iVOD / 157830

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/01ebf86bd8208360836813a0e0d4bd8ee45dd5fe0ad21242d33acae7c847dfd320cac61ede387e4d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 黃健豪
委員發言時間 14:29:21 - 14:42:00
影片長度 759
會議時間 2024-12-04T09:00:00+08:00
會議名稱 立法院第11屆第2會期社會福利及衛生環境委員會第12次全體委員會議(事由:邀請勞動部部長針對「勞動部勞動力發展署北基宜花金馬分署事件及如何完善申訴管道之具體策進作為及期程」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 9.12659375
transcript.pyannote[0].end 11.96159375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 21.34409375
transcript.pyannote[1].end 22.87971875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 23.38596875
transcript.pyannote[2].end 29.42721875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 29.96721875
transcript.pyannote[3].end 33.96659375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 34.57409375
transcript.pyannote[4].end 38.87721875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 39.48471875
transcript.pyannote[5].end 46.20096875
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 46.99409375
transcript.pyannote[6].end 54.80721875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 55.06034375
transcript.pyannote[7].end 60.57846875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 60.73034375
transcript.pyannote[8].end 62.18159375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 62.67096875
transcript.pyannote[9].end 78.44909375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 79.03971875
transcript.pyannote[10].end 83.76471875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 84.22034375
transcript.pyannote[11].end 85.68846875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 86.05971875
transcript.pyannote[12].end 90.09284375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 90.44721875
transcript.pyannote[13].end 95.17221875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 96.10034375
transcript.pyannote[14].end 96.58971875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 97.02846875
transcript.pyannote[15].end 97.53471875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 101.61846875
transcript.pyannote[16].end 111.62534375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 112.24971875
transcript.pyannote[17].end 112.68846875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 113.85284375
transcript.pyannote[18].end 114.39284375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 114.39284375
transcript.pyannote[19].end 114.42659375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 115.42221875
transcript.pyannote[20].end 115.43909375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 115.43909375
transcript.pyannote[21].end 116.95784375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 117.22784375
transcript.pyannote[22].end 118.18971875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 118.51034375
transcript.pyannote[23].end 127.82534375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 128.39909375
transcript.pyannote[24].end 140.02596875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 140.39721875
transcript.pyannote[25].end 141.47721875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 141.76409375
transcript.pyannote[26].end 146.32034375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 146.72534375
transcript.pyannote[27].end 149.50971875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 150.40409375
transcript.pyannote[28].end 165.32159375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 168.37596875
transcript.pyannote[29].end 181.53846875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 181.89284375
transcript.pyannote[30].end 183.14159375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 183.14159375
transcript.pyannote[31].end 184.99784375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 185.52096875
transcript.pyannote[32].end 187.22534375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 187.22534375
transcript.pyannote[33].end 187.24221875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 190.44846875
transcript.pyannote[34].end 196.65846875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 196.81034375
