iVOD / 157720

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/28156fb6ec38ead396956ecb6e9e3d1613383a67259e8158bc2a141e7933ad62306605202daef2345ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 沈發惠
委員發言時間 09:51:56 - 10:12:44
影片長度 1248
會議時間 2024-12-03T09:00:00+08:00
會議名稱 第11屆第2會期第1次全院委員會(事由:總統咨,為考試院第十三屆院長、副院長及考試委員任期於113年8月31日屆滿,茲依據憲法增修條文第6條第2項規定,提名周弘憲為考試院第十四屆院長,許舒翔為考試院第十四屆副院長,邱文彥、鄧家基、王秀紅、呂秋慧、柯麗鈴、黃東益、伊萬.納威Iwan Nawi 7位為考試院第十四屆考試委員,咨請同意案。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 17.31096875
transcript.pyannote[0].end 18.03659375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 18.03659375
transcript.pyannote[1].end 18.61034375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 18.61034375
transcript.pyannote[2].end 18.64409375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 18.64409375
transcript.pyannote[3].end 22.72784375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 32.24534375
transcript.pyannote[4].end 33.08909375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 33.46034375
transcript.pyannote[5].end 35.78909375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 36.49784375
transcript.pyannote[6].end 42.69096875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 43.60221875
transcript.pyannote[7].end 46.35284375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 46.70721875
transcript.pyannote[8].end 48.05721875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 48.51284375
transcript.pyannote[9].end 59.95409375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 60.37596875
transcript.pyannote[10].end 62.51909375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 62.78909375
transcript.pyannote[11].end 69.08346875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 69.75846875
transcript.pyannote[12].end 72.96471875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 73.94346875
transcript.pyannote[13].end 75.56346875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 76.39034375
transcript.pyannote[14].end 80.06909375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 80.45721875
transcript.pyannote[15].end 83.84909375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 84.57471875
transcript.pyannote[16].end 86.65034375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 87.25784375
transcript.pyannote[17].end 88.74284375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 89.28284375
transcript.pyannote[18].end 92.79284375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 93.40034375
transcript.pyannote[19].end 94.09221875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 94.41284375
transcript.pyannote[20].end 98.32784375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 98.90159375
transcript.pyannote[21].end 107.62596875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 108.63846875
transcript.pyannote[22].end 117.09284375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 117.53159375
transcript.pyannote[23].end 123.65721875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 124.07909375
transcript.pyannote[24].end 127.21784375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 127.82534375
transcript.pyannote[25].end 132.31409375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 132.73596875
transcript.pyannote[26].end 133.46159375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 133.78221875
transcript.pyannote[27].end 136.14471875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 136.60034375
transcript.pyannote[28].end 143.19846875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 143.75534375
transcript.pyannote[29].end 147.77159375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 148.39596875
transcript.pyannote[30].end 149.18909375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 150.42096875
transcript.pyannote[31].end 159.12846875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 159.70221875
transcript.pyannote[32].end 161.94659375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 162.31784375
transcript.pyannote[33].end 163.24596875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 163.39784375
transcript.pyannote[34].end 167.88659375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 168.07221875
transcript.pyannote[35].end 168.83159375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 169.65846875
transcript.pyannote[36].end 180.42471875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 181.30221875
transcript.pyannote[37].end 189.08159375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 189.57096875
transcript.pyannote[38].end 190.78596875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 191.64659375
transcript.pyannote[39].end 194.34659375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 195.02159375
transcript.pyannote[40].end 199.22346875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 199.47659375
transcript.pyannote[41].end 200.15159375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 200.60721875
