iVOD / 157833

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/01ebf86bd82083607902756c40757103e45dd5fe0ad21242f04b39567fafe61ed1d510c8f51747fa5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅智強
委員發言時間 15:03:35 - 15:14:13
影片長度 638
會議時間 2024-12-04T09:00:00+08:00
會議名稱 立法院第11屆第2會期社會福利及衛生環境委員會第12次全體委員會議(事由:邀請勞動部部長針對「勞動部勞動力發展署北基宜花金馬分署事件及如何完善申訴管道之具體策進作為及期程」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 6.62909375
transcript.pyannote[0].end 7.72596875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 14.81346875
transcript.pyannote[1].end 15.50534375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 15.87659375
transcript.pyannote[2].end 16.95659375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 16.97346875
transcript.pyannote[3].end 17.02409375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 17.54721875
transcript.pyannote[4].end 28.76909375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 30.76034375
transcript.pyannote[5].end 32.19471875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 33.15659375
transcript.pyannote[6].end 34.10159375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 35.16471875
transcript.pyannote[7].end 44.68221875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 45.89721875
transcript.pyannote[8].end 49.03596875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 51.09471875
transcript.pyannote[9].end 51.65159375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 51.65159375
transcript.pyannote[10].end 51.93846875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 51.93846875
transcript.pyannote[11].end 51.97221875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 51.97221875
transcript.pyannote[12].end 51.98909375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 51.98909375
transcript.pyannote[13].end 52.03971875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 52.03971875
transcript.pyannote[14].end 52.10721875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 52.10721875
transcript.pyannote[15].end 52.22534375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 52.22534375
transcript.pyannote[16].end 52.86659375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 54.04784375
transcript.pyannote[17].end 57.03471875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 57.70971875
transcript.pyannote[18].end 59.22846875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 60.91596875
transcript.pyannote[19].end 66.16409375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 67.27784375
transcript.pyannote[20].end 68.67846875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 69.47159375
transcript.pyannote[21].end 70.48409375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 70.88909375
transcript.pyannote[22].end 71.85096875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 72.32346875
transcript.pyannote[23].end 75.27659375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 76.25534375
transcript.pyannote[24].end 77.03159375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 78.26346875
transcript.pyannote[25].end 84.87846875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 84.22034375
transcript.pyannote[26].end 87.66284375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 86.05971875
transcript.pyannote[27].end 91.24034375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 89.06346875
transcript.pyannote[28].end 91.94909375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 92.26971875
transcript.pyannote[29].end 94.22721875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 94.63221875
transcript.pyannote[30].end 97.56846875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 98.63159375
transcript.pyannote[31].end 103.35659375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 104.06534375
transcript.pyannote[32].end 107.22096875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 108.53721875
transcript.pyannote[33].end 111.03471875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 110.46096875
transcript.pyannote[34].end 113.95409375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 111.49034375
transcript.pyannote[35].end 113.88659375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 113.90346875
transcript.pyannote[36].end 113.92034375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 113.95409375
transcript.pyannote[37].end 120.50159375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 117.64971875
transcript.pyannote[38].end 119.10096875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 119.96159375
transcript.pyannote[39].end 130.35659375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 132.06096875
transcript.pyannote[40].end 137.86596875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 137.86596875
transcript.pyannote[41].end 146.91096875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 146.91096875
transcript.pyannote[42].end 148.96971875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 148.96971875
transcript.pyannote[43].end 154.21784375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 151.24784375
