video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/66a8e59aed318d21ed1500fb0f57f995a99904554a4baaac773b3fa48179a30da6b46b472f9b5d055ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
葉元之 |
委員發言時間 |
11:12:44 - 11:22:40 |
影片長度 |
596 |
會議時間 |
2024-12-05T09:00:00+08:00 |
會議名稱 |
立法院第11屆第2會期社會福利及衛生環境、司法及法制委員第1次聯席會議(事由:審查
一、委員謝衣鳯等17人擬具「人工生殖法部分條文修正草案」案。
二、委員陳菁徽等20人擬具「人工生殖法部分條文修正草案」案。
三、委員黃捷等22人擬具「人工生殖法部分條文修正草案」案。
四、委員林宜瑾等19人擬具「人工生殖法部分條文修正草案」案。
五、委員范雲等16人擬具「人工生殖法部分條文修正草案」案。
六、委員林楚茵等18人擬具「人工生殖法部分條文修正草案」案。
七、委員王育敏等18人擬具「人工生殖法部分條文修正草案」案。
八、委員黃秀芳等18人擬具「人工生殖法部分條文修正草案」案。
九、台灣民眾黨黨團擬具「人工生殖法部分條文修正草案」案。
十、委員林月琴等17人擬具「人工生殖法部分條文修正草案」案。
十一、國民黨黨團擬具「人工生殖法部分條文修正草案」案。
十二、委員洪申翰、范雲等21人擬具「人工生殖法部分條文修正草案」案。
十三、委員吳沛憶等18人擬具「人工生殖法部分條文修正草案」案。
十四、委員林淑芬等18人擬具「人工生殖法部分條文修正草案」案。
十五、委員郭昱晴等16人擬具「人工生殖法部分條文修正草案」案。
十六、委員張雅琳等21人擬具「人工生殖法部分條文修正草案」案。) |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
2.07284375 |
transcript.pyannote[0].end |
3.32159375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
4.57034375 |
transcript.pyannote[1].end |
4.80659375 |
transcript.pyannote[2].speaker |
SPEAKER_02 |
transcript.pyannote[2].start |
8.80596875 |
transcript.pyannote[2].end |
17.07471875 |
transcript.pyannote[3].speaker |
SPEAKER_02 |
transcript.pyannote[3].start |
18.08721875 |
transcript.pyannote[3].end |
23.55471875 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
23.84159375 |
transcript.pyannote[4].end |
24.51659375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
25.09034375 |
transcript.pyannote[5].end |
26.45721875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
27.03096875 |
transcript.pyannote[6].end |
27.63846875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
28.19534375 |
transcript.pyannote[7].end |
32.00909375 |
transcript.pyannote[8].speaker |
SPEAKER_02 |
transcript.pyannote[8].start |
31.48596875 |
transcript.pyannote[8].end |
32.97096875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
32.97096875 |
transcript.pyannote[9].end |
41.42534375 |
transcript.pyannote[10].speaker |
SPEAKER_02 |
transcript.pyannote[10].start |
33.29159375 |
transcript.pyannote[10].end |
34.96221875 |
transcript.pyannote[11].speaker |
SPEAKER_02 |
transcript.pyannote[11].start |
35.02971875 |
transcript.pyannote[11].end |
36.97034375 |
transcript.pyannote[12].speaker |
SPEAKER_02 |
transcript.pyannote[12].start |
39.99096875 |
transcript.pyannote[12].end |
40.48034375 |
transcript.pyannote[13].speaker |
SPEAKER_02 |
transcript.pyannote[13].start |
41.42534375 |
transcript.pyannote[13].end |
56.34284375 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
57.13596875 |
transcript.pyannote[14].end |
59.29596875 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
59.75159375 |
transcript.pyannote[15].end |
61.59096875 |
transcript.pyannote[16].speaker |
SPEAKER_02 |
transcript.pyannote[16].start |
61.94534375 |
transcript.pyannote[16].end |
80.33909375 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
81.09846875 |
transcript.pyannote[17].end |
82.83659375 |
transcript.pyannote[18].speaker |
SPEAKER_02 |
transcript.pyannote[18].start |
83.49471875 |
transcript.pyannote[18].end |
85.28346875 |
transcript.pyannote[19].speaker |
SPEAKER_02 |
transcript.pyannote[19].start |
85.78971875 |
transcript.pyannote[19].end |
86.78534375 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
86.98784375 |
transcript.pyannote[20].end |
90.75096875 |
transcript.pyannote[21].speaker |
SPEAKER_02 |
transcript.pyannote[21].start |
91.17284375 |
transcript.pyannote[21].end |
95.22284375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
95.22284375 |
transcript.pyannote[22].end |
