iVOD / 157719

Field Value
IVOD_ID 157719
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157719
日期 2024-12-03
影片種類 Clip
開始時間 2024-12-03T09:31:05+08:00
結束時間 2024-12-03T09:51:50+08:00
影片長度 00:20:45
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/28156fb6ec38ead39499dc7b14bc260513383a67259e81587684e4ed073dbfdfdd4df15546ecd50f5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳昭姿
委員發言時間 09:31:05 - 09:51:50
會議時間 2024-12-03T09:00:00+08:00
會議名稱 第11屆第2會期第1次全院委員會(事由:總統咨,為考試院第十三屆院長、副院長及考試委員任期於113年8月31日屆滿,茲依據憲法增修條文第6條第2項規定,提名周弘憲為考試院第十四屆院長,許舒翔為考試院第十四屆副院長,邱文彥、鄧家基、王秀紅、呂秋慧、柯麗鈴、黃東益、伊萬.納威Iwan Nawi 7位為考試院第十四屆考試委員,咨請同意案。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 4.43534375
transcript.pyannote[0].end 5.90346875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 6.27471875
transcript.pyannote[1].end 7.62471875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 8.01284375
transcript.pyannote[2].end 9.66659375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 16.61909375
transcript.pyannote[3].end 30.27096875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 17.02409375
transcript.pyannote[4].end 17.37846875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 30.57471875
transcript.pyannote[5].end 37.76346875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 37.83096875
transcript.pyannote[6].end 45.34034375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 45.76221875
transcript.pyannote[7].end 47.63534375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 47.92221875
transcript.pyannote[8].end 51.31409375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 53.52471875
transcript.pyannote[9].end 54.75659375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 55.66784375
transcript.pyannote[10].end 60.69659375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 61.11846875
transcript.pyannote[11].end 61.64159375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 61.84409375
transcript.pyannote[12].end 62.83971875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 62.83971875
transcript.pyannote[13].end 62.85659375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 63.86909375
transcript.pyannote[14].end 74.88846875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 72.77909375
transcript.pyannote[15].end 88.45596875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 88.96221875
transcript.pyannote[16].end 138.89534375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 139.65471875
transcript.pyannote[17].end 147.38346875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 148.07534375
transcript.pyannote[18].end 154.47096875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 154.80846875
transcript.pyannote[19].end 162.63846875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 162.80721875
transcript.pyannote[20].end 172.05471875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 171.07596875
transcript.pyannote[21].end 180.72846875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 181.13346875
transcript.pyannote[22].end 192.43971875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 193.73909375
transcript.pyannote[23].end 202.00784375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 203.02034375
transcript.pyannote[24].end 212.89221875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 213.19596875
transcript.pyannote[25].end 214.15784375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 214.52909375
transcript.pyannote[26].end 221.41409375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 221.92034375
transcript.pyannote[27].end 223.16909375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 223.40534375
transcript.pyannote[28].end 224.72159375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 225.26159375
transcript.pyannote[29].end 226.79721875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 227.57346875
transcript.pyannote[30].end 235.58909375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 236.06159375
transcript.pyannote[31].end 236.61846875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 236.93909375
transcript.pyannote[32].end 242.08596875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 242.64284375
transcript.pyannote[33].end 253.74659375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 254.62409375
transcript.pyannote[34].end 260.49659375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 261.82971875
transcript.pyannote[35].end 266.25096875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 267.60096875
