.pyannote[2782].end 15637.24971875
transcript.pyannote[2783].speaker SPEAKER_19
transcript.pyannote[2783].start 15637.36784375
transcript.pyannote[2783].end 15638.11034375
transcript.pyannote[2784].speaker SPEAKER_19
transcript.pyannote[2784].start 15639.46034375
transcript.pyannote[2784].end 15643.89846875
transcript.pyannote[2785].speaker SPEAKER_22
transcript.pyannote[2785].start 15654.47909375
transcript.pyannote[2785].end 15655.27221875
transcript.pyannote[2786].speaker SPEAKER_19
transcript.pyannote[2786].start 15655.27221875
transcript.pyannote[2786].end 15656.09909375
transcript.pyannote[2787].speaker SPEAKER_22
transcript.pyannote[2787].start 15660.48659375
transcript.pyannote[2787].end 15661.06034375
transcript.pyannote[2788].speaker SPEAKER_22
transcript.pyannote[2788].start 15661.78596875
transcript.pyannote[2788].end 15669.29534375
transcript.pyannote[2789].speaker SPEAKER_22
transcript.pyannote[2789].start 15669.66659375
transcript.pyannote[2789].end 15675.75846875
transcript.pyannote[2790].speaker SPEAKER_22
transcript.pyannote[2790].start 15675.87659375
transcript.pyannote[2790].end 15685.61346875
transcript.pyannote[2791].speaker SPEAKER_02
transcript.pyannote[2791].start 15678.18846875
transcript.pyannote[2791].end 15678.39096875
transcript.pyannote[2792].speaker SPEAKER_00
transcript.pyannote[2792].start 15678.39096875
transcript.pyannote[2792].end 15678.40784375
transcript.pyannote[2793].speaker SPEAKER_22
transcript.pyannote[2793].start 15685.98471875
transcript.pyannote[2793].end 15688.06034375
transcript.pyannote[2794].speaker SPEAKER_22
transcript.pyannote[2794].start 15688.95471875
transcript.pyannote[2794].end 15703.56846875
transcript.pyannote[2795].speaker SPEAKER_22
transcript.pyannote[2795].start 15703.95659375
transcript.pyannote[2795].end 15709.96409375
transcript.pyannote[2796].speaker SPEAKER_22
transcript.pyannote[2796].start 15710.30159375
transcript.pyannote[2796].end 15711.48284375
transcript.pyannote[2797].speaker SPEAKER_22
transcript.pyannote[2797].start 15711.55034375
transcript.pyannote[2797].end 15715.31346875
transcript.pyannote[2798].speaker SPEAKER_22
transcript.pyannote[2798].start 15715.65096875
transcript.pyannote[2798].end 15716.83221875
transcript.pyannote[2799].speaker SPEAKER_22
transcript.pyannote[2799].start 15717.03471875
transcript.pyannote[2799].end 15721.94534375
transcript.pyannote[2800].speaker SPEAKER_20
transcript.pyannote[2800].start 15723.36284375
transcript.pyannote[2800].end 15730.16346875
transcript.pyannote[2801].speaker SPEAKER_22
transcript.pyannote[2801].start 15728.47596875
transcript.pyannote[2801].end 15730.36596875
transcript.pyannote[2802].speaker SPEAKER_22
transcript.pyannote[2802].start 15730.45034375
transcript.pyannote[2802].end 15739.49534375
transcript.pyannote[2803].speaker SPEAKER_22
transcript.pyannote[2803].start 15740.13659375
transcript.pyannote[2803].end 15744.99659375
transcript.pyannote[2804].speaker SPEAKER_22
transcript.pyannote[2804].start 15745.58721875
transcript.pyannote[2804].end 15747.83159375
transcript.pyannote[2805].speaker SPEAKER_22
transcript.pyannote[2805].start 15748.30409375
transcript.pyannote[2805].end 15752.57346875
transcript.pyannote[2806].speaker SPEAKER_22
transcript.pyannote[2806].start 15753.50159375
transcript.pyannote[2806].end 15754.49721875
transcript.pyannote[2807].speaker SPEAKER_22
transcript.pyannote[2807].start 15754.85159375
transcript.pyannote[2807].end 15760.09971875
transcript.pyannote[2808].speaker SPEAKER_22
transcript.pyannote[2808].start 15770.71409375
transcript.pyannote[2808].end 15771.94596875
transcript.pyannote[2809].speaker SPEAKER_22
transcript.pyannote[2809].start 15773.97096875
transcript.pyannote[2809].end 15774.88221875
transcript.pyannote[2810].speaker SPEAKER_22
transcript.pyannote[2810].start 15775.33784375
transcript.pyannote[2810].end 15776.53596875
transcript.pyannote[2811].speaker SPEAKER_22
transcript.pyannote[2811].start 15776.56971875
transcript.pyannote[2811].end 15781.91909375
transcript.pyannote[2812].speaker SPEAKER_22
transcript.pyannote[2812].start 15782.69534375
transcript.pyannote[2812].end 15783.87659375
transcript.pyannote[2813].speaker SPEAKER_22
transcript.pyannote[2813].start 15784.43346875
transcript.pyannote[2813].end 15785.24346875
transcript.pyannote[2814].speaker SPEAKER_22
transcript.pyannote[2814].start 15785.80034375
transcript.pyannote[2814].end 15786.98159375
transcript.pyannote[2815].speaker SPEAKER_22
transcript.pyannote[2815].start 15788.46659375
transcript.pyannote[2815].end 15790.98096875
transcript.pyannote[2816].speaker SPEAKER_22
transcript.pyannote[2816].start 15791.11596875
transcript.pyannote[2816].end 15793.84971875
transcript.pyannote[2817].speaker SPEAKER_22
transcript.pyannote[2817].start 15795.19971875
transcript.pyannote[2817].end 15801.34221875
transcript.pyannote[2818].speaker SPEAKER_22
transcript.pyannote[2818].start 15801.74721875
transcript.pyannote[2818].end 15805.64534375
transcript.pyannote[2819].speaker SPEAKER_22
transcript.pyannote[2819].start 15805.94909375
transcript.pyannote[2819].end 15809.64471875
transcript.pyannote[2820].speaker SPEAKER_22
transcript.pyannote[2820].start 15810.33659375
transcript.pyannote[2820].end 15812.20971875
transcript.pyannote[2821].speaker SPEAKER_22
transcript.pyannote[2821].start 15812.85096875
transcript.pyannote[2821].end 15817.37346875
transcript.pyannote[2822].speaker SPEAKER_22
transcript.pyannote[2822].start 15817.52534375
transcript.pyannote[2822].end 15819.34784375
transcript.pyannote[2823].speaker SPEAKER_22
transcript.pyannote[2823].start 15819.55034375
transcript.pyannote[2823].end 15819.58409375
transcript.pyannote[2824].speaker SPEAKER_22
transcript.pyannote[2824].start 15819.90471875
transcript.pyannote[2824].end 15821.65971875
transcript.pyannote[2825].speaker SPEAKER_22
transcript.pyannote[2825].start 15823.17846875
transcript.pyannote[2825].end 15823.41471875
transcript.pyannote[2826].speaker SPEAKER_22
transcript.pyannote[2826].start 15823.90409375
transcript.pyannote[2826].end 15832.10534375
transcript.pyannote[2827].speaker SPEAKER_22
transcript.pyannote[2827].start 15832.59471875
transcript.pyannote[2827].end 15834.14721875
transcript.pyannote[2828].speaker SPEAKER_22
transcript.pyannote[2828].start 15834.36659375
transcript.pyannote[2828].end 15835.48034375
transcript.pyannote[2829].speaker SPEAKER_22
transcript.pyannote[2829].start 15836.89784375
transcript.pyannote[2829].end 15837.70784375
transcript.pyannote[2830].speaker SPEAKER_22
transcript.pyannote[2830].start 15837.84284375
transcript.pyannote[2830].end 15843.05721875
transcript.pyannote[2831].speaker SPEAKER_22
transcript.pyannote[2831].start 15843.51284375
transcript.pyannote[2831].end 15849.19971875
transcript.pyannote[2832].speaker SPEAKER_22
transcript.pyannote[2832].start 15850.12784375
transcript.pyannote[2832].end 15850.98846875
transcript.pyannote[2833].speaker SPEAKER_22
transcript.pyannote[2833].start 15851.59596875
transcript.pyannote[2833].end 15852.30471875
transcript.pyannote[2834].speaker SPEAKER_22
transcript.pyannote[2834].start 15852.76034375
transcript.pyannote[2834].end 15855.89909375
transcript.pyannote[2835].speaker SPEAKER_22
transcript.pyannote[2835].start 15856.01721875
transcript.pyannote[2835].end 15858.95346875
transcript.pyannote[2836].speaker SPEAKER_22
transcript.pyannote[2836].start 15859.20659375
transcript.pyannote[2836].end 15860.40471875
transcript.pyannote[2837].speaker SPEAKER_22
transcript.pyannote[2837].start 15860.57346875
transcript.pyannote[2837].end 15861.38346875
transcript.pyannote[2838].speaker SPEAKER_22
transcript.pyannote[2838].start 15861.95721875
transcript.pyannote[2838].end 15862.56471875
transcript.pyannote[2839].speaker SPEAKER_22
transcript.pyannote[2839].start 15862.96971875
transcript.pyannote[2839].end 15866.02409375
transcript.pyannote[2840].speaker SPEAKER_00
transcript.pyannote[2840].start 15866.02409375
transcript.pyannote[2840].end 15866.26034375
transcript.pyannote[2841].speaker SPEAKER_22
transcript.pyannote[2841].start 15867.44159375
transcript.pyannote[2841].end 15868.23471875
transcript.pyannote[2842].speaker SPEAKER_22
transcript.pyannote[2842].start 15869.58471875
transcript.pyannote[2842].end 15870.86721875
transcript.pyannote[2843].speaker SPEAKER_00
transcript.pyannote[2843].start 15871.47471875
transcript.pyannote[2843].end 15871.50846875
transcript.pyannote[2844].speaker SPEAKER_00
transcript.pyannote[2844].start 15872.26784375
transcript.pyannote[2844].end 15873.43221875
transcript.pyannote[2845].speaker SPEAKER_00
transcript.pyannote[2845].start 15873.97221875
transcript.pyannote[2845].end 15896.26409375
transcript.pyannote[2846].speaker SPEAKER_22
transcript.pyannote[2846].start 15879.74346875
transcript.pyannote[2846].end 15879.92909375
transcript.pyannote[2847].speaker SPEAKER_01
transcript.pyannote[2847].start 15879.92909375
transcript.pyannote[2847].end 15880.65471875
transcript.pyannote[2848].speaker SPEAKER_22
transcript.pyannote[2848].start 15895.16721875
transcript.pyannote[2848].end 15895.80846875
transcript.pyannote[2849].speaker SPEAKER_22
transcript.pyannote[2849].start 15896.46659375
transcript.pyannote[2849].end 15897.31034375
transcript.pyannote[2850].speaker SPEAKER_22
transcript.pyannote[2850].start 15897.37784375
transcript.pyannote[2850].end 15899.35221875
transcript.pyannote[2851].speaker SPEAKER_22
transcript.pyannote[2851].start 15899.58846875
transcript.pyannote[2851].end 15903.21659375
transcript.pyannote[2852].speaker SPEAKER_22
transcript.pyannote[2852].start 15903.97596875
transcript.pyannote[2852].end 15908.68409375
transcript.pyannote[2853].speaker SPEAKER_22
transcript.pyannote[2853].start 15909.59534375
transcript.pyannote[2853].end 15917.07096875
transcript.pyannote[2854].speaker SPEAKER_22
transcript.pyannote[2854].start 15920.04096875
transcript.pyannote[2854].end 15921.18846875
transcript.pyannote[2855].speaker SPEAKER_22
transcript.pyannote[2855].start 15921.66096875
transcript.pyannote[2855].end 15922.97721875
transcript.pyannote[2856].speaker SPEAKER_22
transcript.pyannote[2856].start 15923.26409375
transcript.pyannote[2856].end 15924.73221875
transcript.pyannote[2857].speaker SPEAKER_22
transcript.pyannote[2857].start 15925.39034375
transcript.pyannote[2857].end 15926.74034375
transcript.pyannote[2858].speaker SPEAKER_22
transcript.pyannote[2858].start 15927.63471875
transcript.pyannote[2858].end 15936.44346875
transcript.pyannote[2859].speaker SPEAKER_00
transcript.pyannote[2859].start 15938.40096875
transcript.pyannote[2859].end 15947.39534375
transcript.pyannote[2860].speaker SPEAKER_22
transcript.pyannote[2860].start 15947.73284375
transcript.pyannote[2860].end 15951.83346875
transcript.pyannote[2861].speaker SPEAKER_22
transcript.pyannote[2861].start 15951.85034375
transcript.pyannote[2861].end 15953.60534375
transcript.pyannote[2862].speaker SPEAKER_22
transcript.pyannote[2862].start 15955.15784375
transcript.pyannote[2862].end 15959.51159375
transcript.pyannote[2863].speaker SPEAKER_22
transcript.pyannote[2863].start 15959.86596875
transcript.pyannote[2863].end 15961.38471875
transcript.pyannote[2864].speaker SPEAKER_22
transcript.pyannote[2864].start 15962.32971875
transcript.pyannote[2864].end 15963.78096875
transcript.pyannote[2865].speaker SPEAKER_22
transcript.pyannote[2865].start 15965.58659375
transcript.pyannote[2865].end 15970.02471875
transcript.pyannote[2866].speaker SPEAKER_22
transcript.pyannote[2866].start 15970.78409375
transcript.pyannote[2866].end 15973.85534375
transcript.pyannote[2867].speaker SPEAKER_22
transcript.pyannote[2867].start 15975.39096875
transcript.pyannote[2867].end 15977.07846875
transcript.pyannote[2868].speaker SPEAKER_22
transcript.pyannote[2868].start 15977.28096875
transcript.pyannote[2868].end 15978.88409375
transcript.pyannote[2869].speaker SPEAKER_22
transcript.pyannote[2869].start 15979.69409375
transcript.pyannote[2869].end 15980.08221875
transcript.pyannote[2870].speaker SPEAKER_22
transcript.pyannote[2870].start 15980.60534375
transcript.pyannote[2870].end 15983.32221875
transcript.pyannote[2871].speaker SPEAKER_22
transcript.pyannote[2871].start 15984.53721875
transcript.pyannote[2871].end 15988.62096875
transcript.pyannote[2872].speaker SPEAKER_00
transcript.pyannote[2872].start 15991.15221875
transcript.pyannote[2872].end 16003.25159375
transcript.pyannote[2873].speaker SPEAKER_00
transcript.pyannote[2873].start 16003.33596875
transcript.pyannote[2873].end 16009.98471875
transcript.pyannote[2874].speaker SPEAKER_22
transcript.pyannote[2874].start 16009.79909375
transcript.pyannote[2874].end 16010.77784375
transcript.pyannote[2875].speaker SPEAKER_22
transcript.pyannote[2875].start 16011.06471875
transcript.pyannote[2875].end 16021.78034375
transcript.pyannote[2876].speaker SPEAKER_22
transcript.pyannote[2876].start 16022.72534375
transcript.pyannote[2876].end 16025.03721875
transcript.pyannote[2877].speaker SPEAKER_22
transcript.pyannote[2877].start 16025.23971875
transcript.pyannote[2877].end 16027.85534375
transcript.pyannote[2878].speaker SPEAKER_22
transcript.pyannote[2878].start 16029.30659375
transcript.pyannote[2878].end 16031.78721875
transcript.pyannote[2879].speaker SPEAKER_22
transcript.pyannote[2879].start 16033.79534375
transcript.pyannote[2879].end 16036.36034375
transcript.pyannote[2880].speaker SPEAKER_22
transcript.pyannote[2880].start 16036.57971875
transcript.pyannote[2880].end 16043.43096875
transcript.pyannote[2881].speaker SPEAKER_22
transcript.pyannote[2881].start 16043.51534375
transcript.pyannote[2881].end 16046.24909375
transcript.pyannote[2882].speaker SPEAKER_22
transcript.pyannote[2882].start 16046.75534375
transcript.pyannote[2882].end 16047.85221875
transcript.pyannote[2883].speaker SPEAKER_22
transcript.pyannote[2883].start 16048.62846875
transcript.pyannote[2883].end 16050.21471875
transcript.pyannote[2884].speaker SPEAKER_22
transcript.pyannote[2884].start 16050.73784375
transcript.pyannote[2884].end 16054.51784375
transcript.pyannote[2885].speaker SPEAKER_22
transcript.pyannote[2885].start 16055.41221875
transcript.pyannote[2885].end 16059.31034375
transcript.pyannote[2886].speaker SPEAKER_22
transcript.pyannote[2886].start 16061.62221875
transcript.pyannote[2886].end 16062.63471875
transcript.pyannote[2887].speaker SPEAKER_22
transcript.pyannote[2887].start 16063.96784375
transcript.pyannote[2887].end 16065.18284375
transcript.pyannote[2888].speaker SPEAKER_22
transcript.pyannote[2888].start 16065.80721875
transcript.pyannote[2888].end 16068.57471875
transcript.pyannote[2889].speaker SPEAKER_22
transcript.pyannote[2889].start 16069.26659375
transcript.pyannote[2889].end 16069.87409375
transcript.pyannote[2890].speaker SPEAKER_22
transcript.pyannote[2890].start 16070.05971875
transcript.pyannote[2890].end 16071.57846875
transcript.pyannote[2891].speaker SPEAKER_22
transcript.pyannote[2891].start 16071.86534375
transcript.pyannote[2891].end 16072.84409375
transcript.pyannote[2892].speaker SPEAKER_22
transcript.pyannote[2892].start 16073.24909375
transcript.pyannote[2892].end 16077.14721875
transcript.pyannote[2893].speaker SPEAKER_22
transcript.pyannote[2893].start 16077.41721875
transcript.pyannote[2893].end 16079.05409375
transcript.pyannote[2894].speaker SPEAKER_22
transcript.pyannote[2894].start 16080.03284375
transcript.pyannote[2894].end 16083.39096875
transcript.pyannote[2895].speaker SPEAKER_22
transcript.pyannote[2895].start 16083.66096875
transcript.pyannote[2895].end 16085.46659375
transcript.pyannote[2896].speaker SPEAKER_22
transcript.pyannote[2896].start 16085.75346875
transcript.pyannote[2896].end 16088.33534375
transcript.pyannote[2897].speaker SPEAKER_22
transcript.pyannote[2897].start 16089.44909375
transcript.pyannote[2897].end 16091.59221875
transcript.pyannote[2898].speaker SPEAKER_22
transcript.pyannote[2898].start 16091.96346875
transcript.pyannote[2898].end 16097.34659375
transcript.pyannote[2899].speaker SPEAKER_00
transcript.pyannote[2899].start 16097.71784375
transcript.pyannote[2899].end 16099.52346875
transcript.pyannote[2900].speaker SPEAKER_22
transcript.pyannote[2900].start 16099.00034375
transcript.pyannote[2900].end 16099.37159375
transcript.pyannote[2901].speaker SPEAKER_22
transcript.pyannote[2901].start 16099.52346875
transcript.pyannote[2901].end 16099.54034375
transcript.pyannote[2902].speaker SPEAKER_00
transcript.pyannote[2902].start 16099.54034375
transcript.pyannote[2902].end 16099.57409375
transcript.pyannote[2903].speaker SPEAKER_00
transcript.pyannote[2903].start 16099.74284375
transcript.pyannote[2903].end 16099.75971875
transcript.pyannote[2904].speaker SPEAKER_22
transcript.pyannote[2904].start 16099.75971875
transcript.pyannote[2904].end 16100.82284375
transcript.pyannote[2905].speaker SPEAKER_19
transcript.pyannote[2905].start 16104.88971875
transcript.pyannote[2905].end 16139.63534375
transcript.whisperx[0].start 583.534
transcript.whisperx[0].end 583.616
transcript.whisperx[0].text 本集完
transcript.whisperx[1].start 766.113
transcript.whisperx[1].end 767.548
transcript.whisperx[1].text 主席
transcript.whisperx[2].start 1817.697
transcript.whisperx[2].end 1820.259
transcript.whisperx[2].text 初席委員已主法定人數現在開會請議事人員宣讀上次會議議事錄立法院第11屆第1會期社會福利及衛生環境委員會第10次全體委員會議議事錄時間113年4月1日星期一9時至13時53分
transcript.whisperx[3].start 1841.218
transcript.whisperx[3].end 1870.323
transcript.whisperx[3].text 地點群賢樓801會議室出席委員陳昭芝等15人列席委員王宏偉等28人列席官員衛生福利部部長薛瑞元等相關人員主席王兆吉委員喻敏報告事項宣讀上次會議議事錄決定確定邀請衛生福利部部長環境部行政院食品安全辦公室行政院消費者保護會臺灣燕酒股份有限公司就蘇丹紅小林制藥紅麴原料以及保齡茶式食物中毒案
transcript.whisperx[4].start 1870.783
transcript.whisperx[4].end 1874.606
transcript.whisperx[4].text 等重大食安事件之檢討與策進作為進行專題報告.並備質詢。本次會議由衛生福利部部長報告後委員陳昭芝等27人提出質詢軍經衛生福利部部長、行政院消費者保護會處長鍾瑞蘭及經濟部商業發展署副署長劉雅娟及各相關主管等及其答覆
transcript.whisperx[5].start 1892.958
transcript.whisperx[5].end 1909.948
transcript.whisperx[5].text 委員秋正君及王宏偉所提書面質詢列入紀錄刊登公報決定一報告及詢答完畢二委員質詢未及答覆或請補充資料者請相關機關於二周內以書面答覆委員令要求期限者從其所定通過臨時提案實項宣讀完畢
transcript.whisperx[6].start 1913.403
transcript.whisperx[6].end 1940.196
transcript.whisperx[6].text 請問委員會.上次一事錄有無錯誤或遺漏之處?沒有。好。那一事錄確定.本日會議議程為.邀請勞動部、行政院人事行政總處、銓敘部、教育部、國防部就安心生養.試辦彈性育嬰假及如何提高男性育嬰留停比例.進行專題報告.並備質詢。現在介紹在場委員及列席官員。陳昭之委員。
transcript.whisperx[7].start 1942.472
transcript.whisperx[7].end 1968.354
transcript.whisperx[7].text 林月琴委員王振旭委員好那我們現在介紹列席的官員勞動部部長許明春許部長勞動力發展署蔡猛良署長職業安全衛生署周子蓮署長勞動基金運用局蘇裕清局長勞動關係司王厚偉司長
transcript.whisperx[8].start 1971.56
transcript.whisperx[8].end 1993.615
transcript.whisperx[8].text 勞動保險司陳美女司長勞動福祉退休司謝倩倩司長勞動條件及就業平等司黃維琛司長行政院人事行政總處培訓考用處陳月春處長權序部權審司王永大司長法規司雷誠司長
transcript.whisperx[9].start 1996.397
transcript.whisperx[9].end 2013.846
transcript.whisperx[9].text 退府司陳韻竹科長教育部人事處王崇斌處長國民及學程教育署古明哲主任國防部人事參謀次長是人事管理處孔乃德處長
transcript.whisperx[10].start 2016.133
transcript.whisperx[10].end 2024.035
transcript.whisperx[10].text 資源規劃司人力資源處檢任專門委員林佳敬專門委員好那現在接下來請勞動部許部長報告時間5分鐘主席各位委員女士先生大家好今天本部應邀至貴文會就安心生養試辦彈性育嬰假
transcript.whisperx[11].start 2045.444
transcript.whisperx[11].end 2061.696
transcript.whisperx[11].text 及如何提高男性育嬰留停比例.進行專題報告.敬請委員不吝指教.以下僅就提供安心生養環境.試辦彈性育嬰留停及如何提高男性育嬰留停比例說明首先是提供安心生養環境之上
transcript.whisperx[12].start 2062.817
transcript.whisperx[12].end 2083.675
transcript.whisperx[12].text 依信公法的規定,受僱者如了產檢假、陪產檢及陪產假、安胎休養請假、產假、育嬰留子停薪及家庭照顧假等需求皆可依法申請,僱主不得拒絕。今年為給予育兒父母更多的支持,除了產檢假提高為7天陪產假
transcript.whisperx[13].start 2084.71
transcript.whisperx[13].end 2107.277
transcript.whisperx[13].text 修正為賠產檢及賠產假並調整為7天外.育嬰留停上也放寬父母可以同時申請。就業保險法也在98年5月增列育嬰留停津貼的給付.讓勞工在育嬰留停時經濟生活可以獲得支持並穩定就業。依規定育嬰留停津貼以月投保薪資60%計算按月發給每一子女合計最長發給6個月。
transcript.whisperx[14].start 2111.798
transcript.whisperx[14].end 2127.763
transcript.whisperx[14].text 第二個部分是提高男性參與育兒比例首先是放寬育嬰留停彈性從110年起大幅縮短育嬰留停的門檻原來一次至少要6個月以上改為只要30天就可以提出申請
transcript.whisperx[15].start 2128.829
transcript.whisperx[15].end 2146.743
transcript.whisperx[15].text 雖然近年出生嬰兒數仍下降但從110年申請門檻放寬以來到112年抵制相較修法以前女性人數增加11%男性增加61%少於6個月的短期育嬰留停女性增加37%男性則大增為
transcript.whisperx[16].start 2153.29
transcript.whisperx[16].end 2177.608
transcript.whisperx[16].text 從數據來看對於促進男性參與育兒已有成效第二提供育兒父母經濟支持政府為了鼓勵雙親共同擔負養育子女的責任及強化勞工育嬰留停期間的經濟支持從110年7月1日起另以公務預算加給兩成育嬰留停的薪資補助讓留停期間的薪資替代率可以達到平均月頭保薪資的八成
transcript.whisperx[17].start 2178.969
transcript.whisperx[17].end 2196.41
transcript.whisperx[17].text 110年7月到113年2月抵止受惠人數一共是243,000餘人補助金額是89億5千萬餘元於留停機今天也體貼民眾的需求從111年1月修正後父母可視需求
transcript.whisperx[18].start 2196.906
transcript.whisperx[18].end 2202.95
transcript.whisperx[18].text 同時或分別請領各6個月的津貼以鼓勵男性參與111年1月到113年的2月同時申請育嬰留停並請領津貼的人數是2萬餘人
transcript.whisperx[19].start 2212.415
transcript.whisperx[19].end 2226.93
transcript.whisperx[19].text 又請本部積極推動相關新措施.從110年7月起到113年2月止.相較實施前同期.男性勤領與留停津貼人數增幅為60%.以全體申請的比例來看.也從109年的18%提升到112年的25%.
