iVOD / 157874

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/66a8e59aed318d214c61550d12c62c1dd143e698449c70dc773b3fa48179a30d76aa520af6b9da4e5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 11:00:33 - 11:08:19
影片長度 466
會議時間 2024-12-05T09:00:00+08:00
會議名稱 立法院第11屆第2會期司法及法制委員會第18次全體委員會議(事由:一、併案審查 (一)委員賴士葆等31人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (二)委員賴士葆等19人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (三)委員張智倫等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (四)委員張嘉郡等23人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (五)委員賴士葆等26人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。 (六)委員徐欣瑩等20人擬具「公務人員退休資遣撫卹法第三十七條、第三十八條及第六十七條條文修正草案」案。 (七)委員邱鎮軍等25人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (八)國民黨黨團擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (九)委員林思銘等26人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十)委員陳超明等19人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十一)委員許宇甄等20人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。 (十二)委員黃健豪等18人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十三)委員張智倫等19人擬具「公務人員退休資遣撫卹法第三條、第八條及第三十七條條文修正草案」案。 (十四)委員馬文君等20人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十五)委員傅崐萁等21人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。 (十六)委員王鴻薇等25人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。 (十七)委員黃建賓等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十八)委員陳玉珍等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 (十九)委員王鴻薇等19人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。 (二十)委員羅智強等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。 二、併案審查 (一)委員李彥秀等18人擬具「公務人員任用法第三十六條之一條文修正草案」案。 (二)委員翁曉玲等22人擬具「公務人員任用法第二十八條之一條文修正草案」案。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 3.32159375
transcript.pyannote[0].end 19.90971875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 20.11221875
transcript.pyannote[1].end 28.54971875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 28.88721875
transcript.pyannote[2].end 33.27471875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 34.06784375
transcript.pyannote[3].end 34.65846875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 35.60346875
transcript.pyannote[4].end 38.62409375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 39.18096875
transcript.pyannote[5].end 40.39596875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 40.98659375
transcript.pyannote[6].end 43.41659375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 44.64846875
transcript.pyannote[7].end 45.13784375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 45.77909375
transcript.pyannote[8].end 46.65659375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 47.14596875
transcript.pyannote[9].end 47.95596875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 48.63096875
transcript.pyannote[10].end 49.60971875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 50.30159375
transcript.pyannote[11].end 61.89471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 63.27846875
transcript.pyannote[12].end 74.23034375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 75.15846875
transcript.pyannote[13].end 80.54159375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 81.11534375
transcript.pyannote[14].end 83.20784375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 83.96721875
transcript.pyannote[15].end 84.37221875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 84.67596875
transcript.pyannote[16].end 86.88659375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 88.00034375
transcript.pyannote[17].end 90.93659375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 91.79721875
transcript.pyannote[18].end 92.11784375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 92.25284375
transcript.pyannote[19].end 92.96159375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 93.40034375
transcript.pyannote[20].end 94.95284375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 95.62784375
transcript.pyannote[21].end 96.30284375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 96.60659375
transcript.pyannote[22].end 97.70346875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 98.51346875
transcript.pyannote[23].end 99.12096875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 99.50909375
transcript.pyannote[24].end 102.02346875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 102.39471875
transcript.pyannote[25].end 103.12034375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 103.45784375
transcript.pyannote[26].end 105.34784375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 105.53346875
transcript.pyannote[27].end 111.52409375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 112.92471875
transcript.pyannote[28].end 113.43096875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 113.68409375
transcript.pyannote[29].end 114.20721875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 115.38846875