transcript.pyannote[42].end 206.12534375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 206.64846875
transcript.pyannote[43].end 212.89221875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 213.39846875
transcript.pyannote[44].end 217.70159375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 218.54534375
transcript.pyannote[45].end 219.96284375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 220.55346875
transcript.pyannote[46].end 221.78534375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 222.12284375
transcript.pyannote[47].end 226.15596875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 226.84784375
transcript.pyannote[48].end 231.77534375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 232.14659375
transcript.pyannote[49].end 232.72034375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 233.31096875
transcript.pyannote[50].end 238.66034375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 238.93034375
transcript.pyannote[51].end 241.46159375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 241.90034375
transcript.pyannote[52].end 245.08971875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 245.59596875
transcript.pyannote[53].end 248.26221875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 248.95409375
transcript.pyannote[54].end 249.37596875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 249.93284375
transcript.pyannote[55].end 251.46846875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 252.21096875
transcript.pyannote[56].end 256.91909375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 257.34096875
transcript.pyannote[57].end 261.66096875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 262.31909375
transcript.pyannote[58].end 264.05721875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 264.85034375
transcript.pyannote[59].end 267.39846875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 268.17471875
transcript.pyannote[60].end 268.64721875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 269.05221875
transcript.pyannote[61].end 270.58784375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 270.99284375
transcript.pyannote[62].end 274.04721875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 274.36784375
transcript.pyannote[63].end 276.49409375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 276.91596875
transcript.pyannote[64].end 279.04221875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 279.53159375
transcript.pyannote[65].end 280.86471875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 280.88159375
transcript.pyannote[66].end 290.92221875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 291.00659375
transcript.pyannote[67].end 291.64784375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 292.32284375
transcript.pyannote[68].end 297.52034375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 298.29659375
transcript.pyannote[69].end 301.41846875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 302.09346875
transcript.pyannote[70].end 306.71721875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 306.97034375
transcript.pyannote[71].end 311.23971875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 312.06659375
transcript.pyannote[72].end 324.65534375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 324.94221875
transcript.pyannote[73].end 328.03034375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 328.57034375
transcript.pyannote[74].end 335.37096875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 335.67471875
transcript.pyannote[75].end 336.70409375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 337.32846875
transcript.pyannote[76].end 338.74596875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 339.18471875
transcript.pyannote[77].end 344.34846875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 345.86721875
transcript.pyannote[78].end 350.01846875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 350.38971875
transcript.pyannote[79].end 355.60409375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 356.07659375
transcript.pyannote[80].end 357.10596875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 357.52784375
transcript.pyannote[81].end 358.87784375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 359.46846875
transcript.pyannote[82].end 360.44721875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 361.17284375
transcript.pyannote[83].end 362.21909375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 362.65784375
transcript.pyannote[84].end 368.74971875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 369.23909375
transcript.pyannote[85].end 370.33596875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 370.77471875
transcript.pyannote[86].end 374.09909375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 374.84159375
transcript.pyannote[87].end 375.48284375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 376.73159375
transcript.pyannote[88].end 378.58784375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 379.14471875