transcript.pyannote[35].end 204.04971875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 204.53909375
transcript.pyannote[36].end 206.53034375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 206.53034375
transcript.pyannote[37].end 206.56409375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 207.47534375
transcript.pyannote[38].end 207.49221875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 207.49221875
transcript.pyannote[39].end 208.16721875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 208.45409375
transcript.pyannote[40].end 214.78221875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 215.20409375
transcript.pyannote[41].end 217.70159375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 217.93784375
transcript.pyannote[42].end 220.09784375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 221.05971875
transcript.pyannote[43].end 224.60346875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 225.00846875
transcript.pyannote[44].end 228.46784375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 230.20596875
transcript.pyannote[45].end 231.03284375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 231.03284375
transcript.pyannote[46].end 231.64034375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 232.16346875
transcript.pyannote[47].end 232.87221875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 234.00284375
transcript.pyannote[48].end 235.75784375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 236.23034375
transcript.pyannote[49].end 239.23409375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 240.12846875
transcript.pyannote[50].end 240.73596875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 241.00596875
transcript.pyannote[51].end 249.00471875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 247.63784375
transcript.pyannote[52].end 250.40534375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 251.01284375
transcript.pyannote[53].end 272.96721875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 272.96721875
transcript.pyannote[54].end 273.22034375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 273.22034375
transcript.pyannote[55].end 275.04284375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 275.41409375
transcript.pyannote[56].end 280.47659375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 281.21909375
transcript.pyannote[57].end 282.02909375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 282.13034375
transcript.pyannote[58].end 288.74534375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 293.21721875
transcript.pyannote[59].end 310.12596875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 310.29471875
transcript.pyannote[60].end 313.02846875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 313.46721875
transcript.pyannote[61].end 332.26596875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 332.51909375
transcript.pyannote[62].end 335.15159375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 335.97846875
transcript.pyannote[63].end 337.69971875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 337.91909375
transcript.pyannote[64].end 345.76596875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 346.35659375
transcript.pyannote[65].end 346.99784375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 347.16659375
transcript.pyannote[66].end 350.03534375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 351.25034375
transcript.pyannote[67].end 371.33159375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 371.92221875
transcript.pyannote[68].end 380.98409375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 377.79471875
transcript.pyannote[69].end 378.75659375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 379.33034375
transcript.pyannote[70].end 379.78596875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 380.32596875
transcript.pyannote[71].end 387.68346875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 387.58221875
transcript.pyannote[72].end 390.06284375
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 390.78846875