transcript.pyannote[44].end 153.47534375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 154.72409375
transcript.pyannote[45].end 155.34846875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 155.34846875
transcript.pyannote[46].end 155.38221875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 156.00659375
transcript.pyannote[47].end 157.45784375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 159.51659375
transcript.pyannote[48].end 161.38971875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 163.83659375
transcript.pyannote[49].end 169.65846875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 170.28284375
transcript.pyannote[50].end 171.64971875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 171.97034375
transcript.pyannote[51].end 178.75409375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 179.91846875
transcript.pyannote[52].end 181.04909375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 181.63971875
transcript.pyannote[53].end 183.39471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 185.16659375
transcript.pyannote[54].end 196.47284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 196.86096875
transcript.pyannote[55].end 201.11346875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 202.09221875
transcript.pyannote[56].end 202.81784375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 203.13846875
transcript.pyannote[57].end 205.45034375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 205.90596875
transcript.pyannote[58].end 208.01534375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 208.01534375
transcript.pyannote[59].end 208.30221875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 208.62284375
transcript.pyannote[60].end 213.78659375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 214.10721875
transcript.pyannote[61].end 221.24534375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 221.59971875
transcript.pyannote[62].end 232.07909375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 232.45034375
transcript.pyannote[63].end 234.86346875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 233.20971875
transcript.pyannote[64].end 233.58096875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 234.86346875
transcript.pyannote[65].end 240.60096875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 234.88034375
transcript.pyannote[66].end 239.35221875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 241.19159375
transcript.pyannote[67].end 246.47346875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 247.01346875
transcript.pyannote[68].end 248.31284375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 248.83596875
transcript.pyannote[69].end 250.96221875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 250.96221875
transcript.pyannote[70].end 251.87346875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 251.87346875
transcript.pyannote[71].end 251.89034375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 253.37534375
transcript.pyannote[72].end 260.96909375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 257.96534375
transcript.pyannote[73].end 257.98221875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 257.98221875
transcript.pyannote[74].end 259.63596875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 260.96909375
transcript.pyannote[75].end 263.65221875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 261.00284375
transcript.pyannote[76].end 262.06596875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 263.97284375
transcript.pyannote[77].end 264.39471875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 264.46221875
transcript.pyannote[78].end 264.54659375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 265.59284375
transcript.pyannote[79].end 268.24221875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 265.66034375
transcript.pyannote[80].end 265.67721875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 268.49534375
transcript.pyannote[81].end 270.45284375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 269.59221875
transcript.pyannote[82].end 275.46471875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 271.49909375
transcript.pyannote[83].end 272.81534375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 273.30471875
transcript.pyannote[84].end 276.12284375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 276.91596875
transcript.pyannote[85].end 288.27284375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 285.91034375
transcript.pyannote[86].end 287.09159375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 289.50471875
transcript.pyannote[87].end 291.79971875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 293.31846875
transcript.pyannote[88].end 293.97659375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 293.97659375
transcript.pyannote[89].end 294.88784375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 295.36034375
transcript.pyannote[90].end 297.73971875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 296.69346875