100.23471875 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
99.96471875 |
transcript.pyannote[23].end |
102.32721875 |
transcript.pyannote[24].speaker |
SPEAKER_02 |
transcript.pyannote[24].start |
103.32284375 |
transcript.pyannote[24].end |
104.97659375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
104.97659375 |
transcript.pyannote[25].end |
134.81159375 |
transcript.pyannote[26].speaker |
SPEAKER_02 |
transcript.pyannote[26].start |
134.13659375 |
transcript.pyannote[26].end |
142.03409375 |
transcript.pyannote[27].speaker |
SPEAKER_02 |
transcript.pyannote[27].start |
142.32096875 |
transcript.pyannote[27].end |
143.19846875 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
143.53596875 |
transcript.pyannote[28].end |
144.78471875 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
146.42159375 |
transcript.pyannote[29].end |
148.76721875 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
149.27346875 |
transcript.pyannote[30].end |
157.42409375 |
transcript.pyannote[31].speaker |
SPEAKER_02 |
transcript.pyannote[31].start |
158.03159375 |
transcript.pyannote[31].end |
176.84721875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
176.99909375 |
transcript.pyannote[32].end |
177.01596875 |
transcript.pyannote[33].speaker |
SPEAKER_02 |
transcript.pyannote[33].start |
177.01596875 |
transcript.pyannote[33].end |
177.82596875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
177.35346875 |
transcript.pyannote[34].end |
177.52221875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
177.52221875 |
transcript.pyannote[35].end |
177.60659375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
177.60659375 |
transcript.pyannote[36].end |
177.64034375 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
177.96096875 |
transcript.pyannote[37].end |
178.02846875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
178.02846875 |
transcript.pyannote[38].end |
190.97159375 |
transcript.pyannote[39].speaker |
SPEAKER_02 |
transcript.pyannote[39].start |
190.19534375 |
transcript.pyannote[39].end |
193.36784375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
193.55346875 |
transcript.pyannote[40].end |
198.66659375 |
transcript.pyannote[41].speaker |
SPEAKER_02 |
transcript.pyannote[41].start |
198.27846875 |
transcript.pyannote[41].end |
204.96096875 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
205.48409375 |
transcript.pyannote[42].end |
208.35284375 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
208.96034375 |
transcript.pyannote[43].end |
213.34784375 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
213.70221875 |
transcript.pyannote[44].end |
226.39221875 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
227.21909375 |
transcript.pyannote[45].end |
230.23971875 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
231.42096875 |
transcript.pyannote[46].end |
232.26471875 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
233.07471875 |
transcript.pyannote[47].end |
233.98596875 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
235.16721875 |
transcript.pyannote[48].end |
236.95596875 |
transcript.pyannote[49].speaker |
SPEAKER_02 |
transcript.pyannote[49].start |
237.93471875 |
transcript.pyannote[49].end |
238.77846875 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
238.96409375 |
transcript.pyannote[50].end |
240.06096875 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
240.39846875 |
transcript.pyannote[51].end |
241.71471875 |
transcript.pyannote[52].speaker |
SPEAKER_02 |
transcript.pyannote[52].start |
242.13659375 |
transcript.pyannote[52].end |
243.95909375 |
transcript.pyannote[53].speaker |
SPEAKER_02 |