transcript.pyannote[30].end 116.55284375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 118.27409375
transcript.pyannote[31].end 118.94909375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 119.23596875
transcript.pyannote[32].end 119.96159375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 120.28221875
transcript.pyannote[33].end 120.95721875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 121.71659375
transcript.pyannote[34].end 122.69534375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 123.45471875
transcript.pyannote[35].end 124.58534375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 125.51346875
transcript.pyannote[36].end 126.01971875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 127.63971875
transcript.pyannote[37].end 128.12909375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 128.87159375
transcript.pyannote[38].end 130.81221875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 131.36909375
transcript.pyannote[39].end 132.16221875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 132.60096875
transcript.pyannote[40].end 133.37721875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 134.23784375
transcript.pyannote[41].end 138.60846875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 139.21596875
transcript.pyannote[42].end 143.16471875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 143.50221875
transcript.pyannote[43].end 144.41346875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 145.34159375
transcript.pyannote[44].end 149.18909375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 149.77971875
transcript.pyannote[45].end 151.50096875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 152.15909375
transcript.pyannote[46].end 152.76659375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 153.05346875
transcript.pyannote[47].end 167.39721875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 167.80221875
transcript.pyannote[48].end 172.59471875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 172.64534375
transcript.pyannote[49].end 180.28971875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 180.98159375
transcript.pyannote[50].end 185.84159375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 186.16221875
transcript.pyannote[51].end 186.82034375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 187.56284375
transcript.pyannote[52].end 188.96346875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 189.31784375
transcript.pyannote[53].end 191.47784375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 192.30471875
transcript.pyannote[54].end 193.60409375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 194.26221875
transcript.pyannote[55].end 205.02846875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 205.21409375
transcript.pyannote[56].end 206.71596875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 206.91846875
transcript.pyannote[57].end 207.88034375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 208.47096875
transcript.pyannote[58].end 210.54659375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 211.01909375
transcript.pyannote[59].end 211.71096875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 211.94721875
transcript.pyannote[60].end 214.96784375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 215.57534375
transcript.pyannote[61].end 217.38096875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 217.61721875
transcript.pyannote[62].end 218.39346875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 218.62971875
transcript.pyannote[63].end 219.35534375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 220.13159375
transcript.pyannote[64].end 221.21159375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 221.83596875
transcript.pyannote[65].end 230.69534375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 231.82596875
transcript.pyannote[66].end 233.17596875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 234.15471875
transcript.pyannote[67].end 239.43659375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 240.04409375
transcript.pyannote[68].end 242.44034375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 243.03096875
transcript.pyannote[69].end 245.86596875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 246.20346875
transcript.pyannote[70].end 247.75596875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 248.00909375
transcript.pyannote[71].end 253.54409375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 254.25284375
transcript.pyannote[72].end 256.86846875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 257.39159375
transcript.pyannote[73].end 258.72471875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 259.63596875
transcript.pyannote[74].end 261.57659375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 261.93096875
transcript.pyannote[75].end 263.29784375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 263.58471875