transcript.pyannote[89].end 382.43534375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 383.12721875
transcript.pyannote[90].end 388.91534375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 389.60721875
transcript.pyannote[91].end 391.21034375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 391.66596875
transcript.pyannote[92].end 393.13409375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 393.30284375
transcript.pyannote[93].end 397.09971875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 398.02784375
transcript.pyannote[94].end 398.58471875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 400.47471875
transcript.pyannote[95].end 404.18721875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 404.71034375
transcript.pyannote[96].end 407.25846875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 407.96721875
transcript.pyannote[97].end 409.41846875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 410.07659375
transcript.pyannote[98].end 410.56596875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 411.03846875
transcript.pyannote[99].end 414.39659375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 414.81846875
transcript.pyannote[100].end 415.79721875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 416.20221875
transcript.pyannote[101].end 418.12596875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 418.61534375
transcript.pyannote[102].end 422.93534375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 423.15471875
transcript.pyannote[103].end 424.79159375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 425.14596875
transcript.pyannote[104].end 429.63471875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 430.37721875
transcript.pyannote[105].end 431.44034375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 432.25034375
transcript.pyannote[106].end 437.24534375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 437.86971875
transcript.pyannote[107].end 441.90284375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 443.13471875
transcript.pyannote[108].end 444.55221875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 444.88971875
transcript.pyannote[109].end 446.29034375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 446.49284375
transcript.pyannote[110].end 448.73721875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 449.41221875
transcript.pyannote[111].end 450.74534375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 451.09971875
transcript.pyannote[112].end 451.70721875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 452.24721875
transcript.pyannote[113].end 453.29346875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 454.10346875
transcript.pyannote[114].end 457.96784375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 458.50784375
transcript.pyannote[115].end 460.76909375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 460.90409375
transcript.pyannote[116].end 465.10596875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 461.03909375
transcript.pyannote[117].end 461.17409375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 465.49409375
transcript.pyannote[118].end 468.26159375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 468.59909375
transcript.pyannote[119].end 474.21846875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 474.69096875
transcript.pyannote[120].end 482.40284375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 483.09471875
transcript.pyannote[121].end 490.78971875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 491.44784375
transcript.pyannote[122].end 492.05534375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 493.57409375
transcript.pyannote[123].end 496.88159375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 497.82659375
transcript.pyannote[124].end 500.50971875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 501.23534375
transcript.pyannote[125].end 507.36096875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 508.01909375
transcript.pyannote[126].end 515.17409375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 515.57909375
transcript.pyannote[127].end 517.63784375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 518.71784375
transcript.pyannote[128].end 520.21971875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 521.13096875
transcript.pyannote[129].end 521.65409375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 523.40909375
transcript.pyannote[130].end 525.94034375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 526.22721875
transcript.pyannote[131].end 527.42534375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 527.83034375
transcript.pyannote[132].end 529.43346875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 529.99034375
transcript.pyannote[133].end 533.71971875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 534.19221875
transcript.pyannote[134].end 537.09471875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 537.43221875
transcript.pyannote[135].end 540.01409375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 540.14909375