transcript.pyannote[53].start |
244.60034375 |
transcript.pyannote[53].end |
245.61284375 |
transcript.pyannote[54].speaker |
SPEAKER_02 |
transcript.pyannote[54].start |
246.03471875 |
transcript.pyannote[54].end |
249.12284375 |
transcript.pyannote[55].speaker |
SPEAKER_02 |
transcript.pyannote[55].start |
249.66284375 |
transcript.pyannote[55].end |
250.81034375 |
transcript.pyannote[56].speaker |
SPEAKER_02 |
transcript.pyannote[56].start |
251.82284375 |
transcript.pyannote[56].end |
262.70721875 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
262.94346875 |
transcript.pyannote[57].end |
271.06034375 |
transcript.pyannote[58].speaker |
SPEAKER_02 |
transcript.pyannote[58].start |
271.85346875 |
transcript.pyannote[58].end |
273.08534375 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
273.91221875 |
transcript.pyannote[59].end |
276.42659375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
276.66284375 |
transcript.pyannote[60].end |
285.82596875 |
transcript.pyannote[61].speaker |
SPEAKER_02 |
transcript.pyannote[61].start |
286.80471875 |
transcript.pyannote[61].end |
292.39034375 |
transcript.pyannote[62].speaker |
SPEAKER_02 |
transcript.pyannote[62].start |
293.31846875 |
transcript.pyannote[62].end |
294.28034375 |
transcript.pyannote[63].speaker |
SPEAKER_02 |
transcript.pyannote[63].start |
295.96784375 |
transcript.pyannote[63].end |
301.55346875 |
transcript.pyannote[64].speaker |
SPEAKER_02 |
transcript.pyannote[64].start |
302.65034375 |
transcript.pyannote[64].end |
307.47659375 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
308.23596875 |
transcript.pyannote[65].end |
316.69034375 |
transcript.pyannote[66].speaker |
SPEAKER_02 |
transcript.pyannote[66].start |
317.07846875 |
transcript.pyannote[66].end |
326.76471875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
327.65909375 |
transcript.pyannote[67].end |
336.14721875 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
336.26534375 |
transcript.pyannote[68].end |
342.27284375 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
342.54284375 |
transcript.pyannote[69].end |
353.02221875 |
transcript.pyannote[70].speaker |
SPEAKER_02 |
transcript.pyannote[70].start |
353.51159375 |
transcript.pyannote[70].end |
355.73909375 |
transcript.pyannote[71].speaker |
SPEAKER_02 |
transcript.pyannote[71].start |
357.32534375 |
transcript.pyannote[71].end |
361.71284375 |
transcript.pyannote[72].speaker |
SPEAKER_02 |
transcript.pyannote[72].start |
361.84784375 |
transcript.pyannote[72].end |
364.73346875 |
transcript.pyannote[73].speaker |
SPEAKER_02 |
transcript.pyannote[73].start |
366.03284375 |
transcript.pyannote[73].end |
367.55159375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
366.10034375 |
transcript.pyannote[74].end |
366.84284375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
368.36159375 |
transcript.pyannote[75].end |
371.80409375 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
370.72409375 |
transcript.pyannote[76].end |
371.06159375 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
371.23034375 |
transcript.pyannote[77].end |
377.81159375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
372.32721875 |
transcript.pyannote[78].end |
372.44534375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
372.54659375 |
transcript.pyannote[79].end |
372.66471875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
379.71846875 |
transcript.pyannote[80].end |
380.54534375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
381.32159375 |
transcript.pyannote[81].end |
382.92471875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
382.92471875 |