transcript.pyannote[76].end 267.29721875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 267.85409375
transcript.pyannote[77].end 269.87909375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 270.79034375
transcript.pyannote[78].end 272.54534375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 272.96721875
transcript.pyannote[79].end 274.06409375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 274.57034375
transcript.pyannote[80].end 275.90346875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 276.71346875
transcript.pyannote[81].end 277.70909375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 278.48534375
transcript.pyannote[82].end 280.44284375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 281.60721875
transcript.pyannote[83].end 282.13034375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 282.90659375
transcript.pyannote[84].end 285.75846875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 286.04534375
transcript.pyannote[85].end 289.08284375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 289.70721875
transcript.pyannote[86].end 290.66909375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 291.05721875
transcript.pyannote[87].end 293.45346875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 294.28034375
transcript.pyannote[88].end 296.86221875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 297.14909375
transcript.pyannote[89].end 297.72284375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 298.19534375
transcript.pyannote[90].end 299.14034375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 299.32596875
transcript.pyannote[91].end 300.11909375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 300.62534375
transcript.pyannote[92].end 302.59971875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 303.05534375
transcript.pyannote[93].end 304.40534375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 305.53596875
transcript.pyannote[94].end 307.64534375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 308.01659375
transcript.pyannote[95].end 309.46784375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 310.02471875
transcript.pyannote[96].end 311.22284375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 312.23534375
transcript.pyannote[97].end 316.08284375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 316.15034375
transcript.pyannote[98].end 318.34409375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 318.74909375
transcript.pyannote[99].end 322.98471875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 323.44034375
transcript.pyannote[100].end 325.07721875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 325.73534375
transcript.pyannote[101].end 326.73096875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 327.18659375
transcript.pyannote[102].end 328.90784375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 329.44784375
transcript.pyannote[103].end 332.73846875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 333.54846875
transcript.pyannote[104].end 336.94034375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 337.44659375
transcript.pyannote[105].end 338.18909375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 338.61096875
transcript.pyannote[106].end 340.85534375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 341.37846875
transcript.pyannote[107].end 343.89284375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 344.51721875
transcript.pyannote[108].end 347.16659375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 347.62221875
transcript.pyannote[109].end 349.69784375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 350.13659375
transcript.pyannote[110].end 352.88721875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 353.29221875
transcript.pyannote[111].end 355.65471875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 356.75159375
transcript.pyannote[112].end 358.03409375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 358.92846875
transcript.pyannote[113].end 361.02096875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 361.25721875
transcript.pyannote[114].end 363.90659375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 364.19346875
transcript.pyannote[115].end 365.81346875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 366.42096875
transcript.pyannote[116].end 371.85471875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 372.39471875
transcript.pyannote[117].end 384.30846875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 384.96659375
transcript.pyannote[118].end 393.77534375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 393.89346875
transcript.pyannote[119].end 402.44909375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 403.19159375
transcript.pyannote[120].end 420.20159375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 420.48846875
transcript.pyannote[121].end 425.12909375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 425.51721875