transcript.pyannote[136].end 540.97596875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 541.19534375
transcript.pyannote[137].end 542.14034375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 542.27534375
transcript.pyannote[138].end 545.98784375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 546.59534375
transcript.pyannote[139].end 547.59096875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 548.23221875
transcript.pyannote[140].end 548.92409375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 549.36284375
transcript.pyannote[141].end 554.50971875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 555.33659375
transcript.pyannote[142].end 555.60659375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 557.37846875
transcript.pyannote[143].end 564.34784375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 564.97221875
transcript.pyannote[144].end 566.38971875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 566.91284375
transcript.pyannote[145].end 568.63409375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 569.03909375
transcript.pyannote[146].end 570.84471875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 571.58721875
transcript.pyannote[147].end 576.51471875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 577.07159375
transcript.pyannote[148].end 577.79721875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 578.96159375
transcript.pyannote[149].end 580.88534375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 581.29034375
transcript.pyannote[150].end 581.72909375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 582.57284375
transcript.pyannote[151].end 584.39534375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 584.90159375
transcript.pyannote[152].end 596.73096875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 597.60846875
transcript.pyannote[153].end 655.81034375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 615.51284375
transcript.pyannote[154].end 616.23846875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 652.84034375
transcript.pyannote[155].end 653.19471875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 655.54034375
transcript.pyannote[156].end 658.64534375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 658.88159375
transcript.pyannote[157].end 664.19721875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 664.60221875
transcript.pyannote[158].end 666.00284375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 666.54284375
transcript.pyannote[159].end 668.82096875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 669.09096875
transcript.pyannote[160].end 671.82471875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 672.26346875
transcript.pyannote[161].end 672.80346875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 673.36034375
transcript.pyannote[162].end 678.23721875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 678.72659375
transcript.pyannote[163].end 681.44346875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 682.10159375
transcript.pyannote[164].end 693.40784375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 693.79596875
transcript.pyannote[165].end 696.10784375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 696.47909375
transcript.pyannote[166].end 700.19159375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 700.34346875
transcript.pyannote[167].end 705.01784375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 705.30471875
transcript.pyannote[168].end 707.49846875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 707.88659375
transcript.pyannote[169].end 710.06346875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 710.40096875
transcript.pyannote[170].end 720.08721875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 720.62721875
transcript.pyannote[171].end 721.70721875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 721.80846875
transcript.pyannote[172].end 726.33096875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 727.56284375
transcript.pyannote[173].end 730.16159375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 727.64721875
transcript.pyannote[174].end 728.20409375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 730.02659375
transcript.pyannote[175].end 732.57471875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 732.59159375
transcript.pyannote[176].end 748.23471875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 748.40346875
transcript.pyannote[177].end 765.34596875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 765.53159375
transcript.pyannote[178].end 788.85284375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 789.17346875
transcript.pyannote[179].end 806.94284375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 802.21784375
transcript.pyannote[180].end 802.35284375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 802.36971875
transcript.pyannote[181].end 802.80846875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 807.21284375