transcript.pyannote[36].end 277.91159375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 278.95784375
transcript.pyannote[37].end 288.52596875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 288.93096875
transcript.pyannote[38].end 292.82909375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 289.06596875
transcript.pyannote[39].end 289.99409375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 292.82909375
transcript.pyannote[40].end 300.79409375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 299.51159375
transcript.pyannote[41].end 303.20721875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 303.17346875
transcript.pyannote[42].end 305.95784375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 305.01284375
transcript.pyannote[43].end 313.78784375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 314.85096875
transcript.pyannote[44].end 337.27784375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 337.29471875
transcript.pyannote[45].end 342.61034375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 342.71159375
transcript.pyannote[46].end 350.52471875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 351.06471875
transcript.pyannote[47].end 357.42659375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 358.69221875
transcript.pyannote[48].end 362.74221875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 361.20659375
transcript.pyannote[49].end 364.61534375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 362.77596875
transcript.pyannote[50].end 362.79284375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 364.85159375
transcript.pyannote[51].end 368.61471875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 369.01971875
transcript.pyannote[52].end 371.75346875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 372.47909375
transcript.pyannote[53].end 381.32159375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 375.82034375
transcript.pyannote[54].end 376.56284375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 378.03096875
transcript.pyannote[55].end 378.28409375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 381.45659375
transcript.pyannote[56].end 385.74284375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 386.02971875
transcript.pyannote[57].end 386.18159375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 386.50221875
transcript.pyannote[58].end 393.01596875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 393.28596875
transcript.pyannote[59].end 396.50909375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 397.16721875
transcript.pyannote[60].end 415.99971875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 416.18534375
transcript.pyannote[61].end 418.36221875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 419.88096875
transcript.pyannote[62].end 420.45471875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 420.67409375
transcript.pyannote[63].end 427.54221875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 423.72846875
transcript.pyannote[64].end 424.63971875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 426.88409375
transcript.pyannote[65].end 427.74471875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 427.74471875
transcript.pyannote[66].end 428.13284375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 427.77846875
transcript.pyannote[67].end 428.40284375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 428.79096875
transcript.pyannote[68].end 429.16221875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 429.92159375
transcript.pyannote[69].end 434.30909375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 435.38909375
transcript.pyannote[70].end 436.95846875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 436.16534375
transcript.pyannote[71].end 437.02596875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 437.02596875
transcript.pyannote[72].end 437.04284375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 437.04284375
transcript.pyannote[73].end 437.07659375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 437.07659375
transcript.pyannote[74].end 437.09346875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 437.70096875
transcript.pyannote[75].end 439.30409375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 440.08034375
transcript.pyannote[76].end 444.21471875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 441.78471875
transcript.pyannote[77].end 442.35846875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 442.74659375
transcript.pyannote[78].end 444.78846875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 445.17659375