transcript.whisperx[20].start 2235.373
transcript.whisperx[20].end 2258.927
transcript.whisperx[20].text 第三個部分是試辦更為彈性的育嬰留停本次試辦的重點新公法雖然已經將育嬰留停的門檻降為30天但民間仍有更為彈性的期盼本部在今年1月邀集公司部門討論彈性育嬰留停的可行性與會代表建議實施試辦應給予一定的空間不要有太多的強制性
transcript.whisperx[21].start 2259.727
transcript.whisperx[21].end 2287.912
transcript.whisperx[21].text 源於113年的3月15日定定彈性育嬰留停事辦原則實施對象除了邀請經濟部、交通部等所屬事業機構衛福部所屬醫療機構及勞動部附屬單位外並含請工商團體、科學園區工會及銀行業工會徐邀有意願的事業單位規劃不少於5天的育嬰留停但事辦單位如果願意定定更短任數的方案更為歡迎
transcript.whisperx[22].start 2290.735
transcript.whisperx[22].end 2312.802
transcript.whisperx[22].text 事辦期間勞僱雙方的權益勞工部分受僱者參加事辦期間可以繼續參加原有的社會保險並且同樣享有津貼達投保薪資八成的經濟支持僱主部分原有僱主負擔的保險費可免於繳納令如有短期人力的需求可以定期契約來禁用替代人力提升參與事辦的誘因
transcript.whisperx[23].start 2315.506
transcript.whisperx[23].end 2329.742
transcript.whisperx[23].text 第一,我們優先媒合育嬰留停的替代人力。勞工育嬰留停期間的替代人力是企業營運上的主要問題。雇主若有短期人力的需求,除運用救福機構的推介服務外,本部的臺灣就業通
transcript.whisperx[24].start 2331.144
transcript.whisperx[24].end 2347.069
transcript.whisperx[24].text 亦有線上短期人力的媒合功能將全力優先提供服務二、試辦成果納入相關評選及表揚參加試辦單位試辦成果可作為本部國家人才發展獎工作生活平衡獎及國家職業安全衛生獎的參選事蹟另將盤點其他部會的相關評選
transcript.whisperx[25].start 2353.171
transcript.whisperx[25].end 2364.914
transcript.whisperx[25].text 協調納入評選的項目是滾動檢討彈性育嬰留停事辦為了進一步收集各界對於事辦的意見本部在113年的3月28日邀請婦女團體開會討論針對事辦原則將研議適當的參與幼嬰滾動修正內容希望透過勞動實務現場的運作務實來了解問題作為未來政策的參考
transcript.whisperx[26].start 2378.238
transcript.whisperx[26].end 2389.505
transcript.whisperx[26].text 為了促進僱主營造更友善的職場生養環境本部將持續加強宣導支持勞工兼顧工作育兒及家庭照顧以上報告敬請各位委員及先進指教謝謝
transcript.whisperx[27].start 2395.758
transcript.whisperx[27].end 2406.562
transcript.whisperx[27].text 有關本次會議各項書面資料均列入紀錄刊登公報現在開始詢答做以下宣告本會委員詢答時間為6加2分鐘列席委員4加1分鐘10點30分截止發言登記
transcript.whisperx[28].start 2411.164
transcript.whisperx[28].end 2427.868
transcript.whisperx[28].text 委員如有書面質詢請於散會前提出預期不受理暫定10點30分休息10分鐘原則上11點30分處理臨時提案10點30分截止收案那現在請登記第一位委員陳昭芝委員發言謝謝主席有請了部長,請許部長
transcript.whisperx[29].start 2440.831
transcript.whisperx[29].end 2447.213
transcript.whisperx[29].text 好部長早安部長請問你有沒有聽過一句在網路上廣為流傳的一個順口溜叫做十萬青年十萬肝雞雞輪班救台灣這一句話他談的就是我們當然對這個臺經濟對臺灣經濟發展的貢獻沒有人是否定的但是就是說某個程度這個順口溜也代表了就是說事實上就是有很多年輕人新鮮的肝
transcript.whisperx[30].start 2469.079
transcript.whisperx[30].end 2478.401
transcript.whisperx[30].text 因為熬夜輪班換來的一個成果那近期那個張忠謀董事長他因為在美國亞利桑那他設廠但是他因為勞力短缺他的進度整個是落後的那他在接受媒體採訪的時候他就提到說他無法理解為什麼美國年輕的員工他對於這個工作跟生活品質要求這個平衡的一個態度就是work and life balance的態度那我想請教部長
transcript.whisperx[31].start 2498.124
transcript.whisperx[31].end 2509.313
transcript.whisperx[31].text 您對這樣的說法,您的想法是什麼?報告委員,我們勞動部一向主張工作跟生活要平衡。工作的時候我們當然也要努力,但是適當的休息,讓生性能夠達到釋放這個是應該的。
transcript.whisperx[32].start 2514.657
transcript.whisperx[32].end 2528.776
transcript.whisperx[32].text 謝謝部長,部長我講兩個小故事給您聽我服務的醫院正對面就是過去長期服務就是一個非常非常有名的電腦公司有一年他們全部的員工在我們醫院做健康檢查結果我們發現他的健康檢查數字是滿江紅
transcript.whisperx[33].start 2530.578
transcript.whisperx[33].end 2548.73
transcript.whisperx[33].text 那另外我要談這個台灣的健保台灣的健保如果你問全民的這個滿意度大概都9成以上可是如果你只調查醫療人員醫事人員的就是醫療提供者大概滿意度頂多3成這是比離死盪還遙遠所以就是說當事人提供這些服務的時候他們認為是用他們的血汗
transcript.whisperx[34].start 2549.891
transcript.whisperx[34].end 2562.6
transcript.whisperx[34].text 去撐出的這個奇蹟所以就是說那當然早期的那個住院醫師你知道住院醫師早期包括我以前他們當年一個月值10幾天的班那是沒命沒力的去值班當然他們學習很快也付出很大但是現在連住院醫師都列入這個勞基法了那當然張忠國理事長他的想法我老實說我可以理解我可以理解可是時代不同了那就對於這個大企業家他其實發表這樣有時候不是對
transcript.whisperx[35].start 2579.931
transcript.whisperx[35].end 2583.773
transcript.whisperx[35].text 您對於捍衛勞工他們追求比較他期待的生活方式您的想法或是你們會不會站出來捍衛這個勞工的期待對生活的跟工作品質平衡的期待
transcript.whisperx[36].start 2599.135
transcript.whisperx[36].end 2618.974
transcript.whisperx[36].text 因為工作與生活平衡一向是勞動部的一個政策的重點那我們其實也都鼓勵這個企業主能夠讓勞工有適當的一個休閒甚至要提供一些紓壓的一些課程然後讓勞工能夠
transcript.whisperx[37].start 2620.535
transcript.whisperx[37].end 2649.395
transcript.whisperx[37].text 謝謝部長您就強調說是要一個堅固或平衡的一個想法不過早期很辛苦白手起家的企業家他們當然經歷不同時代不同他會有不同的想法部長我們回到今天主題很多雙薪小雙薪家庭他不敢生孩子我們先撇開這個經濟因素當然雙薪相對他的經濟因素可能是少一點點但是您覺得他們還是不願意生小孩部長您瞭解他們最主要的理由可能是什麼嗎就是雙薪家庭他們還是沒有要生孩子這樣子
transcript.whisperx[38].start 2651.075
transcript.whisperx[38].end 2657.978
transcript.whisperx[38].text 部長您談得非常正確第一個據我們了解整個收集資料第一個就是時間都給了工作因為這個根據媒體報導很多家長的共同困擾就是說他們因為要兼顧工作跟家庭
transcript.whisperx[39].start 2672.904
transcript.whisperx[39].end 2675.766
transcript.whisperx[39].text 所以他們覺得陪伴孩子的教育或成長的這個時間是有限沒有辦法很完整那即便交給這個保姆等等他們還是會擔心環境跟照顧的這個品質另外就是說他白天都付出給工作嘛這是我們的責任
transcript.whisperx[40].start 2688.436
transcript.whisperx[40].end 2698.646
transcript.whisperx[40].text 但是回到家裡說老實說很多工作不能完全排除你在下班時間以後還是必須做你工作上的某一些支援跟回應這是第一個就他們覺得在時間上沒有辦法大概都給的工作比較多的比例第二個就是請假的這個困擾跟不便性例如說剛剛您也報告到育嬰假但是我知道育嬰假因為相對長嘛所以他回到職場上
transcript.whisperx[41].start 2711.118
transcript.whisperx[41].end 2739.319
transcript.whisperx[41].text 他不一定能夠回到他比較期待的那個職位雖然職等的他必須他有權力復職但是有時候是有一些困難還有孩子生下來了他需要照顧他會發生一些額外的需要照顧的這個壓力所以這些都會成為就是說生育孩子養育孩子的一些顧慮跟這個阻力那現行的法規是性別平等工作法第16條孩子3歲以前可以請育嬰假但是老實說孩子3歲以後還是會有一些額外
transcript.whisperx[42].start 2740.1
transcript.whisperx[42].end 2757.797
transcript.whisperx[42].text 你需要照顧的這個需要額外的照顧嗎所以這是第二件事就是說他們對於請假過去大概就會用試假啦特休來處理就是說請假的困擾不變是第二個第三個我認為時代是不同的現行的制度下是不是可能會加一些幫助生育孩子的一些
transcript.whisperx[43].start 2758.357
transcript.whisperx[43].end 2764.881
transcript.whisperx[43].text 但是我的孩子是生30萬孩子但去年部長知道生了13萬多的小孩所以我是覺得各部門是不是應該在現有的工作制度下加一點幫助讓他們願意生孩子幼嬰尤其這個育齡族群他絕對是我們整個生產力的主力
transcript.whisperx[44].start 2782.352
transcript.whisperx[44].end 2805.374
transcript.whisperx[44].text 那他們生小孩這個孩子是有孩子是讓我們國家繼續壯大永續的一個非常重要的因素所以所以很多的調查都發現說沒有完善的這個育兒配套措施確實是跟增育率的這個有正相關正相關的這個很多研究調查都證實所以部長人口負成長已經成為我們的國安問題那去年出生我剛剛提到才13萬多人
transcript.whisperx[45].start 2807.176
transcript.whisperx[45].end 2826.323
transcript.whisperx[45].text 那對於已經出生的孩子我們也就是國立出生但已經出生的孩子怎麼樣幫助父母親在職場工作能夠有完善的照顧跟陪伴這也很重要請部長看一下右邊這個表這個是去年八月TVS他用social lab去查這個所謂的網路的那些聲量的就討論的排行榜
transcript.whisperx[46].start 2828.544
transcript.whisperx[46].end 2844.189
transcript.whisperx[46].text 職場父母育兒六大困難你可以看到第一名就是缺乏時間陪伴孩子這個占最高排行第一第二個是育兒政策配套不完善那還有保母的問題另外甚至有很多是女性她還在思考我是不是要離職來當一個全職媽媽這幾個因素也讓部長做參考部長這個現行有兩個法條居然是父母有義務跟責任一個就是幼兒教育及照顧法第41條
transcript.whisperx[47].start 2855.433
transcript.whisperx[47].end 2874.692
transcript.whisperx[47].text 他說家長父有參加教保服務機構之幼兒及親子活動的義務第二個教育基本法規定家長父有輔導子女的責任那部長這個法律您知道嗎就是說當爸爸媽媽是有責任有法律責任的但是大部分他們參加這個都是透過私人假期或試假參與這個親子活動所以部長我們可能某個程度要
transcript.whisperx[48].start 2879.756
transcript.whisperx[48].end 2885.34
transcript.whisperx[48].text 幫助他們來解決因為時間有限我們再看下一張有一個東西叫做親職活動親職教育親職教育是一個名詞就是說我也是這樣這次才學習就是指為人父母要學習教養子女的一些教育課程內容包括正確的親子關係父母職責的認識親子溝通的教育跟方法瞭解兒童所面對的社會問題去解決他自我成長等等
transcript.whisperx[49].start 2904.651
transcript.whisperx[49].end 2927.466
transcript.whisperx[49].text 但是面對這些也許學校老師非常努力非常認真去籌辦這些輕職教育的活動但是希望能夠提高家長的參與率但事實上家長的出席率還是不高那主要是他們不敢請假或未必就是說也不方便請假那輕職教育假是有他的意義跟這個責任那部長您是不是支持有這個輕職教育假那個是法規規定的輕職教育假過去沒有的輕職教育假其實
transcript.whisperx[50].start 2933.21
transcript.whisperx[50].end 2954.559
transcript.whisperx[50].text 對,剛剛我特別只是說他是有一些內容的、內涵的對,其實報告委員其實對於就是育兒或相關孩子照顧的我們現在其實有一些價別是可以運用比如說有這個家庭照顧假他有時候是要參加因為大部分都是會在假日或下班您提到家庭照顧假我再給你下一張就是我要談
transcript.whisperx[51].start 2955.359
transcript.whisperx[51].end 2959.301
transcript.whisperx[51].text 家庭照顧假應該要個案事實進行合理認定再給予重寬認定而且不要併入事假但是現在的時代生活形態不同會有新的狀況比如說之前疫情期間比如說小孩有一些感染就是說他可能會需要一些額外的
transcript.whisperx[52].start 2982.551
transcript.whisperx[52].end 2985.893
transcript.whisperx[52].text 我覺得這個是可以討論啦有些輕職假就是家庭照顧費他其實類似可以運用到輕職的照顧上面去那有些我是覺得可以與時俱進來檢討
transcript.whisperx[53].start 3007.944
transcript.whisperx[53].end 3036.367
transcript.whisperx[53].text 我們可以要講因為時代真的不同我們現在真的是缺小孩嘛下一張最後一張就是說我們在看現在就業保險法裡面他照顧的對象包括事業給付提早就業獎助津貼職業訓練生活津貼育嬰留職津貼失業人保險等等津貼但是剛剛我這個前面都提到一些他輕職假津貼輕職教育假家庭照顧假可不可能在這個現有的這個就業保險津貼裡面把因為時代所需要
transcript.whisperx[54].start 3037.748
transcript.whisperx[54].end 3059.896
transcript.whisperx[54].text 加入這幾項來做考慮因為我們本黨大概會提出相關的法規相關的草案法規那我不知道勞動部有沒有在準備這個事我覺得假設假設把它放進去會讓家長覺得說我如果來配合這些活動的參與跟學習這是一種責任跟榮譽而不是說我要被扣薪的那種負面感受我覺得對他們要願意養育孩子這種意願
transcript.whisperx[55].start 3062.877
transcript.whisperx[55].end 3082.116
transcript.whisperx[55].text 應該很正面我想增加相關的這個津貼來支持這個方向我是覺得是可以來討論但是就是說如果是以舊保的財源來看我是覺得這個問題還是會在財源的問題因為我們在舊保在支現在是育嬰留停是佔了我們的大宗44%以上44%將近45%失業給付佔了43%就是說我們現在
transcript.whisperx[56].start 3089.042
transcript.whisperx[56].end 3106.623
transcript.whisperx[56].text 謝謝部長,了解財源是一個問題,但是時代不同原來舊保的目的是失業給付的一個財源,但沒有關係,這個我們一樣支持,但現在我的意思說如果整個要擴大到金質價,今天其實是不夠,因為我們現在每年的結餘大概
transcript.whisperx[57].start 3107.584
transcript.whisperx[57].end 3107.604
transcript.whisperx[57].text 拜訪議員
transcript.whisperx[58].start 3129.514
transcript.whisperx[58].end 3130.215
transcript.whisperx[58].text 接下來請陳金輝委員發言
transcript.whisperx[59].start 3154.119
transcript.whisperx[59].end 3154.759
transcript.whisperx[59].text 上週三地震
transcript.whisperx[60].start 3178.105
transcript.whisperx[60].end 3197.407
transcript.whisperx[60].text 但勞動部反應非常的快勞動部馬上發了一個新聞稿提到說假使是因為交通問題呢不可以歸咎為員工的事情而遲到僱主不應視為遲到或曠職但是工資要照給要看與僱主自己協商部長你覺得
transcript.whisperx[61].start 3198.428
transcript.whisperx[61].end 3218.17
transcript.whisperx[61].text 如果100個僱主有幾個他會主動跟員工協商說好我們這個是有新的假期報告委員因為這個天災是不可抗力雙方都不可規則所以法律才會這樣規定但是我想一般僱主也是會體恤勞工的話應該都會給
transcript.whisperx[62].start 3220.832
transcript.whisperx[62].end 3222.154
transcript.whisperx[62].text 我先幫您做一個表格因為像上禮拜三我們在
transcript.whisperx[63].start 3239.132
transcript.whisperx[63].end 3266.311
transcript.whisperx[63].text 這邊開會就有許許多專家學者因為是從南部過來因此延誤了4個小時以上但我也有收到陳情他是被列為半天的市假所以一個勞工這樣子半天的市假就消耗掉了所以剛部長您提到的說您可以體諒僱主大部分都會都會體恤員工而給予薪水但實際上的話我想如果您沒有具體去規範因為
transcript.whisperx[64].start 3267.992
transcript.whisperx[64].end 3268.332
transcript.whisperx[64].text 好 這我們來討論齁
transcript.whisperx[65].start 3283.476
transcript.whisperx[65].end 3307.897
transcript.whisperx[65].text 再來這邊也要鼓勵部長說我們很快就啟動了天災臨時工的措施這個非常好因為我們可以提高當地的經濟還有就業率讓當地失業的受災者有工作但是我們來看一下內容左邊您講到說提供每個小時183元每個月最高補助27000塊大約是這樣子
transcript.whisperx[66].start 3311.039
transcript.whisperx[66].end 3313.581
transcript.whisperx[66].text 就現在整體通膨物價飆漲您覺得這樣子的時薪是足夠的嗎?
transcript.whisperx[67].start 3320.27
transcript.whisperx[67].end 3343.809
transcript.whisperx[67].text 報告委員 這個應該因為這個零工措施的就是已經既有的政策一般都是這樣子那其實我跟委員報告我們其實這個程序都很快我們幾乎當天申請當天就核定了因為這個對這個應該沒有什麼問題部長您知道您現在的這個申請的受災失業者還有社會型專案計畫您知道現在已經有幾個人申請嗎
transcript.whisperx[68].start 3345.99
transcript.whisperx[68].end 3368.859
transcript.whisperx[68].text 我早上還特別查我請署長說明一下跟委員報告我們今天早上最新的統計花蓮現在瑞穗已經提出15位零工那現在目前大概還有幾個花蓮地區的鄉鎮目前都還在盤點所以寫出計畫的我早上問是零嗎還沒啊寫出計畫的只有提出申請要打零工的有15人
transcript.whisperx[69].start 3375.453
transcript.whisperx[69].end 3389.872
transcript.whisperx[69].text 這個委員其實目前這個林宮這個過去已經實施了非常多次其實現在地方政府其實目前都是很簡便那個計畫不是要寫很繁雜的其實大概就一個頁面大概就是需要多少大概人數大概就是基本資料而已
transcript.whisperx[70].start 3389.872
transcript.whisperx[70].end 3393.033
transcript.whisperx[70].text 接下來他們會進入一個經濟的寒冬因為快要暑假所以許多人已經被取消了訂房
transcript.whisperx[71].start 3419.62
transcript.whisperx[71].end 3441.05
transcript.whisperx[71].text 因為本來很多人家長要帶著小朋友去玩暑假花蓮是一個很旺季嘛但是現在他們因為這樣子的天災可能半年都還沒有辦法復甦所以我在這邊是提供部長一個建議不管是這個補助的金額或者是這個申請的程序您看我框起來這些表都是一週內要完成兩週內完成一週內完成
transcript.whisperx[72].start 3444.191
transcript.whisperx[72].end 3469.484
transcript.whisperx[72].text 這些時間加一加也要個三個禮拜再來您看受災失業者他要提供的相關證明文件其實也相對是繁瑣的所以如果您可以把這個流程還有受災失業者他需要減負的文件盡量簡化這樣子我們才真的幫得到花蓮人嘛因為花蓮人現在需要的是麵包但看到你們端出的是麵包屑有一點緩不濟急啊
transcript.whisperx[73].start 3473.417
transcript.whisperx[73].end 3498.102
transcript.whisperx[73].text 我們這個零工的措施一定是重優、重速、重減其實需要的人他只要向勞動部申請立刻登記就我們就合了只是說那個鄉鎮公所他們要提計畫到底需要哪些工作提供我們那個也都是固定的一些有一些範例我們也都會協助他們盡快能夠把這個零工的措施能夠落實讓需要的人趕快來工作
transcript.whisperx[74].start 3499.262
transcript.whisperx[74].end 3523.224
transcript.whisperx[74].text 謝謝部長,下一個我們來看一下今天我們既然是要討論育嬰假這個是我自己的小孩他上網看到行政院的有一個兒童版的網站許部長在上面介紹的非常可愛他說小朋友可以叫我阿春部長也是全國一千萬名勞工朋友的靠山但是呢就像剛才陳昭芝委員有提到的
transcript.whisperx[75].start 3524.125
transcript.whisperx[75].end 3539.4
transcript.whisperx[75].text 台灣勞工的比例非常的高雙薪家庭的比例也很高其實許許多多的小朋友不只是要部長當他們爸媽的靠山也很希望有爸媽的陪伴因此大概在3到4週前
transcript.whisperx[76].start 3540.741
transcript.whisperx[76].end 3555.356
transcript.whisperx[76].text 部長您有跟記者朋友們說您在滾動式的調整去考量是不是勞工朋友也可以增加有薪的幼兒照顧假請問現在滾動式的調整您思考的如何了
transcript.whisperx[77].start 3561.107
transcript.whisperx[77].end 3587.199
transcript.whisperx[77].text 不是 這個是公務員的這是公務員這是公務員的但是當時媒體朋友有沒有向您詢問說是不是勞工也可以開始考慮做這樣子的我們現在也就是看行政院這邊因為還有再開一次會我印象中有再開過會那我們當然如果說這個方向是確定我們當然也認為勞工部分我們會來檢討跟進這樣子
transcript.whisperx[78].start 3591.361
transcript.whisperx[78].end 3618.311
transcript.whisperx[78].text 對我在這邊有一個比較具體的提議啦因為現在呢根據性別平等法規定7天應該要以家庭照顧假為計算如果可能你們因為這個現行法規的考量或者是這個預算的考量如果我們來要求勞動部研擬修改勞工的請假辦法再增加7天的試假的扣打但是不給新的給予育兒幼兒照顧假您覺得這方面是可行的嗎
transcript.whisperx[79].start 3620.501
transcript.whisperx[79].end 3636.277
transcript.whisperx[79].text 報告委員我覺得這個部分都可以討論那我們可以邀請勞資雙方的團體大家來開會凝聚共識看怎麼來做因為這牽涉到他們的雙方的權益所以你覺得一個月內如果沿你勞工無薪
transcript.whisperx[80].start 3637.498
transcript.whisperx[80].end 3638.839
transcript.whisperx[80].text 這是本黨之前在選舉期間提出我看非常多的民進黨委員也提出跟我們相同的看法
transcript.whisperx[81].start 3655.611
transcript.whisperx[81].end 3676.797
transcript.whisperx[81].text 認為需要追隨我們國際的標準將我們現行的產價延長到14週但是我也看了一下部長您的回覆是覺得說第一因為台灣是中小型企業比較多麻煩會不利女性的就業第二許許多多我們跟其他國家的計算方式不一樣所以呢我有看了
transcript.whisperx[82].start 3677.737
transcript.whisperx[82].end 3706.09
transcript.whisperx[82].text 你們有一個150頁的報告是各國對於育兒勞工之影響及相關補助策略上寫得非常詳細我覺得部長您的這個勞動及職業安全衛生研究所他們做足了資料但是我們從裡面看起來勒不管是產假育嬰留停的津貼或是有薪資整體的週數其實我們都大幅的落後這些OECD的先進國家非常多
transcript.whisperx[83].start 3706.65
transcript.whisperx[83].end 3730.246
transcript.whisperx[83].text 甚至丹麥阿法國他們還分成懷第一胎懷第二胎以及懷雙胞胎他產假的週數都有不同因為他知道說雙胞胎一定需要更久或是第二胎同時照顧第一胎會更累但是部長您覺得我們是不是應該要再稍微調整成比八週再長一點呢
transcript.whisperx[84].start 3731.734
transcript.whisperx[84].end 3759.271
transcript.whisperx[84].text 報告委員因為這個部分我是覺得也很多委員在倡議我覺得我也有交代優待會說這個我們應該再來做一些討論看看是不是可以來適度的把這個產假的這個週數是不是要再放寬但是就是讓整個育兒的生養環境更優這個部分我想我們這樣的方向都會來進一步來做一些研議
transcript.whisperx[85].start 3761.693
transcript.whisperx[85].end 3778.688
transcript.whisperx[85].text 當然今天也有一個重點是講到男性育嬰假這個是許許多多的民意調查去調查為什麼台灣的男性會不想要請育嬰假這都非常合理比如說他們因為薪水因為主管的升遷考量因為怕被講話他人的觀感等等覺得丟臉
transcript.whisperx[86].start 3780.169
transcript.whisperx[86].end 3806.929
transcript.whisperx[86].text 好這個是要給予勞動部肯定的2022年部長您知道為什麼男性申請育嬰假的比例創新高到達25%嗎這個報告委員因為我們放寬吼第一個他其實可以同時30天短期數也可以再來他可以同個別或同時啦還有就是那個我們多了兩成的公務預算的補助薪資補助我想這個都是誘因
transcript.whisperx[87].start 3808.53
transcript.whisperx[87].end 3825.798
transcript.whisperx[87].text 對 這個媒體也有幫您分析的當然有一些津貼再來疫情是一個很大的因素因為疫情期間有非常多脫育的地方其實沒有開放所以他們不得不把小孩帶回家我覺得看到這樣子非常好因為根據您那個150頁的報告丹麥已經非常努力了男性的育兒假申請也頂多到30%然後我們居然可以在2022年衝到25%可是呢我希望這個數據
transcript.whisperx[88].start 3836.383
transcript.whisperx[88].end 3857.474
transcript.whisperx[88].text 不要2023、2024又變回原來的10幾%對,因為我們就沒有疫情的加持了嘛所以今天有看到各位的會報那各位的會報有提到說呢我們要鼓勵這個全序部要鼓勵有申請育嬰留停的男性公務員出來做一些經驗分享
transcript.whisperx[89].start 3858.474
transcript.whisperx[89].end 3884.53
transcript.whisperx[89].text 當然這個利益是很好但實際帶動的效果我覺得是有限啦這邊提供部長一個參考日本呢你也知道日本的文化也許比我們看待我們男性還要更為保守嘛所以日本他會做到說他由上往下整個去找出員工超過100人的公司並且這大概5萬家去制定而且公佈男性育嬰休假的比例的目標
transcript.whisperx[90].start 3886.01
transcript.whisperx[90].end 3887.171
transcript.whisperx[90].text 謝謝陳京輝委員接下來請林月晴委員發言
transcript.whisperx[91].start 3924.368
transcript.whisperx[91].end 3953.139
transcript.whisperx[91].text 主席好然後麻煩我們的部長請許部長評委好部長那看這張應該可以知道就是下頁就是我們現在從2022年的公布14個國家的勞參率裡面那女性勞參率臺灣事實上只高過於義大利
transcript.whisperx[92].start 3953.68
transcript.whisperx[92].end 3966.677
transcript.whisperx[92].text 我們只有51.6%低於其他的國家那也意味著我們女性本來事實上如果更多女性進來的話事實上我們現在很多在缺工的狀態要期待女性是不是
transcript.whisperx[93].start 3967.162
transcript.whisperx[93].end 3994.853
transcript.whisperx[93].text 可以來協助經濟發展可是女性就業率看起來事實上是拉緊爆的因為從2023年的統計來看那25歲到29歲達到89.9高於每日寒可是到30歲之後就往下降了成了一個V字型那因為為什麼因為我們的女性很多就是為了帶孩子或是照顧家裡的長輩所以
transcript.whisperx[94].start 3995.74
transcript.whisperx[94].end 4023.846
transcript.whisperx[94].text 想問部長因為照顧離職的問題一直都很嚴重尤其對於女性在家庭的一個觀念裡邊很多時候長期是被要求要負擔照顧起老的小的那所以部長對於目前我知道你們有這樣的統計可是想問更細緻的就是說其中照顧失能者老人嬰兒跟兒童的人數有各自有多少就是說因為家裡的照顧而去離開職場的
transcript.whisperx[95].start 4025.939
transcript.whisperx[95].end 4034.105
transcript.whisperx[95].text 報告委員根據主席總書的資料照顧65歲以上的長輩而離職的這是去年5月公布的9000人
transcript.whisperx[96].start 4046.969
transcript.whisperx[96].end 4073.719
transcript.whisperx[96].text 所以部長是不是可以因為所有的因為我說我個人很喜歡看數據看數據之後你背後的問題要怎麼去解決如果充分掌握這數據就知道說你今天要提出來的所有的對應勞工的問題的話才有辦法能夠被解決那現在今天提出來的就想問的是現行的你剛剛報告的就育嬰留
transcript.whisperx[97].start 4074.266
transcript.whisperx[97].end 4074.506
transcript.whisperx[97].text 可以
transcript.whisperx[98].start 4089.661
transcript.whisperx[98].end 4113.037
transcript.whisperx[98].text 那怎麼執行?何時執行?為什麼?因為現在時間3月你們也有開過會那到底什麼時候是要執行?是520之前還是520之後還預計如何讓企業來執行為什麼?不是把一個公文紙或是發一個宣傳企業雖然你的報告裡面也有提到說一定會有就是鼓勵可是這個鼓勵機制
transcript.whisperx[99].start 4114.238
transcript.whisperx[99].end 4114.839
transcript.whisperx[99].text 你怎麼去鼓勵這些企業
transcript.whisperx[100].start 4129.589
transcript.whisperx[100].end 4152.91
transcript.whisperx[100].text 可能你這些報告的都認為不會有效果報告委員沒關係 這個部分其實我們當初這個事辦的原則當初是就是說希望採志願的志願性的讓他們來參與所以但是當然我們這樣的原則出來也很多委員有很多的指教所以我也認為說其實大家講的也都有道理我們現在透過事辦原則來瞭解
transcript.whisperx[101].start 4155.712
transcript.whisperx[101].end 4177.215
transcript.whisperx[101].text 可不可以找一些比較大的企業,我覺得也兼顧社會責任因為今天他的公司可以運作的話是運作10年20年要後邊有人能夠來工作所以企業有沒有辦法去鼓勵一些比較大型的來配合否則你的試驗方案又停留在公部門公部門是比較可以配合的話沒有辦法類推到商業團體