transcript.pyannote[182].end 816.25784375
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 816.44346875
transcript.pyannote[183].end 823.19346875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 823.78409375
transcript.pyannote[184].end 824.89784375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 825.40409375
transcript.pyannote[185].end 831.64784375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 832.00221875
transcript.pyannote[186].end 833.43659375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 833.77409375
transcript.pyannote[187].end 836.92971875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 837.19971875
transcript.pyannote[188].end 839.08971875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 839.61284375
transcript.pyannote[189].end 840.54096875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 840.74346875
transcript.pyannote[190].end 845.70471875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 845.75534375
transcript.pyannote[191].end 850.81784375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 851.07096875
transcript.pyannote[192].end 854.27721875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 854.86784375
transcript.pyannote[193].end 857.70284375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 858.05721875
transcript.pyannote[194].end 863.25471875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 863.42346875
transcript.pyannote[195].end 864.65534375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 865.11096875
transcript.pyannote[196].end 865.73534375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 866.07284375
transcript.pyannote[197].end 867.50721875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 867.69284375
transcript.pyannote[198].end 870.51096875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 871.01721875
transcript.pyannote[199].end 872.63721875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 873.02534375
transcript.pyannote[200].end 902.70846875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 902.74221875
transcript.pyannote[201].end 911.98971875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 912.09096875
transcript.pyannote[202].end 914.90909375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 915.14534375
transcript.pyannote[203].end 918.70596875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 919.66784375
transcript.pyannote[204].end 920.69721875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 921.16971875
transcript.pyannote[205].end 934.73721875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 927.90284375
transcript.pyannote[206].end 930.56909375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 934.24784375
transcript.pyannote[207].end 941.87534375
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 942.04409375
transcript.pyannote[208].end 946.49909375
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 947.00534375
transcript.pyannote[209].end 952.69221875
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 953.02971875
transcript.pyannote[210].end 956.18534375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 956.72534375
transcript.pyannote[211].end 958.95284375
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 959.17221875
transcript.pyannote[212].end 960.60659375
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 960.74159375
transcript.pyannote[213].end 963.62721875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 963.99846875
transcript.pyannote[214].end 966.66471875
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 967.03596875
transcript.pyannote[215].end 969.29721875
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 969.53346875
transcript.pyannote[216].end 971.01846875
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 971.77784375
transcript.pyannote[217].end 976.46909375
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 976.82346875
transcript.pyannote[218].end 979.52346875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 979.81034375
transcript.pyannote[219].end 986.34096875
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 986.88096875
transcript.pyannote[220].end 996.51659375
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 997.20846875
transcript.pyannote[221].end 998.57534375
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 999.06471875
transcript.pyannote[222].end 1003.84034375
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 1004.48159375
transcript.pyannote[223].end 1005.03846875
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 1005.22409375
transcript.pyannote[224].end 1011.70409375
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 1011.88971875
transcript.pyannote[225].end 1013.12159375
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 1013.20596875
transcript.pyannote[226].end 1016.74971875
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 1016.90159375
transcript.pyannote[227].end 1018.09971875
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 1018.75784375