transcript.pyannote[79].end 445.44659375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 446.13846875
transcript.pyannote[80].end 452.16284375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 453.22596875
transcript.pyannote[81].end 456.29721875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 456.44909375
transcript.pyannote[82].end 474.25221875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 474.85971875
transcript.pyannote[83].end 477.82971875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 478.35284375
transcript.pyannote[84].end 480.32721875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 480.90096875
transcript.pyannote[85].end 485.87909375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 486.23346875
transcript.pyannote[86].end 491.70096875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 491.92034375
transcript.pyannote[87].end 494.11409375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 494.21534375
transcript.pyannote[88].end 498.61971875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 499.07534375
transcript.pyannote[89].end 511.42784375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 511.81596875
transcript.pyannote[90].end 519.39284375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 519.62909375
transcript.pyannote[91].end 522.54846875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 523.02096875
transcript.pyannote[92].end 526.59846875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 527.47596875
transcript.pyannote[93].end 532.04909375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 532.58909375
transcript.pyannote[94].end 537.17909375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 538.25909375
transcript.pyannote[95].end 545.16096875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 545.54909375
transcript.pyannote[96].end 550.02096875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 550.25721875
transcript.pyannote[97].end 553.61534375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 553.85159375
transcript.pyannote[98].end 555.82596875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 556.02846875
transcript.pyannote[99].end 558.76221875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 560.21346875
transcript.pyannote[100].end 560.39909375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 560.77034375
transcript.pyannote[101].end 563.95971875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 564.58409375
transcript.pyannote[102].end 565.27596875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 565.49534375
transcript.pyannote[103].end 570.45659375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 571.36784375
transcript.pyannote[104].end 576.58221875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 577.32471875
transcript.pyannote[105].end 588.29346875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 587.95596875
transcript.pyannote[106].end 589.52534375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 589.57596875
transcript.pyannote[107].end 613.90971875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 613.13346875
transcript.pyannote[108].end 621.45284375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 621.58784375
transcript.pyannote[109].end 628.40534375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 621.70596875
transcript.pyannote[110].end 622.65096875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 628.70909375
transcript.pyannote[111].end 638.73284375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 638.95221875
transcript.pyannote[112].end 641.93909375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 641.83784375
transcript.pyannote[113].end 661.98659375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 662.30721875
transcript.pyannote[114].end 662.66159375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 662.86409375
transcript.pyannote[115].end 673.52909375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 674.40659375
transcript.pyannote[116].end 675.60471875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 675.65534375
transcript.pyannote[117].end 680.44784375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 680.80221875
transcript.pyannote[118].end 696.31034375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 697.13721875
transcript.pyannote[119].end 699.98909375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 700.07346875
transcript.pyannote[120].end 712.86471875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 713.25284375