transcript.whisperx[102].start 4178.596
transcript.whisperx[102].end 4193.744
transcript.whisperx[102].text 所以請部長這邊是不是在所謂招募的時候可能要特別去注意到這一點跟委員報告我們除了公部門以外私部門的大型企業也有表達參與的意願不過我跟委員報告就是說原來我們預計是5月1號要上路不過因為委員
transcript.whisperx[103].start 4195.325
transcript.whisperx[103].end 4219.01
transcript.whisperx[103].text 好多人對這個部分都認為我們應該更周延所以我也跟同仁說持續收集更完整的意見調整以後再來上路不急著上路我們上路以後是能夠真的有能夠示範能夠有部長我想問的還有一個是如果這個要上路你所有的準備準備好了沒因為本席認為在技術上請假方法變革挑戰會落
transcript.whisperx[104].start 4220.59
transcript.whisperx[104].end 4249.213
transcript.whisperx[104].text 在顧主的身上若對政府來講這些系統是不是健全因為為什麼因為包括請假的日數津貼申請的作業這些都要資訊系統完成不知道這現在的狀況建制的如何包括這個如果是那個未來津貼的其實我們保險是已經在有做一些初步的一些規劃了這個都有因應這一次的示範原則那不過就是說大企業這邊當然我們也在會邀請他們
transcript.whisperx[105].start 4250.113
transcript.whisperx[105].end 4267.182
transcript.whisperx[105].text 再來做一些說明會因為現在有登記要來參與示範的我們也會先召集他們來做一些我希望系統可以處理好因為過往我們在民間在用政府的系統都很難用所以不要到時候要登載這些造成多困擾院縣畢竟單日也可以的話
transcript.whisperx[106].start 4267.83
transcript.whisperx[106].end 4281.647
transcript.whisperx[106].text 要試辦單日也可以的話那個複雜度會非常非常的高可能就要去做考慮那在你如果說今天要去顧到嬰兒的時候也要問的是那幼兒跟老人呢因為為什麼因為民間團體也一直在倡議說可不可以有
transcript.whisperx[107].start 4286.023
transcript.whisperx[107].end 4299.544
transcript.whisperx[107].text 給親職假,我想剛剛前面金威委員也問到那個親職假就是你是不是可以藉此次的試辦計畫用日或者甚至用時來計那有沒有對這項
transcript.whisperx[108].start 4300.726
transcript.whisperx[108].end 4302.166
transcript.whisperx[108].text 這個事辦計畫未來是不是可以考慮
transcript.whisperx[109].start 4329.893
transcript.whisperx[109].end 4355.992
transcript.whisperx[109].text 不是只有3歲事實上3歲前幾乎在保母家還可以彈性度比較高一點然後或是托嬰中心可是到幼兒園的時候長病毒這個問題就常常花掉家長可能要請個5天那常常都會是他們一個在勞動條件裡邊他們會覺得對他們來講比較不這麼好所以我們考慮延伸到8歲然後把我們的家庭照顧假也合併進來來作為一個親子假
transcript.whisperx[110].start 4358.747
transcript.whisperx[110].end 4387.354
transcript.whisperx[110].text 這個報告委員其實優於法令的這個都可以先在事辦裡面都可以先做不過如果連結到要給津貼因為我們現在法令規定是三歲以下所以可不可以去考量一下就是要牽涉到修法但是我的意思是說事辦原則的部分我是覺得可以放寬因為民間團體會提出來表示他們一直以來就是會受到很多家長的需求才會提出這樣的一個訴求在
transcript.whisperx[111].start 4387.782
transcript.whisperx[111].end 4404.214
transcript.whisperx[111].text 所以是不是可以考慮一下用這樣的一個在這次試辦的時候就把考量進去因為到8歲因為的確幼稚園階段我自己本身以前在帶孩子的時候幼稚園階段事實上是我們請假歲多的一下碰到腸病毒大概就是要這樣子的時間點
transcript.whisperx[112].start 4406.37
transcript.whisperx[112].end 4423.067
transcript.whisperx[112].text 請部長這邊去做考量我們現在也就是說因為針對這個示範原則我們現在收集意見讓它更完整所以包括個委員這個意見我也會請業務單位來參考再來就是長照也會是一個問題我說不是只有雇到嬰兒可能
transcript.whisperx[113].start 4423.627
transcript.whisperx[113].end 4435.886
transcript.whisperx[113].text 女性離開勞動市場她除了事實上是小孩以外還有一個就是老人那日本他們有一個93天的長期照顧安排假也就是一個被照顧者一年有93天的時間可以被
transcript.whisperx[114].start 4438.301
transcript.whisperx[114].end 4457.776
transcript.whisperx[114].text 做為長期照顧的安排那子女就可以去請這個假那分三次請然後用社會保險支出67%的薪水那過去部長這邊也曾經回答過反正一年一個人93天一年大概就要363億的預算終歸就是錢可是錢如果可以讓我們的女性來進入到勞動市場的話來讓我們的經濟發展可以更好的話這363億不是一個難處所以我不知道
transcript.whisperx[115].start 4467.591
transcript.whisperx[115].end 4485.924
transcript.whisperx[115].text 就當時已經有提出來我不知道這有沒有有已經去考慮那民間團體也108年的時候也在提出來就30天的有心照顧假跟150天的彈性請假的一個長照安排日本是93天那臺灣民間團體是提出這樣子的一個所以
transcript.whisperx[116].start 4487.361
transcript.whisperx[116].end 4507.313
transcript.whisperx[116].text 請問一下這個因為已經在也討論好多年因為108年提出來當時勞動部的回答是說要邀請相關的團體學者來開會討論然後也表示每年大概有18.7萬人應照顧然後減少工時請假跟轉換工作所以有累積到13.3萬人應
transcript.whisperx[117].start 4509.794
transcript.whisperx[117].end 4510.395
transcript.whisperx[117].text 報告委員,我們其實有開過會
transcript.whisperx[118].start 4528.535
transcript.whisperx[118].end 4543.275
transcript.whisperx[118].text 我先講,就是雇主端的部分大概應該有65%以上是反對為什麼呢?因為認為說在整個人力的調配上他們會產生困難那在受雇者方面他主要的問題在於說如果
transcript.whisperx[119].start 4544.056
transcript.whisperx[119].end 4567.253
transcript.whisperx[119].text 如果沒有辦法有任何薪資的補助或津貼大概有60%的人不會申請所以這個部分會變成就是說到底人力要怎麼來協助還有財源要怎麼來支持這是重點那第二個就是說其實這個照顧的就長輩的照顧的問題其實更周延的可能就是我們長照的部分要怎麼樣通盤的去規劃這樣兩個搭起來才能夠去讓這個照顧不離職
transcript.whisperx[120].start 4573.278
transcript.whisperx[120].end 4593.686
transcript.whisperx[120].text 少子化跟高齡老化事實上是綁在一起的如果不去解決這個一個女性30歲就進入到回到家庭裡邊她即便受到大學或者是碩士的學歷的話我覺得那也辜負了我們國家去栽培人才結果她不能夠回到職場去展現自我我認為這個應該要去考慮啦
transcript.whisperx[121].start 4596.257
transcript.whisperx[121].end 4623.704
transcript.whisperx[121].text 到底要不要到30天甚至到150天可是要去考慮你不能只有顧到嬰兒否則的話你催不了生然後呢老的又沒辦法好然後一個女性他進入到他只要進入到家裡一兩年大家要回到職場事實上困難度會增高所以這個部分是不是可以請部長這邊兩週後提出一些相關的你們的對應措施是什麼提供給我們辦公室謝謝
transcript.whisperx[122].start 4625.353
transcript.whisperx[122].end 4626.474
transcript.whisperx[122].text 謝謝主席 主席 我們是有請部長 請許部長
transcript.whisperx[123].start 4650.769
transcript.whisperx[123].end 4660.434
transcript.whisperx[123].text 4月3日發生花蓮大地震之後,到目前為止,勞動部有沒有派人前往花蓮地區瞭解
transcript.whisperx[124].start 4660.953
transcript.whisperx[124].end 4661.173
transcript.whisperx[124].text 現在也
transcript.whisperx[125].start 4689.574
transcript.whisperx[125].end 4703.776
transcript.whisperx[125].text 人數的部分還在調查當中因為這兩天主要是忙著先救災還有報告林宮的所以沒有掌握那我要問你的就是受傷死亡的部分你要不說明一下
transcript.whisperx[126].start 4705.349
transcript.whisperx[126].end 4727.215
transcript.whisperx[126].text 這次地震有三個死亡,一個是大貨車司機被落石殺死另外一個是準備去做邊坡修復的工作人員在交通事故在網絡上死亡另外一個是礦場的勞工在運作中被殺死那礦場部是經濟部、礦場安全部在負責這死亡部分我有掌握住了那受傷部有一些是處於通緝事故
transcript.whisperx[127].start 4728.455
transcript.whisperx[127].end 4747.82
transcript.whisperx[127].text 所以你們還沒有掌握嗎?有有有,死亡都會掌握住了。多少人?死亡是三個。不是,我說受傷。受傷還不清楚。那收到這個可能會失業充結勞工有多少?也不清楚。對不對?
transcript.whisperx[128].start 4750.182
transcript.whisperx[128].end 4776.221
transcript.whisperx[128].text 我們現在就是跟地方政府在盤點我們現在就是需要協助了所以還沒有掌握到嗎有聯繫但是他們還沒有具體回報本席今天的具體要求就是0403這個大地震對花蓮的衝擊非常的大那這樣的衝擊不是短期的衝擊未來它的整個觀光產業的衝擊也非常的大因為你可以看到太魯閣國家公園已經關遠了
transcript.whisperx[129].start 4777.506
transcript.whisperx[129].end 4791.187
transcript.whisperx[129].text 然後很多重要風景點他幾乎是山崩地裂這個受到的受創太嚴重的短時是沒有辦法回復的所以本席今天要要求勞動部的就是雖然4月5號你有第一時間你有提出來你有2000個臨時工要協助重建
transcript.whisperx[130].start 4793.61
transcript.whisperx[130].end 4815.45
transcript.whisperx[130].text 但本席認為這個是不夠的因為你包括你提到從優、從素、從簡這三個原則我覺得這個真的太少第一個從素的部分到目前為止這個還沒有這個勞工真的是透過臨時工開始取得這樣的一個資源嘛其實從素根本還沒有做到所以我覺得這個整個0403勞動部應該要成立一個專案
transcript.whisperx[131].start 4818.453
transcript.whisperx[131].end 4830.738
transcript.whisperx[131].text 不是用你原來的你這些臨時工的方案而是你特別成立一個專案而這個專案就是你要主動去掌握目前災區受創的員工包括受傷的包括他現在可能面臨失業的家裡其實受到很大衝擊的這個總共的人數有多少然後你盤點出這樣的人數搭配你現行的2000個臨時工你要看這個到底夠不夠我覺得有可能是不夠的那另外一個人數我們都可以在對
transcript.whisperx[132].start 4847.325
transcript.whisperx[132].end 4860.112
transcript.whisperx[132].text 那另外的就是說你給的方法因為大家現在都忙著重建家裡也受創可能公司也受到影響所以他不見他甚至他自己受傷他怎麼樣再去從事臨時工所以針對這樣的一個很大的天災我認為是要有一個特別的專案來協助所以現在是不是部長你可以成立一個0403的針對花蓮地區受災的勞工有一個特別的專案
transcript.whisperx[133].start 4875.64
transcript.whisperx[133].end 4890.792
transcript.whisperx[133].text 另外一個我覺得這些勞工有的可能還需要貸款是勞工貸款你過去只有在過年的時候會有這個勞工貸款但這一次我覺得災區受創太嚴重了他可能根本沒有辦法他可能需要有些貸款你看到有一些早餐店他根本就倒掉了
transcript.whisperx[134].start 4891.432
transcript.whisperx[134].end 4917.365
transcript.whisperx[134].text 或是他有一些店家他根本就不能做生意了那這個部分他可能需要是還要特別的貸款不是這每個月才兩萬多塊的補貼而已所以我認為這整個是不是部長你回去可以交代同仁了好好的盤點一下你們主動性要拿出來不是被動的等著花蓮縣政府主動積極的介入跟了解跟有什麼樣的需求這個光靠地方政府我覺得這是做不起來的一定要勞動部的資源這個可以嗎好我們
transcript.whisperx[135].start 4920.526
transcript.whisperx[135].end 4921.888
transcript.whisperx[135].text 其實這幾天一直都有主動來聯繫,不過也體諒他們那邊其實
transcript.whisperx[136].start 4924.195
transcript.whisperx[136].end 4925.196
transcript.whisperx[136].text 接下來我要問的是今天主題提到的
transcript.whisperx[137].start 4950.453
transcript.whisperx[137].end 4974.26
transcript.whisperx[137].text 有關於男性請育嬰假的部分的確我們現在看到男性請育嬰假的比例雖然有在提高但是提高的速度還是緩慢的跟女性比起來他們現在請領的還是偏低只有兩成五大概是四分之一那針對這個部分今天在勞動部的相關報告裡面我沒有看到一個比較具體的改善的措施
transcript.whisperx[138].start 4974.724
transcript.whisperx[138].end 5000.777
transcript.whisperx[138].text 但是我就要請這個部長來看一下日本跟瑞典是怎麼做的在日本的部分他現在開始就是強制性出來了他要強制企業給男性的職員來放育嬰假就是僱員超過1000人以上的企業他要求企業要報出來就是說你男性請育嬰假的資料而且沒有達到沒有達標的他會被公開
transcript.whisperx[139].start 5002.598
transcript.whisperx[139].end 5020.015
transcript.whisperx[139].text 另外就是研擬要求百人以上的企業就是要去制定就是公司你自己去制定你要怎麼去提高這整個男性育嬰假的措施那在瑞典他是每位新生兒父母親都可以共同擁有育嬰假有一個Lady quota
transcript.whisperx[140].start 5021.397
transcript.whisperx[140].end 5038.557
transcript.whisperx[140].text 父親的天數要佔到一定的比例那我給部長看的就是我們目前臺灣我們其實沒有任何強制性的措施我們也沒有要求我們也沒有設定目標在日本他們希望2025年可以達到男性請育嬰假比例達到50%
transcript.whisperx[141].start 5040.098
transcript.whisperx[141].end 5061.121
transcript.whisperx[141].text 但是我們台灣沒有目標那在這個部分請問部長我們台灣沒有具體的措施也沒有目標我們要如何提升報告委員其實我們這一次就是那個彈性育嬰留停的一個示範其實就是要希望找出一個台灣可以做的一個方法那報告委員您給我們這個日本的這些
transcript.whisperx[142].start 5061.661
transcript.whisperx[142].end 5065.702
transcript.whisperx[142].text 我覺得解決少子化的問題最關鍵就是我們現在應該給我們的年輕爸媽更多友善跟彈性的措施所以勞動部的角色坦白講非常重要因為你狹下這麼多的企業跟勞工
transcript.whisperx[143].start 5088.206
transcript.whisperx[143].end 5094.411
transcript.whisperx[143].text 如果這一塊可以改善就改善了超過一半以上一千萬的勞工都在你這邊所以我覺得這個部分我拜託勞動部一定要積極一點日本都可以往這個方向做臺灣當然也可以所以過去我們大概都是比較柔性的就是說呼籲包括我們的性別工作平等法我們大概都是走比較柔性的沒有去強制希望企業可以主動做什麼
transcript.whisperx[144].start 5112.785
transcript.whisperx[144].end 5134.186
transcript.whisperx[144].text 但是政策跟法律是可以引導的日本的做法我覺得很值得台灣來做參考就是如果我們要提高這個男性的參與率的話然後讓男職員放育嬰假提高他的比例我們應該要讓企業各僱主其實擔負起相對的責任而且政策你也應該要有一些要求就是讓企業的力量可以出來這個
transcript.whisperx[145].start 5135.447
transcript.whisperx[145].end 5158.087
transcript.whisperx[145].text 我希望這個可以納進來那另外最後這邊我要提到的就是最近的這個試辦方案我覺得很重要但是民間團體希望不是只開放到日可以開放到小時既然要彈性是不是就給家長最大的彈性那這一塊勞動部現在可以做嗎在你們的試辦方案有開放到小時了嗎
transcript.whisperx[146].start 5158.527
transcript.whisperx[146].end 5180.301
transcript.whisperx[146].text 報告委員,那個試辦方案我是覺得都可以滾動檢討,甚至配合這樣的方案。你們現在沒有到小時嗎?沒關係,但報告委員,其實這個部分我早上也跟前面的委員講說,我的試辦原則我現在還要搜集各界的意見,我等整個意見更完整我們再來試辦都沒有關係。包括說像委員您建議的說,是不是把他放官談到小時。
transcript.whisperx[147].start 5181.301
transcript.whisperx[147].end 5185.442
transcript.whisperx[147].text 我知道另外一個要搭配的不是這個育嬰假是所謂的有心家庭照顧假你知道嗎
transcript.whisperx[148].start 5204.306
transcript.whisperx[148].end 5229.424
transcript.whisperx[148].text 有薪家庭照顧假這個各界已經呼籲很久了但是公務人員都已經可以開始不只有有薪家庭照顧假還有6歲以下叫幼兒照顧假但是在勞工這一塊就是完全沒有就是無薪的家庭照顧假那這一塊我認為應該要突破了而且它突破的第一步應該就是先針對有子女的這個家庭你如果說整體的經費不夠那6歲以下先做啊
transcript.whisperx[149].start 5230.245
transcript.whisperx[149].end 5232.046
transcript.whisperx[149].text 但是3歲以上到小學階段他常常會因為感染疾病什麼他要請假
transcript.whisperx[150].start 5249.17
transcript.whisperx[150].end 5271.289
transcript.whisperx[150].text 那這個如果可以既然公務人員可以有有薪的家庭照顧假你再開放給勞工這個有薪的家庭照顧假我覺得這個應該各界要開始來研議了我們現在少子化真的到一個很誇張的地步了去年13萬多的新生兒那這一塊如果我們政府的政策再不跟上再不做一些突破的話我覺得我們的這個少子化的現象恐怕還要持續探底那我覺得這個我們
transcript.whisperx[151].start 5277.113
transcript.whisperx[151].end 5290.784
transcript.whisperx[151].text 勞動部則無旁貸。是不是可以拜託我們勞動部也回去同時好好演繹,可以嗎?好,謝謝委員。我們會來做一個討論演繹。好,謝謝部長。謝謝。好,謝謝王委員。那接下來麻煩我們的黃秀芳委員。謝謝主席。我們請許部長還有請全序部
transcript.whisperx[152].start 5301.857
transcript.whisperx[152].end 5322.117
transcript.whisperx[152].text 全序部相關的司長請部長和全序部黃媛好部長好今天特別提到就是我們這個有關這個育嬰留止停薪的這個津貼的事情那我想請教就是說我們也看到在2024年
transcript.whisperx[153].start 5324.94
transcript.whisperx[153].end 5349.71
transcript.whisperx[153].text 今年度我們看到這個男性的這個請領育嬰留職停薪的比例創新高有25%那我想請教就是說其實我們看到這個男性的這個育嬰留職停薪雖然是衝到25%那我們看到另外一方面就是有關這個公務人員男性的這個公務人員申請這個育嬰留停
transcript.whisperx[154].start 5351.411
transcript.whisperx[154].end 5366.804
transcript.whisperx[154].text 一般的這個男性勞工還是有一些落差那一般人會覺得說男性的公務人員應該算是這個工作或者是這個薪資應該比一般的勞工還要好那另外
transcript.whisperx[155].start 5368.425
transcript.whisperx[155].end 5382.051
transcript.whisperx[155].text 很多人會覺得說應該是男性的公務人員會更希望或更願意來申請這個育嬰留停那我想請部長或者是銓敘部的這個司長為什麼會有這樣的一個落差
transcript.whisperx[156].start 5384.54
transcript.whisperx[156].end 5412.652
transcript.whisperx[156].text 報告委員現在就是說公務人員男性育嬰留子挺薪從107人到112人事實上是從12%左右提升到18%左右男性已經有提升那因為公務人員就是說女性申請的育嬰留停的人數比較多整體而言我們就是說公務人員申請育嬰留停的不管是男性或女性家種他佔我們的母數大概是
transcript.whisperx[157].start 5413.132
transcript.whisperx[157].end 5413.372
transcript.whisperx[157].text 主席
transcript.whisperx[158].start 5433.109
transcript.whisperx[158].end 5433.529
transcript.whisperx[158].text 委員會進一步做一個評估
transcript.whisperx[159].start 5461.796
transcript.whisperx[159].end 5476.442
transcript.whisperx[159].text 有沒有可能去做一個檢討就是說因為我們現在申請是用本封嘛那有沒有可能是用實質的收入來列為那個育嬰留停的這個補貼有沒有可能這樣做
transcript.whisperx[160].start 5478.523
transcript.whisperx[160].end 5498.064
transcript.whisperx[160].text 因為現在是那個社會保險這邊來幾戶6層那政府幾戶的部分是兩層除非政府幾戶的部分要再提高那就可能會有比較鼓勵作用因為如果要從社會保險這一塊變成所有整體公務人員你要提撥的
transcript.whisperx[161].start 5498.744
transcript.whisperx[161].end 5498.784
transcript.whisperx[161].text 拜託請勞動部長
transcript.whisperx[162].start 5517.023
transcript.whisperx[162].end 5546.686
transcript.whisperx[162].text 那個留職挺薪今天也許可能政府看看這一塊要不要再去加碼提高我是認為就是說可以去做檢討那另外那個市長請回那我想請部長勞工的部分也是一樣就是有高薪低報的這個問題那等到他要申請這個育嬰留停的時候就真的有差如果用實際的這個投保薪資來申請的話其實確實是有他會有影響那我想請教
transcript.whisperx[163].start 5546.926
transcript.whisperx[163].end 5548.548
transcript.whisperx[163].text 因為其實勞工他如果有一些他是這個
transcript.whisperx[164].start 5562.568
transcript.whisperx[164].end 5584.172
transcript.whisperx[164].text ⋯⋯
transcript.whisperx[165].start 5584.372
transcript.whisperx[165].end 5606.801
transcript.whisperx[165].text 報告委員我們現在的規定他所謂的月投保薪資來合附這個育嬰留停今天的給付那個月投保薪資是要他月薪資總額喔要核實申報所以這個基本上法令規定就是這樣可是剛剛委員講到說是不是如果高薪低報高薪低報第一個就是他會被處罰第二個老公可以要求他賠償損失喔
transcript.whisperx[166].start 5612.463
transcript.whisperx[166].end 5630.876
transcript.whisperx[166].text 其實有很多他原本的薪資他就是用最低薪資然後再加其他的職業加級或專業加級我要講說跟委員報告說如果他是僱主高薪低報的話他是違法了第一個他會被我們處罰第二個勞工的損失他因為高薪低報害他領不到他應有的這個津貼
transcript.whisperx[167].start 5631.676
transcript.whisperx[167].end 5650.709
transcript.whisperx[167].text 那這個差額是僱主要去賠償所以這個部分是沒有問題我的意思是說現在的規定就是我們月投保薪資講的就是你的月薪資的總額所以這個部分是符合剛剛委員所講的是好那其實我要跟你講的就是說其實實際上
transcript.whisperx[168].start 5652.811
transcript.whisperx[168].end 5666.344
transcript.whisperx[168].text 實際上還是有這個狀況嘛他可能就是最低薪資然後就又加了專業專業家級或者是主管家級或什麼樣的家級加起來才有他現在的可也許我們現在的基本薪資兩萬兩萬八千多嗎
transcript.whisperx[169].start 5669.026
transcript.whisperx[169].end 5683.738
transcript.whisperx[169].text 那再加一加27470好那兩萬七千多那再加一加加一加之後可能才有三萬多四萬多嘛那實際上就萬一他如果要開始清理這些御嬰留停那如果說用這個
transcript.whisperx[170].start 5685.439
transcript.whisperx[170].end 5686.84
transcript.whisperx[170].text 這個部分我們會加強對僱主宣導就是跟他講說
transcript.whisperx[171].start 5709.309
transcript.whisperx[171].end 5729.411
transcript.whisperx[171].text ﹏﹏
transcript.whisperx[172].start 5730.472
transcript.whisperx[172].end 5753.633
transcript.whisperx[172].text 剛剛部長有幾位委員也特別提到就是說我們育嬰留停是不是能夠更有彈性我們現在可能就是以月來計算當然我們希望說能夠以天或者是小時來計算讓想要申請育嬰留停的人能夠更有彈性我想請部長就是說是不是可以朝著這個方向來進行
transcript.whisperx[173].start 5756.052
transcript.whisperx[173].end 5776.753
transcript.whisperx[173].text 我們現在就是希望透過試辦的這個方式來瞭解職場上的運作還有就是說能夠怎麼樣來推行然後這雙方可能會能夠兼顧所以這個部分我們會來努力試辦就是要瞭解務實的去瞭解問題所在那你出一套適合臺灣的一個制度
transcript.whisperx[174].start 5779.334
transcript.whisperx[174].end 5798.6
transcript.whisperx[174].text 對,我們是希望這樣子啦,因為小朋友如果還小的時候,尤其是在上幼兒園的時候,真的是時常請假,藏病毒,真的時常請假,所以爸爸媽媽其中有一位就需要帶小朋友去看病嘛,所以我覺得如果可以讓家長能夠更有彈性的話,
transcript.whisperx[175].start 5801.661
transcript.whisperx[175].end 5814.291
transcript.whisperx[175].text 我覺得會有更多人會願意生也敢生這是我們自己單方面的一個想法那當然就是說少子化大家希望就是說在這幾年是不是有什麼樣的方式減少這個家長的一個
transcript.whisperx[176].start 5817.073
transcript.whisperx[176].end 5839.855
transcript.whisperx[176].text ﹏﹏
transcript.whisperx[177].start 5840.075
transcript.whisperx[177].end 5854.288
transcript.whisperx[177].text 相同的就是投入職場之後他也願意生養當然這個環境真的是非常的重要那剛剛我們也特別提到就是說男性的這個勞工也好或者是男性的這個公務人員其實申請這個這個育兒這個這個
transcript.whisperx[178].start 5858.592
transcript.whisperx[178].end 5858.612
transcript.whisperx[178].text 謝謝委員
transcript.whisperx[179].start 5888.166
transcript.whisperx[179].end 5891.569
transcript.whisperx[179].text 謝謝黃委員接下來我們請圖全及圖委員好謝謝主席那請一下我們部長謝謝有請那個部長
transcript.whisperx[180].start 5911.41
transcript.whisperx[180].end 5937.947
transcript.whisperx[180].text 部長你好那4月3日早上我們發生了我們7點2級的有感地震那當然我們勞動部在第一時間也發布了就是說僱主不能因為勞工因為地震沒有辦法準時上班出勤等等我們僱主不能因為這樣子而讓他們算遲到礦值那也依照天然災害發生時的
transcript.whisperx[181].start 5938.507
transcript.whisperx[181].end 5954.598
transcript.whisperx[181].text 有出勤相關規定辦理嗎?對不對?有發布這個新聞嗎?有有那請問一下那這個規定辦理是不是依照天然災害發生事業單位勞工出勤管理及工資的幾副要點來辦理?是不是以這一項要點來辦理?是
transcript.whisperx[182].start 5957.458
transcript.whisperx[182].end 5985.62
transcript.whisperx[182].text 對嘛,因為這個就是我們天然災害勞動部的要點嘛那我請問一下那這個要點他是屬於哪一種性質是他的法律屬性是屬於是行政規則是不是行政規則行政規則嘛那行政規則那如果僱主沒有依照這個要點來辦理那如果還是算勞工、遲到或者礦工那有沒有什麼法律依據可以規範他們
transcript.whisperx[183].start 5986.826
transcript.whisperx[183].end 6005.183
transcript.whisperx[183].text 有就是看委員就看到違反的情況會對應到條文對那如果他沒有依照勞動部的規定那他還是沒有給他全勤或者那天沒有給他薪水那這樣子我們有什麼那我們這個就是違反勞基法22條違反勞基法22條所以
transcript.whisperx[184].start 6008.326
transcript.whisperx[184].end 6031.034
transcript.whisperx[184].text 所以如果像我們4月3日那一天勞工因為地震的關係遲到或者礦工所以那一天一樣要給他全勤獎金跟薪水是不是這樣是是嘛那全勤獎金不能不影響但是那個薪資的部分因為這個是天災嘛那薪資的部分是不可抗力是那天會發還是不發
transcript.whisperx[185].start 6033.035
transcript.whisperx[185].end 6050.88
transcript.whisperx[185].text 他們協商協商所以所以那我們那遲到的部分啊不能算遲到啊那個不能算遲到所以權情獎金是一定有的不能因為那一天因為那一天地震的關係遲到不能扣他的權情獎金不能扣他
transcript.whisperx[186].start 6051.24
transcript.whisperx[186].end 6070.956
transcript.whisperx[186].text 那所以薪水的部分是要協商?薪水的部分是協商因為這個是不可抗力啦就是說一般就像我們一樣像颱風的時候颱風也是會因為那個而停止上班上課所以我們依勞基法的第22條來辦理所以遲到的部分是要給全勤獎金但是上班的部分是勞資雙方協商是不是這樣?