transcript.pyannote[91].end 305.40096875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 305.67096875
transcript.pyannote[92].end 310.07534375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 311.03721875
transcript.pyannote[93].end 311.47596875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 313.34909375
transcript.pyannote[94].end 313.61909375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 314.02409375
transcript.pyannote[95].end 317.36534375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 317.50034375
transcript.pyannote[96].end 325.76909375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 326.19096875
transcript.pyannote[97].end 327.15284375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 328.01346875
transcript.pyannote[98].end 329.27909375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 330.12284375
transcript.pyannote[99].end 333.37971875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 334.93221875
transcript.pyannote[100].end 340.24784375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 339.03284375
transcript.pyannote[101].end 339.35346875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 339.35346875
transcript.pyannote[102].end 339.50534375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 341.24346875
transcript.pyannote[103].end 344.33159375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 345.24284375
transcript.pyannote[104].end 347.65596875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 348.33096875
transcript.pyannote[105].end 349.96784375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 350.96346875
transcript.pyannote[106].end 354.05159375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 355.48596875
transcript.pyannote[107].end 362.03346875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 360.58221875
transcript.pyannote[108].end 365.69534375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 366.04971875
transcript.pyannote[109].end 375.87096875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 370.50471875
transcript.pyannote[110].end 371.28096875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 376.19159375
transcript.pyannote[111].end 380.32596875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 380.81534375
transcript.pyannote[112].end 382.55346875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 383.54909375
transcript.pyannote[113].end 389.47221875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 389.47221875
transcript.pyannote[114].end 391.95284375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 391.96971875
transcript.pyannote[115].end 391.98659375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 392.17221875
transcript.pyannote[116].end 397.60596875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 397.87596875
transcript.pyannote[117].end 399.34409375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 399.76596875
transcript.pyannote[118].end 407.29221875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 408.05159375
transcript.pyannote[119].end 424.03221875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 413.46846875
transcript.pyannote[120].end 413.62034375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 421.41659375
transcript.pyannote[121].end 421.97346875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 423.13784375
transcript.pyannote[122].end 431.20409375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 431.57534375
transcript.pyannote[123].end 439.91159375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 442.07159375
transcript.pyannote[124].end 444.61971875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 445.53096875
transcript.pyannote[125].end 448.04534375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 449.07471875
transcript.pyannote[126].end 451.01534375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 451.28534375
transcript.pyannote[127].end 452.24721875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 452.44971875
transcript.pyannote[128].end 458.72721875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 459.21659375
transcript.pyannote[129].end 460.19534375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 461.10659375
transcript.pyannote[130].end 465.10596875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 465.71346875
transcript.pyannote[131].end 470.53971875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 473.40846875
transcript.pyannote[132].end 474.72471875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 476.41221875
transcript.pyannote[133].end 478.90971875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 479.87159375
transcript.pyannote[134].end 481.42409375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 481.81221875
transcript.pyannote[135].end 483.97221875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 483.97221875
transcript.pyannote[136].end 492.27471875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 491.07659375