transcript.pyannote[121].end 715.29471875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 715.61534375
transcript.pyannote[122].end 720.57659375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 721.26846875
transcript.pyannote[123].end 723.19221875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 723.76596875
transcript.pyannote[124].end 744.57284375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 745.18034375
transcript.pyannote[125].end 760.24971875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 760.43534375
transcript.pyannote[126].end 771.20159375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 771.11721875
transcript.pyannote[127].end 790.43909375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 791.51909375
transcript.pyannote[128].end 794.82659375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 795.72096875
transcript.pyannote[129].end 797.20596875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 797.37471875
transcript.pyannote[130].end 811.66784375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 807.24659375
transcript.pyannote[131].end 807.39846875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 812.20784375
transcript.pyannote[132].end 814.67159375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 812.52846875
transcript.pyannote[133].end 812.96721875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 815.11034375
transcript.pyannote[134].end 827.91846875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 828.99846875
transcript.pyannote[135].end 843.86534375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 838.00971875
transcript.pyannote[136].end 838.19534375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 838.33034375
transcript.pyannote[137].end 839.07284375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 839.25846875
transcript.pyannote[138].end 839.27534375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 844.16909375
transcript.pyannote[139].end 845.75534375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 844.74284375
transcript.pyannote[140].end 847.67909375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 849.13034375
transcript.pyannote[141].end 851.37471875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 851.77971875
transcript.pyannote[142].end 853.43346875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 854.17596875
transcript.pyannote[143].end 857.43284375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 857.73659375
transcript.pyannote[144].end 864.38534375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 863.38971875
transcript.pyannote[145].end 869.85284375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 865.06034375
transcript.pyannote[146].end 865.68471875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 867.99659375
transcript.pyannote[147].end 868.28346875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 868.75596875
transcript.pyannote[148].end 875.10096875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 874.20659375
transcript.pyannote[149].end 876.33284375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 876.40034375
transcript.pyannote[150].end 877.91909375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 878.32409375
transcript.pyannote[151].end 880.68659375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 880.68659375
transcript.pyannote[152].end 887.45346875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 880.70346875
transcript.pyannote[153].end 882.17159375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 887.52096875
transcript.pyannote[154].end 890.49096875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 892.11096875
transcript.pyannote[155].end 905.69534375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 892.61721875
transcript.pyannote[156].end 893.41034375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 895.73909375
transcript.pyannote[157].end 896.14409375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 896.24534375
transcript.pyannote[158].end 896.29596875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 905.88096875
transcript.pyannote[159].end 908.22659375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 908.59784375
transcript.pyannote[160].end 910.30221875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 912.63096875
transcript.pyannote[161].end 917.15346875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 912.76596875
transcript.pyannote[162].end 912.96846875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 912.96846875