transcript.whisperx[187].start 6073.078
transcript.whisperx[187].end 6093.148
transcript.whisperx[187].text 所以因為我們現在也碰到很多問題顧主跟勞工針對這部分我們也沒有一個明確所以今天才要請問一下部長因為他們如果有問題如果委員的這個服務的民眾有問題也可以打1955對因為我們針對這部分所以我們看這個要點處理就是
transcript.whisperx[188].start 6093.908
transcript.whisperx[188].end 6111.979
transcript.whisperx[188].text 也不能說遲到也不能扣他的全勤獎金然後可是我看我們勞動部用一個行政事函4560號他裡面又說遲到是否扣發全勤獎金由勞資協商明定團體協約或工作
transcript.whisperx[189].start 6112.799
transcript.whisperx[189].end 6128.374
transcript.whisperx[189].text 工作規則中所以我們現在有點不了解到底是以勞基法來處理還是以這個行政函式560號來處理還是依這個要點來處理我覺得有點混淆不清欸這個函式的遲到是真正的遲到
transcript.whisperx[190].start 6129.437
transcript.whisperx[190].end 6157.686
transcript.whisperx[190].text 所以...所以我們現在就很明確那一天類似這種天災假設颱風、地震等等就沒有遲到的問題所以全勤獎金一定要發但是如果上班當天幾不幾付薪水是由勞資協商來辦理是不是這樣對就是說譬如說這個韓市政府說你晚個10分鐘20分鐘你要不要扣他全勤獎金就是說你看情況啦
transcript.whisperx[191].start 6160.549
transcript.whisperx[191].end 6171.706
transcript.whisperx[191].text 但是剛剛地震的情況不一樣所以當天不能以遲到因為地震不能以遲到來論全期獎金要照發可是當天的薪水就是勞資協商
transcript.whisperx[192].start 6174.629
transcript.whisperx[192].end 6192.52
transcript.whisperx[192].text 對嗎?勞資協商,所以變成我們如果僱主沒有依據這個來辦理,我們有勞基法第22條來辦理對不對?好,那至少讓我們僱主跟勞工有一個明確的依據,那還有我請問一下我們職業安全衛生法第18條這個退避權,請問一下部長這個退避權他的
transcript.whisperx[193].start 6195.868
transcript.whisperx[193].end 6222.885
transcript.whisperx[193].text 定義意思是怎麼樣就是你工作的場所有危險的時候勞工就可以選擇我我不工作啦好那我請問一下那天發生地震了那我們覺得這個上班的途中也有這個狀況有安全疑慮那這算不算在退避權之內因為還沒有到達那個工作場所
transcript.whisperx[194].start 6223.706
transcript.whisperx[194].end 6248.724
transcript.whisperx[194].text 所以不算那我是建議啦因為這個上班途中齁其實他上班途中他已經要去上班了但是如果現在發生了就像類似這個地震重大的危害的問題我覺得這上班的通勤時間我建議喔勞動部可以考慮一下應該也是要納入因為他現在要去公司上班這個退避權的問題是不是可以考慮來納入上班通勤時
transcript.whisperx[195].start 6249.585
transcript.whisperx[195].end 6274.373
transcript.whisperx[195].text 上班的通勤這個可以像那個應該是可以像比照天災那個剛剛颱風那個情況所以是可以嗎不是這兩個是不一樣的概念啦對啊就是我現在要去上班我覺得上班的途中已經有安全疑慮了對那個部分就是說當地你要到達的那個地方他現在已經宣布停止上班上課了嘛那你就可以不用
transcript.whisperx[196].start 6274.993
transcript.whisperx[196].end 6301.581
transcript.whisperx[196].text 不用過去了所以就納入這個天災比照辦理對對對好那接著我請問一下我們今天要討論育嬰的部分那因為我們現在針對我們育兒勞工的需求嘛那我知道我們勞動部針對這一部分也一直在加碼但是感覺這個催生措施效果並不是很好是不是有這個機會把育兒留職停
transcript.whisperx[197].start 6302.461
transcript.whisperx[197].end 6306.965
transcript.whisperx[197].text 請勞動部、行政院人事行政總處、銓敘部、教育部.試辦彈性育嬰假及如何提高男性育嬰假及如何提高男性育嬰假及如何提高男性育嬰
transcript.whisperx[198].start 6330.253
transcript.whisperx[198].end 6341.038
transcript.whisperx[198].text 報告委員,這個部分我們現在其實很多委員有在倡議好像土偉您是主張6歲有主張8歲有的主張到學齡前這個部分我覺得可以來討論只是說因為會牽涉到財源
transcript.whisperx[199].start 6348.541
transcript.whisperx[199].end 6365.71
transcript.whisperx[199].text 沒有沒有 這個我先說明一下他的補助是一樣的只是把0到3歲放寬到0到6歲從育嬰留心停薪的津貼把他放寬到育兒停薪留職的津貼補助一樣啦只是從3歲放寬到6歲
transcript.whisperx[200].start 6373.294
transcript.whisperx[200].end 6396.347
transcript.whisperx[200].text 會更多人但是我覺得我們希望所以那個財源上是必須考量因為勞動部居然要催生我覺得說我們一直加碼的部分但是催生的效果並不是很好那是不是針對這部分以我們補助不增加的方式來做這個少子化解也是要跨部一起來努力勞動部當然是從我們的全責可以有更優的生養環境這部分勞動部再來參考一下還有我們針對申請失業給付這一部分
transcript.whisperx[201].start 6402.871
transcript.whisperx[201].end 6431.798
transcript.whisperx[201].text 我們因病因傷病診療持有證明者可以不用去上就業諮詢及職業訓練就可以申請失業給付那我們這一部分是不是可以放寬到像我們有懷孕分娩的申請人就是原本他就有申請可是因為現在懷孕或分娩像有些醫生會診療說他不適合下床啊不適合外出等等是不是也可以
transcript.whisperx[202].start 6433.658
transcript.whisperx[202].end 6451.865
transcript.whisperx[202].text 開這個醫生的診療證明然後放寬不用去上這個就業諮詢跟職業訓練好像法令有規定喔如果有那個醫院的證明齁但是因傷病診療只有證明而無法參加的就可以所以這個懷孕分明也在這個因傷病診療的範圍之內對醫師要有醫師證明啊
transcript.whisperx[203].start 6455.126
transcript.whisperx[203].end 6481.991
transcript.whisperx[203].text 對因為你這因傷病診療我們一般會誤以為是不是他有其他的什麼工作傷害等等那懷孕分娩他有些像有些懷孕的婦女像醫生會診療說他要安胎啊不適合下床外出有些人體質他是要整個臥床甚至有臥床到生產像這種情況如果醫生證明的話就所以懷孕分娩一樣開得出醫生證明一樣可以在這個
transcript.whisperx[204].start 6482.791
transcript.whisperx[204].end 6482.971
transcript.whisperx[204].text 謝謝 感謝部長
transcript.whisperx[205].start 6503.587
transcript.whisperx[205].end 6528.177
transcript.whisperx[205].text 謝謝圖全吉委員在這邊做以下宣告等一下在王振旭委員質詢結束休息10分鐘現在請邱政軍委員發言好我們有請薛部長請許部長現在許部長許部長邱委員好
transcript.whisperx[206].start 6533.424
transcript.whisperx[206].end 6544.293
transcript.whisperx[206].text 部長我請問一下4月3日當天您在哪裡?這下地震的時候我剛要出門剛要出門啊?對你有收到國家警報嗎?沒有
transcript.whisperx[207].start 6544.994
transcript.whisperx[207].end 6567.588
transcript.whisperx[207].text 沒有嗎?本席也沒有收到。那我也了解有很多人沒有收到。那因為地震當時正處於我們通勤的尖峰時段。這種情況讓很多的勞工朋友都沒有反應的時間。那在這邊我想請問部長,我們勞動部在維護勞工安全的立場上有什麼想跟氣象署反應的嗎?
transcript.whisperx[208].start 6569.47
transcript.whisperx[208].end 6592.657
transcript.whisperx[208].text 我是覺得這部分因為這一次的震災的確有很多人反映說都沒有收到這個這個國家的這個警報所以我是覺得這部分應該當比例專業應該再來做一些檢討對啊我想我希望啦我們勞動部這邊因為基於對勞工的安全的一個考量也希望部長替我們的廣大的勞工來發聲關於這個部分請這個氣象署這邊來做一個改進可以嗎
transcript.whisperx[209].start 6598.359
transcript.whisperx[209].end 6626.195
transcript.whisperx[209].text 好那這是花蓮的地震剛好在上班時間或在路途中根據勞動部的掌握我們總共造成了多少勞工的傷亡目前死亡人數是3位那受傷的受傷是4位就勞工的部分因為工作的目前我們掌握到的是4人那在上班的途中呢上班途中的也在陸續的也在陸續還在
transcript.whisperx[210].start 6627.918
transcript.whisperx[210].end 6630.2
transcript.whisperx[210].text 因為我看到有一位罹難者是修復邊坡的一個工作人員
transcript.whisperx[211].start 6657.703
transcript.whisperx[211].end 6661.461
transcript.whisperx[211].text 那勞動部對於這邊的廠商投保狀況有沒有掌握?
transcript.whisperx[212].start 6662.136
transcript.whisperx[212].end 6688.031
transcript.whisperx[212].text 我請那個署長說明一下好謝謝委員這個是那個公路局東區養護工程分局下報商一個營造公司的勞工他準備要去去做邊坡維護的時候在路途中被那個落石殺死是屬於通勤事故這個部分那個勞保部分應該是交通部的相關的成這個合約我想問的就是他是用他是用固定雇主的勞工還是勞務承攬的部分
transcript.whisperx[213].start 6688.331
transcript.whisperx[213].end 6689.092
transcript.whisperx[213].text 我希望勞動部能夠放寬重寬來處理好不好
transcript.whisperx[214].start 6713.167
transcript.whisperx[214].end 6727.175
transcript.whisperx[214].text 這是大地震中很多建築工地的吊塔都有掉落的情形顯示吊塔的耐震度好像有點不足關於這個部分我想勞動部這邊有沒有什麼樣的一個具體的新的做法
transcript.whisperx[215].start 6728.114
transcript.whisperx[215].end 6729.294
transcript.whisperx[215].text 我們之前的標準在哪裡?
transcript.whisperx[216].start 6758.069
transcript.whisperx[216].end 6758.369
transcript.whisperx[216].text 對於這個地震我們也可以再做這個
transcript.whisperx[217].start 6773.649
transcript.whisperx[217].end 6790.601
transcript.whisperx[217].text 這個規範的一些檢討如果這個強度不足當然就要往那拉上去我希望檢討一下啦不要因為那個掉下來實在是非常的危險所以以前的標準當然我相信都有做到那未來是不是要因應這種狀況的時候我們有沒有需要再提高一下我們的這個要求的標準謝謝委員的建議我們請業務單位來再檢討精進
transcript.whisperx[218].start 6794.386
transcript.whisperx[218].end 6805.475
transcript.whisperx[218].text 那我再問部長我們臺美21世紀貿易倡議極有可能於今年夏天簽署第二批協定並納入消除強迫勞動的規範因為這個規範我想請問一下我們部長我們勞動部將有哪些重大的調整
transcript.whisperx[219].start 6814.664
transcript.whisperx[219].end 6832.047
transcript.whisperx[219].text 報告委員因為我們是認為這個世紀貿易倡議它是有助於我們我國來持續建構更完整的勞動保護制度所以我們這個部分在後續的一些討論上我們有會來...你們什麼時候會有結果?這個部分因為這是那個經貿辦在主導我們配合他的進度
transcript.whisperx[220].start 6841.607
transcript.whisperx[220].end 6846.655
transcript.whisperx[220].text 我覺得這樣啦 因為這個以後也應該會處理的部分 有時間的話先做好不好
transcript.whisperx[221].start 6847.493
transcript.whisperx[221].end 6873.292
transcript.whisperx[221].text 我們自己先討論一下我們現在內部都有一些針對關心的議題有做一些內部的討論好那剛剛還是回到我們的今天的那個議題我們近年來因為少子化的問題我們政府積極打造友善的生育環境那本期看到這次勞動部的書面報告表示110年7月起大幅縮短申請育嬰停留留職停薪的門檻
transcript.whisperx[222].start 6875.753
transcript.whisperx[222].end 6894.192
transcript.whisperx[222].text 以及提高津貼兩層後確實已經有助於提升勞工申請育嬰假的意願那麼針對勞動部實施育嬰假彈性放寬獲得不錯的成效我請問銓敘部對於公務人員是否會跟進為30日或以日為單位
transcript.whisperx[223].start 6897.857
transcript.whisperx[223].end 6915.252
transcript.whisperx[223].text 目前公務人員的育嬰留職提薪他只需要被扶養者他未滿30歲都可以申請沒有那個申請的下限也就是說期間長短並沒有去限制所以他們已經沒有限制了就對了沒有限制對
transcript.whisperx[224].start 6916.533
transcript.whisperx[224].end 6919.215
transcript.whisperx[224].text 請問這是試辦到採5日、7日為單位嘛,也可以用單日,那卻以限制3次為限,這樣的做法是為了什麼?
transcript.whisperx[225].start 6935.564
transcript.whisperx[225].end 6964.3
transcript.whisperx[225].text 當然就是會當初的考量就是說這個考量到可能給那個事業單位他可能人力調配上的一個空間但是當然如果勞僱雙方同意的話我覺得也無妨啦如果優於我們的試辦原則也OK啦因為我們其實這一次的原則就是一個試辦性質讓他們自願來參加那你試辦到什麼時候我們原來是年底到年底是嗎到年底對
transcript.whisperx[226].start 6965.592
transcript.whisperx[226].end 6979.294
transcript.whisperx[226].text 那我這樣講就是我們如果已經確定了那也希望說這個部分我們能夠來確實來處理那因為你分三次我覺得好像有點沒有必要吧
transcript.whisperx[227].start 6980.879
transcript.whisperx[227].end 7003.156
transcript.whisperx[227].text 你限制三次的話對,我們其實就是這個是一個原則啦我意思是說我們試辦之後會看整個試辦的一個結果來做一些檢討也不一定一定是說照原來就是說未來的一些機制要建立也不一定是說只限制三次我就說看整個試辦的成效來作為我們未來的制度訂定的一個參選
transcript.whisperx[228].start 7005.698
transcript.whisperx[228].end 7035.058
transcript.whisperx[228].text 最後我再問我們落實友善生育環境我們現在農保條例公交人員的保險法都已經修法取消生育給付的投保年資的限制那麼我們勞工保險條例卻仍然維持在分免早產及留產等生育給付那必須要年滿281天滿181天滿84天的規定那對勞工我覺得是非常不公平那勞動部這邊有沒有想過要修法
transcript.whisperx[229].start 7036.079
transcript.whisperx[229].end 7058.137
transcript.whisperx[229].text 根本報告因為我們其實勞保加保的門檻比其他職域的保險它的門檻是比較低而且納保對象很多元顧主、自營作業者、移工通通是對象那如果說刪除這個加保日數的規定我們會怕說有些比如說他懷孕期間
transcript.whisperx[230].start 7059.217
transcript.whisperx[230].end 7060.458
transcript.whisperx[230].text 這個部分是不是妥適我覺得這個部分還是要謹慎
transcript.whisperx[231].start 7076.434
transcript.whisperx[231].end 7077.334
transcript.whisperx[231].text 接下來請王振旭委員發言
transcript.whisperx[232].start 7109.644
transcript.whisperx[232].end 7134.016
transcript.whisperx[232].text 謝謝主席有請部長請許部長王委員好部長好針對這次地震發生過程裡面其實大家都感受到非常非常的嚴重那也有很多失去家人也失去了家園因此有很多人受傷我想大家都同感不捨
transcript.whisperx[233].start 7134.881
transcript.whisperx[233].end 7155.095
transcript.whisperx[233].text 那對於這些受到影響的國人的後盾政府應該是可以幫助提供一些援助那請問這部分勞動部有哪一些相關的措施已經啟動了嗎我們第一時間點就是4月3日當天我們就馬上啟動那個那個零工措施就是說我們針對這個
transcript.whisperx[234].start 7156.936
transcript.whisperx[234].end 7182.875
transcript.whisperx[234].text 因為這次地震受損需要重建的家園這些民眾我們提供零工2000個我們有2000個零工機會那每個勞工他每個月的上班工作時數是最高150小時那以時薪183塊計算最高可以領到2747人的補助那另外就是當天那個後來行政院宣告
transcript.whisperx[235].start 7183.615
transcript.whisperx[235].end 7200.931
transcript.whisperx[235].text 花蓮是災區所以針對災區的這些救保、勞保、值保的這個被保險人我們就依照災保法的規定提供他6個月的這個保險費的補助另外就是說他那天如果因為這個天災受傷
transcript.whisperx[236].start 7202.893
transcript.whisperx[236].end 7220.435
transcript.whisperx[236].text 好那這個沒有辦法工作而且沒有領到原來的薪資給付那我們就是從他受傷當天開始我們就給他這個傷病給付所以這個都是我們已經開始啟動的OK謝謝我想勞動部這樣的作為應該對
transcript.whisperx[237].start 7221.836
transcript.whisperx[237].end 7247.802
transcript.whisperx[237].text 這些勞動部朋友或者是他的家人會得到很大的幫助其實我們也知道有礦工有邊坡修復員剛剛也有委員提到因為他們在工作期間受遭遇不幸所以我想勞動部提供完整的協助對他們來講應該是幫助很大那也是應該勞動部該有的作為那我們也知道說勞動部其實也要這樣提供臨時工作機會來協助災區的復員
transcript.whisperx[238].start 7251.502
transcript.whisperx[238].end 7266.604
transcript.whisperx[238].text 那這個災區本身就是有它高的風險那這一部分不知道勞工部在針對於勞工進入到相關的災區做復原的時候怎麼去確保這些人員的安全目前的積極作為又包括哪一些
transcript.whisperx[239].start 7267.361
transcript.whisperx[239].end 7289.281
transcript.whisperx[239].text 其實他就是做一些比較簡易的清理工作不是那種說要去拆那個青島的建築物或其他危險的工沒有我們這種零工的工作都是比較簡易的然後安全的工作主要是清理家園做一些清潔的工作垃圾清運等等
transcript.whisperx[240].start 7290.061
transcript.whisperx[240].end 7318.161
transcript.whisperx[240].text 希望他們不要再受傷或者是至少他在上班之前應該要給他們必要的訓練各縣市政府、鄉鎮公所都很有經驗他們派工都很有經驗那另外林工也有加勞保啦所以勞健保都有還有職保所以該有的保障都會在一段時間處理好這個雖然是簡易的清理工萬一受傷一樣送我們在職保的保障
transcript.whisperx[241].start 7318.781
transcript.whisperx[241].end 7343.387
transcript.whisperx[241].text OK,這樣非常好至少他們上工之前就知道他們是受到完整的保護的那我們還是就來談談今天的這個育嬰假的彈性化的部分那其實我們之前也知道女性經濟力是很值得繼續提升的部分那也看到還是有4個比較容易受影響的這些問題
transcript.whisperx[242].start 7345.228
transcript.whisperx[242].end 7361.407
transcript.whisperx[242].text 這部分不知道如何能夠來完善員工的職場育兒包括對女性同仁他們在做這個經濟力付出的過程當中所受到的一些影響這部分有沒有更完善的一個職場環境的一些建構
transcript.whisperx[243].start 7363.097
transcript.whisperx[243].end 7379.842
transcript.whisperx[243].text 對,我們其實這幾年一直在就是說針對如何能夠營造友善的生養的環境在努力啦那包括說像我們也鼓勵男性一起來參與育兒所以我們在整個這個比如說我們的那個
transcript.whisperx[244].start 7381.042
transcript.whisperx[244].end 7403.913
transcript.whisperx[244].text 申請申請以前是只能父母親單方申請我們現在讓他可以分別或同時申請都可以遇嬰留子停薪那在這個申請的那個日數以前是要6個月以上我們現在只要滿30天就可以就短期的嬰留停也可以另外就是那個津貼的因為通常就是那個
transcript.whisperx[245].start 7405.494
transcript.whisperx[245].end 7424.108
transcript.whisperx[245].text 經濟性是最主要的考量我們也在這個在除了原有的那個育嬰留停六成以外另外公務預算也補貼了兩成的薪資補助那這些都是希望讓這個育兒的部分能夠更優化更優化是是
transcript.whisperx[246].start 7424.528
transcript.whisperx[246].end 7446.493
transcript.whisperx[246].text 所以才會有這個試辦企劃希望能夠有更好的可能性對那試辦企劃就是希望就是針對很多委員還有各界的一些倡議希望更彈性所以我們現在在做這樣的方向的研議就是說先職場上試辦看看那整個有一個成效之後我們再來做一個未來一個
transcript.whisperx[247].start 7448.573
transcript.whisperx[247].end 7469.271
transcript.whisperx[247].text 整個制度要怎麼來更建構更友善朝這個方向來努力當然也更鼓勵這些我們的男性職場的同仁能夠共同分擔家庭育兒的照顧不過看起來是慢慢的在增加今天聽您的報告裡面也的確有明顯的成長
transcript.whisperx[248].start 7470.152
transcript.whisperx[248].end 7494.788
transcript.whisperx[248].text 不過到今年年初我們看下一個畫面會知道事實上還是只有三成左右我們很期待這樣的努力可以透過部裡面的宣傳讓社會大眾尤其是在育兒家庭有更多的男性同仁可以一起來參與這部分就期待繼續來加強會持續來宣導
transcript.whisperx[249].start 7496.189
transcript.whisperx[249].end 7511.941
transcript.whisperx[249].text 所以我們目前在積極在推動這個彈性育嬰的假期示範計畫裡面早上也有聽您報告示範的這個內容還有配套的誘因那當然目前還談不上修法期待是透過這個示範計畫以後再做相關的處理
transcript.whisperx[250].start 7515.143
transcript.whisperx[250].end 7540.423
transcript.whisperx[250].text 那在這個報告裡面您有提到說勞動部跟所屬的各個機關也希望都能夠參與試辦那這部分不知道目前喔雖然是5月才開始嘛那有沒有瞭解看看各個單位的試辦的參與情形公部門的部分有4家的國營機構參與那本部就勞動部還有我們所屬的包含勞保局啦
transcript.whisperx[251].start 7541.444
transcript.whisperx[251].end 7563.372
transcript.whisperx[251].text 發展署的分署我們都帶頭加入來試辦那因為本來原來是想說5月1號上路但是因為委員也認為說我們這個應該再把整個計畫讓它更完整更有誘因所以我們大概3月28也跟一些關心這個議題的民間團體也開會然後也在4月
transcript.whisperx[252].start 7566.287
transcript.whisperx[252].end 7595.345
transcript.whisperx[252].text 4月3日及全序部相關的部會有再開過就是說開過會看如何來4月2日啦4月2日邀請全序部還有人總還有我們勞保局中央健保署那就說要研議這些配套措施看看怎麼樣來有適當的誘因所以這個部分我也交代業務單位說我們試試讓這個制度調整更完整以後再來正式上路啦這樣可能會比較好一點
transcript.whisperx[253].start 7596.225
transcript.whisperx[253].end 7616.3
transcript.whisperx[253].text 其實公司部門如果能夠互相的激勵的話市部門也不少我們現在總共有61共包括公司部門63個單位已經表明要來參與的意願所以我們後續也會開說明會像這些民間企業的部分也要開說明會告訴他們相關的一些規範
transcript.whisperx[254].start 7617.721
transcript.whisperx[254].end 7641.177
transcript.whisperx[254].text 因為我們上週詢問過相關部門那個時候貴單位是說因為尊重參與單位不方便提供參與名單不過今天聽部長講就覺得真的公部門如果能夠一起共同來參與而且是真的願意積極來參與的話相信對私部門來講也有很大的鼓勵或引導的作用
transcript.whisperx[255].start 7642.057
transcript.whisperx[255].end 7664.905
transcript.whisperx[255].text 最後其實就是我們也關心國軍我們知道國軍大部分都是男性為主8乘5是屬於我們的男性的軍事官女性相對是比較少我們也看到國軍申請育嬰假的人數男性還是相對偏低其實如何能夠提高男性育嬰
transcript.whisperx[256].start 7665.845
transcript.whisperx[256].end 7665.885
transcript.whisperx[256].text 我先從數據講
transcript.whisperx[257].start 7682.446
transcript.whisperx[257].end 7686.59
transcript.whisperx[257].text 我們從107年到112年整個育嬰留職停薪的人員從792元有提升到112年的1738元成長幅度是217%其中男性的比例男性在107年是佔30%到了112年目前是到46%今年到目前為止這個比例也是蓋頭
transcript.whisperx[258].start 7709.332
transcript.whisperx[258].end 7735.598
transcript.whisperx[258].text 那在這邊也無意特別去好像凸顯我們國軍很好國防部很好其他部位不好其實也未必因為他當中有一些人力結構的問題國軍畢竟是男性比較多但是就整個數量來講我們配合的相關的政策一直在宣導然後再加上我們所有的這個國軍的三安政策部隊安全軍人安心
transcript.whisperx[259].start 7736.918
transcript.whisperx[259].end 7737.298
transcript.whisperx[259].text 現在休息10分鐘
transcript.whisperx[260].start 7776.308
transcript.whisperx[260].end 7777.169
transcript.whisperx[260].text 拜訪委員會主席
transcript.whisperx[261].start 8387.373
transcript.whisperx[261].end 8388.575
transcript.whisperx[261].text 現在請林淑芬委員發言。
transcript.whisperx[262].start 8404.035
transcript.whisperx[262].end 8417.54
transcript.whisperx[262].text 部長,我們台灣有一篇論文是趙以桐小姐她的論文,她想帶尖的互助論台灣女性的提早退休。他們發現了,因為我們開過記者會,所以你有看了這個新聞的嗎?