transcript.pyannote[73].end 404.30534375
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 404.91284375
transcript.pyannote[74].end 410.63346875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 411.79784375
transcript.pyannote[75].end 412.69221875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 412.87784375
transcript.pyannote[76].end 419.39159375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 419.39159375
transcript.pyannote[77].end 420.31971875
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 420.50534375
transcript.pyannote[78].end 428.47034375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 428.82471875
transcript.pyannote[79].end 434.47784375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 435.13596875
transcript.pyannote[80].end 436.67159375
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 437.27909375
transcript.pyannote[81].end 437.88659375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 438.22409375
transcript.pyannote[82].end 439.03409375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 439.64159375
transcript.pyannote[83].end 445.24409375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 447.21846875
transcript.pyannote[84].end 455.94284375
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 451.40346875
transcript.pyannote[85].end 451.58909375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 454.55909375
transcript.pyannote[86].end 462.38909375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 462.47346875
transcript.pyannote[87].end 464.14409375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 463.36784375
transcript.pyannote[88].end 468.05909375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 465.91596875
transcript.pyannote[89].end 471.38346875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 471.70409375
transcript.pyannote[90].end 474.87659375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 476.37846875
transcript.pyannote[91].end 477.03659375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 477.03659375
transcript.pyannote[92].end 477.05346875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 477.05346875
transcript.pyannote[93].end 477.08721875
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 477.08721875
transcript.pyannote[94].end 477.50909375
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 478.13346875
transcript.pyannote[95].end 479.58471875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 480.07409375
transcript.pyannote[96].end 482.55471875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 482.92596875
transcript.pyannote[97].end 483.53346875
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 484.12409375
transcript.pyannote[98].end 486.57096875
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 487.17846875
transcript.pyannote[99].end 487.75221875
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 488.47784375
transcript.pyannote[100].end 488.88284375
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 489.57471875
transcript.pyannote[101].end 489.96284375
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 490.41846875
transcript.pyannote[102].end 508.42409375
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 509.50409375
transcript.pyannote[103].end 510.97221875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 510.97221875
transcript.pyannote[104].end 518.16096875
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 517.58721875
transcript.pyannote[105].end 519.39284375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 519.39284375
transcript.pyannote[106].end 528.70784375
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 526.27784375
transcript.pyannote[107].end 528.52221875
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 528.70784375
transcript.pyannote[108].end 528.77534375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 528.77534375
transcript.pyannote[109].end 528.80909375
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 528.80909375
transcript.pyannote[110].end 528.84284375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 528.84284375