transcript.pyannote[163].end 913.35659375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 913.35659375
transcript.pyannote[164].end 913.44096875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 917.72721875
transcript.pyannote[165].end 920.41034375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 921.06846875
transcript.pyannote[166].end 922.62096875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 923.97096875
transcript.pyannote[167].end 931.63221875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 931.63221875
transcript.pyannote[168].end 937.31909375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 931.95284375
transcript.pyannote[169].end 932.07096875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 940.82909375
transcript.pyannote[170].end 941.92596875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 943.00596875
transcript.pyannote[171].end 943.98471875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 946.93784375
transcript.pyannote[172].end 951.71346875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 952.27034375
transcript.pyannote[173].end 959.30721875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 959.86409375
transcript.pyannote[174].end 962.07471875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 962.34471875
transcript.pyannote[175].end 971.01846875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 971.49096875
transcript.pyannote[176].end 973.17846875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 973.63409375
transcript.pyannote[177].end 979.54034375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 979.62471875
transcript.pyannote[178].end 982.07159375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 982.61159375
transcript.pyannote[179].end 985.98659375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 986.62784375
transcript.pyannote[180].end 988.60221875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 989.26034375
transcript.pyannote[181].end 997.69784375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 997.20846875
transcript.pyannote[182].end 999.36846875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 998.57534375
transcript.pyannote[183].end 1001.08971875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 1001.52846875
transcript.pyannote[184].end 1019.50034375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 1019.14596875
transcript.pyannote[185].end 1038.53534375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 1038.65346875
transcript.pyannote[186].end 1047.98534375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 1048.27221875
transcript.pyannote[187].end 1049.28471875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 1050.70221875
transcript.pyannote[188].end 1053.50346875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 1054.12784375
transcript.pyannote[189].end 1060.20284375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 1060.67534375
transcript.pyannote[190].end 1065.43409375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 1065.61971875
transcript.pyannote[191].end 1070.00721875
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 1070.78346875
transcript.pyannote[192].end 1072.30221875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 1074.05721875
transcript.pyannote[193].end 1075.35659375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 1076.53784375
transcript.pyannote[194].end 1076.87534375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 1079.08596875
transcript.pyannote[195].end 1080.11534375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 1079.20409375
transcript.pyannote[196].end 1079.98034375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 1080.16596875
transcript.pyannote[197].end 1080.33471875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 1080.79034375
transcript.pyannote[198].end 1087.65846875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 1086.76409375
transcript.pyannote[199].end 1092.38346875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 1088.77221875
transcript.pyannote[200].end 1105.07346875
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 1104.66846875
transcript.pyannote[201].end 1132.12409375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 1132.41096875
transcript.pyannote[202].end 1137.22034375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 1137.60846875
transcript.pyannote[203].end 1138.73909375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 1139.83596875
transcript.pyannote[204].end 1145.35409375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 1145.57346875
