video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/66a8e59aed318d214c61550d12c62c1dd143e698449c70dc773b3fa48179a30d76aa520af6b9da4e5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鍾佳濱 |
委員發言時間 |
11:00:33 - 11:08:19 |
影片長度 |
466 |
會議時間 |
2024-12-05T09:00:00+08:00 |
會議名稱 |
立法院第11屆第2會期司法及法制委員會第18次全體委員會議(事由:一、併案審查
(一)委員賴士葆等31人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(二)委員賴士葆等19人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。
(三)委員張智倫等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(四)委員張嘉郡等23人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(五)委員賴士葆等26人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。
(六)委員徐欣瑩等20人擬具「公務人員退休資遣撫卹法第三十七條、第三十八條及第六十七條條文修正草案」案。
(七)委員邱鎮軍等25人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(八)國民黨黨團擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(九)委員林思銘等26人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。
(十)委員陳超明等19人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(十一)委員許宇甄等20人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。
(十二)委員黃健豪等18人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。
(十三)委員張智倫等19人擬具「公務人員退休資遣撫卹法第三條、第八條及第三十七條條文修正草案」案。
(十四)委員馬文君等20人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(十五)委員傅崐萁等21人擬具「公務人員退休資遣撫卹法第六十七條條文修正草案」案。
(十六)委員王鴻薇等25人擬具「公務人員退休資遣撫卹法第三十七條及第六十七條條文修正草案」案。
(十七)委員黃建賓等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(十八)委員陳玉珍等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
(十九)委員王鴻薇等19人擬具「公務人員退休資遣撫卹法第三十八條條文修正草案」案。
(二十)委員羅智強等16人擬具「公務人員退休資遣撫卹法第三十七條條文修正草案」案。
二、併案審查
(一)委員李彥秀等18人擬具「公務人員任用法第三十六條之一條文修正草案」案。
(二)委員翁曉玲等22人擬具「公務人員任用法第二十八條之一條文修正草案」案。) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
3.32159375 |
transcript.pyannote[0].end |
19.90971875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
20.11221875 |
transcript.pyannote[1].end |
28.54971875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
28.88721875 |
transcript.pyannote[2].end |
33.27471875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
34.06784375 |
transcript.pyannote[3].end |
34.65846875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
35.60346875 |
transcript.pyannote[4].end |
38.62409375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
39.18096875 |
transcript.pyannote[5].end |
40.39596875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
40.98659375 |
transcript.pyannote[6].end |
43.41659375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
44.64846875 |
transcript.pyannote[7].end |
45.13784375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
45.77909375 |
transcript.pyannote[8].end |
46.65659375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
47.14596875 |
transcript.pyannote[9].end |
47.95596875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
48.63096875 |
transcript.pyannote[10].end |
49.60971875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
50.30159375 |
transcript.pyannote[11].end |
61.89471875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
63.27846875 |
transcript.pyannote[12].end |
74.23034375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
75.15846875 |
transcript.pyannote[13].end |
80.54159375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
81.11534375 |
transcript.pyannote[14].end |
83.20784375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
83.96721875 |
transcript.pyannote[15].end |
84.37221875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
84.67596875 |
transcript.pyannote[16].end |
86.88659375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
88.00034375 |
transcript.pyannote[17].end |
90.93659375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
91.79721875 |
transcript.pyannote[18].end |
92.11784375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
92.25284375 |
transcript.pyannote[19].end |
92.96159375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
93.40034375 |
transcript.pyannote[20].end |
94.95284375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
95.62784375 |
transcript.pyannote[21].end |
96.30284375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
96.60659375 |
transcript.pyannote[22].end |