transcript.pyannote[111].end 531.01971875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 531.32346875
transcript.pyannote[112].end 533.58471875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 534.69846875
transcript.pyannote[113].end 537.17909375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 538.25909375
transcript.pyannote[114].end 540.85784375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 540.97596875
transcript.pyannote[115].end 546.57846875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 547.06784375
transcript.pyannote[116].end 554.81346875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 555.06659375
transcript.pyannote[117].end 559.69034375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 559.84221875
transcript.pyannote[118].end 563.75721875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 564.29721875
transcript.pyannote[119].end 573.49409375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 574.08471875
transcript.pyannote[120].end 580.02471875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 580.02471875
transcript.pyannote[121].end 596.17409375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 596.41034375
transcript.pyannote[122].end 599.51534375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 599.95409375
transcript.pyannote[123].end 606.82221875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 607.32846875
transcript.pyannote[124].end 613.80846875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 613.84221875
transcript.pyannote[125].end 613.90971875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 613.96034375
transcript.pyannote[126].end 615.05721875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 615.69846875
transcript.pyannote[127].end 616.72784375
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 617.41971875
transcript.pyannote[128].end 623.27534375
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 624.35534375
transcript.pyannote[129].end 625.14846875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 626.04284375
transcript.pyannote[130].end 627.89909375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 628.50659375
transcript.pyannote[131].end 631.98284375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 631.98284375
transcript.pyannote[132].end 639.18846875
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 639.34034375
transcript.pyannote[133].end 643.96409375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 644.43659375
transcript.pyannote[134].end 652.48596875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 653.19471875
transcript.pyannote[135].end 656.02971875
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 656.02971875
transcript.pyannote[136].end 657.83534375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 657.83534375
transcript.pyannote[137].end 661.37909375
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 661.37909375
transcript.pyannote[138].end 667.13346875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 666.13784375
transcript.pyannote[139].end 670.23846875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 673.34346875
transcript.pyannote[140].end 687.83909375
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 687.83909375
transcript.pyannote[141].end 688.27784375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 688.96971875
transcript.pyannote[142].end 689.66159375
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 689.25659375
transcript.pyannote[143].end 689.30721875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 689.89784375
transcript.pyannote[144].end 691.28159375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 691.28159375
transcript.pyannote[145].end 693.45846875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 693.45846875
transcript.pyannote[146].end 693.62721875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 693.62721875
transcript.pyannote[147].end 693.64409375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 694.52159375
transcript.pyannote[148].end 701.74409375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 701.96346875