transcript.whisperx[263].start 8419.52
transcript.whisperx[263].end 8446.629
transcript.whisperx[263].text 看到嗎?他發現假設研究假設之外的那個女性早退的主因竟然是阿嬤要孤孫是55他發現55到64歲台灣女性一旦當上了阿嬤就業的機率就馬上由女性勞動力的土石流就下滑下降的幅度非常高到35到38%他把統計上的數字這樣看起來的確是勞動力的土石流
transcript.whisperx[264].start 8447.469
transcript.whisperx[264].end 8448.37
transcript.whisperx[264].text 那反觀這個男生都沒有這個現象
transcript.whisperx[265].start 8463.888
transcript.whisperx[265].end 8469.816
transcript.whisperx[265].text 我們都知道說少子化是國安危機可是也有另一項研究講說其實只要提高女性的勞參率2%就可以解決勞動力不足的現況的問題勞參率只要提升提高2%
transcript.whisperx[266].start 8479.148
transcript.whisperx[266].end 8491.275
transcript.whisperx[266].text 那我們在這裡來看就是說那政府為什麼讓女性的勞參率這樣子生育婦女的下滑然後55歲就開始為了要夠孫那一路再繼續下滑那麼多像土石流一樣的崩毀那他們比較說
transcript.whisperx[267].start 8496.659
transcript.whisperx[267].end 8506.849
transcript.whisperx[267].text 這樣子沒有照顧年輕女性勞工的需求一路拖累到中高齡的阿嬤要早退孤孫所以在這樣子裡面這個下滑的現象比德國低了33.7%就55到59歲的女性60到64的
transcript.whisperx[268].start 8517.499
transcript.whisperx[268].end 8543.537
transcript.whisperx[268].text 女性比德國的勞參率低了34.4%台灣獨樹一致的到V型的女性就業曲線呈現的是女性勞動力的土石流但我要講說55到64歲是女性勞工也不只是女性勞工是所有勞工經驗最豐富然後最專業的時候體力上也最可以負擔的時候可是卻是因為要夠孫然後就提早從勞動市場裡面退出這不是很可惜嗎
transcript.whisperx[269].start 8549.783
transcript.whisperx[269].end 8563.799
transcript.whisperx[269].text 是很可惜啊所以我們現在在想說怎麼解決這個問題就說除了當然我們也鼓勵婦女再就業當然我們要講你們自己做的調查哦雇用管理就業平等概況調查你們自己做的調查
transcript.whisperx[270].start 8565.24
transcript.whisperx[270].end 8587.095
transcript.whisperx[270].text 發展的受雇勞工認為應放寬以日或小時使用育嬰留職停薪而且在這種狀況裏面男性的同意比例還大過女性我們都知道說利用彈性運用照顧之旅讓男女雙方輪流都可以使用所以在這個工作場所就業平等概況調查裏面顯示
transcript.whisperx[271].start 8589.036
transcript.whisperx[271].end 8612.003
transcript.whisperx[271].text 不是只有勞工需要而且近五成的企業都同意說把育嬰留子停薪假放寬到以日或以小時這樣的彈性使用將近五成的企業同意而且企業規模越小同意比例越高這是你們自己做的調查29人以下的事業單位同意的比例高達49.5%
transcript.whisperx[272].start 8614.924
transcript.whisperx[272].end 8622.946
transcript.whisperx[272].text 就幾乎是5成的企業主、僱主都同意30到99人的事業規模的僱主他們同意的比例也高達41%那我現在在跟你講說男性更需要更短休假的時間去分攤育兒一個維也納大學經濟學系的這個教授兩位助理教授他們在2023年6月1日發表
transcript.whisperx[273].start 8643.072
transcript.whisperx[273].end 8670.583
transcript.whisperx[273].text 當父親休育嬰假的關鍵因素第一個是經濟誘因就我的收入替代率到底多高還有彈性彈性有多彈性這個是關鍵所以以奧地利戴新育嬰假政策的變化他們探討了休假期限的彈性還有經濟誘因對休育嬰假決定的重要性當然發現奧地利2008年引入了更短的育嬰假的選擇
transcript.whisperx[274].start 8672.464
transcript.whisperx[274].end 8695.055
transcript.whisperx[274].text 2010年提高了假期的靈活性那同時大大提高了就是他的經濟的收入的替代率以後每一項的改革都讓男性勞工休假的比例增加10到20%然後發現再增加有心提高了育嬰假使用率可是呢實際休假的時間卻減少了
transcript.whisperx[275].start 8697.036
transcript.whisperx[275].end 8716.322
transcript.whisperx[275].text 但是基本上我們還是認為說養孩子是男女雙方都要共同參與那現在都只有女性在使用而且使用當然不會是很高可是我們累得要死的時候男性爸爸媽媽如果你把他限縮在30天一次只能兩次沒有彈性那男性他沒有辦法放
transcript.whisperx[276].start 8717.122
transcript.whisperx[276].end 8717.863
transcript.whisperx[276].text 對我們提的修法案請你要支持另外呢
transcript.whisperx[277].start 8734.053
transcript.whisperx[277].end 8759.924
transcript.whisperx[277].text 我要跟你談的是臺北21世紀的貿易這個倡議第二階段要在臺北舉行然後他們那個美國的貿易代表署在4月5號大家休假的時候上網公告了他們要談判的文本摘要他就農業環境和勞工三大議題提出建議請問部長美方具體建議勞動部的部分你看了嗎有
transcript.whisperx[278].start 8761.434
transcript.whisperx[278].end 8764.036
transcript.whisperx[278].text 臺美21世紀的貿易創意我們都很擔心說勞動議題你會不會變成至第二階段談判進展的阻礙
transcript.whisperx[279].start 8775.785
transcript.whisperx[279].end 8801.682
transcript.whisperx[279].text 因為相較於美國貿易代表署他公告的擬議文本他講得很具體他說要要求雙邊與各自勞工法律當中採納國際公認的勞權還有保護吹哨者的規定要提出含強化移工招聘費用相關成本等的規定也希望保障遠洋移工使用Wi-Fi的權利講得很具體喔
transcript.whisperx[280].start 8803.843
transcript.whisperx[280].end 8827.259
transcript.whisperx[280].text 第二我們本裡面還建立合作機制還有解決供應鏈中強迫勞動的問題以在這個勞工問題上進行建設性的合作包括促進數位經濟下的勞權及改善遠洋漁船的工作條件但是人家問得這麼具體我們勞動部的回應卻是回答得很空泛你們回應是說
transcript.whisperx[281].start 8829.82
transcript.whisperx[281].end 8837.305
transcript.whisperx[281].text 勞動部份台灣以人權立國將透過美方的對話合作機制掌握國際重要的勞動規範的內容和趨勢共同面對21世紀勞動力所面臨的挑戰讓企業發展與人權這個齊步前進問部長美國講得這麼具體我們國內法規你這樣子回答
transcript.whisperx[282].start 8850.072
transcript.whisperx[282].end 8855.356
transcript.whisperx[282].text 有針對到人家講的問題嗎?我們的國內法規難道針對他講的這麼具體沒有需要調適的計畫嗎?那21世紀的臺美貿易談判這個會不會卡在這個地方?因為呢本來啊去年的11月就應該全數都談好了
transcript.whisperx[283].start 8870.006
transcript.whisperx[283].end 8874.633
transcript.whisperx[283].text 去年的11月本來21世紀台美這個貿易的倡議的談判本來去年年底就應該要談好可是呢談判過程不是那麼順利那每番公佈的內容還具體的講到說要提升勞動人權環境標準
transcript.whisperx[284].start 8887.25
transcript.whisperx[284].end 8905.523
transcript.whisperx[284].text 所以在這種狀況裡面我們在這裡希望你告訴我們告訴全台灣的人你要進入談判裡面你要透明的告訴大家你怎麼因應這個我們想要透明你告訴我們政府的態度是什麼你要不要在這裡跟社會大眾一併做個說明
transcript.whisperx[285].start 8908.672
transcript.whisperx[285].end 8924.1
transcript.whisperx[285].text 這個報告委員因為這個臺美21世紀的創意的談判那麼就是經貿辦公室是主要的一個他們來主導所以談判代表人家就勞動的部分我就講勞動的部分講得這麼具體勞動的組織機關就勞動部其實就是說我們考量到說後續的這些談判還有包括創意的進程跟內容它都是屬於比較機敏的資訊所以有關的
transcript.whisperx[286].start 8935.885
transcript.whisperx[286].end 8954.056
transcript.whisperx[286].text 激民的資訊,他在講說這個在勞工法律裡面要不要納入採納國際公認的勞犬還有保護催少者的規定要提出強化移工招聘費用相關成本的規定這哪裡激民然後講說這個要不要解決供應面下的強迫勞動的問題這哪裡激民
transcript.whisperx[287].start 8957.171
transcript.whisperx[287].end 8982.022
transcript.whisperx[287].text 我是說這些議題的談判的內容包括我們的可能我們未來的一些對應的這些可能的我覺得你們是人家實問你虛答然後我在這裡也是實問你也是虛答我要跟你講這事情已經很嚴重了嚴重到這個去年有一個外交家的雜誌你知道吧關於你們
transcript.whisperx[288].start 8984.051
transcript.whisperx[288].end 9010.59
transcript.whisperx[288].text 關於台灣的勞動有一篇去年10月31日發布了深度的報導就是Debt還有Boundage in Space and Taiwan這一篇報導我們如果沒有看到的話風傳媒有給它改標叫做外交家雜誌說台灣製造等於強迫勞動製造問號是不是在台灣的移工每年至少遭仲介剝削上百億
transcript.whisperx[289].start 9012.011
transcript.whisperx[289].end 9031.181
transcript.whisperx[289].text 這個東西外交家的答案是說臺灣製造當然不等於強迫勞動製造但是他還是有很多的疑問他甚至指出了幾家的供應鏈外交家裡面點出華碩子公司、雅緒、六合機械等等還有永德電子
transcript.whisperx[290].start 9031.781
transcript.whisperx[290].end 9046.327
transcript.whisperx[290].text 包括 SpaceX SpaceX的這個下供應鏈6盒機械他還被這個我記得是福特車廠吧福特安通用汽車看到這篇報導以後大家都有壓力所以他們承諾說要採行這個
transcript.whisperx[291].start 9050.129
transcript.whisperx[291].end 9067.442
transcript.whisperx[291].text 因為這兩家車廠是RBA的成員要公開承諾零付費政策福特回應說他要調查這件事要請求獨立第三方進行審查連工商促進會的林博鋒他們現在都要要求政府擔起扛起移工的責任要國對國的這個引進
transcript.whisperx[292].start 9071.463
transcript.whisperx[292].end 9079.329
transcript.whisperx[292].text 為什麼要國對國包括你們長期以來對私人財團、大財團、大製造業也都專案的幫他們國對國的引聘引進這個國對國的聘用這樣子為什麼需要這樣子因為走到家RBA這篇雜誌裡面講到說偽創和合作本身他們已經不容忍供應鏈中存在強迫勞動
transcript.whisperx[293].start 9101.867
transcript.whisperx[293].end 9109.014
transcript.whisperx[293].text 我的意思是說火已經燒到燃眉之急了不是你在這裡蓄意偉儀就可以的
transcript.whisperx[294].start 9110.749
transcript.whisperx[294].end 9138.796
transcript.whisperx[294].text 報告委員 這個相關的議題我們內部都討論我們也有跟去年也有到美國跟美方有做一些說明跟澄清那後續的談判我們也會跟經貿辦公室這邊都有不定時的會議在針對相關的你說你去做說明跟澄清它4月5日前兩天而已前三天而已它在台美21世紀貿易創意的談判裡面它擬議的文本就是這樣子寫了啊
transcript.whisperx[295].start 9140.316
transcript.whisperx[295].end 9151.691
transcript.whisperx[295].text 你去曾經沒有用因為有一些連甚至連合法性的他們都認為這個法律是不符合ILO的所謂的規範的嘛ILO的11項的強迫勞動指標他認為我們法律裡面的法律都有問題
transcript.whisperx[296].start 9161.027
transcript.whisperx[296].end 9167.229
transcript.whisperx[296].text 而且我覺得你對我們實在是很不夠尊重為什麼呢?112年7月26日我們立法院在審議台美貿易倡議之間的這個協定當時立法院通過了一個附帶決議附帶決議的內容有些
transcript.whisperx[297].start 9177.632
transcript.whisperx[297].end 9202.7
transcript.whisperx[297].text 這立法院的決議喔上面有寫美國長期關注臺灣外籍漁工勞動條件與人權問題臺美貿易協議中也將勞動條件作為重點之一請評估我國勞動基礎法是否符合ILO的這個勞動基準為其勞動法規符合國際核心勞動基準以及順利推動臺美貿易協定請行政院在3個月內邀請專家學者民間團體進行延長盤點其實你們
transcript.whisperx[298].start 9207.341
transcript.whisperx[298].end 9215.067
transcript.whisperx[298].text 有沒有盤點你們回覆我們說你們開了核心勞動公約法規檢視會議一共有三場結果你的檢視會議第一場第一場
transcript.whisperx[299].start 9218.488
transcript.whisperx[299].end 9244.166
transcript.whisperx[299].text 會議的記錄上面寫第一場有提到離清現有法律是否規範不足或規範與執行有落差但是你們沒有提出未來因應的做法案預定時程第二場和第三場的會議記錄更看不出來檢視會議到底認為現行勞動法律是否有符合核心勞動公約而且你的討論事項跟決議事項答非所問要不然就是推給行政院移工人權小組會議再行討論
transcript.whisperx[300].start 9246.408
transcript.whisperx[300].end 9259.785
transcript.whisperx[300].text 我們今天要講說你在裡面有討論你們的會議是這樣討論的有人會議上是說討論建外僱用的遠洋漁業工作者現有法治規範在消除強迫勞動上是否足夠
transcript.whisperx[301].start 9261.267
transcript.whisperx[301].end 9286.605
transcript.whisperx[301].text 結果你們的會議內容記錄強調農委會執行漁業與人權行動計劃的主則勞動部也是執行單位請各業管單位依據該計劃配合辦理這你的意思是說農業部的事跟你無關的你也沒想到檢討自己的法規是不是有問題然後上面就跟你們有關的家事移工、建築物移工是否應適用勞基法的規定
transcript.whisperx[302].start 9287.525
transcript.whisperx[302].end 9300.671
transcript.whisperx[302].text 是否消除藍嶺外籍移工禁止轉換雇主的限制這是你們的會議裡面提案討論議題結果你們會議內容是寫相關議題可以在移工人權小組會議上再討論所以你們把這個會議把這個法規的檢視有沒有合理有沒有執行面的問題你們都丟給行政院移工人權小組
transcript.whisperx[303].start 9311.095
transcript.whisperx[303].end 9327.29
transcript.whisperx[303].text 所以我現在要說的是 你這樣這三天就續委了立法院 立法院跟你說你去年的決議是說你要去看一下有沒有問題喔 這個我們這個附帶決議要求你要檢視所有的法律喔
transcript.whisperx[304].start 9328.511
transcript.whisperx[304].end 9333.793
transcript.whisperx[304].text 結果你在講說那是農業部的事那個是等到行政院移工人權小組在討論跟我們都無關這個對立法院也須有違遺啦老實說你不會說跟我們都無關啦你的會議紀錄就是這樣寫啊那意思就是跟你們無關啊那這樣子就可以送到立法院你去年就送到立法院說我檢視過了答案兩個農業部的事然後這個交給移工人權小組處理
transcript.whisperx[305].start 9354.5
transcript.whisperx[305].end 9357.944
transcript.whisperx[305].text 然後跟我們都無關了你的答覆就是這樣好最後再講我現在講說這個事情為什麼是燃眉知己因為這個臺美21世紀貿易創意的協議談判已經要進行了那美國勞工部在2020和2022年
transcript.whisperx[306].start 9370.279
transcript.whisperx[306].end 9372.5
transcript.whisperx[306].text 曾經兩度將台灣遠洋漁業列入同工及強迫勞動的製品清單美國的國家海洋及大氣總署在2021和2023年兩次國際漁業管理改善報告先後將台灣列為非法漁業強迫勞動國家
transcript.whisperx[307].start 9387.167
transcript.whisperx[307].end 9398.043
transcript.whisperx[307].text 2023年的美國勞動部再一次國際事務助理副部長他更明確地向臺灣民間團體表示支持臺美貿易協定中納入保障漁工勞權禁止這個進口強迫勞動製品的條款
transcript.whisperx[308].start 9401.548
transcript.whisperx[308].end 9418.69
transcript.whisperx[308].text 所以我們在想說你到底準備好了要去談判了嗎你要去談判的說我們這個是移工人選小組的討論的事情農業部的事情跟我都無關人家在這裡把重點放在說就勞工環境上我們具體要討論這個我不曉得你們的回應是
transcript.whisperx[309].start 9419.531
transcript.whisperx[309].end 9447.029
transcript.whisperx[309].text 要怎麼回答?你的回答是這樣,實問虛答啦。是不是可以請林委員等一下請互惠,就是要請那個勞動部這邊,會後再向委員這邊補充說明。可以啦,但是就是說這個事情是很嚴重的。我們知識體大啦,我們連那個外交家的雜誌都這樣子寫了,還點名企業,企業每一個一個被點名的時候,他們的壓力就來。那我們不能靠著國際組織這樣點名我們的企業啊。
transcript.whisperx[310].start 9449.791
transcript.whisperx[310].end 9459.52
transcript.whisperx[310].text 國家難道都不用有作為嗎?企業不用你作為他現在已知道要緊張了所以他們也知道零付費零復工的這個政策所以你們可以服務財團你們可以服務大企業說我幫你們專案國對國引進可是那你為什麼不能夠對一般個人的或小老百姓的或小中小企業主也提供這種國對國引進的模式
transcript.whisperx[311].start 9475.894
transcript.whisperx[311].end 9475.914
transcript.whisperx[311].text 好,謝謝
transcript.whisperx[312].start 9503.368
transcript.whisperx[312].end 9527.836
transcript.whisperx[312].text 部長會後再向林委員補充說明接下來請鄭天才委員發言主席各位委員有請部長請許部長政委好部長好
transcript.whisperx[313].start 9529.367
transcript.whisperx[313].end 9550.027
transcript.whisperx[313].text 這次零四零三大地震花蓮的災情非常的慘重這次我們勞動部還是依照過去的往例就針對災後重建工作啟動天災臨宮的一個措施
transcript.whisperx[314].start 9555.114
transcript.whisperx[314].end 9567.726
transcript.whisperx[314].text 當然這個作業要點定很久了這個相關的規定都是比較照屬於往例的那個部分那現在就是說因為這一次
transcript.whisperx[315].start 9570.511
transcript.whisperx[315].end 9593.713
transcript.whisperx[315].text 地震的時間正好連假連續假期所以你們原來的一個相關的這些規定24小時內要呈報本部然後48小時內要洽向正式公手那因為正好都是連假
transcript.whisperx[316].start 9594.38
transcript.whisperx[316].end 9609.707
transcript.whisperx[316].text 都已經 都按照這個規定 我們都沒放假 報告委員 我說你們沒有放假啦 但是有一些鄉鎮公所有放假 這個部分是 這個 這個 我們有聯繫啦 我們會持續聯繫 對我知道這是事實 因為我都在災區啦 OK
transcript.whisperx[317].start 9610.407
transcript.whisperx[317].end 9612.209
transcript.whisperx[317].text 當然這個未來是不是需要再檢討還是要去考量
transcript.whisperx[318].start 9638.601
transcript.whisperx[318].end 9659.353
transcript.whisperx[318].text 那另外就是說這個勞工有的在工作期間發生了這個症災無論是他這個死亡或是受傷都有都有所以除了這些這個之外你們當然都會提到這個跟這個
transcript.whisperx[319].start 9663.113
transcript.whisperx[319].end 9666.216
transcript.whisperx[319].text 我們提供6個月的保險費的補助
transcript.whisperx[320].start 9684.87
transcript.whisperx[320].end 9697.361
transcript.whisperx[320].text 然後另外他如果因為這些災害受傷我們就是從他因為這樣不能工作而且沒有薪資那我們就是從他受傷那一天開始就可以請領傷病給付
transcript.whisperx[321].start 9699.178
transcript.whisperx[321].end 9699.538
transcript.whisperx[321].text 好,那今天的議題
transcript.whisperx[322].start 9723.242
transcript.whisperx[322].end 9731.629
transcript.whisperx[322].text 這個一因留職停薪的津貼這個相關的規定都有那你們的報告裡面也提到這個
transcript.whisperx[323].start 9734.875
transcript.whisperx[323].end 9762.072
transcript.whisperx[323].text 到去年12月子叫修法前同期申請嬰留職停薪的人數女性增加了11%男性增加61%這個數字是尤其是男性增加很多但是我是希望能夠提供什麼數字呢就是說跟現在的嬰兒出生率
transcript.whisperx[324].start 9763.561
transcript.whisperx[324].end 9772.411
transcript.whisperx[324].text 的人數跟申請彈性育嬰的人數,留職停薪的人數有嗎?現在有這個數據,好請說。我們女性,女生,對。
transcript.whisperx[325].start 9783.272
transcript.whisperx[325].end 9795.928
transcript.whisperx[325].text 大聲一點有領勞保的生意給付的人後續有在領育嬰留值停薪津貼的比例在去年112年是80.41%男性呢?
transcript.whisperx[326].start 9801.243
transcript.whisperx[326].end 9823.376
transcript.whisperx[326].text 男性因為男性沒有領生意幾戶他不能領生意幾戶所以你的人數就還是可以做算比例啊男性增加61%就表示有人數嘛申請育嬰留子平薪的然後跟我們的那個整個出生的人數做比較
transcript.whisperx[327].start 9824.208
transcript.whisperx[327].end 9848.522
transcript.whisperx[327].text 那個61%是在110年7月1號以前跟以後做比較對我知道我知道可是我要的不是這個對好我要我要接氣好為什麼要這個東西啊好我接氣談重點哈這個勞動部最清楚現在切工嘛對不對切工很嚴重
transcript.whisperx[328].start 9849.775
transcript.whisperx[328].end 9877.961
transcript.whisperx[328].text 對不對那我們的政策怎麼樣去因應這個台灣切工嚴重的事實除了因應留留職停薪繼續推動是不是怎麼樣在這個這個嬰兒還是要照顧啊但是切工啊我們鼓勵他上工但是他的那個很能夠非常
transcript.whisperx[329].start 9879.397
transcript.whisperx[329].end 9903.061
transcript.whisperx[329].text 安心的有托嬰的地方 勞動部就必須跟衛福部去協調托嬰 然後他那個很放心的托嬰 我那個年代我們夫妻一樣都上班了 而且是遠離我在台灣省政府上班了
transcript.whisperx[330].start 9904.167
transcript.whisperx[330].end 9905.248
transcript.whisperx[330].text 他還可以正常的工作
transcript.whisperx[331].start 9932.981
transcript.whisperx[331].end 9933.222
transcript.whisperx[331].text 發言委員
transcript.whisperx[332].start 9934.454
transcript.whisperx[332].end 9959.591
transcript.whisperx[332].text 報告委員的確就是說如何有讓這個生養的環境更優化除了說我們這些措施鼓勵父母親都一起來育兒以外那其實托嬰托兒的措施也很重要如果這個能夠完善的話也可以讓這個父母親能夠蓄留職場所以有這方面的協助的話他如果有托嬰很好的環境的話他就願意托嬰對所以你們要跟衛福部共同的合作
transcript.whisperx[333].start 9964.934
transcript.whisperx[333].end 9965.675
transcript.whisperx[333].text 謝謝主席,我們請許部長
transcript.whisperx[334].start 9997.564
transcript.whisperx[334].end 10021.243
transcript.whisperx[334].text 議員好部長好今天的題目是叫做試辦育嬰彈性假及提高男性申請留職停薪我看了一下其實幼嬰真的還是不夠請教一下部長過去這三年從110、111、112男性申請育嬰留職停薪的比例大概是多少嗎
transcript.whisperx[335].start 10023.552
transcript.whisperx[335].end 10037.728
transcript.whisperx[335].text 大概增加了不是增加啦因為你們之前的接受低啦申請的百分之25啦大概都是25%過去三年大概男性申請這個留職停薪的比例大概都只有四分之一的25%左右而已啦
transcript.whisperx[336].start 10039.332
transcript.whisperx[336].end 10059.241
transcript.whisperx[336].text 以前只有17最近有增加25還是很低啊我們希望說就是這個爸媽都能夠來照顧小孩那你知道為什麼這個男性申請這個留職天性的比例比較低嗎可能第一個經濟藝術的考量還有升遷啦職場的這個這個
transcript.whisperx[337].start 10062.972
transcript.whisperx[337].end 10064.754
transcript.whisperx[337].text 那再請教一下部長
transcript.whisperx[338].start 10089.634
transcript.whisperx[338].end 10118.074
transcript.whisperx[338].text 就是說你現在這個試辦本來是這個一個月那現在試辦是5天到7天彈性的這個育嬰假然後你說這個單天更歡迎是不是單天更歡迎你這個齁都是道德勸說啦實際上齁這個如果說沒有這個誘因來講的話這一般的企業齁這個很難很難會用單天來算那5到7天也是試辦而已啊對不對那我先問一下這個5到7天試辦是5月開始嘛
transcript.whisperx[339].start 10119.582
transcript.whisperx[339].end 10139
transcript.whisperx[339].text 報告委員本來原定5月啦但是因為有很多委員認為說我們這個要再不是叫我們配套要更完整所以我可能會稍微再延後一些被延後喔對會再收集意見那延後大概是哪個時候因為我們在收集積極收集意見當中收集讓整個總是要有個期限啊
transcript.whisperx[340].start 10140.654
transcript.whisperx[340].end 10167.788
transcript.whisperx[340].text 我看最慢最慢就是6月吧6月最慢最慢就展演一個月展演一個月到6月因為我們在收集意見因為主要是為什麼用示範因為經濟部、國安會今天也都在因為他們也反映說僱主可能有一些困難不過我們現在這個示範出去現在我請教一下這個你有發函就是說給我們這一個公部門嘛公部門現在有回應的情況怎麼樣有現在就是那個我記得
transcript.whisperx[341].start 10169.476
transcript.whisperx[341].end 10178.466
transcript.whisperx[341].text 4家國營事業的機構有哪4家才4家國營才4家而已喔臺電流水都有
transcript.whisperx[342].start 10179.432
transcript.whisperx[342].end 10184.577
transcript.whisperx[342].text 我們全部現在報名的是63家.表達有意願的那我是說公部門部分國藝事業就是目前有四家國藝所以63家裡面才四家是公部門
transcript.whisperx[343].start 10203.719
transcript.whisperx[343].end 10222.165
transcript.whisperx[343].text 包括我們勞動部啊 勞動部自己還有包括我們所屬像勞保局啦發展署啦都是只有勞動部的系統而已喔我們還在所以你看連我們自己公部門都不買單了我們發言出去錄序啦我是說現在到目前為止回復的還要繼續他們我們在鼓勵
transcript.whisperx[344].start 10224.366
transcript.whisperx[344].end 10229.309
transcript.whisperx[344].text 所以你看這油電糖水市加公營事業這個要來示範而已那其他的是怎樣是你們有給他們問卷調查但是回覆都沒有意願嗎我們就是有發函給他們邀請他們能夠那問題是出在哪裡那為什麼這些我們所有這麼多的公營事業這個沒有共襄盛舉這個是很大的問題
transcript.whisperx[345].start 10252.877
transcript.whisperx[345].end 10278.189
transcript.whisperx[345].text 我們其實也鼓勵像經濟部、交通部、衛福部所屬的這些機構能夠一起來參與有這麼多如果我們公家機關都不能帶頭做示範作用的話對於民間企業來講報告委員因為我們這3月15日發函那目前這個回復陸陸續續在回復啦不是說現在63家後面就沒有了是啊那我在聽那個比例公家機關太少了啊
transcript.whisperx[346].start 10278.877
transcript.whisperx[346].end 10304.38
transcript.whisperx[346].text 我們還是持續在鼓勵你們這個我認為我們公民家機關真的要做示範作用如果你如果說我們公民家機關供應事業不做示範作用的話你如何叫民間企業來做啊所以我看到這個我是覺得公部門跟國營事業其實應該要帶頭做起對啊所以我看到這個成績其實我也你這樣講我嚇一跳怎麼比例這麼低其實我也不滿意啦不過我們3月15日發函到現在還不到一個月
transcript.whisperx[347].start 10305.2
transcript.whisperx[347].end 10310.103
transcript.whisperx[347].text 陸陸續續再回復啦第二個我再請教一下這個我們賴清德總統當選人他在這個參選的時候提到說0到6歲國家一起養2.0其中有一個是說這個彈性的育嬰假制度納到0到6歲但是我們現在這個育嬰假是不是在3歲前
transcript.whisperx[348].start 10326.334
transcript.whisperx[348].end 10327.815
transcript.whisperx[348].text 能夠申請﹖育嬰留停﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對﹖對�
transcript.whisperx[349].start 10355.983
transcript.whisperx[349].end 10383.095
transcript.whisperx[349].text 報告委所以我們現在就是說先示範齁那包括說這個示範這兩個是不一樣的你們是示範是於就是說本來是一個月現在可以變五天到七天年齡放寬這可以討論啦放寬年齡啦對然後這個就是牽涉到修法當然牽涉到修法牽涉到裁員還有牽涉到企業的人你們有沒有做過這個相關這個相關那個思考就是說如果放寬到0到6歲有沒有去思考過這個方向
transcript.whisperx[350].start 10384.135
transcript.whisperx[350].end 10408.36
transcript.whisperx[350].text 一直有在做這樣的討論嗎?現在就是說我看我們的總統當選人是希望說這個國家一起養那其實從零到三歲放寬到六歲我相信這個方向是一致的啦如果說我的意思是說不要說只有留這個只有在停留在討論這個階段有沒有比較具體的做法啦你們有沒有想要推動啦
transcript.whisperx[351].start 10409.588
transcript.whisperx[351].end 10436.263
transcript.whisperx[351].text 目前就是在演繹當中啊演繹當中是有想要推動說至少到6歲嗎我覺得這個方向是可以來演繹啦好啦希望你們積極一點啦因為這個是總統當選人他的政見啦我們都是一體的啦希望朝這個方向來做好不好好謝謝部長謝謝主席謝謝李昆城委員接下來請現在先做以下宣告等一下在楊瓊英委員質詢結束處理臨時提案
transcript.whisperx[352].start 10438.735
transcript.whisperx[352].end 10440.477
transcript.whisperx[352].text 現在請牛許庭委員發言。好,謝謝主席。勞動部長有請。請許部長。
transcript.whisperx[353].start 10461.189
transcript.whisperx[353].end 10477.735
transcript.whisperx[353].text 今天我們討論如何促進男性育嬰留停的比例當然根據你們的報告民國110年之後做了政策的調整改成最低30天就可以經過申請歡迎支持降低門檻那看起來數字上有一些的成果
transcript.whisperx[354].start 10479.355
transcript.whisperx[354].end 10505.171
transcript.whisperx[354].text 按照勞動部統計男性的比例在110年之後有部分的成長但是這個部分的成長好像後來就停滯不前了因為你看110年到121年有成長可是121年到112年他就沒有成長對不對那按照113年1月的這個數字資料的話按照比例來講好像跟112年跟121年的比例也沒有差很多那好像政策遇到瓶頸了還有說明一下出生人口
transcript.whisperx[355].start 10506.26
transcript.whisperx[355].end 10508.022
transcript.whisperx[355].text 請問勞動部有任何措施去突破這個瓶頸嗎
transcript.whisperx[356].start 10527.618
transcript.whisperx[356].end 10541.508
transcript.whisperx[356].text 報告委員因為那個出生率掉蠻多的齁從13萬多掉到12萬多啦齁即便出生率下降男女之間的比例依然很懸殊吧對不對你看一下比例的數字是不是一樣是1比3接近到1比4
transcript.whisperx[357].start 10542.773
transcript.whisperx[357].end 10544.074
transcript.whisperx[357].text 我講遇到瓶頸的意思就是說他的成長率慢下來了嘛 對不對
transcript.whisperx[358].start 10560.441
transcript.whisperx[358].end 10566.666
transcript.whisperx[358].text 你們覺得沒有問題嗎?還是說還有別的政策方式可以促進這樣的數字?所以你們針對這樣數字的一個貧險的狀況是講說彈性還不夠大所以才有了今天的專案報告是嗎?