transcript.pyannote[205].end 1148.94846875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 1149.35346875
transcript.pyannote[206].end 1154.44971875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 1154.60159375
transcript.pyannote[207].end 1155.76596875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 1156.22159375
transcript.pyannote[208].end 1157.62221875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 1158.46596875
transcript.pyannote[209].end 1163.47784375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 1163.95034375
transcript.pyannote[210].end 1166.31284375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 1167.03846875
transcript.pyannote[211].end 1194.22409375
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 1195.13534375
transcript.pyannote[212].end 1197.83534375
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 1196.85659375
transcript.pyannote[213].end 1199.06721875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 1198.51034375
transcript.pyannote[214].end 1200.11346875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 1199.57346875
transcript.pyannote[215].end 1216.21221875
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 1215.87471875
transcript.pyannote[216].end 1222.57409375
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 1236.02346875
transcript.pyannote[217].end 1239.87096875
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 1243.73534375
transcript.pyannote[218].end 1244.34284375
transcript.whisperx[0].start 6.332
transcript.whisperx[0].end 9.317
transcript.whisperx[0].text 提名人王教授王教授
transcript.whisperx[1].start 17.553
transcript.whisperx[1].end 44.848
transcript.whisperx[1].text 王教授早您是護理界的領軍人物那你過去在護理、公衛跟醫療有相當深的這個耕耘所以你整個專長領域大概就是跟整個國家的健康、健保、保健、醫療體系是息息相關的那今天本席想就這個公務員的權益還有這個護理師的職業以及現行的考試制度的問題就叫這個王教授
transcript.whisperx[2].start 45.848
transcript.whisperx[2].end 58.953
transcript.whisperx[2].text 我首先想請教你公務員有沒有拒絕加班的權利一般而言加班也是要經過當事人同意公務員呢
transcript.whisperx[3].start 63.965
transcript.whisperx[3].end 87.871
transcript.whisperx[3].text 公務員的話我想是應該經過一些協商通常是如果要加班也應該是協商說為什麼這加班這麼重要我讓你看一下三年前的新聞背景就是考試院要修正公務員服務法的草案當時立法院的法治局提出建議說公務員基於公共利益及為民服務責任
transcript.whisperx[4].start 89.071
transcript.whisperx[4].end 117.678
transcript.whisperx[4].text 需要及時回應社會跟民眾的需求所以跟民間企業的業務本質是不相關的不一樣但是基於公務員本個人的健康問題如果他們實在無法配合超時的加班應該是要讓公務員享有拒絕加班的權利這是法治局的觀點但是當時權序部的回答是這樣的因為所有公務員所設業務甚至關心人民的生命財產安全
transcript.whisperx[5].start 118.658
transcript.whisperx[5].end 146.951
transcript.whisperx[5].text 那加班是長官對下屬他監督範圍所指派的是任務啦那實務上長官是可以斟酌加班的合理性、必要性、急迫性等等再進行指派如果覺得權益受到影響那公務員可以依公務人員保障法提起救濟所以當時權敘部就認為不適合增訂公務員能拒絕超時加班權力的法條請教王教授您認同這樣子的一個見解嗎
transcript.whisperx[6].start 148.12
transcript.whisperx[6].end 174.027
transcript.whisperx[6].text 我覺得為了公務人員的安全跟健康以這樣的觀點來看是應該是透過一個協商的機制那當然是公務人員是他是肩負的剛委員有講他是公共利益或是說其他人民的權益他跟一般的企業界不太一樣您說的協商其實還是有一點模糊
transcript.whisperx[7].start 174.967
transcript.whisperx[7].end 201.18
transcript.whisperx[7].text 事實上從整個公務體系來看超時加班最嚴重的消防員過去考試院下有一個保訓會在2013年曾經對基層消防員徐培堯等人針對嚴重加班的問題提出複審當時保訓會關上救濟之門就直接拿公務員的三法規定把消防員的申訴駁回了
transcript.whisperx[8].start 203.289
transcript.whisperx[8].end 226.258
transcript.whisperx[8].text 結果最後大法官在6年後2019年認定公務員保障法第23條是違憲的而且要求三年內檢討修法但結果考試院全序部在釋憲後的這一波修法還是出現很多的問題為什麼呢王教授因為修法後
transcript.whisperx[9].start 227.628
transcript.whisperx[9].end 253.351
transcript.whisperx[9].text 也許您熟悉他要求超勤時數必須在兩年內兩年內把它補休完或換成加班費但是各地方政府他為了減少加班費的付出所以他就拼命的排補休假那補休的時候這個補休的時數我知道最多還有上千小時消防員有上千小時那一直排補休就會落到工作落到別人身上
transcript.whisperx[10].start 254.696
transcript.whisperx[10].end 260.2
transcript.whisperx[10].text 所以我要再次請教王教授針對有問題的法律是不是要等到被說是違憲才來檢討考試院不能主動一點嗎我覺得這個議題真的非常重要就像臨床上委員也知道護理人員的加班或什麼樣的我覺得這個應該是在
transcript.whisperx[11].start 279.433
transcript.whisperx[11].end 302.768
transcript.whisperx[11].text 最重要的Priority就是說健康權非常重要不能無限加班一定要在一個規範或是公務員沒有勞基法保護所以他超時加班所以我覺得這個可以來做研議到底怎麼樣的加班才適合時數期待王教授如果有機會進入考試院
transcript.whisperx[12].start 303.208
transcript.whisperx[12].end 312.984
transcript.whisperx[12].text 我覺得這個很重要 健康權非常重要接下來我要請教護理人力的問題全世界都有護理人力短缺的問題雖然台灣每年總
transcript.whisperx[13].start 315.635
transcript.whisperx[13].end 335.544
transcript.whisperx[13].text 總職業的護理人數是增加的但是因為高齡化或是慢性病化、多重疾病化等等社會需求增加所以護理人力的需求也是增加的那世界衛生組織在2020年它有一個State of the World Nursing2021年還有Global Strategic Directions for Nursing and Midwifery 等等
transcript.whisperx[14].start 336.024
transcript.whisperx[14].end 357.231
transcript.whisperx[14].text 他建議各國在2030年之前每年護理畢業生要增加8%來因應護理人力的需求您的報告中也有提到護理人力政策準備的12項策略我想請教王教授你認為護理師的高離職率簡單的說是有哪些原因
transcript.whisperx[15].start 358.735
transcript.whisperx[15].end 385.087