transcript.pyannote[149].end 710.46846875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 711.16034375
transcript.pyannote[150].end 731.02221875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 731.42721875
transcript.pyannote[151].end 737.85659375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 738.27846875
transcript.pyannote[152].end 740.79284375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 741.45096875
transcript.pyannote[153].end 754.57971875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 754.86659375
transcript.pyannote[154].end 755.28846875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 755.28846875
transcript.pyannote[155].end 756.04784375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 757.31346875
transcript.pyannote[156].end 759.01784375
transcript.whisperx[0].start 9.427
transcript.whisperx[0].end 10.999
transcript.whisperx[0].text 好謝謝主席我們請勞動部紅部長
transcript.whisperx[1].start 21.523
transcript.whisperx[1].end 45.672
transcript.whisperx[1].text 黃委好部長好部長這個換了身份今天第4以部長的身份來跟你就以委員跟部長身份來質詢部長我想先就教一件事情上禮拜傳出一個消息你一直認為說是禮拜一要來排這個專報是誰給你的消息不是我當時是認為我當時是覺得這禮拜我就要來所以其實我應該要在
transcript.whisperx[2].start 47.488
transcript.whisperx[2].end 62.034
transcript.whisperx[2].text 週末就對於大家各呃週末前就應該對業務報告對各當各司俗的業務有一個進一步的掌握好部長謝謝哦因為我一開始一誤以為你認為是禮拜一啦那我要提醒你說如果有人跟你講禮拜一的話他傳遞了錯誤的消息
transcript.whisperx[3].start 62.754
transcript.whisperx[3].end 78.245
transcript.whisperx[3].text 好,那你當剛剛上任部長我也希望說你能得到正確的消息不要被蒙蔽啊所以說才特別提這個問題那既然是你自己自發性的覺得要提早準備好那我就沒有意見了好,那我們進到主題那其實今天很多委員關心的是我們所謂的就業安利基金的部分
transcript.whisperx[4].start 78.985
transcript.whisperx[4].end 97.534
transcript.whisperx[4].text 請6檔
transcript.whisperx[5].start 101.65
transcript.whisperx[5].end 104.835
transcript.whisperx[5].text 跟委員報告我們在105年到113年總共墊付了4億3000萬元那目前歸墊的是5827萬元一成大約一成
transcript.whisperx[6].start 115.478
transcript.whisperx[6].end 139.776
transcript.whisperx[6].text 所以這顛覆的比例很低嘛所以我們就講說今天就業安定基金我們之所以它叫基金你當過委員很清楚我們在看預算的時候基金的目的不就是能夠有進有出才叫基金嗎如果一直付出去那就是供付預算了吧所以問一下部長我先想請教一下部長說我們還是講當然第一時間必須用就業安定基金來顛覆這個我沒有意見但是問題是後續你的基金一直在付給這種事情一直在
transcript.whisperx[7].start 140.536
transcript.whisperx[7].end 164.978
transcript.whisperx[7].text 只要有人擺爛付不出罰款付不出機票然後我們就用救安定基金來讓他回國讓他回去那這沒辦法解決這個問題啊那我知道之前大概105年2015年的時候2015年左右的時候有提過說要去跟所謂的母國就是移工的母國來追討但是後續也不了了之我想問一下新部長上來之後對於這種救安定基金的虧損問題你們有沒有辦法解決
transcript.whisperx[8].start 168.75
transcript.whisperx[8].end 169.37
transcript.whisperx[8].text 這個會有一個代帳處理的程序
transcript.whisperx[9].start 190.872
transcript.whisperx[9].end 219.972
transcript.whisperx[9].text 跟委員報告那我想那個捐安定費捐安定金之間支出的墊付的款項那後面如果沒有辦法收回的話我們按照行政程序去執行呢最後也會抵抵的代償先部長來我想要提出一些思考啦如果這些移工他就是付不出錢或他就是不願意付的話應該有什麼樣的代償機制吧他們要怎麼樣去做這件事情就像那個working holiday一樣嘛
transcript.whisperx[10].start 221.092
transcript.whisperx[10].end 237.423
transcript.whisperx[10].text 他不付這個罰款那是不是他能夠派工給他幫忙政府做一些比較基本的工作做完之後再讓他回去後來這錢就一直這樣子吃下去那個跟委員報告因為其實現在其實我們這都是按照舊法60條來做執行
transcript.whisperx[11].start 240.165
transcript.whisperx[11].end 255.937
transcript.whisperx[11].text 那這個有他的法規要求的有他法規要求的程序所以我們現在只能按照這個舊法60號沒關係部長我是提供這個建議給你參考不然從以前到現在這個錢就越花越多然後就是這樣子沒完沒倒下去我覺得這不是一個辦法了
transcript.whisperx[12].start 256.678
transcript.whisperx[12].end 280.285
transcript.whisperx[12].text 那再回到救安基金大家今天不斷的質詢說為什麼可以拿去買咖啡機為什麼可以去買垃圾桶為什麼可以拿去打掃當然依照你們的第1條裡面是促進國民就業提供理事勞工扶持跟處理外國人騙雇的相關管理事務這是他們救安基金的你們的核心的價值核心的目的支用上面這樣子那第5條裡面的用途有一項叫做管理及總務支出我猜想啦
transcript.whisperx[13].start 293.262
transcript.whisperx[13].end 308.989
transcript.whisperx[13].text 跟委員報告因為這些所定的不管是職業訓練就業服務創業協助等等他這是一個對民眾的直接服務而這些直接服務必須要有行政管理才能夠讓這些服務能夠得以遂行所以他是在所謂的相關的範圍概念之內
transcript.whisperx[14].start 310.376
transcript.whisperx[14].end 330.758
transcript.whisperx[14].text 所以是在管理總共支出支出這個項目在你們的在你們報帳的時候你們去申請的時候你們是用哪一條項目來去報所謂的咖啡機也好或是打掃用品也好這些被媒體寫出來的這些奇奇怪怪的支出就因為救安基金當初收的目的就是希望能夠所謂保障本國勞工或讓本國勞工的職能能夠提升嘛
transcript.whisperx[15].start 331.218
transcript.whisperx[15].end 349.907
transcript.whisperx[15].text 他的當初目的是這樣嘛但是後來你變成使用上跑去用看起來是比較享受的事情那這跟一開始的這個支出辦法就很大的落差了所以今天講說特別把11條指出來就是說我要問一下部長也問一下你們部內如果真的要做這個改革你們可以把這個拿掉啊
transcript.whisperx[16].start 351.257
transcript.whisperx[16].end 371.149
transcript.whisperx[16].text 跟委員報告這個部分如果拿掉的話變成我們所有的原來在這裡面包括為了維持包括訓練場或者是就業服務據點這個部分連這基本的營運維持我們都沒有辦法從救安基金來支的話那除非我們可以爭取得到公務預算否則在廣義的認定他還是在促進國民就業裡面的一部分