transcript.pyannote[137].end 496.61159375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 497.20221875
transcript.pyannote[138].end 499.61534375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 500.81346875
transcript.pyannote[139].end 501.77534375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 502.12971875
transcript.pyannote[140].end 505.97721875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 506.46659375
transcript.pyannote[141].end 510.34784375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 511.14096875
transcript.pyannote[142].end 512.35596875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 513.48659375
transcript.pyannote[143].end 519.25784375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 519.25784375
transcript.pyannote[144].end 520.43909375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 520.43909375
transcript.pyannote[145].end 520.52346875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 520.52346875
transcript.pyannote[146].end 520.54034375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 520.54034375
transcript.pyannote[147].end 520.94534375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 524.75909375
transcript.pyannote[148].end 526.36221875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 527.05409375
transcript.pyannote[149].end 531.28971875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 531.77909375
transcript.pyannote[150].end 535.91346875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 536.36909375
transcript.pyannote[151].end 537.76971875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 537.98909375
transcript.pyannote[152].end 538.46159375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 539.74409375
transcript.pyannote[153].end 540.55409375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 541.21221875
transcript.pyannote[154].end 543.22034375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 541.60034375
transcript.pyannote[155].end 542.35971875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 543.43971875
transcript.pyannote[156].end 547.18596875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 547.72596875
transcript.pyannote[157].end 548.80596875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 549.61596875
transcript.pyannote[158].end 562.77846875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 563.16659375
transcript.pyannote[159].end 566.44034375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 568.07721875
transcript.pyannote[160].end 576.17721875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 576.37971875
transcript.pyannote[161].end 577.64534375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 578.33721875
transcript.pyannote[162].end 578.60721875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 578.60721875
transcript.pyannote[163].end 581.67846875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 581.67846875
transcript.pyannote[164].end 585.30659375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 584.37846875
transcript.pyannote[165].end 593.28846875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 586.50471875
transcript.pyannote[166].end 587.11221875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 594.23346875
transcript.pyannote[167].end 600.34221875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 600.94971875
transcript.pyannote[168].end 602.04659375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 603.00846875
transcript.pyannote[169].end 604.52721875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 605.11784375
transcript.pyannote[170].end 611.41221875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 612.25596875
transcript.pyannote[171].end 613.53846875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 614.11221875
transcript.pyannote[172].end 616.15409375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 615.79971875
transcript.pyannote[173].end 618.14534375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 616.59284375
transcript.pyannote[174].end 618.01034375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 618.31409375
transcript.pyannote[175].end 624.91221875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 621.57096875
transcript.pyannote[176].end 623.91659375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 624.91221875
transcript.pyannote[177].end 626.11034375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 627.61221875
transcript.pyannote[178].end 632.05034375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 632.94471875
transcript.pyannote[179].end 636.58971875
transcript.whisperx[0].start 6.676
transcript.whisperx[0].end 33.826
transcript.whisperx[0].text 主席有請部長謝謝羅委員部長好之前那個許民村前部長被爆料就用就業安定基金他的音樂會花了300多萬那你知道他的幕後花絮影片花了多少錢幕後花絮影片對我告訴你啦
transcript.whisperx[1].start 35.236
transcript.whisperx[1].end 44.319
transcript.whisperx[1].text 做了7支影片花了203萬短影片就是60秒的短影片然後單支的價格是29萬沒錯吧是你知道平均每支點擊率多少嗎目前是300多對這是辛苦你了300多這個數字部長你聽得下去嗎
transcript.whisperx[2].start 61.253
transcript.whisperx[2].end 73.782
transcript.whisperx[2].text 誒部長你也有做那個平台吧對不對是這效率看起來當然扯吧昏倒啦29萬照你們說300多的點擊率能看嗎