transcript.pyannote[82].end |
391.96971875 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
391.96971875 |
transcript.pyannote[83].end |
392.83034375 |
transcript.pyannote[84].speaker |
SPEAKER_02 |
transcript.pyannote[84].start |
392.89784375 |
transcript.pyannote[84].end |
392.91471875 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
392.96534375 |
transcript.pyannote[85].end |
398.29784375 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
398.44971875 |
transcript.pyannote[86].end |
402.93846875 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
403.71471875 |
transcript.pyannote[87].end |
413.02971875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
413.02971875 |
transcript.pyannote[88].end |
413.40096875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
414.22784375 |
transcript.pyannote[89].end |
414.43034375 |
transcript.pyannote[90].speaker |
SPEAKER_02 |
transcript.pyannote[90].start |
414.43034375 |
transcript.pyannote[90].end |
414.97034375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
414.51471875 |
transcript.pyannote[91].end |
414.91971875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
414.97034375 |
transcript.pyannote[92].end |
421.24784375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
422.80034375 |
transcript.pyannote[93].end |
423.79596875 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
423.94784375 |
transcript.pyannote[94].end |
423.98159375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
424.01534375 |
transcript.pyannote[95].end |
424.13346875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
424.25159375 |
transcript.pyannote[96].end |
425.17971875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
425.34846875 |
transcript.pyannote[97].end |
428.36909375 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
426.44534375 |
transcript.pyannote[98].end |
444.78846875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
444.78846875 |
transcript.pyannote[99].end |
444.80534375 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
446.40846875 |
transcript.pyannote[100].end |
446.42534375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
446.42534375 |
transcript.pyannote[101].end |
447.16784375 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
447.77534375 |
transcript.pyannote[102].end |
447.79221875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
447.79221875 |
transcript.pyannote[103].end |
448.34909375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
449.31096875 |
transcript.pyannote[104].end |
453.79971875 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
451.28534375 |
transcript.pyannote[105].end |
451.65659375 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
452.21346875 |
transcript.pyannote[106].end |
452.56784375 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
452.68596875 |
transcript.pyannote[107].end |
454.40721875 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
454.87971875 |
transcript.pyannote[108].end |
460.65096875 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
460.76909375 |
transcript.pyannote[109].end |
461.42721875 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
462.05159375 |
transcript.pyannote[110].end |
465.83159375 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
466.06784375 |
transcript.pyannote[111].end |
466.55721875 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
467.62034375 |
transcript.pyannote[112].end |
470.65784375 |
transcript.pyannote[113].speaker |
SPEAKER_02 |
transcript.pyannote[113].start |
471.28221875 |
transcript.pyannote[113].end |
473.67846875 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