97.70346875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
98.51346875 |
transcript.pyannote[23].end |
99.12096875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
99.50909375 |
transcript.pyannote[24].end |
102.02346875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
102.39471875 |
transcript.pyannote[25].end |
103.12034375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
103.45784375 |
transcript.pyannote[26].end |
105.34784375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
105.53346875 |
transcript.pyannote[27].end |
111.52409375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
112.92471875 |
transcript.pyannote[28].end |
113.43096875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
113.68409375 |
transcript.pyannote[29].end |
114.20721875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
115.38846875 |
transcript.pyannote[30].end |
116.55284375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
118.27409375 |
transcript.pyannote[31].end |
118.94909375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
119.23596875 |
transcript.pyannote[32].end |
119.96159375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
120.28221875 |
transcript.pyannote[33].end |
120.95721875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
121.71659375 |
transcript.pyannote[34].end |
122.69534375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
123.45471875 |
transcript.pyannote[35].end |
124.58534375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
125.51346875 |
transcript.pyannote[36].end |
126.01971875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
127.63971875 |
transcript.pyannote[37].end |
128.12909375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
128.87159375 |
transcript.pyannote[38].end |
130.81221875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
131.36909375 |
transcript.pyannote[39].end |
132.16221875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
132.60096875 |
transcript.pyannote[40].end |
133.37721875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
134.23784375 |
transcript.pyannote[41].end |
138.60846875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
139.21596875 |
transcript.pyannote[42].end |
143.16471875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
143.50221875 |
transcript.pyannote[43].end |
144.41346875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
145.34159375 |
transcript.pyannote[44].end |
149.18909375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
149.77971875 |
transcript.pyannote[45].end |
151.50096875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
152.15909375 |
transcript.pyannote[46].end |
152.76659375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
153.05346875 |
transcript.pyannote[47].end |
167.39721875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
167.80221875 |
transcript.pyannote[48].end |
172.59471875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
172.64534375 |
transcript.pyannote[49].end |
180.28971875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
180.98159375 |
transcript.pyannote[50].end |
185.84159375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
186.16221875 |
transcript.pyannote[51].end |
186.82034375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
187.56284375 |
transcript.pyannote[52].end |
188.96346875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
189.31784375 |
transcript.pyannote[53].end |
191.47784375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
192.30471875 |
transcript.pyannote[54].end |
193.60409375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
194.26221875 |
transcript.pyannote[55].end |
205.02846875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
205.21409375 |
transcript.pyannote[56].end |
206.71596875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
206.91846875 |
transcript.pyannote[57].end |
207.88034375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
208.47096875 |
transcript.pyannote[58].end |
210.54659375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
211.01909375 |
transcript.pyannote[59].end |