transcript.pyannote[228].end 1033.30409375
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 1033.42221875
transcript.pyannote[229].end 1041.64034375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 1041.57284375
transcript.pyannote[230].end 1041.58971875
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 1041.64034375
transcript.pyannote[231].end 1054.06034375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 1041.80909375
transcript.pyannote[232].end 1041.96096875
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 1054.76909375
transcript.pyannote[233].end 1055.74784375
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 1055.20784375
transcript.pyannote[234].end 1055.69721875
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 1055.74784375
transcript.pyannote[235].end 1091.23596875
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 1091.74221875
transcript.pyannote[236].end 1096.41659375
transcript.pyannote[237].speaker SPEAKER_00
transcript.pyannote[237].start 1096.50096875
transcript.pyannote[237].end 1103.33534375
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 1103.45346875
transcript.pyannote[238].end 1103.47034375
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 1103.47034375
transcript.pyannote[239].end 1104.07784375
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 1104.39846875
transcript.pyannote[240].end 1109.78159375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 1109.81534375
transcript.pyannote[241].end 1115.33346875
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 1115.38409375
transcript.pyannote[242].end 1116.24471875
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 1116.56534375
transcript.pyannote[243].end 1122.82596875
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 1123.34909375
transcript.pyannote[244].end 1123.82159375
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 1124.39534375
transcript.pyannote[245].end 1128.25971875
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 1128.49596875
transcript.pyannote[246].end 1134.57096875
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 1134.89159375
transcript.pyannote[247].end 1135.31346875
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 1135.48221875
transcript.pyannote[248].end 1137.54096875
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 1137.84471875
transcript.pyannote[249].end 1138.65471875
transcript.pyannote[250].speaker SPEAKER_02
transcript.pyannote[250].start 1138.97534375
transcript.pyannote[250].end 1142.11409375
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 1142.43471875
transcript.pyannote[251].end 1143.10971875
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 1143.27846875
transcript.pyannote[252].end 1152.20534375
transcript.pyannote[253].speaker SPEAKER_00
transcript.pyannote[253].start 1153.20096875
transcript.pyannote[253].end 1161.13221875
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 1161.52034375
transcript.pyannote[254].end 1163.93346875
transcript.pyannote[255].speaker SPEAKER_00
transcript.pyannote[255].start 1164.18659375
transcript.pyannote[255].end 1181.19659375
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 1180.26846875
transcript.pyannote[256].end 1185.48284375
transcript.pyannote[257].speaker SPEAKER_00
transcript.pyannote[257].start 1183.98096875
transcript.pyannote[257].end 1184.52096875
transcript.pyannote[258].speaker SPEAKER_00
transcript.pyannote[258].start 1184.84159375
transcript.pyannote[258].end 1194.47721875
transcript.pyannote[259].speaker SPEAKER_02
transcript.pyannote[259].start 1191.32159375
transcript.pyannote[259].end 1192.28346875
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 1192.89096875
transcript.pyannote[260].end 1197.46409375
transcript.pyannote[261].speaker SPEAKER_00
transcript.pyannote[261].start 1195.28721875
transcript.pyannote[261].end 1207.13346875
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 1206.72846875
transcript.pyannote[262].end 1238.45346875
transcript.pyannote[263].speaker SPEAKER_00
transcript.pyannote[263].start 1208.65221875
transcript.pyannote[263].end 1209.02346875
transcript.pyannote[264].speaker SPEAKER_00
transcript.pyannote[264].start 1213.27596875
transcript.pyannote[264].end 1214.00159375
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 1228.53096875
transcript.pyannote[265].end 1228.91909375
transcript.pyannote[266].speaker SPEAKER_01
transcript.pyannote[266].start 1239.98909375
transcript.pyannote[266].end 1245.69284375
transcript.pyannote[267].speaker SPEAKER_01
transcript.pyannote[267].start 1245.97971875
transcript.pyannote[267].end 1246.16534375
transcript.pyannote[268].speaker SPEAKER_01
transcript.pyannote[268].start 1246.62096875
transcript.pyannote[268].end 1246.97534375
transcript.whisperx[0].start 17.318
transcript.whisperx[0].end 43.713
transcript.whisperx[0].text 好 院長我們請被提名人王教授麻煩再請王教授請備詢選委員好王教授早辛苦了這個因為這個我們考試院是我們國家重要的人力資源部門負責這個世財世索、玄賢、雲能
transcript.whisperx[1].start 49.304
transcript.whisperx[1].end 65.309