transcript.whisperx[359].start 10583.937
transcript.whisperx[359].end 10609.452
transcript.whisperx[359].text 也不是,我們是認為說這個是逐步嘛當初是從6個月降到短期30天那包括很多朝野委員都在倡議說希望可以再更完善一點對,所以我們其實是一步一步來啦因為也怕對那個企業的人力的調配上會產生困難因為我們大概有97%的都是中小企業30人以下還有微型企業,等一下我們再探討這個問題5人以下占了80%所以我已經去考
transcript.whisperx[360].start 10612.894
transcript.whisperx[360].end 10639.315
transcript.whisperx[360].text 我再請你看第二張圖表今天的第二張圖表當然就講的是公部門剛剛部長在回答其他委員詢問的時候也有講說公部門還有相關的這些事業機關附屬單位應該要起一個帶頭的作用但是這個數字基本上跟你前一張也就是這個勞動部的統計其實在比例上來講是很類似的看起來公部門好像沒有起到什麼帶頭作用部長有沒有什麼話要說我們剛剛是在講說那個育嬰留停育嬰留停的事辦剛剛委員
transcript.whisperx[361].start 10642.677
transcript.whisperx[361].end 10664.291
transcript.whisperx[361].text 事辦你要起帶頭作用相對來講在政策落地的過程你也要起帶頭作用如果我們公部門這部分先沒有辦法說我透過哪些的方式宣導等等社會教育也好薪資這個問題解決掉也好或者是避免掉這個升遷考機的問題你公部門也要做事辦嘛那照理來講公部門基於法規執行的一體性照理來講應該是不會有
transcript.whisperx[362].start 10665.572
transcript.whisperx[362].end 10667.494
transcript.whisperx[362].text 但即便如此好像這個比例還是差不多對不對是不是我們在帶頭作用的方面也遇到了瓶頸呢
transcript.whisperx[363].start 10686.263
transcript.whisperx[363].end 10689.485
transcript.whisperx[363].text 為什麼到最後好像就卡在1比3、1比4左右這樣的比例?
transcript.whisperx[364].start 10709.437
transcript.whisperx[364].end 10737.837
transcript.whisperx[364].text 以你們的了解你們有沒有去探詢過學者專家的意見啊以及等等剛剛齁其實剛剛全局部這邊有講到師長齁有講到說其實他們的是等於裁員的部分齁幾副的裁員啦來補充一下沒有關係啊是有這方面會遇到跟我們報告一下齁那個公部門公務人員這一塊從107人107人大概那個彈性留停的比例大概12%左右對
transcript.whisperx[365].start 10738.658
transcript.whisperx[365].end 10762.464
transcript.whisperx[365].text 那到那個112年已經到18%就是說就男性本身大概成長50%啦那就男女性的那個占比是從這些剛剛都講過了我的意思是說110到11有成長這個我們拍拍手可是11到12那比例沒有變太多那個應該就是少子化降下來的就是說生意的人口已經變少了變少了
transcript.whisperx[366].start 10763.204
transcript.whisperx[366].end 10763.844
transcript.whisperx[366].text 我要請勞動部去做調查
transcript.whisperx[367].start 10789.853
transcript.whisperx[367].end 10816.031
transcript.whisperx[367].text 你們照理來講應該跟很多的學者專家跟很多等等有一些聯繫這個除了我們剛剛講的一個為什麼遇到瓶頸需要更明確的說法之外第二個本席擔心的是我們會不會因為一直把門檻降低把彈性增加你反而回過頭來壓縮了女性啊育嬰留停的長度也就是說現在僱主講啊反正你老公也可以請啊對那你就不要請這麼久有沒有這樣的狀況你們有沒有針對這個可能的問題去做研究調查部長
transcript.whisperx[368].start 10819.206
transcript.whisperx[368].end 10836.08
transcript.whisperx[368].text 這個我們再進一步來瞭解看看這個你進一步來瞭解好不好然後本期在最後一點時間做一點政策建議啦我們現在都看的都是講法規面假期怎麼來做設定這當然很好但我提醒我們要有點科技的概念疫情之後給全世界最大的啟示就是工作不一定要進辦公室啊
transcript.whisperx[369].start 10837.021
transcript.whisperx[369].end 10862.215
transcript.whisperx[369].text 遠距工作的實際應用是什麼我們的政府機關有沒有比如說你講公部門可不可以帶頭示範我公部門在處理這個在請育嬰留停的時候我用遠距工作的方式走出一套新的辦法我如何鼓勵願意試辦遠距工作來在這個中間中找到平衡也可以讓這個東西政策的時候有沒有一些鼓勵的措施我先講私部門其實私部門他們只要牢固雙方有講好就可以了公部門好像已經有了
transcript.whisperx[370].start 10862.805
transcript.whisperx[370].end 10881.142
transcript.whisperx[370].text 官部門我們在那個疫情期間其實都有一直在示範現在各機關其實很多都可以對他的資訊系統有辦法對阿我現在要的就是說你把這個東西跟育嬰留停的概念結合嘛如果育兒需求相對來講那時候那他可能不需要走留停嘛又做遠距工作可不可以他是不是就解決了薪資的落差的問題
transcript.whisperx[371].start 10881.823
transcript.whisperx[371].end 10882.664
transcript.whisperx[371].text 謝謝牛許廷委員現在處理臨時提案
transcript.whisperx[372].start 10912.438
transcript.whisperx[372].end 10912.558
transcript.whisperx[372].text 楊瓊英委員
transcript.whisperx[373].start 10938.24
transcript.whisperx[373].end 10951.471
transcript.whisperx[373].text 目的是希望說去因為很多委員 常委員的建議讓我們的育兒的這個生養環境能夠更友善他們希望說現在那重新吧
transcript.whisperx[374].start 10956.134
transcript.whisperx[374].end 10971.699
transcript.whisperx[374].text 主席,謝謝,謝謝主席,楊卿發言部長,我們要試辦以日為單位的育嬰留停方案,是不是?那你希望的是什麼呢?
transcript.whisperx[375].start 10972.579
transcript.whisperx[375].end 10992.349
transcript.whisperx[375].text 我們希望藉由這樣的一個示範去瞭解說現在食物的職場上他們如果這樣推動的話有什麼困難那會不會增加男性育嬰這個留停的比例也希望提升對這個很重要嘛對這很重要讓我們直接討論
transcript.whisperx[376].start 10995.43
transcript.whisperx[376].end 11006.542
transcript.whisperx[376].text 那本期要請教你說剛剛說了你們從3月份開始跟相關單位那目前為止經濟部、交通部、衛福部、勞動部這些會配合你嗎?是不是?
transcript.whisperx[377].start 11007.874
transcript.whisperx[377].end 11016.379
transcript.whisperx[377].text 經濟部有,我們有邀請他們,希望他們國部門能夠,現在有經濟部的國醫事業,經濟部的國醫事業有4家來,然後衛福部有一個醫院,然後我們勞動部本身,勞動部還沒回復,所以目前政府部門就是這3個嘛,經濟部、衛福部、勞動部,人家怎麼不理你呢?
transcript.whisperx[378].start 11036.809
transcript.whisperx[378].end 11040.051
transcript.whisperx[378].text 你現在講的這麼保守我可以給你一個註解你要試辦這個你沒有充分去做功課
transcript.whisperx[379].start 11060.262
transcript.whisperx[379].end 11078.841
transcript.whisperx[379].text 就像剛剛委員在談的你雞同鴨講他講的是比例問題你跟他講的是數量問題我希望本席待會所問的你不要雞同鴨講的回答好不好因為時間很寶貴那所以本席要請教我們現在是規劃不少於5天的育嬰留子停薪嗎是不是
transcript.whisperx[380].start 11079.381
transcript.whisperx[380].end 11096.291
transcript.whisperx[380].text 是,但是如果更短我們也認為更好啦更短也可以就五天以下的因為這個就是一個原則啦五天以下的,好來那現在民間企業你們有方案給他們有沒有民間企業有願意要加入的有有有,我們現在全部都
transcript.whisperx[381].start 11097.54
transcript.whisperx[381].end 11098.461
transcript.whisperx[381].text 我今天是老闆吶
transcript.whisperx[382].start 11115.342
transcript.whisperx[382].end 11132.887
transcript.whisperx[382].text 你給我什麼幼嬰請教你讓我這麼做你給我什麼幼嬰請做說明請做說明你的幼嬰是什麼我們的幼嬰現在在討論當中你告訴我現在你的幼嬰是什麼你育假事辦呢還在研議當中因為我們在爭取大家的意見還在研議當中
transcript.whisperx[383].start 11136.508
transcript.whisperx[383].end 11152.8
transcript.whisperx[383].text 你的憂鬱是什麼?你告訴我!他比如說勞健保的這些比如說他可以免除這個勞保的負擔的健保的負擔的這個都還在啦那是不是還有其他憂鬱我們其實4月2日才找相關的部會有做一些討論
transcript.whisperx[384].start 11153.601
transcript.whisperx[384].end 11178.03
transcript.whisperx[384].text 你預計什麼時候可以告訴我們你要希望企業也跟你一起大家來加油那你要提供什麼樣的鼓勵方式你的誘因讓不管是國藝事業單位、行政部門以及我們企業界可以加入你什麼時候可以告訴社會大眾你現在在研議沒關係你研議你什麼時候可以告訴社會大眾
transcript.whisperx[385].start 11180.393
transcript.whisperx[385].end 11184.119
transcript.whisperx[385].text 因為現在持續在跟...你告訴我一個時間點好不好時間點你告訴我們時間點應該大概
transcript.whisperx[386].start 11196.596
transcript.whisperx[386].end 11211.728
transcript.whisperx[386].text 所以換句話說你在5月底以前會告訴社會大眾你的鼓勵、獎勵、措施、你的誘因是什麼會告訴社會大眾是不是?是不是?5月底
transcript.whisperx[387].start 11212.088
transcript.whisperx[387].end 11235.053
transcript.whisperx[387].text 是不是?好,因為你做任何的一個不管試辦還是偵測都是有一定的你的目標嘛,你的繳成怎麼做嘛好,我們現在可以確認一件事情五月底以前勞動部將試辦以日為單位的育嬰停留方案會在五月底以前告訴社會大眾那麼我們的政府獎勵是什麼?優因是什麼?是不是如此?是
transcript.whisperx[388].start 11236.173
transcript.whisperx[388].end 11252.358
transcript.whisperx[388].text 來接下來我們拭目以待接下來本席要請教我們的目標既然男性的育嬰停留的比例也希望在這個以日為基準換句話說很多人怕說我如果留職停薪了我回來回不來了沒有辦法物質
transcript.whisperx[389].start 11253.078
transcript.whisperx[389].end 11280.561
transcript.whisperx[389].text 或者是我的職務已經被調整的或者是有任何對他不利的方式讓他去復職的這個條件減低了所以在這樣的情況之下我們也想盡了一切辦法但是我們看到日本日本他除了鼓勵女性能夠這個女力他們努力的推動女力鼓勵女性進入職場之外對男性他這個育嬰留職他也非常的重視
transcript.whisperx[390].start 11281.261
transcript.whisperx[390].end 11307.367
transcript.whisperx[390].text 所以他們把育嬰假可以分開來申請就跟你試辦這個日的意思一樣你如果一個月當然回來可能有很多回不來了所以沒有辦法去落實所以日本他也開始分開來申請而且他還放寬育嬰假的申請次數日本他由原先的兩次到四次由三歲到八歲
transcript.whisperx[391].start 11308.547
transcript.whisperx[391].end 11315.055
transcript.whisperx[391].text 那我們呢?我們有沒有做調整?不是未來啊!這個日本已經在執行了部長!我希望我們在這邊討論時可以聽到你的方案!不是未來!你的未來是多久?你的未來你比我遲!
transcript.whisperx[392].start 11325.888
transcript.whisperx[392].end 11340.379
transcript.whisperx[392].text 我們用示範的方式就已經這麼緊張了你未來所以換句話說日本目前我們要找出方案我們要找出一個適合台灣的模式請教請教當然啦全世界各國來比較嘛那請教日本這個方式你有參考嗎
transcript.whisperx[393].start 11341.909
transcript.whisperx[393].end 11345.451
transcript.whisperx[393].text 我們會來參考各國不只日本各國的彈性的方式我們都會來參考所以本期要告訴你為什麼會提出這個呢不是他們不願意請育嬰假而是不敢請
transcript.whisperx[394].start 11358.238
transcript.whisperx[394].end 11384.63
transcript.whisperx[394].text 很多人擔心我請了之後我能不能順利的復職或者是變相的被解聘影響後續的仕途這些的因素都必須在我們整個配套措施裡頭來做討論對不對拿世界各國不管是日本其他國家對於我們有利的而且他們成效好的可以拿出來做檢討嗎是不是如此是不是會朝這樣子的一個方向
transcript.whisperx[395].start 11385.45
transcript.whisperx[395].end 11404.864
transcript.whisperx[395].text 最後一個議題我告訴你女性的勞動參與率目前只有51%51%那女性都很努力在做為什麼她的勞動率只有51%我特別給你點出一個年齡級據55歲到64歲的女性一旦當了阿嬤她就業率就下降你有沒有發現到這個問題有有齁為什麼
transcript.whisperx[396].start 11408.325
transcript.whisperx[396].end 11422.913
transcript.whisperx[396].text 要照顧啊 要照顧誰 孫娜 照顧孫娜 欸這一點你答對了齁 你答對了齁 也就是55到64歲的台灣女性一旦當了阿嬤就越機率就越下降 下降多少 下降多少 下降35到38%
transcript.whisperx[397].start 11425.47
transcript.whisperx[397].end 11432.058
transcript.whisperx[397].text 所以表示什麼阿嬤要教過孫那連帶牽動的把55到64歲我們法定是65歲退休55到64歲這個正有經驗那他就
transcript.whisperx[398].start 11440.011
transcript.whisperx[398].end 11452.377
transcript.whisperx[398].text 他就離職所以我們的勞動力會受影響所以在這樣的情況之下剛剛本席提出我們現在是3歲有沒有考慮把它延長日本是延長到8歲那這個親子假並我們的育嬰假合併去討論
transcript.whisperx[399].start 11459.361
transcript.whisperx[399].end 11462.764
transcript.whisperx[399].text 我們都在考量當中,這相關的,其實顧老顧小,相關的還有哪些配套,這個包括話說我們有可能有機會,現在全世界都延後,我們有可能有機會從3歲延後,日本是到8歲,有的國家到6歲,我們有機會去延後嗎?是不是?
transcript.whisperx[400].start 11480.64
transcript.whisperx[400].end 11499.48
transcript.whisperx[400].text ﹏﹏﹏﹏
transcript.whisperx[401].start 11499.8
transcript.whisperx[401].end 11525.86
transcript.whisperx[401].text 親子津貼跟育嬰留子津貼的這個部分可以去合併去討論好不好我們希望有一個好的方向而且將3歲來延後好不好不管是德國的歐洲地區的6歲或者是日本的8歲我們朝這個方向去討論好不好延後延後是會確認嘛對不對因為你的家長關心啊我們會再討論但我跟委員說就是往這個方向往這個方向好謝謝
transcript.whisperx[402].start 11529.138
transcript.whisperx[402].end 11555.215
transcript.whisperx[402].text 好謝謝楊瓊英委員現在開始處理臨時提案總共有4案請一併宣讀臨時提案第一案有鑑於勞動部當前所辦理之增加第6日第7日產檢價值薪資補助及加擠二成育嬰留職停薪資投保薪資補助二項作業其裁員乃來自113年度便將終止的行政院我國少子女化對策計劃專案
transcript.whisperx[403].start 11557.716
transcript.whisperx[403].end 11574.742
transcript.whisperx[403].text 專案經費規劃.原限期於2週內向立法院社會福利及衛生環境委員會提交勞動部114年度辦理增加第6日第7日產檢加資薪資補助及加擠二成育嬰留職停薪資投保薪資補助作業之經費籌措規劃書面報告
transcript.whisperx[404].start 11577.563
transcript.whisperx[404].end 11586.166
transcript.whisperx[404].text 提案人委員陳金輝、陳昭芝、王育敏、邱振軍、楊瓊英第二案有鑑於勞動部規劃於113年度借中央基金預算執行2150萬元經費借以辦理行政院我國少子女化對策計劃專案內之提升雇主辦理托兒設施或措施意願分工作業然而勞動部對該專案作業在112年度之執行金額便達2600萬元
transcript.whisperx[405].start 11606.033
transcript.whisperx[405].end 11612.856
transcript.whisperx[405].text 原要求勞動部現起於二周內向立法院社會福利及衛生環境委員會提交檢討說明及擴大辦理事項業務資源之規劃報告提案人委員陳金輝、陳昭芝、王育敏、邱振軍、楊瓊英第三案有鑑於行政院課證辦理107至113年
transcript.whisperx[406].start 11625.382
transcript.whisperx[406].end 11645.635
transcript.whisperx[406].text 共7年期的我國少子女化對策計劃專案作業.並按該專案中友善職場的育兒措施.彈性工作時間規定之機關工作分配下.113年度對勞動部乃責成有執行性別平等工作法研修之法制作業任務.原此考量該法制作業允移
transcript.whisperx[407].start 11647.257
transcript.whisperx[407].end 11663.91
transcript.whisperx[407].text 積極辦理並應向外界示意今年度的期程安排特要求現期於二周內向立法院社會福利及衛生環境委員會提交勞動部辦理113年度我國少子女化對策計畫之法制研修作業期程規劃書面報告提案人委員陳金輝、陳昭芝、王育敏、邱振軍、楊瓊英第4案
transcript.whisperx[408].start 11669.454
transcript.whisperx[408].end 11688.369
transcript.whisperx[408].text 近年我國出生人口屢創新低2023年僅剩13.5萬名新生兒政策思考如何讓家長有更多機會兼顧職場和照顧小孩才是解決低生育率的根本指導原此要求勞動部、銓敘部、行政院人事行政總處應緊速研議增加彈性育嬰假
transcript.whisperx[409].start 11690.951
transcript.whisperx[409].end 11709.585
transcript.whisperx[409].text 推動可按日或小時申請的親職假或稱彈性育嬰假並放寬請領子女年齡之限制以實現職場和家庭內的性別平等提案人委員黃秀芳、林月琴、王振旭宣讀完畢好那請問第一案行政單位有沒有意見
transcript.whisperx[410].start 11716.568
transcript.whisperx[410].end 11735.141
transcript.whisperx[410].text 報告主席各位委員那第一案的部分是剛剛有跟委員辦公室那邊溝通是希望可不可以改成三週內可以嗎?好好好那就照文字修正通過好那接下來第二案請行政單位有沒有意見
transcript.whisperx[411].start 11736.767
transcript.whisperx[411].end 11757.561
transcript.whisperx[411].text 跟委員報告就是因為我們委員關心契托的部分讓我們也非常重視在113年度救安基金有編列2902萬但是因為跟少子女化的一些對車的版本內容有一些不一樣的情形所以我們是不是做一些文字修正
transcript.whisperx[412].start 11758.802
transcript.whisperx[412].end 11782.115
transcript.whisperx[412].text 我來念一下,可以嗎?好,可以請您念我們修正完畢的新版文字。好,修正的臨時提案第二案修正為有鑑於勞動部乃規劃於113年度藉救安基金預算執行2902萬元經費藉以辦理行政院我國少子女化對策計劃專案內之鼓勵民間企業參與托育服務
transcript.whisperx[413].start 11786.638
transcript.whisperx[413].end 11796.27
transcript.whisperx[413].text 提升僱主辦理托兒設施或措施意願分工作業為根據我國少子女化對策計劃112年8月修訂版本內容顯示該作業之預算數僅編列2150萬元
transcript.whisperx[414].start 11804.801
transcript.whisperx[414].end 11828.234
transcript.whisperx[414].text 原要求勞動部限期於兩週內向立法院社會福利及衛生環境委員會提交未來精進鼓勵民間企業參與托育業務資源之規劃報告並與教育部檢討改進少子女化對策計畫內容與預算實際編列不一致情形以上
transcript.whisperx[415].start 11829.854
transcript.whisperx[415].end 11851.403
transcript.whisperx[415].text 請問委員有沒有意見?同意。好,那就照文字修正通過。謝謝委員。好,那第3案?報告委員,那第3案剛剛跟委員辦公室這邊溝通,同意是改成3週。是。那請問委員?同意。好,那就照文字修正通過。第4案?