transcript.whisperx[17].start 371.997
transcript.whisperx[17].end 389.117
transcript.whisperx[17].text 如果他在處理國民就業如果因為處理國民就業我需要喝咖啡那你就會報在那個相關項目裡面嗎那就可以用用這個所謂的所謂的管理級總務職出來報啦我們有不合宜我們也承認阿但是不是所有的包括我們的這些建設都是那個不合宜這部分要上線跟委員說明齁確實
transcript.whisperx[18].start 390.879
transcript.whisperx[18].end 410.354
transcript.whisperx[18].text 就是說他其實相關的程序他有走過相關的程序但就像剛才說到說其實可能會有些訓練場他會有他的行政支出費用那這個訓練場的目的當然是促進國民就業所以這裡面的行政的費用他會用這個方式去報進來主要的原因是在這個地方
transcript.whisperx[19].start 411.823
transcript.whisperx[19].end 436.406
transcript.whisperx[19].text 好所以部長意思說這個東西你們認為這個所謂的管理及總務總務支出並沒有拿掉的必要性就對了就就法規面來說因為現在真的會有蠻多的支出但我就是說合不合以社會觀感好不好我們會來檢視可是這些訓練相關的計劃包括他的場館的運營他的目的是要
transcript.whisperx[20].start 437.367
transcript.whisperx[20].end 444.966
transcript.whisperx[20].text 促進國民就業在目的上面確實他的目的是在做這件事那做這件事的同時他會有一些行政上面的支出
transcript.whisperx[21].start 447.37
transcript.whisperx[21].end 474.083
transcript.whisperx[21].text 行政支出我知道啦但行政支出你的用途裡面就已經包含在裡面了嘛所以說我要實施職業訓練及就業資訊等事項所以我自己會認為說當然你說當然當然現在大家看到所謂買咖啡等等等的呃大家會有不同的觀感來沒關係部長對可是他會有必要的行政支出部長那我請教一件事情我們就針對一件事情就好了好舉例來講就是以咖啡機為例你們現在有啟動內部調查還是全部都交由檢調來調查
transcript.whisperx[22].start 476.431
transcript.whisperx[22].end 487.604
transcript.whisperx[22].text 像這個事情就我跟黃委員說明喔檢調現在是針對標案或者是採購的部分其實有在調查了
transcript.whisperx[23].start 488.53
transcript.whisperx[23].end 508.086
transcript.whisperx[23].text 那就這些部分因為標案或者是採購的部分它就會涉及到一些形式上面的責任所以他們是有希望說我們其實在這些部分上面這個如果一些內部的調查的部分可以先暫緩那以他們來作為最優先
transcript.whisperx[24].start 509.591
transcript.whisperx[24].end 532.832
transcript.whisperx[24].text 好部長因為我們希望說當然司法進行調查了但我們後續如果司法沒有調查出什麼結果我當然不知道他們司法是什麼調查了我們會全力配合司法的調查我們希望說讓民眾知道到底像比如說你這個什麼咖啡精有的沒有的到底是用什麼科目你把它支出的嗎我們在在合一性上我們會做一輪機制的檢討因為我們看到因為其實我剛剛這樣講
transcript.whisperx[25].start 534.944
transcript.whisperx[25].end 563.521
transcript.whisperx[25].text 剛剛你們的這個不好意思剛剛是是是代理署長提到說要爭取公務預算我們看到明年度預算自己勞動部本來的預算就2900億左右2859億左右那救安基金也只有200億元的收入啦但是我是覺得說像這些有的沒有的支出理論上就應該使用公務支出就好了不應該一直就占用一直去用我們所謂的這個救安基金這麼好用當然就這麼好用是過去這些年你們便宜形式去用了那
transcript.whisperx[26].start 564.441
transcript.whisperx[26].end 580.871
transcript.whisperx[26].text 當然發生就發生了嘛現在跟進行調查我們期待是西部長上來的未來像這樣子的基金這樣子基金使用如果不符合項目不符合他原來用來保障國民就業的部分的時候你在使用上你就應該去回到本預算裡面了你該行政支出就是行政支出啊
transcript.whisperx[27].start 581.872
transcript.whisperx[27].end 595.968
transcript.whisperx[27].text 我們會跟盡量來跟行政院爭取在本部的預算裡面能夠擴編啦但確實是過去長期因為本部的預算都相當有限所以跟這三個名目下面相關的業務才會去用到救安基金的使用
transcript.whisperx[28].start 596.468
transcript.whisperx[28].end 624.884
transcript.whisperx[28].text 好在最後這個主題站起來了我想問一下這個所謂的現在公務員公務機關這些霸凌案件後續的主管機關請問一下勞動勞工當然像是勞動部啊有時候職業安全衛生法等等的是勞動部主管那到底未來像公務員這一塊是勞動部主管還是誰主管目前其實在公務員保護的一些相關法令他的法公務員的法體系確實現在比較是在考試院下
transcript.whisperx[29].start 626.109
transcript.whisperx[29].end 643.795
transcript.whisperx[29].text 所以未來的主管機關不一定是你們?你們的主管機關不討論了嗎?經過這一兩個禮拜這樣子動盪之後目前我說目前在公務員人員的法體系是在考試院那這部分不是我們說我們想怎樣就能夠怎樣的事情啊
transcript.whisperx[30].start 644.525
transcript.whisperx[30].end 644.945
transcript.whisperx[30].text 主席坐下了
transcript.whisperx[31].start 673.396
transcript.whisperx[31].end 693.053
transcript.whisperx[31].text 指案法裡面我想最嚴重的問題是這樣啦現在當然有指案法有一些依循標準包含說我們公務員相關也是依照什麼指案法去訂立相關的準則但是最麻煩是什麼沒有霸凌故意就是什麼叫霸凌故意什麼叫要件這部分在未來修法裡面你們會處理嗎當然這是重點那我們稍微開始討論這個事情現在已經在討論禮拜一已經召開相關會議了
transcript.whisperx[32].start 694.571
transcript.whisperx[32].end 710.319
transcript.whisperx[32].text 好那我們希望這件事情齁能夠盡快的至少勞工的所謂職業安全衛生法勞工的準則定出來之後可能後續我不知道公務員的部分到底是歸你們還是以後歸考試員那至少有一個準則因為我知道現行階段公務員的部分是參考勞工的東西嘛
transcript.whisperx[33].start 711.386
transcript.whisperx[33].end 730.379
transcript.whisperx[33].text 對,所以我們現在包括我們的職安署其實在於對於不管是勞動部法清開或者是霸凌的部分我也希望他其實能夠參考國外的一些案例跟做法那能夠更專業那當然我說公務員裡面如果要訂立的話我們勞動部我們也很願意一起參與討論提供我們在這部分累積的專業
transcript.whisperx[34].start 731.482
transcript.whisperx[34].end 758.661
transcript.whisperx[34].text 好這叫拜託部長因為就像我們這個上一位部長跟這個分子長案件一樣第一份調查報告就如同那時候在記者會講的你會到他們按照法律就會講說最後因為沒有霸凌故意認為他沒有涉嫌重大所以這部分到底怎麼樣叫做霸凌故意這中間因果關係要怎麼建立起來我們希望部長能夠把這部分來強化可以嗎當然謝謝好謝謝黃健庭委員
IVOD_ID 157830
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157830
日期 2024-12-04
會議資料.會議代碼 委員會-11-2-26-12
會議資料.屆 11
會議資料.會期 2
會議資料.會次 12
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.標題 第11屆第2會期社會福利及衛生環境委員會第12次全體委員會議
影片種類 Clip
開始時間 2024-12-04T14:29:21+08:00
結束時間 2024-12-04T14:42:00+08:00
支援功能[0] ai-transcript