transcript.whisperx[1].text 及其中考試委員身具重要性許多帶新格的事項要如何持續推動提升國家人力資源的素質優化文官人才創新都需要有賴未來考試委員的專業相輔相成確保我國文官體制的永續發展
transcript.whisperx[2].start 73.991
transcript.whisperx[2].end 100.148
transcript.whisperx[2].text 那這個我非常在過去長期非常對於我們的這個王教授過去長期對於這個不管在學術界或實務界相關的貢獻我們非常的關注而且也非常高度的肯定這個王教授過去曾經任職這個高雄醫學大學的副校長那也是深具醫護專業領域的專家
transcript.whisperx[3].start 104.611
transcript.whisperx[3].end 132.046
transcript.whisperx[3].text 學術圈跟醫護的這個實務界這40年來長期王教授長期投入我們護理教育學術研究衛生行政跟國際甚至到國際事務那這個在疫情期間我們國家更接駐這個王教授的專業讓臺灣以護理專業推動務實外交在臺灣護理學這個學會的理事長身份曾經出這個代表臺灣
transcript.whisperx[4].start 133.868
transcript.whisperx[4].end 161.485
transcript.whisperx[4].text 我們作為WHO的代表向國際分享我們臺灣的防疫經驗等等這些經歷我想這個我們在從過去到現在我相信各界都給予王教授高度的肯定那這個更難能可貴的是在2004年到2008年那個是本席在第六屆立委的任內那時候王教授擔任由我們國家來
transcript.whisperx[5].start 163.584
transcript.whisperx[5].end 190.654
transcript.whisperx[5].text 藉調黃教授到行政院衛生署 擔任政務副署長在這個政務副署長任內 黃教授也推動包括護理人力、婦女健康政策、食品安全甚至最重要是大力推動我們臺灣的專業護理師的考試到現在我國已經有14000多位專科護理師跟醫師來協同合作來共同照顧病人
transcript.whisperx[6].start 191.721
transcript.whisperx[6].end 221.13
transcript.whisperx[6].text 那今天我們是第十四屆的這個這個考試委員的提名審查那因為王教授過去也擔任第十三屆的考試委員可以說是這個是並不是新人那所以我們就也就針對這個在過去這四年的這個考試這個王教授考試委員的任期間我們的相關的努力
transcript.whisperx[7].start 222.25
transcript.whisperx[7].end 250.872
transcript.whisperx[7].text 我有看黃教授剛才的自我的介紹以及我看了黃教授的書面有關過去的這些在考試院任內的這些工作包括國家考試的性別平等白皮書完成我們國家文官學院延編性別平等教材在考試院任期期間
transcript.whisperx[8].start 252.868
transcript.whisperx[8].end 267.12
transcript.whisperx[8].text 這個也就正好遇到了百年大疫適逢疫情這個最重要剛才的幾位委員都提到的這個護理護理人員的這個這個人力需求的缺口
transcript.whisperx[9].start 269.218
transcript.whisperx[9].end 296.906
transcript.whisperx[9].text 所以你那時候有提出說這個透過這個教考訓的這個平台還有個人專業經驗也協助了尋求這個護理人力的解決方法共商政策確保確保考試如期舉行適時補充護理人力的缺口等等的這些諸多的努力那這樣子的相關的提出過去您所提出的一些看法跟建議一些深知灼見
transcript.whisperx[10].start 298.45
transcript.whisperx[10].end 300.939
transcript.whisperx[10].text 所以本席有特別的去了解
transcript.whisperx[11].start 302.285
transcript.whisperx[11].end 327.744
transcript.whisperx[11].text 對於王老師過去的發言跟貢獻對這些問題的看法做了一些整理有一些部分今天利用這個機會來就教於王教授我想這個考試院的最重要兩大職責一個是考選一個是全序這兩個大部分它分別牽涉的兩類最大的對象就是一個是尚未成為公務人員的考生
transcript.whisperx[12].start 328.669
transcript.whisperx[12].end 343.785
transcript.whisperx[12].text 另外一個部分就是已經成為公務人員他們的相關權益所以大概分成這兩個部分來就教於王教授第一個是有關考生權益的部分第二個是有關公務人員權益的部分
transcript.whisperx[13].start 345.916
transcript.whisperx[13].end 374.932
transcript.whisperx[13].text 那這個有關第一個部分就有關考生權益的部分我想剛才前面也有委員也在在詢答中也提到了就是說我國這個目前在在這個這個報考這個我們國家考試的報考人數在10年內腰斬腰斬這個到達51%幾乎是一半少了一半那這個
transcript.whisperx[14].start 376.889
transcript.whisperx[14].end 396.922
transcript.whisperx[14].text 當然現在我們所面對的現在的考生他們跟我們在過去的世代是不一樣現在人稱為Z世代的考生Z世代的考生在這些考生中也有一些相關的挑戰跟因應的策略
transcript.whisperx[15].start 400.683
transcript.whisperx[15].end 428.985
transcript.whisperx[15].text 當然剛才在這個委員的詢答的這些詢答過程中我們黃教授也有特別提到那大家事實上也知道這個考生人數的大幅下滑他有一個大概就是兩個主要的原因第一個最最關鍵的應該就是少子化這不只是國家考試包括在這個
transcript.whisperx[16].start 430.881
transcript.whisperx[16].end 456.36
transcript.whisperx[16].text 這個大學大學入學考試等等相關的升學考試裡面也是人數不斷的降低那這個是這是少子化是一個最關鍵的因素第二個因素就是就是這個當然公務人員的目前的這個這個職場這不像過去幾十年前相對於公務人員以外的相關的職業場域的
transcript.whisperx[17].start 458.701
transcript.whisperx[17].end 481.856
transcript.whisperx[17].text 這些職業環境可能不如公務人員但是現在在我們整個國家的相關勞動法制體制以及相關的這些建構完善之下事實上不管是在公部門或私部門它的相關的這些職業職場領域都的這個差異已經沒有過去像過去公務人員的職場
transcript.whisperx[18].start 483.694
transcript.whisperx[18].end 505.248
transcript.whisperx[18].text 這個環境比其他的職業、職場環境要好很多現在這樣的差異也降低了所以我想現在公務國家考試的報考人數降低跟公務人員這個職業跟過去的相比
transcript.whisperx[19].start 509.066
transcript.whisperx[19].end 532.671
transcript.whisperx[19].text 這是一定的趨勢這是一定會發展在少子化以及相關職場這個改善的情況下是一定會發生但是也不可諱言現在因為其他相對於公務人員職場相關的其他的私部門的相關職場的環境
transcript.whisperx[20].start 534.284
transcript.whisperx[20].end 553.936
transcript.whisperx[20].text 目前的環境的改善跟提升那也使得這個我們必須要更加重視公務人員所處的現在的這樣子的職場環境這個改善的部分這個可能我們這個在未來我們在後面等一下有關公務人員權益的部分我們會來探討
transcript.whisperx[21].start 557.401
transcript.whisperx[21].end 579.272
transcript.whisperx[21].text 我認為但是這個有相關組織文化的變革.跟數位化的管理策略.促進公務人員吸引新世代的投入.提升跨世代的協作.這個我想這個應該是一個很重要的議題.這個部分請問王教授你有什麼樣的看法.跟做法建議謝謝委員的提問
transcript.whisperx[22].start 582.665
transcript.whisperx[22].end 596.567
transcript.whisperx[22].text Z世代已經是大概是30到35歲左右1990年所以這些Z世代的年輕學者其實是未來公務體系非常重要的
transcript.whisperx[23].start 597.982
transcript.whisperx[23].end 614.638
transcript.whisperx[23].text 選取的人才所以這個議題大概可以從兩方面來探討第一個就是說考選制度是不是能符合這些Z世代的需求因為Z世代我看也是被暱稱是數位原住民
transcript.whisperx[24].start 615.599
transcript.whisperx[24].end 640.267
transcript.whisperx[24].text 所以他們的數位能力:或是那個工作態度跟方式:確實是跟我們比較資深的世代是不一樣的:所以我覺得考選的一些政策的改變:比如說我們現在:第13屆考試院的團隊:也在用數位轉型:也只是擴大電腦化的考試那這個是他們:
transcript.whisperx[25].start 641.487
transcript.whisperx[25].end 663.744
transcript.whisperx[25].text 也聽到的他們的需求很大那另外當然有很多的策略比如說多元評量或是多元考試的方式等等就符應這些Z世代的需求這是一個部分剛剛因為提到說現在目前這個考生人數大幅下滑
transcript.whisperx[26].start 664.645
transcript.whisperx[26].end 679.041
transcript.whisperx[26].text 他的根本原因還是少子化少子化跟工作環境我們作為公部門我們應該要有一個做為友善職場的推動者
transcript.whisperx[27].start 682.372
transcript.whisperx[27].end 698.972
transcript.whisperx[27].text 甚至應該是要作為施部門的示範者也鼓勵年輕世代的生育希望能夠減緩少子化的趨勢這樣子進一步帶動施部門跟進共同營造有利於工作跟家庭平衡的職場環境
transcript.whisperx[28].start 700.575
transcript.whisperx[28].end 726.156