473.94846875 |
transcript.pyannote[114].end |
484.73159375 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
485.08596875 |
transcript.pyannote[115].end |
487.78596875 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
488.22471875 |
transcript.pyannote[116].end |
489.82784375 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
490.70534375 |
transcript.pyannote[117].end |
493.27034375 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
494.33346875 |
transcript.pyannote[118].end |
500.17221875 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
500.66159375 |
transcript.pyannote[119].end |
501.87659375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
501.87659375 |
transcript.pyannote[120].end |
501.91034375 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
501.91034375 |
transcript.pyannote[121].end |
502.66971875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
503.39534375 |
transcript.pyannote[122].end |
517.97534375 |
transcript.pyannote[123].speaker |
SPEAKER_02 |
transcript.pyannote[123].start |
515.98409375 |
transcript.pyannote[123].end |
516.22034375 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
517.97534375 |
transcript.pyannote[124].end |
520.47284375 |
transcript.pyannote[125].speaker |
SPEAKER_02 |
transcript.pyannote[125].start |
520.69221875 |
transcript.pyannote[125].end |
532.16721875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
521.48534375 |
transcript.pyannote[126].end |
522.07596875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
522.07596875 |
transcript.pyannote[127].end |
522.37971875 |
transcript.pyannote[128].speaker |
SPEAKER_02 |
transcript.pyannote[128].start |
533.14596875 |
transcript.pyannote[128].end |
541.43159375 |
transcript.pyannote[129].speaker |
SPEAKER_02 |
transcript.pyannote[129].start |
542.19096875 |
transcript.pyannote[129].end |
542.81534375 |
transcript.pyannote[130].speaker |
SPEAKER_02 |
transcript.pyannote[130].start |
543.23721875 |
transcript.pyannote[130].end |
547.40534375 |
transcript.pyannote[131].speaker |
SPEAKER_02 |
transcript.pyannote[131].start |
548.45159375 |
transcript.pyannote[131].end |
548.95784375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
548.85659375 |
transcript.pyannote[132].end |
549.27846875 |
transcript.pyannote[133].speaker |
SPEAKER_02 |
transcript.pyannote[133].start |
549.27846875 |
transcript.pyannote[133].end |
549.85221875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
549.85221875 |
transcript.pyannote[134].end |
550.45971875 |
transcript.pyannote[135].speaker |
SPEAKER_02 |
transcript.pyannote[135].start |
550.45971875 |
transcript.pyannote[135].end |
551.03346875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
551.03346875 |
transcript.pyannote[136].end |
551.38784375 |
transcript.pyannote[137].speaker |
SPEAKER_02 |
transcript.pyannote[137].start |
551.38784375 |
transcript.pyannote[137].end |
552.41721875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
552.41721875 |
transcript.pyannote[138].end |
552.43409375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
553.17659375 |
transcript.pyannote[139].end |
578.74221875 |
transcript.pyannote[140].speaker |
SPEAKER_02 |
transcript.pyannote[140].start |
578.67471875 |
transcript.pyannote[140].end |
581.45909375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
582.72471875 |
transcript.pyannote[141].end |
583.39971875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
584.10846875 |
transcript.pyannote[142].end |
585.77909375 |
transcript.pyannote[143].speaker |
SPEAKER_02 |
transcript.pyannote[143].start |
585.72846875 |
transcript.pyannote[143].end |