transcript.whisperx[3].start 78.672
transcript.whisperx[3].end 106.978
transcript.whisperx[3].text 跟委員報告那整個的案子是一個音樂會以及音樂影帶的拍攝我講的是幕後花絮影片就是七支連同那個整個音樂會的演出沒關係沒關係喔這個這一件事情齁這影片目前都還在勞動部的YT上嘛對不對是但是許民村辦公室說這是不實指控欸我想請問部長一支影片29萬是真的還假的是不是不實指控
transcript.whisperx[4].start 108.858
transcript.whisperx[4].end 130.109
transcript.whisperx[4].text 這個影片是當初我只問你嘛有沒有一支影片29萬嘛有沒有嘛這是整體連同音樂片的那個製作好啦我告訴你喔拍攝內容你們在性別工作平等法20週年音樂會及音樂影片結案報告裡就寫得很清楚一支就是29萬科目都有
transcript.whisperx[5].start 132.23
transcript.whisperx[5].end 157.29
transcript.whisperx[5].text 還要再幫他幫我們的許明川炎黃嗎需要嗎部長新氣象不需要吧我們沒有必要為幫任何人去炎黃但我當然不是很清楚知道許前不講他所謂的不實指控的在講的是哪一件事情他就說這件事整件事是不實指控啊就是我不知道他具體是指哪一件事我們不用去為任何人對護短我跟你講國家錢就這樣浪費啦就一個安定基金的錢就這樣浪費啦
transcript.whisperx[6].start 163.888
transcript.whisperx[6].end 182.725
transcript.whisperx[6].text 一個影片點擊率可以低到這種程度做了什麼他要去當演唱會去當歌星吼這邊浪費國家的錢喔現在還不滿足欸還要把他的演唱會來做幕後花絮欸都是拍他喔幕後花絮喔真的很愛秀欸我再想請教你下一個問題喔
transcript.whisperx[7].start 185.239
transcript.whisperx[7].end 200.061
transcript.whisperx[7].text 新北市議員我們這個就是謝宜龍挪用就業安定基金145萬在公共空間種個人植物需要24小時的燈照所以112年新莊本部用電量高達3萬多度
transcript.whisperx[8].start 202.25
transcript.whisperx[8].end 202.59
transcript.whisperx[8].text 這是真的吧?
transcript.whisperx[9].start 233.131
transcript.whisperx[9].end 237.535
transcript.whisperx[9].text 你知道謝宏是2023年3月當上北分署的署長嗎?你知道2022年勞動部北分署用電度數是多少?
transcript.whisperx[10].start 253.667
transcript.whisperx[10].end 262.531
transcript.whisperx[10].text 我手上的數據大概30幾萬度吧我手上你們勞動部給我的數據237萬度我講的是北分署不是新莊我記得是30幾萬度吧我講的是北分署237萬度這是韓訓練場北分署在新莊本部應該是30萬度
transcript.whisperx[11].start 277.681
transcript.whisperx[11].end 288.232
transcript.whisperx[11].text 2023年齁,我們謝榮當了署長之後你知道變了多少度嗎?整個北分數?呃,我根本不知道,剛才就是說我們查了112年跟121年的差別你講是寫到北,我講是整個北分數啦251萬度啦,沒錯吧?
transcript.whisperx[12].start 293.476
transcript.whisperx[12].end 310.003
transcript.whisperx[12].text 沒錯吧兩呃我說的是新莊因為他的辦公室在你不要再跟我講新莊放下新莊好不好我講的是北分署我已經質詢了多久你倒還在跟我停在新莊我在北北分署啊難道今天謝宜榮只管新莊本部啊他不管北分署啊好
transcript.whisperx[13].start 314.602
transcript.whisperx[13].end 325.086
transcript.whisperx[13].text 誒 電費一年就要342萬而且實際上其他的分署的用電數是下降的哦237.2萬度2023變251.2萬度那我就問啊 其實北分署一年用電數增加了14萬度為什麼跟委員報告 因為疫情之後呢相關的這些直接服務的誒不對哦
transcript.whisperx[14].start 341.297
transcript.whisperx[14].end 353.311
transcript.whisperx[14].text 其他的分署用電數是怎麼樣?是上升還是下降?我跟你講部長我要說句實在話啦你不用再幫他們背了啦他的浪費是大家有目共睹見證的啦
transcript.whisperx[15].start 355.826
transcript.whisperx[15].end 381.785
transcript.whisperx[15].text 我跟羅委員報告齁我其實絕對沒有要去幫誰背我現在就問吧那其他的分署的用電數你們給我資料是下降的啊所以不要再找藉口什麼疫情藉口那其他單位就不受疫情影響部長我跟你說今天你的所有的幕僚今天這種表現啊還在遮蓋掩蓋那我就很懷疑你上來到底能夠滅什麼火我再想請教一下一個問題啊
transcript.whisperx[16].start 384.759
transcript.whisperx[16].end 405.276
transcript.whisperx[16].text 謝宜龍他用救難定基金來花145萬種植物有這回事嗎我跟委員說明145萬是北分署他其實一些公共空間的這個綠美化工程就我查明後他本身他自己的辦公室並沒有用到這145萬但是
transcript.whisperx[17].start 408.098
transcript.whisperx[17].end 430.804
transcript.whisperx[17].text 他為了照射那些植物所裝設的軌道燈確實是用舊安定基金那這部分是非常非常不妥當的而且這也不能被接受的所以那些軌道燈是用舊安定基金做的114年舊安基金裡面勞動力發展署辦公室業務基金所需水電油物通訊文書管理辦公室
transcript.whisperx[18].start 431.964
transcript.whisperx[18].end 439.469
transcript.whisperx[18].text 用品維護、辦公廳設、公共空間、綠美化、衛生、安全等費用114年都是編多少錢?1億1849萬嘛 對不對那你覺得哪一個部分他花的最多?電費是最多啦電費在這個勞動力發展署各分數112年加總總花費大概是5837萬但是你知道
transcript.whisperx[19].start 461.241
transcript.whisperx[19].end 470.268
transcript.whisperx[19].text 所謂的其他的包括所謂的購置辦公用品維護辦公廳設公共空間綠美化安全衛生你知道花多少錢嗎6000萬啊部長剛剛講的8000萬我跟你講
transcript.whisperx[20].start 479.929
transcript.whisperx[20].end 499.275
transcript.whisperx[20].text 你如果仔細挖進去啊8000萬都還不才是小額科我向你說明其實我在上禮拜上任後其實就有要求要檢討救安基基金的資用我知道我看過了啦你在那邊我看過了但我要今天要提醒你的是問題的嚴重性是我今天要提醒部長
transcript.whisperx[21].start 500.851
transcript.whisperx[21].end 512.061
transcript.whisperx[21].text 真的太扯了如果今天勞動部要選一個年度代表字我送你一個字就是扯我希望你把這扯的文化打破掉這是我們對你的期許那接下來我再問你你知道勞動部114年媒體宣傳費跟出國經費各自編多少錢嗎114年對
transcript.whisperx[22].start 524.773
transcript.whisperx[22].end 548.724
transcript.whisperx[22].text 媒體宣傳費62萬是行政院轄下機關最少的部會非常節儉要肯定你出國預算166萬是34個中央機關裡的倒數第6你們很省啊對不對為什麼編那麼少你知道為什麼編那麼少嗎因為這是在公務預算裡面的對啊你知道為什麼因為公務預算編那麼少但是你的錢都編到哪邊去啊捐錢都編到哪去啊
transcript.whisperx[23].start 549.676
transcript.whisperx[23].end 561.099
transcript.whisperx[23].text 所以你把就業安定基金當作小金庫114年的就業安定基金裡面媒體宣導跟業務費編2億1711萬比113年的1億6707萬漲幅高達30%然後呢旅運國外旅費編高達1074萬你難怪勞動部本部的預算公務預算編得這麼低啊博取美名啊
transcript.whisperx[24].start 578.722
transcript.whisperx[24].end 601.798
transcript.whisperx[24].text 博取美名啊 然後就用小金庫來開始去搞啊我們並不是要博取美名啊我還是在告訴你部長一件事情我這到目前為止這件事情這樣不是算你的因為國人也不會算到你身上因為你剛上任算你也不合理可是今天如果說你是這種態度來面對救安利基金你跟我保證你會把救安利基金好好用誰相信你啊
transcript.whisperx[25].start 603.086
transcript.whisperx[25].end 625.844
transcript.whisperx[25].text 根本就掩耳盜鈴嘛你在你的公務預算裡面編這麼低我們今天立法院看不到然後到Joy ID基金裡面狂編欸幾億幾億的編欸我們會來跟行政院爭取本部的預算我們會來跟行政院爭取本部的預算應該要增加因為過去本部的預算確實是分配的過少這就是結論啦要編什麼預算要出國還是要去養綠油油的媒體
transcript.whisperx[26].start 632.984
transcript.whisperx[26].end 635.992
transcript.whisperx[26].text 就正大光明變大公務預算業不要濫用救援安定基金謝謝
IVOD_ID 157833
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157833
日期 2024-12-04
會議資料.會議代碼 委員會-11-2-26-12
會議資料.屆 11
會議資料.會期 2
會議資料.會次 12
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.標題 第11屆第2會期社會福利及衛生環境委員會第12次全體委員會議
影片種類 Clip
開始時間 2024-12-04T15:03:35+08:00
結束時間 2024-12-04T15:14:13+08:00
支援功能[0] ai-transcript