211.71096875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
211.94721875 |
transcript.pyannote[60].end |
214.96784375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
215.57534375 |
transcript.pyannote[61].end |
217.38096875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
217.61721875 |
transcript.pyannote[62].end |
218.39346875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
218.62971875 |
transcript.pyannote[63].end |
219.35534375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
220.13159375 |
transcript.pyannote[64].end |
221.21159375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
221.83596875 |
transcript.pyannote[65].end |
230.69534375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
231.82596875 |
transcript.pyannote[66].end |
233.17596875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
234.15471875 |
transcript.pyannote[67].end |
239.43659375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
240.04409375 |
transcript.pyannote[68].end |
242.44034375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
243.03096875 |
transcript.pyannote[69].end |
245.86596875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
246.20346875 |
transcript.pyannote[70].end |
247.75596875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
248.00909375 |
transcript.pyannote[71].end |
253.54409375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
254.25284375 |
transcript.pyannote[72].end |
256.86846875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
257.39159375 |
transcript.pyannote[73].end |
258.72471875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
259.63596875 |
transcript.pyannote[74].end |
261.57659375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
261.93096875 |
transcript.pyannote[75].end |
263.29784375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
263.58471875 |
transcript.pyannote[76].end |
267.29721875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
267.85409375 |
transcript.pyannote[77].end |
269.87909375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
270.79034375 |
transcript.pyannote[78].end |
272.54534375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
272.96721875 |
transcript.pyannote[79].end |
274.06409375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
274.57034375 |
transcript.pyannote[80].end |
275.90346875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
276.71346875 |
transcript.pyannote[81].end |
277.70909375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
278.48534375 |
transcript.pyannote[82].end |
280.44284375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
281.60721875 |
transcript.pyannote[83].end |
282.13034375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
282.90659375 |
transcript.pyannote[84].end |
285.75846875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
286.04534375 |
transcript.pyannote[85].end |
289.08284375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
289.70721875 |
transcript.pyannote[86].end |
290.66909375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
291.05721875 |
transcript.pyannote[87].end |
293.45346875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
294.28034375 |
transcript.pyannote[88].end |
296.86221875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
297.14909375 |
transcript.pyannote[89].end |
297.72284375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
298.19534375 |
transcript.pyannote[90].end |
299.14034375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
299.32596875 |
transcript.pyannote[91].end |
300.11909375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
300.62534375 |
transcript.pyannote[92].end |
302.59971875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
303.05534375 |
transcript.pyannote[93].end |
304.40534375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
305.53596875 |
transcript.pyannote[94].end |
307.64534375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
308.01659375 |
transcript.pyannote[95].end |
309.46784375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
310.02471875 |