transcript.whisperx[416].start 11852.846
transcript.whisperx[416].end 11871.92
transcript.whisperx[416].text 報告委員這個性別平等工作法他的相關的這些規定適用的部分包括軍公教所以我們建議是不是可以在這邊的話要求研擬你的單位裡面可以在勞動部後面增加教育部和國防部兩個單位
transcript.whisperx[417].start 11873.817
transcript.whisperx[417].end 11884.22
transcript.whisperx[417].text 好同意那就照文字修正通過謝謝委員那所有的事案和臨時提案全部處理完畢接下來請李彥秀委員發言請許部長請許部長
transcript.whisperx[418].start 11900.882
transcript.whisperx[418].end 11927.382
transcript.whisperx[418].text 李委員好 希望這個不是最後這一兩個月跟你打詢但是女性的勞動部部長無論您在位的時間有多久我還是希望過去我們長期關注的某一些議題包括廠價的延長、育嬰留職停薪我覺得我們都應該留下一些東西我相信你跟我應該都有同感那今天招委排這個議題特別好特別是
transcript.whisperx[419].start 11927.902
transcript.whisperx[419].end 11954.819
transcript.whisperx[419].text 前兩天上一週也是4月4號兒童節我們都非常清楚知道父母扮演的角色在兒童的成長過程當中是不一樣的包括有數據研究都顯示說爸爸的陪伴包括孩子在控制自己的情緒衝動還有認知學習能力對孩子都有幫助這是父母這是爸爸的角色但媽媽的更不用講我想我們大家都非常清楚好那我就看到你的書面報告當中
transcript.whisperx[420].start 11957.04
transcript.whisperx[420].end 11975.736
transcript.whisperx[420].text 有幾個數據就是在110年7月止到113年2月止你的書面報告有提到說我們育嬰留職停薪好像成果成效還不錯我們看到數據裡面但是我看就是111年跟112年看起來都有大概從19.70110年到111年增加到25.25
transcript.whisperx[421].start 11985.684
transcript.whisperx[421].end 12007.97
transcript.whisperx[421].text 女性略為減少一些那其實這個最主要的幾個原因是我們111跟112年我們有提出兩個還不錯的政策就是我們把育嬰留職停薪從6個月至少每在6個月我們放寬到30天另外一個就是我們的經濟支持就是我們的薪資替代率可達到八成
transcript.whisperx[422].start 12010.911
transcript.whisperx[422].end 12018.515
transcript.whisperx[422].text 這兩個確實對於男性申請育嬰留職停薪確實有幫助但是部長他就停留在這邊了
transcript.whisperx[423].start 12020.523
transcript.whisperx[423].end 12021.443
transcript.whisperx[423].text 我們現在是想說如何更彈性
transcript.whisperx[424].start 12048.592
transcript.whisperx[424].end 12071.527
transcript.whisperx[424].text 對﹗
transcript.whisperx[425].start 12071.667
transcript.whisperx[425].end 12072.928
transcript.whisperx[425].text 所以我覺得我們要努力的空間還是很大
transcript.whisperx[426].start 12093.61
transcript.whisperx[426].end 12114.637
transcript.whisperx[426].text 你到底後面要怎麼處理?你還有什麼政策工具?報告委員就是我剛剛講未來當然在男主外女姊妹這種觀念其實在性別平等的部分我們應該讓男性也願意共同來參與育兒那你的工具是什麼?工具第一個當然就是說我們如何在這個嬰留停上更有彈性讓男性更願意來使用
transcript.whisperx[427].start 12119.079
transcript.whisperx[427].end 12132.084
transcript.whisperx[427].text 然後再來就是可能經濟上的一個誘因的支持現在已經提高到八成那當然也有人說是不是要再提高但是這個會牽涉到財源的問題但是我覺得這個都應該來討論你在這個位置上也六年的時間我覺得我們經歷過很多
transcript.whisperx[428].start 12140.708
transcript.whisperx[428].end 12161.323
transcript.whisperx[428].text
transcript.whisperx[429].start 12161.883
transcript.whisperx[429].end 12168.326
transcript.whisperx[429].text 但是男性跟女性那個申請那個那個那個育嬰留職停薪的比例我覺得我覺得要達到一定的目標
transcript.whisperx[430].start 12179.011
transcript.whisperx[430].end 12179.851
transcript.whisperx[430].text 我為什麼這麼說 有時候颱風來了 國小不要去上課
transcript.whisperx[431].start 12201.243
transcript.whisperx[431].end 12227.42
transcript.whisperx[431].text 那勞工要上班啊對不對所以我的意思是說有時候用小時來計育嬰留職停薪的彈性會更多會更好我們現在是30天嘛所以也有很多民間團體說希望用小時以單位來彈性使用育嬰留職停薪的速度的制度所以讓男性他有更多的誘因去處理不是說家裡突然有事每次都要媽媽請假
transcript.whisperx[432].start 12228.871
transcript.whisperx[432].end 12241.37
transcript.whisperx[432].text 男性也可以去請假,請個半天帶孩子去看病也很好啊因為報告委員現在那個育嬰留停的津貼因為這個牽涉到津貼的問題如果用小時用小時可能在合幅上會比較麻煩一點 我覺得部長
transcript.whisperx[433].start 12244.775
transcript.whisperx[433].end 12261.337
transcript.whisperx[433].text 我覺得這都是技術性上的問題我們希望讓女生能夠留在職場上在職場上男女的平等是一樣的我覺得我們就要去克服這些問題沒關係這個部分我們大概就是因為我們有做一些世界各國的一些對因為你現在
transcript.whisperx[434].start 12262.879
transcript.whisperx[434].end 12272.966
transcript.whisperx[434].text 你現在在經濟部跟交通部你有試辦計畫但是試辦要試辦多久你不能一直試辦到年底而已你剛剛回答楊瓊英委員說到年底這個試辦計畫到年底到年底那你就要調整你就要開始食物上的問題在哪裡
transcript.whisperx[435].start 12280.891
transcript.whisperx[435].end 12299.917
transcript.whisperx[435].text 那你們以後會用彈小時來計有沒有機會報告委員現在就是說到底要日還是到小時這個我們就是一方面試辦的看這個整個當然現在試辦是用日啦但是是不是要到小時這個不然就半天嘛半天嘛因為看個病最起碼也排個隊也要兩三個小時嘛半日四小時
transcript.whisperx[436].start 12301.758
transcript.whisperx[436].end 12302.419
transcript.whisperx[436].text 我覺得現在我們想辦法
transcript.whisperx[437].start 12321.513
transcript.whisperx[437].end 12346.627
transcript.whisperx[437].text 我們會去了解研議套住適合臺灣的一個制度讓這個大家願意去生養然後讓職場的這些人力的運用也不會部長我覺得還是要努力啊國際我們現在已經少子女化在全世界已經倒數了所以不要說以臺灣適應臺灣的狀況我們要想辦法跟上國際潮流一直適應臺灣的我們現在就已經是倒數我不知道還要怎麼適應
transcript.whisperx[438].start 12347.728
transcript.whisperx[438].end 12348.649
transcript.whisperx[438].text 謝謝李燕秀委員接下來請陳培宇委員發言
transcript.whisperx[439].start 12373.058
transcript.whisperx[439].end 12378.903
transcript.whisperx[439].text 好謝謝主席那部長跟你喝口水辛苦了辛苦了請許部長好謝謝部長
transcript.whisperx[440].start 12383.722
transcript.whisperx[440].end 12404.99
transcript.whisperx[440].text 部長好辛苦了我們快速跟部長討論關於這個育嬰留停的部分剛剛好像也有委員提到關於這個0到6歲的部分那我想要再一次的表明其實這個0到6歲我覺得大家的這個想像跟訴求應該非常非常清楚了有時候是班上一有腸病毒然後就要休息而且全班一起休息或者是家裡有兩個小孩輪流生病
transcript.whisperx[441].start 12407.611
transcript.whisperx[441].end 12428.482
transcript.whisperx[441].text 不管照顧的人是父親還是母親其實也需要輪流休息那甚至呢其實最近一起的台灣很重要的親子天下期刊他們也發現在疫情過後這兩三年所謂的小烏龜寶寶越來越多早療的需求越來越多那我們知道一旦遇到有早療的需求其實爸爸媽媽請假那個天數就非常的複雜跟
transcript.whisperx[442].start 12429.722
transcript.whisperx[442].end 12436.288
transcript.whisperx[442].text 難以確定,主要是因為也要預約這個復健治療的時間,還要也要預約掛號的時間,甚至大家也知道早聊目前是卡關,這個我們後續再討論也就是說為什麼我們希望跟部長討論有沒有什麼樣的誘因跟方法,或者是勞動部這邊怎麼跟企業去討論目前只能用0到3嘛,那用到0到6的好意我覺得就是我剛剛講的這些訴求的可能性
transcript.whisperx[443].start 12453.735
transcript.whisperx[443].end 12475.062
transcript.whisperx[443].text 可不可以請部長簡單回應一下我想就是放寬這個方向我是覺得是可以來做研議也確實在我們的了解那職場上的父母親真的是有這方面非常迫切的需求所以這部分我也請業務單位來做一些討論但是當然你放寬之後
transcript.whisperx[444].start 12475.982
transcript.whisperx[444].end 12498.194
transcript.whisperx[444].text 有一些津貼就是會增加啦對沒錯沒錯那這個財源的部分我們如果光以救保的經費是不夠確實是不夠的所以這個部分就是可能院這邊要看看用公共預算我們可能就是要去做一些跨部位的協商我覺得政策方向如果是這樣定那財源上的支持怎麼樣這個都是要全面來更周延的來討論
transcript.whisperx[445].start 12499.815
transcript.whisperx[445].end 12526.224
transcript.whisperx[445].text 我覺得今天一整個聽下來應該跨黨派的委員都會支持然後如果只是預算的部分可是我覺得是勞動部這邊如何願意就如同部長之前說過的其實台灣有非常多中小企業他們可能在面臨這個議題他們心也想要這樣做可是資源的部分或者是人力怎麼安排上班的部分確實我相信也需要非常多勞動部積極的協助因為其實今天經濟部國防部也都在他們應該都聽到了他們也都有反應
transcript.whisperx[446].start 12526.804
transcript.whisperx[446].end 12545.752
transcript.whisperx[446].text 是,企業界的一些他們憂慮的地方,的確人力的運用是他們最大的困境,尤其我們的中小企業大概佔了97%,這97%裡面5人以下還佔了80%,所以這個部分到底要怎麼來,包括說我們未來就業的媒合如何來協助,包括
transcript.whisperx[447].start 12546.312
transcript.whisperx[447].end 12572.641
transcript.whisperx[447].text 甚至是不是有一些減稅的誘因等等這個都還要具體的討論有些東西不是勞動部可以決定但是我們可以把一些意見收集以後那可能點出一些方向請各部會來大家一起來及時廣益看怎麼解決問題然後甚至是提供更多的誘因給企業幫因為我自己以前開書店也是5人以下我只有兩個正職員工那如果有一個有育嬰留職停薪的需求那我當然就會有人力撥補上的困境
transcript.whisperx[448].start 12574.522
transcript.whisperx[448].end 12585.678
transcript.whisperx[448].text 所以我覺得有誘因很重要然後我們國家整個勞動部在設計這個相關跟企業對話的時候又把這件事情放進心裡我覺得也很重要就如同之前我在上次的質詢有跟部長討論到關於這個
transcript.whisperx[449].start 12588.851
transcript.whisperx[449].end 12589.671
transcript.whisperx[449].text 有所謂的未滿20歲懷孕服務及後續追蹤輔導計畫
transcript.whisperx[450].start 12617.845
transcript.whisperx[450].end 12636.398
transcript.whisperx[450].text 會有社工把這些爸爸媽媽年輕爸爸媽媽跟他們小孩所需要的照顧列為所謂社工個案管理那一旦列入所謂的個案管理才會有地方就業執訓單位提供就業資源這個部分我想勞動部應該是清楚的這個是衛福部的部分可是我們來看勞動部當這些年輕的爸爸媽媽他們
transcript.whisperx[451].start 12637.799
transcript.whisperx[451].end 12662.606
transcript.whisperx[451].text 跑來上勞動部主辦的15到29歲職涯諮詢或是青年執訓專班的時候或者是勞動部還有針對15到19歲沒有升學沒有就業的弱勢青少年職涯準備計畫都有我們都看到了可是一旦這些人他們是所謂年輕爸爸媽媽小爸爸小媽媽他們其實沒有相關的育兒資源的補助例如我舉個例子他們去參加執訓的課程就訓期間他們的寶寶誰要來照顧
transcript.whisperx[452].start 12666.187
transcript.whisperx[452].end 12689.995
transcript.whisperx[452].text 我們發現目前我們可以看到桃園市政府他們有相關的臨時托育補助或者是友善育兒的托育補助也就是說年輕的爸媽媽去上勞動部或是執訓局所開的執訓課程但是他們的小孩相關的托育補助是由勞動部來承擔來協助他們的不知道這個部分部長這邊你有什麼看法有沒有機會我們從勞動部的角度來推辦跟各縣市政府討論如何來試辦這個相關的育兒協助
transcript.whisperx[453].start 12693.936
transcript.whisperx[453].end 12715.387
transcript.whisperx[453].text 這個我來 我們來 協助單位這邊來評估看看好不好好 評估看看的意思是再積極一點啦 部長不管是幾歲的人生了小孩他們在參加執訓的課程都會有需要托兒托育的補助嘛我們其實五個分署現在都有教保中心啦如果他來
transcript.whisperx[454].start 12717.248
transcript.whisperx[454].end 12718.249
transcript.whisperx[454].text 接下來請黃國昌委員發言
transcript.whisperx[455].start 12761.816
transcript.whisperx[455].end 12763.561
transcript.whisperx[455].text 謝謝主席。麻煩有請部長。請許部長。黃元浩
transcript.whisperx[456].start 12769.538
transcript.whisperx[456].end 12793.364
transcript.whisperx[456].text 部長,延續著上一次諮詢的主題因為蔡總統8年的任期要到了8年時間到我們對於她在2016年所提出的勞工政策6大保證我們必須要做一個有系統的回顧上一次請教你的主題是薪資要增加這樣子的主張今天延續的這個主題我們從工時要減少第二個主題開始進行處理
transcript.whisperx[457].start 12795.385
transcript.whisperx[457].end 12823.355
transcript.whisperx[457].text 我相信過去這10年台灣成為過勞之島這樣子一個名稱這樣子一個口號它反映出來的並不僅僅是勞工團體的訴求而是台灣的勞工特別是我們的年輕人他們所面臨的困境針對蔡總統所提出來的公實要檢討這一項政見這個給勞工朋友的承諾過去這8年來部長你認為實施的成效如何
transcript.whisperx[458].start 12825.649
transcript.whisperx[458].end 12844.041
transcript.whisperx[458].text 報告委員這個我記得那時候修法齁那時候勞基法修法的時候關於加班的工資現在我不是在跟你討論加班的工資啦台灣目前的狀況就針對因為薪資過低嘛所以你要有比較長的工時才能夠賺多一點錢嘛
transcript.whisperx[459].start 12845.422
transcript.whisperx[459].end 12864.799
transcript.whisperx[459].text 神火才過得下去嘛那我就一樣一樣盤點嘛上一次我們處理完了薪資要增加嘛有增加沒有增加實際上面齁是不是處於一個薪資動漲的狀態每一個勞工心裡面有一把尺我今天請教你的是第二個主題啊工時要減少過去這8年覺得蔡總統表現得怎麼樣
transcript.whisperx[460].start 12866.871
transcript.whisperx[460].end 12892.226
transcript.whisperx[460].text 我想總統對這個部分一直都...非常的重視那我現在在講的是實際的效果你不用跟我講他很重視啦他對社會宣示一定是很重視的嘛現在我請教的是你實際的效果啊我們現在就是蔡總統上任之後我們的工時是有比以前有減少譬如說我們104年的時候大概那時候每年的
transcript.whisperx[461].start 12893.086
transcript.whisperx[461].end 12899.069
transcript.whisperx[461].text 來 我直接給你看數字啦2016年的時候2016年的時候是2035嘛過去這8年可能我的data我還沒有看到2023年的數字
transcript.whisperx[462].start 12908.012
transcript.whisperx[462].end 12922.906
transcript.whisperx[462].text 即使到20212022年的時候即使到2021、2022年的時候都還是維持那個時候有疫情喔都還是維持在每年2000個小時以上的高檔對這樣子的表現部長覺得滿不滿意這個齁
transcript.whisperx[463].start 12931.408
transcript.whisperx[463].end 12940.453
transcript.whisperx[463].text 這個工時的部分有加上這個應該是有加上加班工時的部分那因為加班我現在請教你的是對這樣的表現你滿不滿意這個統計這些數字都不是我掰的這個是勞動部2022國際勞動統計這是你們官方的統計我現在的問題很具體對這樣的表現部長覺得滿不滿意
transcript.whisperx[464].start 12954.94
transcript.whisperx[464].end 12966.768
transcript.whisperx[464].text 總統有沒有履行他的證件所以你的意思是說對於這樣子的表現你是滿意的比韓國的43.2日本的42.7其實我們台灣是比韓國比日本都來得好來看一看血汗工時排名啊台灣年年上榜啊
transcript.whisperx[465].start 12984.729
transcript.whisperx[465].end 13007.92
transcript.whisperx[465].text 2022年有沒有進步 有啊從第4名第5名進步到第6名終於什麼終於被智力給超越了終於被智力給超越了整個亞洲國家裡面比我們長的只有新加坡其他都是什麼哥倫比亞、墨西哥、哥斯大黎加、智力這樣的表現部長滿不滿意
transcript.whisperx[466].start 13009.469
transcript.whisperx[466].end 13010.71
transcript.whisperx[466].text 以台灣的狀況來講的話台灣的就業市場的狀態是怎麼樣
transcript.whisperx[467].start 13028.206
transcript.whisperx[467].end 13050.819
transcript.whisperx[467].text 那你就從台灣自己本身的表現來看我現在給你看的是從2016年到2022年有data的階段嘛我剛剛一直在請教你一個問題你一直在回避不敢正面回答對於蔡總統執政到目前為止他在2016年所提出來的政見工時要減少的表現你覺得滿不滿意
transcript.whisperx[468].start 13057.186
transcript.whisperx[468].end 13080.718
transcript.whisperx[468].text 這個問題有這麼難回答嗎我是覺得蔡總統上次確實把工資有減少啊去年的時候啊五一 去年五一之前勞工團體怎麼講的部長可以回去複習一下低薪過勞一樣是台灣勞動市場的代名詞啊以縮減的幅度來講
transcript.whisperx[469].start 13082.352
transcript.whisperx[469].end 13097.281
transcript.whisperx[469].text 你覺得我也不曉得你滿不滿意啦來我們來看一下工時縮減的幅度剛剛你要比南韓比日本嘛我從2016年當作base line到2022年縮減的幅度台灣是最低的欸我們不僅啊工時比人家長
transcript.whisperx[470].start 13103.394
transcript.whisperx[470].end 13125.162
transcript.whisperx[470].text 我現在你要講縮減的幅度從2016到2022有沒有進步 有阿進步1.3%阿你要不要看一下南韓跟日本的數字一個是6.3一個是5.6阿這個基本的問題部長可能在你的位置上啦回答起來很尷尬還是不敢講真心話
transcript.whisperx[471].start 13127.377
transcript.whisperx[471].end 13153.588
transcript.whisperx[471].text 這個數字臺灣勞工實際的生活每個勞工實際的感受恐怕不是你站在這邊想要幫蔡英文總統聞過是非就可以混得過去了第三點臺灣有薪假現在只有19天敬培莫作部長你覺得臺灣的有薪假有沒有再提升的可能性
transcript.whisperx[472].start 13155.333
transcript.whisperx[472].end 13163.66
transcript.whisperx[472].text 報告委 這個我們會來討論啦 這個你現在還要討論喔 你520就要新內閣上來沒有 業務單位會把這個問題齁 那麼當作過了8年你現在跟大家講的solution是你要討論 要討論什麼現實的數字就擺在那裡啊
transcript.whisperx[473].start 13176.052
transcript.whisperx[473].end 13202.084
transcript.whisperx[473].text 一樣是低薪過勞啊2016年跟勞工朋友講的承諾到2024年的時候該是拿來檢驗的時候了吧檢驗出來的結果就不堪檢驗嘛一樣是低薪過勞啊這是勞工團體講的啊客觀的數字也符合他們所提出來的聲音啊今天你作為勞動部部長我只希望你能夠很誠懇很誠實的面對現在的問題嘛
transcript.whisperx[474].start 13205.155
transcript.whisperx[474].end 13219.621
transcript.whisperx[474].text 現在過去這8年為什麼沒有成功哪裡做不好最起碼可以給新的政府一些誠懇的建議嘛而不是像你今天的態度一樣連面對問題的勇氣都沒有黃論解決問題啊部長你覺得我講的有沒有道理
transcript.whisperx[475].start 13228.251
transcript.whisperx[475].end 13234.876
transcript.whisperx[475].text 我的原則很簡單啦政治人物要選票跟廣大的勞工朋友做出了承諾當你要卸任的時候你的承諾有沒有deliver這就是大家要檢驗的嘛
transcript.whisperx[476].start 13257.841
transcript.whisperx[476].end 13262.003
transcript.whisperx[476].text 難不成你幹了8年以後不可以拿出來檢驗喔今天喔是第二趴六大承諾的第二趴下次見到部長的時候我們進行第三趴的檢驗謝謝好謝謝黃國昌委員發言接下來請徐欣盈委員發言徐欣盈委員徐欣盈委員不在
transcript.whisperx[477].start 13287.677
transcript.whisperx[477].end 13289.558
transcript.whisperx[477].text 主席好,有請部長請許部長
transcript.whisperx[478].start 13312.466
transcript.whisperx[478].end 13314.547
transcript.whisperx[478].text 那除了彈性育嬰假之外還有什麼是該做的
transcript.whisperx[479].start 13340.446
transcript.whisperx[479].end 13355.403
transcript.whisperx[479].text 這是我今天想提出來的兩大問題跟兩項育嬰假的改革建議部長你有沒有看過2019年聯合國的關於臺灣低生育率的原因的一個報告或者有人跟你簡述過
transcript.whisperx[480].start 13356.685
transcript.whisperx[480].end 13382.447
transcript.whisperx[480].text 有,那你應該知道聯合國的研究是看到臺灣低生育率原因在於育兒跟家務強烈的性別分工不均那這個部分臺灣其實是一個相對進步的立法因為我們當時是參照北歐的就是說就是能夠讓就是不同的parent不同的家長來請那你看到左邊這邊的線你也可以看到臺灣的女性
transcript.whisperx[481].start 13383.007
transcript.whisperx[481].end 13399.715
transcript.whisperx[481].text 只有25歲到29歲九成在職場隨著年齡急速下降這個限比日本跟南韓更可怕那這個限代表就是說其實相對日本跟南韓我們有很多的女性她隨著年齡會因為照顧工作被迫離開職場
transcript.whisperx[482].start 13401.217
transcript.whisperx[482].end 13418.216
transcript.whisperx[482].text 後端還可能變成是阿嬤的時候幫忙照顧孫子、孫子女這是我國的女性遇到的問題可以看你們育嬰留停津貼的男女情侶人數你可以看到100年到110男性情侶人數都低於兩成
transcript.whisperx[483].start 13418.817
transcript.whisperx[483].end 13440.819
transcript.whisperx[483].text 可是呢111年就是後端這個起來的時候是因為就是我們改變了部長應該知道嘛為什麼改變部長曉得就是當你把給的錢增加的時候到八成的時候男性情侶比例就突破了兩成那情侶人數增加4萬人成長了近五成
transcript.whisperx[484].start 13441.58
transcript.whisperx[484].end 13464.182
transcript.whisperx[484].text 這表示男性不是不願意請育嬰假而是他的薪水可能平均是比女性高比媽媽高所以相衡之下如果你提高了他就有動力請那這是一個非常重要的數字那這邊我也跟您訴求就是我自己也有參與的我們賴副總統的政見之一這個部長有看到吧有
transcript.whisperx[485].start 13464.622
transcript.whisperx[485].end 13465.322
transcript.whisperx[485].text 陸長您本人支持這個方向嗎?
transcript.whisperx[486].start 13493.772
transcript.whisperx[486].end 13515.099
transcript.whisperx[486].text 當然我是支持的我覺得這個是對照顧幼兒的這雙性是一種鼓勵跟獎勵我是覺得多一個月還好那部長既然支持的話我想我們不用等賴副院長上任其實您現在就可以再來規劃那這是一個就是我今天的第一個想問的
transcript.whisperx[487].start 13516.199
transcript.whisperx[487].end 13538.457
transcript.whisperx[487].text 現在我也想問的就是其實我們都有看到育嬰留停的薪資替代率很重要當你長到八成的時候相對薪資比較高的平均薪資比較高的爸爸就會來領那現在呢可是呢我們這種就是投保薪資的天花板是45800他反而是變相懲罰月薪較高的人
transcript.whisperx[488].start 13538.817
transcript.whisperx[488].end 13555.588
transcript.whisperx[488].text 因為月薪較高的人他最多只能夠領到36640等於是說收入他如果來申請的話那會大跳水那也影響到這群人申請育嬰留停的意願那不知道部長對這個有什麼看法
transcript.whisperx[489].start 13556.408
transcript.whisperx[489].end 13583.288
transcript.whisperx[489].text 有沒有機會我們來改善這一群人因為我想不管薪資高低都應該要讓他們有一樣的機會來請育嬰假這個是要打開天花板因為這個會牽涉到勞保財務的問題這一題委員妳講的我了解但是我因為這個我們的是比較那個主要那個勞保所以這個如果打開的話勞保財務馬上會受很大的影響所以這個嚴重比較大我是覺得未來可能
transcript.whisperx[490].start 13584.308
transcript.whisperx[490].end 13613.396
transcript.whisperx[490].text 這個部分就是如果老保的財務有改善的話這部分才能夠來思考當然我記得我們之前的委員也提出照顧基金就是說的那個附帶決議如果部長記得的話那不管財源是什麼我想這是一個我們生育率這麼低我認為這是一個非常重要的改革也希望部長就是能夠花更多的心力不管找學者或研議那因為因為留停如果薪資替代率低的話
transcript.whisperx[491].start 13613.976
transcript.whisperx[491].end 13634.626
transcript.whisperx[491].text 等於是讓大家不敢離開職場那最後我就兩個訴求第一個那請部長是不是可以研議提升約嬰留停今天的比例到九成或全新我想我們生育率這麼低那各種方法至少在國際上聯合國的相關研究這會是一個重要的
transcript.whisperx[492].start 13635.326
transcript.whisperx[492].end 13659.873
transcript.whisperx[492].text 第二個就是針對薪資超過月頭保薪資上限的勞工是不是能夠提出實質薪資替代率的配套措施當然我們知道財源或是一個問題可是跟我們的生育率比起來我想如何解決財源的問題應該是部長這邊要努力的那這兩個訴求跟今天這個主題非常相關的那部長是不是可以
transcript.whisperx[493].start 13660.493
transcript.whisperx[493].end 13661.134
transcript.whisperx[493].text 接下來請張雅玲委員發言
transcript.whisperx[494].start 13703.663
transcript.whisperx[494].end 13705.544
transcript.whisperx[494].text 好 那我們有請勞動部 請許部長
transcript.whisperx[495].start 13713.442
transcript.whisperx[495].end 13715.444
transcript.whisperx[495].text 一共63那其中中小型企業有幾家呢?我們扣除五十幾家
transcript.whisperx[496].start 13738.724
transcript.whisperx[496].end 13742.448
transcript.whisperx[496].text 中小企業?私人企業是53家,但是企業規模...我們這個企業規模都會比較大一點,對人力的運用上
transcript.whisperx[497].start 13753.541
transcript.whisperx[497].end 13772.288
transcript.whisperx[497].text 我們來申請的比較多是比較大型企業但是我們是不是可以來鼓勵中小企業呢畢竟從這個數據上面也可以看到嘛中小企業在我們台灣的整體的就業人口數來說是相對來說比較多的有到7成5所以如果我們報名的都是大型企業那其實是沒有反映到我們真實的就業市場的一個狀況
transcript.whisperx[498].start 13773.248
transcript.whisperx[498].end 13790.506
transcript.whisperx[498].text 中小企業當然它主要就是人力的運用上會發生困難那這部分我們會未來在我們的那個事辦委員這裡面包括說如何來優先媒合包括我們的發展署的一些就會媒合臺灣就會通等等資源會來協助優先幫他們媒合
transcript.whisperx[499].start 13793.069
transcript.whisperx[499].end 13817.885
transcript.whisperx[499].text 但是我想可能只有台灣就業通可能也還不夠因為畢竟我想在上面媒合工作人員還是相對比較少所以我們可不可以再有更積極的一些做法那這個東西沒關係我們可以再繼續的討論但是我希望是說這三天大概隔壁三天之後給我一些現在的企業參與的名單參與名單因為我也不好意思這恐怕又牽涉到這個個人這個私人企業的事業單位的意願問題是不是
transcript.whisperx[500].start 13819.966
transcript.whisperx[500].end 13821.888
transcript.whisperx[500].text 這個部分要跟他說明會之後才知道辦理的範圍
transcript.whisperx[501].start 13844.855
transcript.whisperx[501].end 13852.011
transcript.whisperx[501].text 因為我們要跟這些私人企業開座談會因為要做一些說明是不是容許我們
transcript.whisperx[502].start 13855.402
transcript.whisperx[502].end 13879.235
transcript.whisperx[502].text 再跟委員來回報大概什麼時候?半個月?兩個禮拜?一個月?半個月後吧。月五前好了。現在四月幾號?現在四月八號。半個月前好了。好。可以。那再下一個就是說想問一下我們法律規定的兒童是到幾歲呢?十八。欸。法律的規定是兒上學法是十二啦。人和國是十八沒有錯。那再來就是說
transcript.whisperx[503].start 13881.383
transcript.whisperx[503].end 13908.271
transcript.whisperx[503].text 我們的幼兒呢?我們的幼兒是幾歲?我們的幼兒規定的年齡是到幾歲?幼兒是3歲好沒關係我們看一下幼教法是到6歲2歲到6歲之前所以這是幼兒的定義但我們現在性別平衡法第16條裡面是定義就是說他在請育嬰留停是3歲以前那為什麼會定義一個3歲呢?部長知道嗎?
transcript.whisperx[504].start 13910.083
transcript.whisperx[504].end 13913.611
transcript.whisperx[504].text 因為可能那時候是考慮到又拖的一些機制吧
transcript.whisperx[505].start 13915.518
transcript.whisperx[505].end 13939.714
transcript.whisperx[505].text 當時沒錯,1991年的時候是想說我們的幼托機制未真完善所以是訂到3歲但是我想我們在幼托小朋友3歲之後難道家長就沒有照顧的需求了嗎?我們可以看到就是在這個長病毒每次到夏天這個時間長病毒都是個高峰期那冬天有流感我們現在在各縣市是有訂例要停課的次到七天
transcript.whisperx[506].start 13941.26
transcript.whisperx[506].end 13968.629
transcript.whisperx[506].text 那這樣子的狀況之下到底家長要怎麼照顧小孩呢?6歲以上這是小時候的部分對我們有家庭照顧假沒有錯但是我們家庭照顧假是的情的比例非常的低耶我們的男性只有2.1%女性只有5.5%因為他為什麼不好用為什麼情理的人這麼少重點就是因為他不執行嘛主要是他沒有給心對他沒有給心嘛
transcript.whisperx[507].start 13970.939
transcript.whisperx[507].end 13993.914
transcript.whisperx[507].text 再來看我們再來看這也是衛福部自己的一個調查衛福部調查是說我們有非常高的比例的女性都是因為照顧孩童離職的我們其實今天一直在講說女性就業的人口勞動力不要下減不要因為照顧家庭而離開職場可是我們現在種種的不確定種種的不利因素都讓女性必須因為照顧未滿12歲的兒童離開職場
transcript.whisperx[508].start 13996.616
transcript.whisperx[508].end 14022.694
transcript.whisperx[508].text 所以我們這個家庭照顧假呢是不是有可能可以讓他再去做一些修正讓他可以知新也讓他可以去延長延長到12歲因為以現在的需求他就是以現在的一些法規的支持就是不夠欸這部分是不是可以去調整來研議放寬到12歲呢包括我們往這個方向來研議
transcript.whisperx[509].start 14025.129
transcript.whisperx[509].end 14050.208
transcript.whisperx[509].text 那這個部分還有就是除了12歲之外還有就是說家庭照顧假之心的部分因為目前就是新聞已經有講了嘛公務人員有可是勞工一直都沒有那這個明明我們最大就業人口就在勞工市場那這一塊是不是也可以這個部分當然就牽涉到財源啦對財源怎麼來解決這個部分我們再來可能要跨部會討論對那這個我們大概什麼時候可以會有更進一步的一些研議的結果呢討論的結果
transcript.whisperx[510].start 14057.003
transcript.whisperx[510].end 14080.94
transcript.whisperx[510].text 我是覺得委員因為這個問題會當然不只裁員包括人力的調配等等我們是認為說可能我們再跟相關的工商團體勞工團體做一些討論然後再來看看推動的時程讓我想我們沒有設限就是如果討論大家都有支持我們當然可以很快來處理但是
transcript.whisperx[511].start 14082.461
transcript.whisperx[511].end 14099.987
transcript.whisperx[511].text 當然有這個共識之後那再跟跨部會這邊因為財源的部分要怎麼解決必須院的層級來幫忙好那這樣子好不好我們還是因為我們還是持續來追蹤那大概3個月之後我們再來追蹤一下這個進度好不好好不好謝謝喔好謝謝張雅玲委員發言接下來請陳瑛委員發言
transcript.whisperx[512].start 14124.916
transcript.whisperx[512].end 14129.699
transcript.whisperx[512].text 好謝謝主席麻煩請這個條平司黃司長請黃司長委員好
transcript.whisperx[513].start 14139.543
transcript.whisperx[513].end 14168.378
transcript.whisperx[513].text 市長好那記得上次本席有請教您這個性別平等的問題所以今天我要再繼續請教這個育嬰留職停薪的這個問題首先我要請教的是這個育嬰停留的依據是不是放在性別平等工作法裡面報告委員是好那如果這樣育嬰留停的這個申請比例如果有性別上的差異的話那是不是就出現了性別不平等的問題了
transcript.whisperx[514].start 14169.639
transcript.whisperx[514].end 14170.54
transcript.whisperx[514].text 我的問題就很簡單啦簡單問你就簡單回答是
transcript.whisperx[515].start 14187.983
transcript.whisperx[515].end 14211.678
transcript.whisperx[515].text 所以司長你今天這個專報上的題目是如何增加男性申請育嬰留職停薪的比例你以司長男性司長的這個身份是不是支持應該增加男性的比例我支持好那司長你增加這個男性增加比例這裡的增加我要請教一下是
transcript.whisperx[516].start 14213.228
transcript.whisperx[516].end 14220.239
transcript.whisperx[516].text 男性跟女性比呢還是男性自己跟自己比還是男性未來跟過去比
transcript.whisperx[517].start 14221.782
transcript.whisperx[517].end 14243.939
transcript.whisperx[517].text 都要比那我們再看一下這個簡報上面是勞動部的這個新聞稿那事實上呢111年1月開放父母可同時請領育嬰留職停薪津貼的時候就已經不涉及任何性別不平等的問題了
transcript.whisperx[518].start 14245.78
transcript.whisperx[518].end 14262.423
transcript.whisperx[518].text 對一個家庭而言他們要考慮的是兩個通通不要或者是兩個通通不領或者是一個領還是兩個都領那我不知道的是說師長你有沒有自己帶小孩的經驗
transcript.whisperx[519].start 14263.604
transcript.whisperx[519].end 14276.499
transcript.whisperx[519].text 報告委員我三個小孩那你應該經驗豐富那這個帶小孩跟去上班我們都是過來人我也知道非常辛苦我也曾經帶小孩子來立法院質詢過
transcript.whisperx[520].start 14279.241
transcript.whisperx[520].end 14298.814
transcript.whisperx[520].text 但是陪著小孩的這個成長其實他是應該說更有幸福感也有成就感也非常的快樂所以如果在收入減損的幅度不大的時候呢我想大家所有的父母都應該會多會選擇說留職在家照顧小孩子才對
transcript.whisperx[521].start 14300.555
transcript.whisperx[521].end 14320.047
transcript.whisperx[521].text 那就是其實我有看到這個安研所有一份這個研究報告他寫得非常好那就是這個這個報告是育嬰留職停薪津貼勤領者職牙變化之探討我稍微念一下這個重點
transcript.whisperx[522].start 14323.134
transcript.whisperx[522].end 14339.781
transcript.whisperx[522].text 就老保投保薪資集聚觀察呈現兩極化分配及投保薪資集聚集中於兩端的族群比重相對較高我想這一份研究報告大家有空可以去看一下蠻值得參考的
transcript.whisperx[523].start 14341.962
transcript.whisperx[523].end 14363.617
transcript.whisperx[523].text 按照這個現行的規定我們有月投保薪資六成的補助加上兩成的津貼那參考主計處112年全年受僱員工人數平均為817萬8千人那全年呢每人每月總薪資的平均是如果我們以這個58545元來看
transcript.whisperx[524].start 14367.079
transcript.whisperx[524].end 14384.694
transcript.whisperx[524].text 而且是以這個最高的這個勞保級距的45800元來計算那每申請一件6個月的這個育嬰留職停薪代表他的每月的家庭收入呢實際上就減少了22000元
transcript.whisperx[525].start 14386.776
transcript.whisperx[525].end 14405.47
transcript.whisperx[525].text 而且這個換算起來實際收入越高減少的就越多所以一般收入有限的家庭一般正常來講他就會一定是由這個薪資比較低的那一方優先考慮申請這個育嬰留停的這個津貼那這樣子的話對於這個整個家庭的這個財務衝擊就會比較小一點所以這個問題的癥結點
transcript.whisperx[526].start 14414.617
transcript.whisperx[526].end 14436.668
transcript.whisperx[526].text 是在於家庭收入較低的一方統計起來看起來似乎女性的比例都是比較高的所以勞動部應該思考的問題是如何提升女性的薪資水平而不是只是去思考如何提升男性育嬰留停的比例
transcript.whisperx[527].start 14437.889
transcript.whisperx[527].end 14455.906
transcript.whisperx[527].text 所以整個數據統計下來其實它是一個經濟的問題而並非絕對是個性別差異的問題所以市長你有沒有想過如果我們的這個勞工朋友的家庭每生一位孩子那
transcript.whisperx[528].start 14457.067
transcript.whisperx[528].end 14481.038
transcript.whisperx[528].text 父母親同時請這個育嬰留停津貼就代表我們國家就減少一個勞工人年的一個勞動力那以112年為例我們台灣有13.5名的這個新生兒那如果父母雙方通通一起來使用這個育嬰留停津貼的話代表我們減少的是13.5萬個這個勞工人年的這個勞動力
transcript.whisperx[529].start 14484.54
transcript.whisperx[529].end 14511.468
transcript.whisperx[529].text 那這個部分的這個缺工是不是有沒有可能是需要以這個外籍勞工來補充那會不會增加這個外籍勞工的人數報告委員那個如果申請育嬰留時停薪是可以禁用部分定期契約的替代人力那這個部分的話就是我們的發展署那邊會全力先找找看國內有沒有願意來做的人好那我們再繼續看一下就是
transcript.whisperx[530].start 14514.212
transcript.whisperx[530].end 14530.548
transcript.whisperx[530].text 基本上本席當然雙手雙腳贊成就是說我們育嬰假越多越好但是要有完善的配套因為這個剛剛講的他可能造成這個勞動力短缺的問題所以如果今天我們就這個專報的題目來看
transcript.whisperx[531].start 14534.311
transcript.whisperx[531].end 14556.074
transcript.whisperx[531].text 男性女性的權益相同的時候那我們如果要增加單一性別的申請比例的時候那等於可能造成一個家庭的總收入的減少嘛那一個兩萬二那兩個就四萬四那半年勒就等於加起來二十六萬四千元勒那哪一個這個年輕的這個勞工家庭承受得了
transcript.whisperx[532].start 14556.975
transcript.whisperx[532].end 14564.918
transcript.whisperx[532].text 所以師長我要請教就是說你要如何增加男性的育嬰申請假的比例呢?