transcript.whisperx[28].text 那這些部分其實有這一部分跟這個王教授的在過去在這個職場有關這個性別以及這個相關的這些主題就是王教授關心的部分是不是能請王教授就這個我剛所提的這個部分能夠做一些您的希望能夠推動的政策方向
transcript.whisperx[29].start 727.591
transcript.whisperx[29].end 742.309
transcript.whisperx[29].text 哪一些還可以再精進的可以再精進其實就是說第十三屆考試院團隊已經做了一些友善的生養環境當然有一些政策比如說聖遷法還有留職停薪等等
transcript.whisperx[30].start 743.086
transcript.whisperx[30].end 759.101
transcript.whisperx[30].text 那當然委員就提到說可以精進的我覺得政策永遠可以精進事實上我們現在的出生率真的真的非常的低也是國安的問題0.865其實是全世界是倒數第二的所以怎麼樣對年輕世代的
transcript.whisperx[31].start 761.042
transcript.whisperx[31].end 788.172
transcript.whisperx[31].text 在公務體系的友善的生養環境非常重要比如說我認為當然有些是有困難但是我覺得可以研議就是有一些先進的國家他已經有part-time就是說非全職的工作那當然這個會跟退休老婦婿有關但是我覺得可以有一些的規範比如說6歲以下的小孩那另外呢我聽到的很多的年輕世代的人他們就認為
transcript.whisperx[32].start 789.292
transcript.whisperx[32].end 815.78
transcript.whisperx[32].text 其實生一個小孩他們付出的而且是在養的那段時間他們找不到人照顧因為我們現在的家庭的結構是很大的變化家庭結構根本沒有叫做所謂的家庭支持系統所以國家怎麼樣來協助像說公托或是等等這些我想還很多可以精進的地方
transcript.whisperx[33].start 816.64
transcript.whisperx[33].end 836.508
transcript.whisperx[33].text 另外一個也是有關考生權益的部分無論是公務人員或是專技人員的這些考試事實上都有專業科目的測驗來確保及格者能夠具備職場上的專業支持這當然是考試的主要目的但是網路上經常有人批評說我們現在的
transcript.whisperx[34].start 837.528
transcript.whisperx[34].end 853.877
transcript.whisperx[34].text 這個考題過於冷闢這個可能是過度而且有第一個是過於冷闢第二可能過度偏重實務就這個尚未踏入實務的這些這些考生來講他會這個會有所困會非常困難
transcript.whisperx[35].start 855.272
transcript.whisperx[35].end 872.502
transcript.whisperx[35].text 怎麼樣平衡跟取捨各類的測驗我們可能是不是因為考試行之多年為了避免題目的重複等等所以就越走題目越走越冷闢那這樣子要怎麼樣來避免考試這個試題越來越趨冷闢這個部分這個王教授不知道怎麼樣看吧
transcript.whisperx[36].start 873.446
transcript.whisperx[36].end 897.755
transcript.whisperx[36].text 謝謝委員的提問確實我們也聽到尤其是我跟醫事人員比較接近就是說一些護理人員或是醫師的考試確實有感覺有一些比較冷僻、艱深那有一些可能比較他應該是進到職場之後再訓練的比如說專科醫師、專科護理師但是也出現在命題裡面
transcript.whisperx[37].start 898.675
transcript.whisperx[37].end 918.25
transcript.whisperx[37].text 所以我覺得未來考試院考選部其實可以用已經也在進行當中就是題目的這個難易度或是題庫的增加因為我們的考試就是都是會上網的那考選部的有一些規則就是說相似題
transcript.whisperx[38].start 919.684
transcript.whisperx[38].end 941.189
transcript.whisperx[38].text 不能出或是百分比非常低那這樣就變成命題的老師呢就是越出越艱深或是找不到那個對這個問題呢其實確實應該未來要好好的來檢討如果王教授有機會繼續擔任考試委員我希望這些相關的問題王教授能夠繼續付出努力
transcript.whisperx[39].start 942.51
transcript.whisperx[39].end 970.152
transcript.whisperx[39].text 另外再來第二部分我剛提到有關公務人員的部分因為事實上本席在那時候院會在這邊總質詢的時候我也提到像現在這個在整個亞洲的競爭環境當中我們現在目前政府希望推動這個亞太資產管理中心我那時候有建議金管會他們對於相關外資的引進比照像現在日本他們就做這種整個一夜市一站式的這個服務就是事實上外資他從進來
transcript.whisperx[40].start 971.829
transcript.whisperx[40].end 996.309
transcript.whisperx[40].text 所有的這個包括表格、公文、申請程序、流程全部都是英語環境這直接是全英語環境那這個一直到他最後整個通過所有的程序都是英語程序所以我們怎麼但是我們現在台灣我希望說台灣也能夠做這樣相關的比照這樣來進行你在亞洲才有競爭力但是目前的公務人員的英文
transcript.whisperx[41].start 997.27
transcript.whisperx[41].end 1016.51
transcript.whisperx[41].text 的這個英文能力的提升這個是我個人非常關心的這部分王教授不知道什麼樣的建議謝謝委員我覺得這個真的是非常重要就是說在考試院的立場我覺得就是從考選開始因為我們考選就是可以
transcript.whisperx[42].start 1019.212
transcript.whisperx[42].end 1044.794
transcript.whisperx[42].text 選取英文能力比較好的比如說涉外事務比較強的一些類科那個外交人員那個外事警察等等這一方面可以從英文檢定因為第一個能力就是他已經準備了英文檢定變成是資格考然後英文口試的佔比或是命題等等逐步啦因為有一些因為你剛剛所講的這些都是相關特定領域的
transcript.whisperx[43].start 1047.495
transcript.whisperx[43].end 1072.871
transcript.whisperx[43].text 例如說我們所希望做的相關對外的這些金融商業等等這些相關的類科現在可能都沒有這樣子的相關的能力那當然就是說這個是第一步選起來的就是會比較英文能力強的因為英文能力其實是長期的很難就是一下子培訓他英文能力就很好那但是呢這些及格的人員錄取的人員的培訓是在保訓會
transcript.whisperx[44].start 1074.293
transcript.whisperx[44].end 1079.459
transcript.whisperx[44].text 保訓可以用多重方式因為現在很多大學都已經在EMI全英文授課我覺得未來培訓
transcript.whisperx[45].start 1091.955
transcript.whisperx[45].end 1109.181
transcript.whisperx[45].text 國家文官學院可以培訓未來朝向這一方面就是說能夠用全英文的提升他們的國際觀跟國際交流的能力這個部分英文能力是一個另外就是有關於AI的能力
transcript.whisperx[46].start 1109.981
transcript.whisperx[46].end 1138.149
transcript.whisperx[46].text 有關AI的相關因為這個人工智慧的發展快速運用未來事實上這個AI應該在我們目前公務學期裡面納入這個當前的重大政策裡面那這個我們好像國家文官學院也有針對高普考的基礎訓練開訓所以我是希望說剛剛講的英文能力AI等等這些相關公務人員的這些能力包括在考選的過程以及在這個公務人員執訓的部分我們能夠
transcript.whisperx[47].start 1139.202
transcript.whisperx[47].end 1152.013
transcript.whisperx[47].text 來做加強最後一點點時間我想我個人有關心另外一個問題是有關於公務人員的身心調適假的問題這個部分王教授有什麼樣專業上面的看法
transcript.whisperx[48].start 1153.234
transcript.whisperx[48].end 1176.827
transcript.whisperx[48].text 我想因為我過去也長時間就是在參加一些國際的相關會議比如說世界衛生組織那其實世界衛生組織已經近年來已經非常強調就是希望他的會員國都要注意民眾的就是要注意民眾的就是心理健康因為心理健康呢
transcript.whisperx[49].start 1177.827
transcript.whisperx[49].end 1204.904
transcript.whisperx[49].text 影響的當然未來的一些身心健康的所以我本人認為就是說這是一個很正向的一個就是政策當然這個政策應該跟衛福部應該有配套規範然後跟衛福部那個考試院應該跟衛福部還有人總一起來就是研擬一個相關的規範
transcript.whisperx[50].start 1207.006
transcript.whisperx[50].end 1215.556
transcript.whisperx[50].text 這個部分請王教授如果未來有機會繼續擔任考試委員希望王教授能夠在這方面來進行努力所以我們來推動這公務人員的身心
transcript.whisperx[51].start 1216.544
transcript.whisperx[51].end 1245.368
transcript.whisperx[51].text 這個身心調適假但是又要我們也同時要避免他所發生的一些負面的狀況例如說公務員因為請身心調適假被標籤化等等相關的這些這些負面的配套這部分如果王教授有機會獲得這個立法院同意繼續擔任考試委員我希望王教授能夠在這個部分繼續為國家來努力好不好謝謝審發會委員的質詢也謝謝王秀紅教授的備取休息十分鐘
transcript.whisperx[52].start 1246.445
transcript.whisperx[52].end 1246.466
transcript.whisperx[52].text 好 謝謝
IVOD_ID 157720
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157720
日期 2024-12-03
影片種類 Clip
開始時間 2024-12-03T09:51:56+08:00
結束時間 2024-12-03T10:12:44+08:00
支援功能[0] ai-transcript