transcript.pyannote[122].end 430.34346875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 430.69784375
transcript.pyannote[123].end 436.45221875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 436.51971875
transcript.pyannote[124].end 440.62034375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 440.85659375
transcript.pyannote[125].end 443.05034375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 443.28659375
transcript.pyannote[126].end 444.46784375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 444.68721875
transcript.pyannote[127].end 446.02034375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 446.22284375
transcript.pyannote[128].end 450.81284375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 451.18409375
transcript.pyannote[129].end 459.52034375
transcript.whisperx[0].start 3.597
transcript.whisperx[0].end 13.837
transcript.whisperx[0].text 感謝主席給這個機會讓我們可以透過這個過程除了是詢問相關機關之外也可以做一些程序上或彼此對這個議題上的交流
transcript.whisperx[1].start 14.505
transcript.whisperx[1].end 43.289
transcript.whisperx[1].text 那剛剛有恭臨了我們羅志強委員他的一些感觸那我也是一向認為啊在程序發言呢是就我們今天的議程來討論不過他剛剛提到一個我一定要來跟羅委員做個分享他說我們是站在年金改革站在這些使用年紀的對立面是嗎我們身邊的很多人受到年金改革的影響啊最直接的影響就是在年金改革之前退休的人
transcript.whisperx[2].start 44.67
transcript.whisperx[2].end 72.961
transcript.whisperx[2].text 正好我的家庭我的雙親我的兩個姊姊他們都曾經做過老師國小老師或是國中代理教師家母跟家姐甚至是國小教師退休這當中最明顯的年金改革就是家母他很早就退休了在年金改革之前呢他84年之前的就職年資他依那時候的規定可以享有18%的優存
transcript.whisperx[3].start 75.202
transcript.whisperx[3].end 97.115
transcript.whisperx[3].text 後來我進入立法院在2017年那時候我們參與了年金改革那時候家母已經退休一段時間了那麼家姐告訴我說因為每個月啊家母的領的年金呢都是家姐在打理的那我就問她那媽媽這樣子少領多少錢她告訴我大概萬把塊吧
transcript.whisperx[4].start 98.601
transcript.whisperx[4].end 125.778
transcript.whisperx[4].text 所以我就從我自己的錢每個月就放到轉存到家姐那裡去他都用家母的年金來支付當時協助照顧的外籍看護那麼直到家母過世了那我才發現說原來他領的錢他都請我姐姐去捐
transcript.whisperx[5].start 127.677
transcript.whisperx[5].end 148.838
transcript.whisperx[5].text 那這個家裡有年金改革的人受影響的人包括佳姐她是年金改革後因為為了要照顧家母她提前辦退休所以呢她沒有去感受到改革前跟改革後那個落差那這一萬把塊的落差是它生在哪裡呢我後來就詢問了就是188的優存啊
transcript.whisperx[6].start 152.213
transcript.whisperx[6].end 180.089
transcript.whisperx[6].text 怎麼說?我們年金改革之前在84年的就職年資在你年改之前退休的人員他你領的年金當中有相當的比例是用18%的優惠存款的優惠利率去換算來的所以當我們將所得替代率從八成百分之八十逐年下調的時候首先去拿掉的就是讓你的優存可領的優存利息的佔比越來越少
transcript.whisperx[7].start 181.058
transcript.whisperx[7].end 193.086
transcript.whisperx[7].text 事實上按照公務人員他的本分去換算的年金在他的年金的占比當中其實是根本還沒有去砍到所以等於說
transcript.whisperx[8].start 194.572
transcript.whisperx[8].end 216.862
transcript.whisperx[8].text 過去家母在年金改革前退休年金改革之後他少領的錢就是他在退休的時候他的退休金存在18%優存裡面所產生出來的那個金額那個金額誰在付那個利息誰在付剛巧我在擔任立法委員之前我在屏東縣我擔任副縣長我每年都要跟財主來討論我們的預算
transcript.whisperx[9].start 220.183
transcript.whisperx[9].end 230.091
transcript.whisperx[9].text 我才赫然發現地方政府有一大筆錢預算支出是在支付從縣政府退休的人員18%優存的利差存在台灣銀行的利差表示說屏東縣政府的當時縣政府的直屬現職人員府本部的800多人
transcript.whisperx[10].start 240.1
transcript.whisperx[10].end 258.583
transcript.whisperx[10].text 但是退休的教師上千多人而且呢隨著年齡的提高累加包括我自己的小學老師也跑來曾經為了這個憂蠢的利差來找我問說這個事情怎麼存我才理解到我們目前的年金改革受惠的是哪些人
transcript.whisperx[11].start 259.713
transcript.whisperx[11].end 280.268
transcript.whisperx[11].text 所謂的包括地方政府的財政因此得到了緩解因為這些錢是包括優存利差原來是地方政府在負擔的那麼有沒有損及到年改之後的退休人員呢就加解來說他年改之後退休他所領的錢足以維持他的退休生活
transcript.whisperx[12].start 281.656
transcript.whisperx[12].end 311.025
transcript.whisperx[12].text 而且這個替代率的在下遞減啊其實以他的退休當時所領的年金還優於當年新進的教師許多就一個奉獻教育崗位這麼多年的教師不只是家母還是家姐還是所有全國的教育人員我都心存感激但是年金改革最大的另外一個受益者是什麼在年改之後
transcript.whisperx[13].start 312.281
transcript.whisperx[13].end 332.581
transcript.whisperx[13].text 年改之後這些公務人員他們這個年金可以延續到讓他們進入這個機關之後他未來可期待的退休的時候仍然有足夠的基金水位來維持他有尊嚴的生活
transcript.whisperx[14].start 333.618
transcript.whisperx[14].end 357.851
transcript.whisperx[14].text 所以作為一個年金改革的受影響者的家庭我要在這裡跟我們待會會發言的羅委員分享我們不是年金改革的敵人年金改革裡面沒有誰是敵人我們很多的親朋好友都是年金改革的受影響的人而且絕大部分是受益者絕大部分是受益者
transcript.whisperx[15].start 358.993
transcript.whisperx[15].end 383.834
transcript.whisperx[15].text 所以我真的還要誠懇的呼籲大家在關心軍公教人員權益的時候要有一個永續的思維今天任何人進入公部門進入教育崗位為國奉獻為社會栽培人才他們的退休生活我們國家用制度性的保障說到制度性的保障18號的優存是當時年改的時候社會最不公平的來源因為他們有法律的依據
transcript.whisperx[16].start 385.275
transcript.whisperx[16].end 401.424
transcript.whisperx[16].text 當年為什麼政府會發明這18%的優存呢?是因為當時的政府的財政沒有辦法支應公務人員足够的退休金所以鼓勵他用半權退、半月退的方式把他半權退的錢拿到回來給政府周轉
transcript.whisperx[17].start 403.257
transcript.whisperx[17].end 424.306
transcript.whisperx[17].text 母金留給政府周轉政府給你18%的優準付利息來補貼那時候公務人員微薄的薪資他的微薄的年金18%當年是存在有軍公教人員用他一次或半次的全退的薪水的退休金放給政府讓政府使用政府給他18%的優存
transcript.whisperx[18].start 425.606
transcript.whisperx[18].end 450.566
transcript.whisperx[18].text 在當年的時空背景之下後來經歷了公務人員薪資結構的全面調整家姐擔任國小教師的時候薪資已經改善很多了所以他現在退休生活無虞我也非常的感念有前面這些退休人員他們的付出也感謝這段時間政府的提撥但是我們要強調的未來不管是軍公教都需要這個年金改革維持能夠永續的去存在
transcript.whisperx[19].start 451.867
transcript.whisperx[19].end 455.53
transcript.whisperx[19].text 謝謝主席讓我這個時間讓心情來跟羅委員做交換
IVOD_ID 157874
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157874
日期 2024-12-05
會議資料.會議代碼 委員會-11-2-36-18
會議資料.屆 11
會議資料.會期 2
會議資料.會次 18
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.標題 第11屆第2會期司法及法制委員會第18次全體委員會議
影片種類 Clip
開始時間 2024-12-05T11:00:33+08:00
結束時間 2024-12-05T11:08:19+08:00
支援功能[0] ai-transcript