transcript.whisperx[15].text 高離子率護理人員的高離子率這個當然是感謝委員提問委員應該蠻了解的護理人員的高離子率當然第一個就是跟職場的壓力跟職場的環境這個是大概是聽到的是最重要的那當然還有其他很多不同的一些原因
transcript.whisperx[16].start 386.587
transcript.whisperx[16].end 409.301
transcript.whisperx[16].text 王教授我舊護理人力政策準備12項策略中考選部要負責的部分請教你第一個就是國考增次、題目精進第二個是增加這個就是增加國考次數但是把題數降低你剛剛也報告了調整難度第二個是建立跨部會的護理教考用的協力平台
transcript.whisperx[17].start 409.841
transcript.whisperx[17].end 438.371
transcript.whisperx[17].text 那該策略計畫預定119年能夠增加5.6萬到7萬人的護理人力王教授你認為這個數字可能嗎以這樣的因為我們現在少子女化你認為可能嗎比較困難好有困難那你認為不管達到多少數字你認為留任率大概是多少留任率當然是留任率留任率
transcript.whisperx[18].start 440.432
transcript.whisperx[18].end 451.83
transcript.whisperx[18].text 應該是越高越好就是也跟那個流動率嘛會是多少會是多少流任率會是多少經過這樣的整備計畫流任率會提高嗎
transcript.whisperx[19].start 453.217
transcript.whisperx[19].end 474.926
transcript.whisperx[19].text 我們希望當然留任率是越高越好啦王教授這個調整難度的部分當時引起很多的一個討論跟爭議啦他被認為是降低國考的難度那在請王教授回答之前我想先來反映基層護理對這件事的一個回應2023年11月臺大院工會抨擊他們認為考選部11月9號突襲公告降低護理國考門檻
transcript.whisperx[20].start 480.988
transcript.whisperx[20].end 485.213
transcript.whisperx[20].text 針對難度較高的基礎醫學從2024年開始立刻比重從20%降到10%那麼這麼重大的調整卻僅召開一次的專家學者諮詢會議而且會議中沒有任何基層的團體參與
transcript.whisperx[21].start 499.167
transcript.whisperx[21].end 523.421
transcript.whisperx[21].text 科學部短短一個月內並火速的公告而且在11月15日就要完成意見表達那我們來談一下基礎醫學這個門檻你把難度高的比重降低那會不會就是告訴民眾說我們因為人力不足所以我們必須把標準降低那這個是不是拿專業形象還有社會的正當性甚至是勞資協議的協商的這個籌碼開玩笑啊
transcript.whisperx[22].start 527.523
transcript.whisperx[22].end 535.959
transcript.whisperx[22].text 公會跟護理團體痛批這個是走回頭路請再稍後一下當時的這個我還不是立委當時的薛瑞炎部長說話不負責任
transcript.whisperx[23].start 538.288
transcript.whisperx[23].end 558.425
transcript.whisperx[23].text 他說他不僅未能理解護理界的擔憂還口出狂言請看這是他講的話我不曉得不滿意的護理師是用什麼道理由一方面說人力不足那我們現在要充實人力所以充實就增加那國考有更多人的考過他們又要反對我不知道他們的邏輯在哪裡
transcript.whisperx[24].start 561.187
transcript.whisperx[24].end 573.511
transcript.whisperx[24].text 但是護理界的擔憂還是沒有停止黃教授你認為考選部未來在公告相關資訊的時候應該怎麼做比較好當然其實有經過程序這個議題其實沒有執行
transcript.whisperx[25].start 577.503
transcript.whisperx[25].end 601.95
transcript.whisperx[25].text 就是說降低基礎醫學那時候是在研議當中所以現在五科都是20%都一樣分量都是一樣的降低難度的部分呢降低難度其實我覺得這個是大家有誤解啦如果說所有的考題都有上網公告考完了馬上上網公告其實還很多我聽到就是說從80體變50體為什麼
transcript.whisperx[26].start 606.292
transcript.whisperx[26].end 627.705
transcript.whisperx[26].text 80體60分鐘要來做80體要0.45秒就要回答一個問題這個是非常的所以長期提次也許可以討論但是基礎醫學的比重大家都知道基礎醫學就是走向臨床醫學的基礎啊如果護理人員沒有這個教育他沒辦法從病人的主訴去瞭解做一些基本的判斷跟處置
transcript.whisperx[27].start 628.826
transcript.whisperx[27].end 656.58
transcript.whisperx[27].text 那他一定影響他後來的一個判斷的品質跟結果可能引起醫療爭議啊影響照護品質啊甚至病人的安全啊所以這個部分你的意思是說這個部分暫時不會去處理嗎沒有現在已經這個政策也聽各方的意見之後我們就是希望跟專業團體還有用人職業主管機關就是把這些基礎醫學的有一些概念也放到各科的臨床
transcript.whisperx[28].start 656.92
transcript.whisperx[28].end 659.463
transcript.whisperx[28].text 我認為真正的問題在於每年護理科系畢業級通過執照考試的人數跟實際進入職場職業的人數63%
transcript.whisperx[29].start 674.471
transcript.whisperx[29].end 693.996
transcript.whisperx[29].text 相差太大了每年有9000多名畢業生但是只有4、5000人會領證照那你增加國考的次數降低難度好像會帶來一些改變但是無法根本解決問題那目前他是做了一些補救措施包括這個夜班津貼、三班護病筆的獎金
transcript.whisperx[30].start 697.217
transcript.whisperx[30].end 720.206
transcript.whisperx[30].text 那我也支持這個今天的發放但是這些預算會年年有嗎而且這些發放機制裡面還有很多的問題跟不足所以菲律賓護理師協會會長安達姆還講說政府與其花一些時間在想花招還不如根本解決問題所以護理人員職業環境如果不改善的話不論如何修改考試制度
transcript.whisperx[31].start 721.326
transcript.whisperx[31].end 744.366
transcript.whisperx[31].text 王教授我認為目前我們根本沒有辦法讓資深的護理師留在留任去帶領新生代的護理師所以他就是免洗人力啊免洗人力啊六七年正好用他們平均留任時間才六年啊所以對考試人來說是不是增加人力就好增加人數就好呢你就把護理師當作免洗人力嗎王教授
transcript.whisperx[32].start 745.219
transcript.whisperx[32].end 770.07
transcript.whisperx[32].text 我想是這樣的護理人力大概不是一個部會可以解決的所以為什麼我說要從教考訓用因為我們未來的人力的需求真的是因為我們超高齡社會會需求是越來越高那所以呢教育端我們也跟教育部就說如果辦學比較好的學校應該趕快多一點名額來培育要不然會緩不濟急
transcript.whisperx[33].start 771.291
transcript.whisperx[33].end 794.469
transcript.whisperx[33].text 王教授您是目前考試委員當中這個背景最深入的所以這個部分大家都知道現在是危機啦我再請教你您過去說過法規是護理人員權益非常重要的一件事情一環啦那我想請問就目前的法規你認為可以保障護理人員的權益嗎目前的法規足夠保障護理人員的權益嗎
transcript.whisperx[34].start 795.765
transcript.whisperx[34].end 811.351
transcript.whisperx[34].text 我當然就是因為我最近沒有在衛生署不過衛福部不過我覺得護理人員的法規當然是用人機關要去檢視除了護理人員法護理人員私刑細則還有勞基法
transcript.whisperx[35].start 813.068
transcript.whisperx[35].end 827.587
transcript.whisperx[35].text 那我講得更清楚好了目前護病比尚未入法是採取獎勵先行的方式很多基層表示說這個制度失靈撐不下去了我就請教你直接請教你你支持三班護病比入法嗎
transcript.whisperx[36].start 829.171
transcript.whisperx[36].end 845.359
transcript.whisperx[36].text 三班互併筆入法是非常不容易但是現在政策已經往這一方面我覺得很好為什麼三班互併筆是對護理人員的照顧的負擔所以你支持嗎那請問你認為互併筆要如何計算現在連計算都有問題喔你認為基本上簡單講一下該怎麼計算
transcript.whisperx[37].start 857.939
transcript.whisperx[37].end 867.47
transcript.whisperx[37].text 護病筆現在是三班護病筆所以都有公告不然醫學中心區醫院那個公告都是平均都是假的跟基層的感受完全不一樣
transcript.whisperx[38].start 868.896
transcript.whisperx[38].end 889.998
transcript.whisperx[38].text 那當然是每個醫院都要公開我們說的資訊要透明公開公開到什麼程度?每一班嗎?每一個類別病房嗎?還是一個大大的平均數呢?當然就是看衛福部的要求一定要依照衛福部的要求來做衛福部如果做得不好考試院沒有意見嗎?