591.88784375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
588.41159375 |
transcript.pyannote[144].end |
588.78284375 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
590.48721875 |
transcript.pyannote[145].end |
590.52096875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
590.52096875 |
transcript.pyannote[146].end |
591.07784375 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
591.07784375 |
transcript.pyannote[147].end |
591.17909375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
591.56721875 |
transcript.pyannote[148].end |
591.73596875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
591.73596875 |
transcript.pyannote[149].end |
593.57534375 |
transcript.pyannote[150].speaker |
SPEAKER_02 |
transcript.pyannote[150].start |
594.52034375 |
transcript.pyannote[150].end |
594.97596875 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
594.97596875 |
transcript.pyannote[151].end |
596.74784375 |
transcript.whisperx[0].start |
2.099 |
transcript.whisperx[0].end |
16.651 |
transcript.whisperx[0].text |
安全衛福部長謝謝一、委員好部長好我來關心一個食安的問題啦部長你知不知道我們很多食物中毒到最後其實都是不知道原因你知道嗎 |
transcript.whisperx[1].start |
18.283 |
transcript.whisperx[1].end |
45.6 |
transcript.whisperx[1].text |
我們國人常常發生食物中毒但是最後都是原因不明不知道被什麼影響到你知道這個事嗎我是覺得衛生單位應該是很努力在沒有啦我問你知不知道我就4分鐘啦我大概可以知道說直接回答問題沒這麼困難啦有幾件事情大概都沒有公布出來啦不是只有幾件啦我跟你講其實比例是非常高啊 |
transcript.whisperx[2].start |
46.5 |
transcript.whisperx[2].end |
56.057 |
transcript.whisperx[2].text |
這是去年的數字我們有5196個人食物中毒結果最後有高達近2000人他是不知道為什麼食物中毒 |
transcript.whisperx[3].start |
57.422 |
transcript.whisperx[3].end |
82.523 |
transcript.whisperx[3].text |
比例上大概37.3。這個高不高?部長很高吧?如果說我們以件數來算的話,633件。因為一件可能影響很多人嘛。633件食物中毒的案件裡面,最後有368件。不知道原因啊。所以全台灣去年有58.14,接近六成。這不知道為什麼食物中毒欸。 |
transcript.whisperx[4].start |
83.784 |
transcript.whisperx[4].end |
98.951 |
transcript.whisperx[4].text |
這個比例你有沒有覺得很高?有沒有覺得非常高?看起來是蠻高的。很高啦,不是看起來,真的非常高。好,那我們現在來問一下,部長你知道為什麼會這樣嗎?原因是什麼?因為這個資料是FDA出來的,是不是我請莊署長實要實在的。對,為什麼會這麼高? |
transcript.whisperx[5].start |
104.213 |
transcript.whisperx[5].end |
120.598 |
transcript.whisperx[5].text |
包括就很多事情後來都不了了之啊報告委員那其實這食物中毒發生以後食藥署會負責進去採取檢體那有的時候這個食魚我們收不到食魚的檢體或我們收到食魚檢體後它的量不夠讓我們足以分析出來的 |
transcript.whisperx[6].start |
121.218 |
transcript.whisperx[6].end |
137.73 |
transcript.whisperx[6].text |
擬具:「人工生殖法部分條文修正草案:立法院第1次聯席會議:立法院第2次聯席會議:立法院第2次聯席會議:立法院第3次聯席會議:立法院第4次聯席會議:立法院第5次聯席會議:立法院第6次聯席會議:立法院第7次聯席會議:立法院第8次聯席會議:立法院第9次聯席會議:立法院第10次聯席會議:立法院第11次聯席會議:立法院第12次聯席會議:立法院第13次聯席會議:立法院第14次 |
transcript.whisperx[7].start |
146.425 |
transcript.whisperx[7].end |
163.609 |
transcript.whisperx[7].text |
檢驗檢驗檢驗檢驗檢驗檢驗 |
transcript.whisperx[8].start |
164.029 |
transcript.whisperx[8].end |
192.569 |
transcript.whisperx[8].text |
嚴重的話會危及弱勢族群的性命包括幼童、老人以及免疫力比較低下的族群都會受到影響請問一下我們有沒有驗這個毒如果有人食物中毒你有沒有驗這個菌有沒有報告委員這個菌我們以前做過研究在台灣跑過做過研究後來因為那個研究的結果在台灣沒有驗到所以我們現在在檢驗當中是沒有做這個不是啦以前沒有驗到就代表之後都不會驗到嗎 |
transcript.whisperx[9].start |
194.059 |
transcript.whisperx[9].end |
212.999 |
transcript.whisperx[9].text |
這樣委員我們會待會去把那個標準的流程以後...之前也沒有那個米酵菌酸啊後來不是也是有了那為什麼我特別舉這個菌啊我們來看日本日本的狀況其實他們食物中毒後來以不明原因結案非常少啊大概只有一趴兩趴 |
transcript.whisperx[10].start |
214.3 |
transcript.whisperx[10].end |
233.325 |
transcript.whisperx[10].text |
擬具:「人工生殖法部分條文修正草案.事由.立法院第11屆第2會期社會福利及法制委員等19人擬具:「人工生殖法部分條文修正草案.事由.立法院第11屆第2會期社會福利及法制委員等19人擬具:「人工生殖法部分條文修正草案.事由.立法院第11屆第2會期社會福利及法制委員等19人擬具:「人工生殖法部分條文修正草案.事由.立法院第11屆第2會期社會福利及法制委員等19人擬具:「人工生殖法部分條文修正草案.事由 |
transcript.whisperx[11].start |
237.967 |
transcript.whisperx[11].end |
262.235 |
transcript.whisperx[11].text |
所以日本就有 日本有驗這個菌 然後就有判定出很多人是因為這樣的食物中毒所以他們最後不明原因比較少 因為他們驗的菌比較多其實就這麼簡單啊 署長就是這麼簡單啊因為你驗的菌少 所以你最後不明的原因多嘛那我們來看一下我們台灣這邊實際上的狀況 這個就是曲狀感菌 我現在跟你介紹啦 好不好 |
transcript.whisperx[12].start |