transcript.pyannote[96].end |
311.22284375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
312.23534375 |
transcript.pyannote[97].end |
316.08284375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
316.15034375 |
transcript.pyannote[98].end |
318.34409375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
318.74909375 |
transcript.pyannote[99].end |
322.98471875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
323.44034375 |
transcript.pyannote[100].end |
325.07721875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
325.73534375 |
transcript.pyannote[101].end |
326.73096875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
327.18659375 |
transcript.pyannote[102].end |
328.90784375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
329.44784375 |
transcript.pyannote[103].end |
332.73846875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
333.54846875 |
transcript.pyannote[104].end |
336.94034375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
337.44659375 |
transcript.pyannote[105].end |
338.18909375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
338.61096875 |
transcript.pyannote[106].end |
340.85534375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
341.37846875 |
transcript.pyannote[107].end |
343.89284375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
344.51721875 |
transcript.pyannote[108].end |
347.16659375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
347.62221875 |
transcript.pyannote[109].end |
349.69784375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
350.13659375 |
transcript.pyannote[110].end |
352.88721875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
353.29221875 |
transcript.pyannote[111].end |
355.65471875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
356.75159375 |
transcript.pyannote[112].end |
358.03409375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
358.92846875 |
transcript.pyannote[113].end |
361.02096875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
361.25721875 |
transcript.pyannote[114].end |
363.90659375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
364.19346875 |
transcript.pyannote[115].end |
365.81346875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
366.42096875 |
transcript.pyannote[116].end |
371.85471875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
372.39471875 |
transcript.pyannote[117].end |
384.30846875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
384.96659375 |
transcript.pyannote[118].end |
393.77534375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
393.89346875 |
transcript.pyannote[119].end |
402.44909375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
403.19159375 |
transcript.pyannote[120].end |
420.20159375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
420.48846875 |
transcript.pyannote[121].end |
425.12909375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
425.51721875 |
transcript.pyannote[122].end |
430.34346875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
430.69784375 |
transcript.pyannote[123].end |
436.45221875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
436.51971875 |
transcript.pyannote[124].end |
440.62034375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
440.85659375 |
transcript.pyannote[125].end |
443.05034375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
443.28659375 |
transcript.pyannote[126].end |
444.46784375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
444.68721875 |
transcript.pyannote[127].end |
446.02034375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
446.22284375 |
transcript.pyannote[128].end |
450.81284375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
451.18409375 |
transcript.pyannote[129].end |
459.52034375 |
transcript.whisperx[0].start |
3.597 |
transcript.whisperx[0].end |
13.837 |
transcript.whisperx[0].text |
感謝主席給這個機會讓我們可以透過這個過程除了是詢問相關機關之外也可以做一些程序上或彼此對這個議題上的交流 |
transcript.whisperx[1].start |
14.505 |
transcript.whisperx[1].end |
43.289 |
transcript.whisperx[1].text |
那剛剛有恭臨了我們羅志強委員他的一些感觸那我也是一向認為啊在程序發言呢是就我們今天的議程來討論不過他剛剛提到一個我一定要來跟羅委員做個分享他說我們是站在年金改革站在這些使用年紀的對立面是嗎我們身邊的很多人受到年金改革的影響啊最直接的影響就是在年金改革之前退休的人 |