transcript.whisperx[39].start 893.869
transcript.whisperx[39].end 910.163
transcript.whisperx[39].text 我想我再跟你講一個數字目前全台灣的空床比例大概40%那護理人力一定是其中很重要的一個原因我想請教你醫院評鑑有沒有作弊包庇的嫌疑
transcript.whisperx[40].start 913.119
transcript.whisperx[40].end 936.818
transcript.whisperx[40].text 醫院的高層護理人員有沒有作弊跟包庇的嫌疑為什麼都可以輕易過關護理人員這麼不足為什麼可以輕易過關呢確實醫院評鑑是一個非常重要醫療品質把關跟人力把關的一個重要的機制但是都過關啊大家都過關都很歡喜啊醫學中心還繼續增加表示沒有問題啊是不是有包庇
transcript.whisperx[41].start 943.052
transcript.whisperx[41].end 970.473
transcript.whisperx[41].text 作弊的嫌疑我們教授這題大概你很困難回答關於你回傳的文件我再請教你目前這個當然高普考的報考率很低迷還有特定的科目錄取不足也是其中的問題那你剛剛也有回答這個高普考率報考人數下降其中有個人你第一個答案還是講這個少子化有關係那當然還有多重的影響
transcript.whisperx[42].start 971.553
transcript.whisperx[42].end 988.435
transcript.whisperx[42].text 那我想請教你除了這些原因之外你提到的考試科目多還花很多錢公務體系限制等等等等近期頻傳出的公部門職場霸凌案會不會也是原因之一您認為會不會也是原因之一
transcript.whisperx[43].start 990.058
transcript.whisperx[43].end 1009.543
transcript.whisperx[43].text 確實我覺得公務體系的一些管理措施或是職場環境一定透過這樣的我覺得也是非常重要應該未來可能也是讓就是我們的青年學子進來的一個考量
transcript.whisperx[44].start 1010.303
transcript.whisperx[44].end 1037.952
transcript.whisperx[44].text 所以我們一定要趕快的建立一個很良善跟零容忍不管是性騷擾或是職場霸凌我覺得都是零容忍黃教授勞動部事件發生後因為很多民眾相信在野黨的立委才有能夠幫他們主張公道所以我這裡成了部分的全國申訴中心我的案我的搜案是非常多的我要談到的今天我們談醫療領域無論公司機構其實醫療場域是一個非常緊繃的工作環境
transcript.whisperx[45].start 1038.852
transcript.whisperx[45].end 1048.503
transcript.whisperx[45].text 那除了職場霸凌案其實護理師有時候還面對職場上的一些我們不可諱言嘛就從媒體上性騷啦性歧視啦性侵害等等上個禮拜
transcript.whisperx[46].start 1050.748
transcript.whisperx[46].end 1074.562
transcript.whisperx[46].text 屏東榮總有一名護理師因為性別認同遭主管同事霸凌欺負最後選擇用最極端的方式對待自己他媽媽每天以淚洗面希望孩子趕快醒過來但是屏東榮總的回應是說調查中初步上未查獲霸凌行為我想請教王教授的意見您看到這個新聞了嗎
transcript.whisperx[47].start 1081.032
transcript.whisperx[47].end 1094.746
transcript.whisperx[47].text 我覺得不管怎麼樣我覺得性騷擾跟職場霸凌在醫療場域會不會很多其實我在十多年前跟三十年前就對醫療職場的性騷擾
transcript.whisperx[48].start 1098.349
transcript.whisperx[48].end 1101.551
transcript.whisperx[48].text Iwan Nawi 與職場霸凌有相關研究發表Iwan Nawi 與職場霸凌有相關研究發表
transcript.whisperx[49].start 1124.024
transcript.whisperx[49].end 1138.503
transcript.whisperx[49].text 關注醫療介入措施可能對負面的不良影響那關於這幾個點您現在還是認同吧可見性、可及性等等那我想請教你雖然不是考試委員的職責但是你是健康政策專家事後必應完
transcript.whisperx[50].start 1139.895
transcript.whisperx[50].end 1156.336
transcript.whisperx[50].text 在事後72小時內的效果最好越早服用這個成功率越高所以取得這個藥物的可敬性、可及性甚至費用本身這個是非常的重要如果你去看醫師要括號待診再問診
transcript.whisperx[51].start 1158.499
transcript.whisperx[51].end 1175.824
transcript.whisperx[51].text 然後你取得的藥品的這個門檻非常高有可能錯過這個黃金時間那一旦錯過黃金時間你知道結果嗎你就剩下兩個嘛一個是口服墮胎完本來是避孕完第二個是什麼侵入性的人工流產手術這個背後的數字我都掌握
transcript.whisperx[52].start 1176.684
transcript.whisperx[52].end 1193.906
transcript.whisperx[52].text 所以我想請教你就一位專家女性健康專家請問你支不支持事後避孕完列入指示藥就是非處方藥你在國外看過美國的非處方藥乘藥數量是比處方藥還高因為就醫的障礙很高
transcript.whisperx[53].start 1195.202
transcript.whisperx[53].end 1222.437
transcript.whisperx[53].text 您贊成嗎?您支持嗎?我覺得對婦女來講應該這有專業判斷過嘛尤其是剛說的是不是開放藥局我覺得醫藥分業之後藥局您同意嗎?您贊成嗎?我自己個人是為了婦女的健康我是贊成的好謝謝我再跟你加強一下WHO也主張開放十大先進國台灣自己定義十大先進國也開放了
transcript.whisperx[54].start 1236.109
transcript.whisperx[54].end 1236.77
transcript.whisperx[54].text 王秀紅教授