transcript.whisperx[533].start 14576.588
transcript.whisperx[533].end 14593.026
transcript.whisperx[533].text 這個部分的話就是大家有在討論說讓他在彈性更高一點的情況下就是說我們這次在試辦把30天看有沒有機會在某一個程度上再下降一點那他可能彈性申請的運用的機率就會再高一點
transcript.whisperx[534].start 14594.053
transcript.whisperx[534].end 14613.354
transcript.whisperx[534].text 好那我再來算個那個給你聽就是我們113年同酬日是這個2月23日那男女雙方還有54天的這個薪資差異那你們有沒有針對女力的提升然後補充短期專業訓練的課程的費用嗎有沒有這個
transcript.whisperx[535].start 14619.223
transcript.whisperx[535].end 14635.167
transcript.whisperx[535].text 這個訓練的部分的話在我們發展署那邊有努力我就知道你會講發展署完全在我的預料之內你有去比較大型事業單位男女性別勞工的投資這個投保薪資的變化是否有這個顯著的差異有沒有
transcript.whisperx[536].start 14637.828
transcript.whisperx[536].end 14642.831
transcript.whisperx[536].text 你們有沒有真的去找性別不平等造成的這個勞工權益損失的證據對來說明有沒有想一想有沒有
transcript.whisperx[537].start 14666.807
transcript.whisperx[537].end 14695.694
transcript.whisperx[537].text 還是...其實我下一題根本就不用問因為你已經...你已經露出我預測的問題就是我下一個要問說你該不會認為以上的問題都和你業務無關吧你已經點名別的數了我們這邊的話就是一定包括這個性別平衡的部分一定會一起來去解決它不是一個單一點就是還是我比較擔心說還是你只是會提醒勞資雙方說不要發生職場性騷擾就代表你們性品做得好
transcript.whisperx[538].start 14696.354
transcript.whisperx[538].end 14725.335
transcript.whisperx[538].text 不是不是這樣最好是這樣阿你也不要想說那個全部都是別人的工作好本期順帶提醒一下勞動部現在有兩個單位執掌法律名稱變了或者是因為執行的不好那整部法律名稱內容都更改了但是還是沿用這個會沿用原主管法律名稱像這個性平法已經變成性工法了但是呢你們還是叫調平司嘛那另外職安署
transcript.whisperx[539].start 14726.235
transcript.whisperx[539].end 14751.953
transcript.whisperx[539].text 職安署呢這個職保法都已經沒有了那業務呢也轉到這個勞保局了可是呢還有一個這個你們還有一個職保署嗎職保組那這樣會不會有一點名不正言不順還是說要不要裁撤我想我就丟出這些問題讓各位主管海巨首長去思考一下那最後本期就是要再一次我要謝謝也要肯定我們許民村部長
transcript.whisperx[540].start 14753.334
transcript.whisperx[540].end 14768.213
transcript.whisperx[540].text 非常傑出的領導因為我們這一次準備質詢我才發現一件事情其實今天很多委員提了但是大家都沒有提到後面我要講一下忽然大家耳朵都豎起來
transcript.whisperx[541].start 14770.072
transcript.whisperx[541].end 14788.873
transcript.whisperx[541].text 110年提高育嬰假兩成的補助還有111年的父母雙方同時都可以領這個真的是我們徐部長很重要的政績要給他掌聲鼓勵那再來各位同仁你們可以拍大聲一點
transcript.whisperx[542].start 14792.303
transcript.whisperx[542].end 14817.902
transcript.whisperx[542].text 那這個性供法的修訂跟這個災保法的這個訂定尤其是災保法更是本席擔任召委於許部長我們當時那段過程還有我們很多委員的參與大家共同努力之下突破了15年以來各界的疑慮順利完成的非常的不容易那災保法實施之後呢部長其實更是兼任這個法人的董事長
transcript.whisperx[543].start 14819.103
transcript.whisperx[543].end 14845.73
transcript.whisperx[543].text 但是呢他凡事親力親為但是做兩份工作卻只領一分薪水而已啦那我相信許部長的這個身影會一直留在我們的這個勞動部每一位同仁的心裡還有我的心裡那也提醒我們勞動部的官員們以後這個推動法案可能就不見得有這麼容易啦那我們大家還是要繼續努力以上跟大家共勉之謝謝謝謝委員
transcript.whisperx[544].start 14848.902
transcript.whisperx[544].end 14853.246
transcript.whisperx[544].text 好,謝謝陳英委員接下來請劉建國委員發言好,謝謝主席慎重歡迎部長請許部長劉委員好
transcript.whisperx[545].start 14872.773
transcript.whisperx[545].end 14898.798
transcript.whisperx[545].text 為什麼你一樣也會留在我心中我們要辦理這個試辦彈性的育嬰留子停薪目前就是要在5月以後來試辦到12月底施行期間我們可能會延後因為有相關的配套等等我們需要認為再徵詢大家意見所以大概會延後一些為什麼要延後一些
transcript.whisperx[546].start 14900.244
transcript.whisperx[546].end 14924.285
transcript.whisperx[546].text 你到12月底才剩下8個月你已經的收集需要一些時間因為委員很多的指教我也認為有道理是因為今天質詢之後沒有沒有上一次上一次我們公布那個原則以後很多委員認為我們那個應該要讓整個原則更有誘因然後讓大家更好使用願意來因為這東西所以你們要延後什麼時候你原本是5月1號沒有錯可能會延後一個月
transcript.whisperx[547].start 14925.386
transcript.whisperx[547].end 14940.01
transcript.whisperx[547].text 就可能6月1日,如果到12月底就剩下7個月,應該這麼說嗎?因為試辦期間也不要太長,我們其實就是看所以你們公文是3月15日就發給各公司單位來邀請嗎?歡迎大家來參加,對不對?報名其實是4月,有改嗎?
transcript.whisperx[548].start 14949.048
transcript.whisperx[548].end 14968.761
transcript.whisperx[548].text 你要延後有再改嗎?這個其實陸續還會再收,我們到4月1號有收到的是63家啦齁對反正後續還會後續還會陸續收到不是啊你們原本截止日是就是4月1號嗎?啊有沒有在延後截止日嗎?如果沒有延後那就是63家嘛那你要延後到什麼時候嘛?
transcript.whisperx[549].start 14969.775
transcript.whisperx[549].end 14983.881
transcript.whisperx[549].text 你們現在延後示範計畫那你的截止日要不要延後嘛可以啊 這沒有問題要延到什麼時候嘛我們大概就是到這個月月底吧本來是4月1號我們就延到4月底4月底現在馬上決定了對
transcript.whisperx[550].start 14985.862
transcript.whisperx[550].end 15015.248
transcript.whisperx[550].text 可以這個因為原則就是業務單位這邊如果作業可以因為你如果到原有是4月以後是爆米結石是六三家我是覺得這樣收到的啦可能還有啦因為那個郵件可能有些會比較慢一點有應該也不多了啦對不對對啊就是說小規模看看先瞭解事辦為什麼一定叫做小規模如果你的願意足夠啊就像你們的報告裡面寫了很多歡迎歡迎歡迎啊
transcript.whisperx[551].start 15015.998
transcript.whisperx[551].end 15036.186
transcript.whisperx[551].text ﹏﹏
transcript.whisperx[552].start 15036.646
transcript.whisperx[552].end 15064.248
transcript.whisperx[552].text 我是不是說比例啦?你們掌握的比例是公部門居多還是市部門居多?市部門多市部門多過於公部門是這樣?對那就不錯喔這樣的政策要去形成之前的事辦計畫那就會產生效果喔如果是公部門大過於市部門那我會覺得很大的討論空間嘛那如果是市部門大過於公部門那當然就那當然幹嘛再延後那就奇怪了
transcript.whisperx[553].start 15068.559
transcript.whisperx[553].end 15077.624
transcript.whisperx[553].text 因為之前有委員建議說我們其實在增加幼嬰或許會有更多人有意願所以我想這個也有道理所以我們其實4月2日才找局我們有時候美式委員有時候建議也不一定會聽
transcript.whisperx[554].start 15083.067
transcript.whisperx[554].end 15101.519
transcript.whisperx[554].text 你們都聽哪幾個委員沒有啦,我們建議的委員都會聽啦有道理的我們都會我們都會來參考啦但是有些委員的也的確他會擔心說如果我們沒有他是擔心說我們這樣是不是沒有沒有意願要做所以
transcript.whisperx[555].start 15103.059
transcript.whisperx[555].end 15130.392
transcript.whisperx[555].text 這樣故意弄一個不是很完整的原則我想也不要引起大家的疑慮所以委員的建議的部分包括幼嬰啊包括...我剛剛就問出一個重點嘛如果說你們到截止日是私部門、大櫃、公部門而且比例還高過很多基本上那就是私部門也可以去認同而不是說因為是你們要推然後公部門就必須要很勉強去配合你們所以你們在報告裡面都要用歡迎歡迎歡迎的字眼然後很多的但書但書但書我還擔心你們會產生淡淡的哀愁
transcript.whisperx[556].start 15131.312
transcript.whisperx[556].end 15132.072
transcript.whisperx[556].text 這一個原則有這麼多的彈數 這已經不叫做原則了吧 對不對
transcript.whisperx[557].start 15160.141
transcript.whisperx[557].end 15167.147
transcript.whisperx[557].text 報告委員我無意挑戰這一個人的協話不過這樣的規範好像有點奇怪我們1月的時候有召集相關的工商團體有開會他們都認為說試辦OK但是認為說不要一開始太多的限制所以讓他們多一點空間所以我們才會多出這麼多的彈數
transcript.whisperx[558].start 15184.481
transcript.whisperx[558].end 15204.569
transcript.whisperx[558].text 所以我們現在有很多委員講完之後就是說怎麼是在5日前那5日前那大家每個家長都必須要有通靈才知道4月3日的5日前會發生大地震對不對然後每一個家長都必須要了解到什麼時候可能會有殘病毒的基底感染所以都要在5日前就要通靈了
transcript.whisperx[559].start 15205.669
transcript.whisperx[559].end 15230.787
transcript.whisperx[559].text 不可能嘛,所以你們才會歡迎有低於不入的也可以提出然後幾個小時的也可以提出,是不是這樣?是對啊就是因為這是自願性所以盡量空間大一點啦我們就是定一個原則性但是不是那麼強制啦所以會有一段數會比較多看起來是對委員講的就會覺得怎麼那麼多段數而且就是
transcript.whisperx[560].start 15231.383
transcript.whisperx[560].end 15247.033
transcript.whisperx[560].text 用意就是讓大家盡量能夠更多的彈性更多我們要辦這個示範計畫勞動部最主要還是要去反映一個真實的狀態我們才知道這個政策是不是可長可久是不是對勞工真的是一大福音
transcript.whisperx[561].start 15247.833
transcript.whisperx[561].end 15262.434
transcript.whisperx[561].text 但是如果說只是一個豁免的保惠還是人力的媒合的優先的服務等等等在就像剛才部長講的很多人就提出沒有更好的幼嬰他為什麼要優惠勞動部現在訂出來這些相關的規範他就不需要嘛
transcript.whisperx[562].start 15262.875
transcript.whisperx[562].end 15263.295
transcript.whisperx[562].text 第二件事也是這樣
transcript.whisperx[563].start 15286.084
transcript.whisperx[563].end 15286.104
transcript.whisperx[563].text 這個違反
transcript.whisperx[564].start 15313.642
transcript.whisperx[564].end 15320.875
transcript.whisperx[564].text 違反了嘛對違反了好然後再來再看下一則勞動部在4月3日的早上9點就發這個新聞稿
transcript.whisperx[565].start 15322.417
transcript.whisperx[565].end 15344.984
transcript.whisperx[565].text 很棒然後你看4月3日11點52分這又是另外一個群組裡面今天遲到同仁要請假一小時全請減半你再看下一頁沒辦法這是另外一個群組沒辦法這就是規定我也遲到了甚至於全請不會扣半是全扣但也是沒辦法那下面又另外一個群組
transcript.whisperx[566].start 15346.084
transcript.whisperx[566].end 15347.145
transcript.whisperx[566].text 這是另外一個群組部長怎麼看這個事情
transcript.whisperx[567].start 15366.409
transcript.whisperx[567].end 15389.381
transcript.whisperx[567].text 報告委員有兩個問題剛剛那個群組的line有可能在我們新聞稿還沒有發布之前他們就先那個但是後來我們那個有說明之後我想他們應該要遵守法律的規範那第二個當然有些可能不了解那我覺得我們在法令宣導上要更加強針對這些雇主端來讓他們了解
transcript.whisperx[568].start 15392.182
transcript.whisperx[568].end 15409.438
transcript.whisperx[568].text 那包括另外就是說如果真的權益有受損他們沒有改變的話可以來申訴啦齁那申訴的話各地方政府都會來處理那如果還是還是這樣子你都沒有相互我的資料你們是9點公佈的這個群組大概是11點52分我們公佈沒錯啊他有沒有看到也是一個問題啦齁那如果是11點52分我們公佈以後
transcript.whisperx[569].start 15415.744
transcript.whisperx[569].end 15439.125
transcript.whisperx[569].text 不一定是勞工看到嘛最起碼僱主也要看到嘛所以僱主看到你們這一張好像也視若無睹然後你們連一個這個通報的專線都沒有只是一個這個新聞稿的聯絡人叫做李先生他留行動還有手機如果像這麼多者的情況之下這個李先生可能要待這個單位待很久我相信也有困難
transcript.whisperx[570].start 15441.387
transcript.whisperx[570].end 15466.566
transcript.whisperx[570].text 他會很辛苦他壓力會很大他會生前彈性的那個暈金黑對啊你新聞稿出來了啊連一個要通報的專線都沒有啊上面還寫一個主管的名字叫黃市長黃市長你後面要再括號你的行動啊你才可以分擔李仁隆先生的這樣的一個壓力吧對啊因為我的辦公室找了這三者我可能被委員辦公室
transcript.whisperx[571].start 15468.651
transcript.whisperx[571].end 15483.356
transcript.whisperx[571].text 黃偉你報告是應該也有嘛對不對我們就要打電話給市長打電話給李先生來反映這個事情怎麼僱主到現在不曉得這個事情怎麼僱主還敢幹這種事情怎麼讓勞工還有在這麼大地震大家都舉國都在難過的過程裡面他們為了他們的這個權錢要被扣東扣西還在思考這些事情還會遇到這種事情
transcript.whisperx[572].start 15496.952
transcript.whisperx[572].end 15524.947
transcript.whisperx[572].text 所以你們應該是應該是那你還是憂慮雇主制動憂慮法規的心態歡迎沒有啦不會啦這個這個報告委員這如果他們還是執意這樣做那勞工一定可以來申訴啦不管打1955或是地方政府勞工局也都會有專線來處理我希望我希望部長你就聽到我把這些資料提供給你嘛對不對是不是有更強硬的一個清稿然後把1955你就留上去吧
transcript.whisperx[573].start 15525.587
transcript.whisperx[573].end 15552.258
transcript.whisperx[573].text 好 那這樣司長跟李先生才會可能可長可久嘛以後我交代同仁啦像這些都要把我們195專線寫在上面讓勞工都能夠了解好 最後一件事情啦主席 這個也蠻重要的齁這個大地震也震出很多公關問題我相信這個媒體報導已經幾乎每天都在報奇怪 有地震也沒有掉沒地震也掉 那地震掉了更多沒地震的掉了更少嗎 那倒也未必了
transcript.whisperx[574].start 15553.178
transcript.whisperx[574].end 15567.971
transcript.whisperx[574].text 要不要勞動部署這邊趕快跟國土署然後跟地方政府趕快的看著要怎麼去做這些事情的營業不然就在這樣一個高空的吊壁經常在吊我覺得太恐怖了吧
transcript.whisperx[575].start 15568.792
transcript.whisperx[575].end 15585.14
transcript.whisperx[575].text 像你看去年的5月10日是在台中捷運嘛已經造成一死十傷那同樣的去年10月28日在新北的林口也是這個吊壁的斷裂意外砸到了公車艇還有公車剛好沒有人 對不對?所以你要講給你講
transcript.whisperx[576].start 15586.6
transcript.whisperx[576].end 15607.231
transcript.whisperx[576].text 謝謝委員提醒這個去年兩件案子是跟地震沒有關係這次地震全國有7個塔掉確實有些狀況我們立即給它停工他們後面要拆除或調整當然依照安全標準來處置那這個災害發生之後我們要請各地方交易機構特別提醒有塔掉的要先做自動檢查OK才可以繼續做這都我們做後面就全面展開了謝謝委員提醒
transcript.whisperx[577].start 15608.455
transcript.whisperx[577].end 15634.03
transcript.whisperx[577].text 我想不是因為只有單純地震這個原因啦對不對因為從去年開始其實有些事是可能沒有這麼嚴重他也不一定見報嘛所以我是覺得是不是署這邊要去會同國土署還有地方政府加強嘛因為現在的建築案件坦白講比照往年來講都是非常非常的成長嘛所以我是覺得這種事情真的不能輕忽啦好不好好謝謝
transcript.whisperx[578].start 15639.513
transcript.whisperx[578].end 15643.654
transcript.whisperx[578].text 好謝謝劉建國委員接下來請洪生翰委員發言請許部長
transcript.whisperx[579].start 15660.606
transcript.whisperx[579].end 15660.867
transcript.whisperx[579].text 委員好
transcript.whisperx[580].start 15676.049
transcript.whisperx[580].end 15683.676
transcript.whisperx[580].text 如果要育嬰的人他沒有辦法選擇育嬰留停很有可能他的變成就變他可能是要離職所以這可能反而造成就業上面的不穩定
transcript.whisperx[581].start 15699.01
transcript.whisperx[581].end 15721.759
transcript.whisperx[581].text 在今年年初的時候我其實有揭露了一個衛福部他是用衛福部經費聘用在民間團體服務的社工人員他因為育嬰留停所以變成他整筆的年終獎金都會消失這部分我在今年1月的時候有揭露就部長來說你對這個事件部長有什麼看法
transcript.whisperx[582].start 15724.117
transcript.whisperx[582].end 15751.594
transcript.whisperx[582].text 我想不能因為育嬰留停而對勞工有不利的對待是部長說得很好那當然這一個事件後來衛福部他們也做出做法的上面的調整那所以我覺得剛剛部長講到一個重點就是不能因為育嬰留停而對勞工有不利的對待或差別的對待那所以接下來我要跟我要談的事情是關於我們的公立大學裡面的問題所以我現在想請
transcript.whisperx[583].start 15753.564
transcript.whisperx[583].end 15760.089
transcript.whisperx[583].text 教育部人事處.然後人總的考用處.跟權敘部的全省司機上台三位處長來
transcript.whisperx[584].start 15774.211
transcript.whisperx[584].end 15792.576
transcript.whisperx[584].text 三位處長然後跟司長這個我想跟你說這段時間有越來越多的這些公立大學裡面的社工師來跟我澄清他們在講到這個大學裡面也有因為育嬰留停的不公平的制度我想先請三位處長跟司長來看一下這張圖
transcript.whisperx[585].start 15796.074
transcript.whisperx[585].end 15821.395
transcript.whisperx[585].text 這是一位校園內的專案社公司那這個專案社公司是是拿教育部的經費的專任專業輔導人員那他因為請了育嬰留停所以復職後雖然他的在職的表現他仍是拿假等但是因此因為請了育嬰留停所以連兩年無法加薪因為他被令於考核就是在我們的規定裡面下一張
transcript.whisperx[586].start 15823.943
transcript.whisperx[586].end 15848.356
transcript.whisperx[586].text 在規定裡面有說只要你育嬰留停就會被下面打為令於考核也就是就算你考機是甲等、乙等、丙等但是對不起你還是不能進行這個規定不是只是單一間大學有我們查了好幾間學校在好幾間學校的國立大學的契顧人員工作考核實施要點裡面都是這個狀況我想先請許部長
transcript.whisperx[587].start 15850.151
transcript.whisperx[587].end 15866.119
transcript.whisperx[587].text 你覺得喔如果這個一個職場裡面有人因為請了育嬰留停所以他就特別被標注這是明文寫的喔就不盡心不能加薪覺得這是不是一個不利的對待或者歧視性的對待我要問教育部這個狀況你們什麼看法
transcript.whisperx[588].start 15872.358
transcript.whisperx[588].end 15895.33
transcript.whisperx[588].text 跟委員報告因為有關那個專案教室編制外專案教室的部分他那個沒有是他也是屬於那個編制外的相關的行政人力的一種那他可能那個沒有工作滿全年的這個原因很多不光只是因為留職停薪的關係所以說學校這個部分可能會對他的考核部分是用另一種考核來處理
transcript.whisperx[589].start 15897.011
transcript.whisperx[589].end 15916.898
transcript.whisperx[589].text 這邊寫了如果他的工作表現不好但是他就算工作表現OK他是假等的也會因為他育嬰留停而被要求令於考核剛才下面因為育嬰留停被令於考核而且在令於考核裡面就寫明他是不盡心的相比於其他是不盡心的
transcript.whisperx[590].start 15920.094
transcript.whisperx[590].end 15936.344
transcript.whisperx[590].text 他的表現如果不好沒有辦法被加薪我們沒有什麼好說的但他表現OK烤雞夾等同樣都是其他烤雞夾等的人可以加薪但對不起因為你育嬰留停所以你不進薪這什麼道理
transcript.whisperx[591].start 15938.387
transcript.whisperx[591].end 15941.808
transcript.whisperx[591].text 今天不管他是公務人員還是勞工在這個規定裡面明明白白寫了這就是歧視性的對待嘛因為你育嬰留停
transcript.whisperx[592].start 15965.632
transcript.whisperx[592].end 15988.409
transcript.whisperx[592].text 所以我不管你的考機如何我不管你工作表現如何就是不能加薪這上面就是這樣寫的啊而且這不只是一間大學喔這是幾間大學都有類似的規定喔所以那個處長我說教育部人事處處長你不覺得這該休嗎如果按照剛剛部長說的這其實是一個不利對待喔
transcript.whisperx[593].start 15991.395
transcript.whisperx[593].end 15991.776
transcript.whisperx[593].text 最後我要說
transcript.whisperx[594].start 16011.258
transcript.whisperx[594].end 16031.64
transcript.whisperx[594].text 你今天要怎麼評價他的工作表現我沒有意見他工作表現是好是壞這是一個因素你依照他的工作表現來評估沒有問題但今天很明顯育嬰留停已經成為了他被不予盡心甚至不能升遷的因素了這就是明明白白的歧視對待啊
transcript.whisperx[595].start 16033.817
transcript.whisperx[595].end 16033.957
transcript.whisperx[595].text 所以那個
transcript.whisperx[596].start 16063.991
transcript.whisperx[596].end 16087.423
transcript.whisperx[596].text 教育部我可不可以請問喔可不可以在一個月內請你召集包括邀請勞動部包括全序部包括人總其實召開一個會那召開一個跨部會的意義針對這些工作者在大學裡面當年育嬰留停就被令於考核而且這令於考核裡面的重點是他就影響他的進行影響他的升遷他是明擺顯明的
transcript.whisperx[597].start 16089.62
transcript.whisperx[597].end 16097.163
transcript.whisperx[597].text 這部分能不能召開一個會來討論怎麼來修改這規定至少能夠符合變成讓育嬰留停不要變成是一個歧視性的因素可以嗎可以嗎好謝謝
transcript.whisperx[598].start 16105.232
transcript.whisperx[598].end 16126.461
transcript.whisperx[598].text 謝謝洪森翰委員發言那本日會議詢答全部結束委員廖偉翔、楊耀、黃仁、黃珊珊、陳金輝、蘇清泉、陳冠廷委員所提書面質詢列入記錄刊登公報現在做以下決定報告及詢答完畢委員質詢未及答覆或請補充資料
transcript.whisperx[599].start 16128.022
transcript.whisperx[599].end 16138.166
transcript.whisperx[599].text 請相關機關於兩週內以書面答覆委員令要求期限者從期所定本日會議到此結束現在休息星期三上午9點繼續開會