263.529 |
transcript.whisperx[12].end |
291.699 |
transcript.whisperx[12].text |
目前臺灣近幾年都沒有通報建樹不是說可以直接斷定說是因為不是被他們趕來所以我們根本沒驗那我們是驗什麼呢這就是我們平常驗的五大類金黃色葡萄球菌、仙人掌桿菌還有長岩胡菌、沙門柿桿菌以及病原性大腸桿菌我們就驗證這幾個除了驗這個之外都不驗不驗了最後就以不明原因結案我覺得還可以這樣子 |
transcript.whisperx[13].start |
293.353 |
transcript.whisperx[13].end |
306.384 |
transcript.whisperx[13].text |
立法院第11屆第2會期社會福利及衛生環境、司法及法制委員等19人擬具:「人工生殖法部分條文修正草案:立法院第1屆第2會期社會福利及生殖法部分條文修正草案:立法院第1屆第2會期社會福利及生殖法部分條文修正草案:立法院第1屆第2會期社會福利及生殖法部分條文修正草案:立法院第1屆第2會期社會福利及生殖法部分條文修正草案:立法院第1屆第2會期社會福利及生殖法部分條文修正草案:立法院第1屆第2 |
transcript.whisperx[14].start |
308.291 |
transcript.whisperx[14].end |
326.313 |
transcript.whisperx[14].text |
我記得當時我們那時候剛來立法院的時候以前還是陳建仁院長的時候那時候還排那個食安報告把自己的食安做講得多厲害結果我們對於食物中毒的檢驗粗糙成這個樣子部長你你因為你也是520之後才就任的啦跟你反映這個事情你覺得可以接受嗎 |
transcript.whisperx[15].start |
327.674 |
transcript.whisperx[15].end |
355.507 |
transcript.whisperx[15].text |
好,我想連日本都有這樣的一個檢查我們一定要謝謝委員的指教我想我們食藥署回去不是,你們不驗你們驗這麼少原因是什麼?是沒錢嗎?上一次米香菌酸的時候還沒有實驗室還沒有這個菌還是跟民間調的每一次都發生原因之後在那邊危機處理然後媒體報的大你們就重視媒體沒有報你們就當沒這回事那國人的健康你們置於何地啊? |
transcript.whisperx[16].start |
357.366 |
transcript.whisperx[16].end |
377.587 |
transcript.whisperx[16].text |
能不能夠將這個不明原因減少,能不能?現在高達建樹高達快六成啦,訂一個目標好不好?今年訂一個目標?我想我們一定會努力,要看要數有沒有。不想,訂一個目標啦,訂一個目標。現在是,去年是進六成不明原因,你今年要降到多少? |
transcript.whisperx[17].start |
379.744 |
transcript.whisperx[17].end |
393.396 |
transcript.whisperx[17].text |
我們十二、十四、十五、一、二、一、二、一、二、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、五、 |
transcript.whisperx[18].start |
403.766 |
transcript.whisperx[18].end |
432.327 |
transcript.whisperx[18].text |
好不好 沒有那麼誇張的 你定一個目標但你講一個五成 國人能夠接受嗎 大家可以接受說以後食物中毒有五成 我們是不知道原因 大家可以接受嗎所以官員講出這樣的話 我們要求食藥署至少要降到四成以下 第一個階段四成你就 那我們會做檢討的 我跟你講我的標準起碼要跟日本一樣啦 人家是一兩趴啦 你講一個四成 |
transcript.whisperx[19].start |
433.027 |
transcript.whisperx[19].end |
444.174 |
transcript.whisperx[19].text |
那當然你說你要從6%直接降到降到1%、2%你們可能覺得不敢講啦但你也要有一個至少目標要遠大一點嘛講個一層嘛一開始講五層後來講四層一層啦好不好目標啦 |
transcript.whisperx[20].start |
449.335 |
transcript.whisperx[20].end |
470.271 |
transcript.whisperx[20].text |
我們當然朝著向日本的目標來努力向日本的目標邁進最後最後那你們要努力自己定章法出來我現在告訴你你驗了菌少就是其中一個原因其他的原因你們自己去自己去然後再來那個最後問一下因為最近蘇丹紅的問題又起來了那那個昨天也有驗到越南的黑胡椒嘛裡面有蘇丹紅 |
transcript.whisperx[21].start |
471.508 |
transcript.whisperx[21].end |
493.056 |
transcript.whisperx[21].text |
一百六十公斤,郵箱六個縣市。這個是你們的表格。但我想問為什麼上一次辣椒粉蘇丹紅的時候你們有訂一個下流郵箱,有告訴全台灣的國人說哪些公司或哪些商品可能會有這些東西可以避免,可是這次就沒有。為什麼?而且上次有驗專區,這次也沒有,為什麼? |
transcript.whisperx[22].start |
494.397 |
transcript.whisperx[22].end |
517.783 |
transcript.whisperx[22].text |
你們不能講說因為新聞有報我們就比較積極新聞沒報然後就當沒這回事吧做法應該一致啊報告委員因為我們這次其實是請各區現在還在幫我們追那個他的那個廠家其實現在各區的衛生局已經開始要求他們的回收這個我回收我知道蘇丹紅這個事情其實 |
transcript.whisperx[23].start |
518.543 |
transcript.whisperx[23].end |
546.624 |
transcript.whisperx[23].text |
拉椒粉蘇丹紅從越南進這一批不是拉椒粉啦黑胡椒啦已經一段時間了啦也不是昨天發生的已經一段時間了那上一次拉椒粉的時候專區也有啦然後流向都很清楚這一次就沒有啊那為什麼同樣是食安問題同樣是蘇丹紅上一次因為媒體有報所以很重視這一次因為媒體沒報所以就比較隨便嗎還是怎樣可不可以比照上一次啦把流向怎麼做出來在網站上給大家參考就這麼簡單嘛 |
transcript.whisperx[24].start |
548.593 |
transcript.whisperx[24].end |
551.881 |
transcript.whisperx[24].text |
立法院第11屆第2會期社會福利及法制委員第1次聯席會議:立法院第12屆第3會期社會福利及法制委員 |
transcript.whisperx[25].start |
553.383 |
transcript.whisperx[25].end |
581.304 |
transcript.whisperx[25].text |
報委員其實這次蘇丹紅的在胡椒粉其實大部分都已經回收那這一次最大的一個量的時候事實上他大概有超過一半我們都超過一半他是已經那時候是因為颱風他已經暴順了其他的量我們都在追其實第一個案子當我們現在只有15公斤左右的是自售他賣去其他的大概都回都已經回收下架或者銷毀了那這個160公斤呢有像六縣市的 |
transcript.whisperx[26].start |
582.762 |
transcript.whisperx[26].end |
584.483 |
transcript.whisperx[26].text |
對,所以是應該要提醒國人的啦。好不好,謝謝。 |
IVOD_ID |
157877 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/157877 |
日期 |
2024-12-05 |
影片種類 |
Clip |
開始時間 |
2024-12-05T11:12:44+08:00 |
結束時間 |
2024-12-05T11:22:40+08:00 |
支援功能[0] |
ai-transcript |