transcript.whisperx[2].start |
44.67 |
transcript.whisperx[2].end |
72.961 |
transcript.whisperx[2].text |
正好我的家庭我的雙親我的兩個姊姊他們都曾經做過老師國小老師或是國中代理教師家母跟家姐甚至是國小教師退休這當中最明顯的年金改革就是家母他很早就退休了在年金改革之前呢他84年之前的就職年資他依那時候的規定可以享有18%的優存 |
transcript.whisperx[3].start |
75.202 |
transcript.whisperx[3].end |
97.115 |
transcript.whisperx[3].text |
後來我進入立法院在2017年那時候我們參與了年金改革那時候家母已經退休一段時間了那麼家姐告訴我說因為每個月啊家母的領的年金呢都是家姐在打理的那我就問她那媽媽這樣子少領多少錢她告訴我大概萬把塊吧 |
transcript.whisperx[4].start |
98.601 |
transcript.whisperx[4].end |
125.778 |
transcript.whisperx[4].text |
所以我就從我自己的錢每個月就放到轉存到家姐那裡去他都用家母的年金來支付當時協助照顧的外籍看護那麼直到家母過世了那我才發現說原來他領的錢他都請我姐姐去捐 |
transcript.whisperx[5].start |
127.677 |
transcript.whisperx[5].end |
148.838 |
transcript.whisperx[5].text |
那這個家裡有年金改革的人受影響的人包括佳姐她是年金改革後因為為了要照顧家母她提前辦退休所以呢她沒有去感受到改革前跟改革後那個落差那這一萬把塊的落差是它生在哪裡呢我後來就詢問了就是188的優存啊 |
transcript.whisperx[6].start |
152.213 |
transcript.whisperx[6].end |
180.089 |
transcript.whisperx[6].text |
怎麼說?我們年金改革之前在84年的就職年資在你年改之前退休的人員他你領的年金當中有相當的比例是用18%的優惠存款的優惠利率去換算來的所以當我們將所得替代率從八成百分之八十逐年下調的時候首先去拿掉的就是讓你的優存可領的優存利息的佔比越來越少 |
transcript.whisperx[7].start |
181.058 |
transcript.whisperx[7].end |
193.086 |
transcript.whisperx[7].text |
事實上按照公務人員他的本分去換算的年金在他的年金的占比當中其實是根本還沒有去砍到所以等於說 |
transcript.whisperx[8].start |
194.572 |
transcript.whisperx[8].end |
216.862 |
transcript.whisperx[8].text |
過去家母在年金改革前退休年金改革之後他少領的錢就是他在退休的時候他的退休金存在18%優存裡面所產生出來的那個金額那個金額誰在付那個利息誰在付剛巧我在擔任立法委員之前我在屏東縣我擔任副縣長我每年都要跟財主來討論我們的預算 |
transcript.whisperx[9].start |
220.183 |
transcript.whisperx[9].end |
230.091 |
transcript.whisperx[9].text |
我才赫然發現地方政府有一大筆錢預算支出是在支付從縣政府退休的人員18%優存的利差存在台灣銀行的利差表示說屏東縣政府的當時縣政府的直屬現職人員府本部的800多人 |
transcript.whisperx[10].start |
240.1 |
transcript.whisperx[10].end |
258.583 |
transcript.whisperx[10].text |
但是退休的教師上千多人而且呢隨著年齡的提高累加包括我自己的小學老師也跑來曾經為了這個憂蠢的利差來找我問說這個事情怎麼存我才理解到我們目前的年金改革受惠的是哪些人 |
transcript.whisperx[11].start |
259.713 |
transcript.whisperx[11].end |
280.268 |
transcript.whisperx[11].text |
所謂的包括地方政府的財政因此得到了緩解因為這些錢是包括優存利差原來是地方政府在負擔的那麼有沒有損及到年改之後的退休人員呢就加解來說他年改之後退休他所領的錢足以維持他的退休生活 |
transcript.whisperx[12].start |
281.656 |
transcript.whisperx[12].end |
311.025 |
transcript.whisperx[12].text |
而且這個替代率的在下遞減啊其實以他的退休當時所領的年金還優於當年新進的教師許多就一個奉獻教育崗位這麼多年的教師不只是家母還是家姐還是所有全國的教育人員我都心存感激但是年金改革最大的另外一個受益者是什麼在年改之後 |
transcript.whisperx[13].start |
312.281 |
transcript.whisperx[13].end |
332.581 |
transcript.whisperx[13].text |
年改之後這些公務人員他們這個年金可以延續到讓他們進入這個機關之後他未來可期待的退休的時候仍然有足夠的基金水位來維持他有尊嚴的生活 |
transcript.whisperx[14].start |
333.618 |
transcript.whisperx[14].end |
357.851 |
transcript.whisperx[14].text |
所以作為一個年金改革的受影響者的家庭我要在這裡跟我們待會會發言的羅委員分享我們不是年金改革的敵人年金改革裡面沒有誰是敵人我們很多的親朋好友都是年金改革的受影響的人而且絕大部分是受益者絕大部分是受益者 |
transcript.whisperx[15].start |
358.993 |
transcript.whisperx[15].end |
383.834 |
transcript.whisperx[15].text |
所以我真的還要誠懇的呼籲大家在關心軍公教人員權益的時候要有一個永續的思維今天任何人進入公部門進入教育崗位為國奉獻為社會栽培人才他們的退休生活我們國家用制度性的保障說到制度性的保障18號的優存是當時年改的時候社會最不公平的來源因為他們有法律的依據 |
transcript.whisperx[16].start |
385.275 |
transcript.whisperx[16].end |
401.424 |
transcript.whisperx[16].text |
當年為什麼政府會發明這18%的優存呢?是因為當時的政府的財政沒有辦法支應公務人員足够的退休金所以鼓勵他用半權退、半月退的方式把他半權退的錢拿到回來給政府周轉 |
transcript.whisperx[17].start |
403.257 |
transcript.whisperx[17].end |
424.306 |
transcript.whisperx[17].text |
母金留給政府周轉政府給你18%的優準付利息來補貼那時候公務人員微薄的薪資他的微薄的年金18%當年是存在有軍公教人員用他一次或半次的全退的薪水的退休金放給政府讓政府使用政府給他18%的優存 |
transcript.whisperx[18].start |
425.606 |
transcript.whisperx[18].end |
450.566 |
transcript.whisperx[18].text |
在當年的時空背景之下後來經歷了公務人員薪資結構的全面調整家姐擔任國小教師的時候薪資已經改善很多了所以他現在退休生活無虞我也非常的感念有前面這些退休人員他們的付出也感謝這段時間政府的提撥但是我們要強調的未來不管是軍公教都需要這個年金改革維持能夠永續的去存在 |
transcript.whisperx[19].start |
451.867 |
transcript.whisperx[19].end |
455.53 |
transcript.whisperx[19].text |
謝謝主席讓我這個時間讓心情來跟羅委員做交換 |
IVOD_ID |
157874 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/157874 |
日期 |
2024-12-05 |
會議資料.會議代碼 |
委員會-11-2-36-18 |
會議資料.屆 |
11 |
會議資料.會期 |
2 |
會議資料.會次 |
18 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
36 |
會議資料.標題 |
第11屆第2會期司法及法制委員會第18次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-12-05T11:00:33+08:00 |
結束時間 |
2024-12-05T11:08:19+08:00 |
支援功能[0] |
ai-transcript |