iVOD / 157705

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/884fcb4bd77b7063b56efc7a93f3c1af4bb3245ee31dfdd0e867e6df39dfd90ac89ebdc37aa605965ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蔡易餘
委員發言時間 15:41:07 - 16:01:35
影片長度 1228
會議時間 2024-11-29T14:30:00+08:00
會議名稱 第11屆第2會期第1次全院委員會(事由:總統咨,為考試院第十三屆院長、副院長及考試委員任期於113年8月31日屆滿,茲依據憲法增修條文第6條第2項規定,提名周弘憲為考試院第十四屆院長,許舒翔為考試院第十四屆副院長,邱文彥、鄧家基、王秀紅、呂秋慧、柯麗鈴、黃東益、伊萬.納威Iwan Nawi 7位為考試院第十四屆考試委員,咨請同意案。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 6.17346875
transcript.pyannote[0].end 9.70034375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 10.62846875
transcript.pyannote[1].end 12.06284375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 13.02471875
transcript.pyannote[2].end 14.40846875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 17.54721875
transcript.pyannote[3].end 18.07034375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 18.81284375
transcript.pyannote[4].end 28.51596875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 28.78596875
transcript.pyannote[5].end 33.56159375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 33.94971875
transcript.pyannote[6].end 36.86909375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 37.34159375
transcript.pyannote[7].end 39.43409375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 39.63659375
transcript.pyannote[8].end 43.95659375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 44.29409375
transcript.pyannote[9].end 45.67784375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 45.91409375
transcript.pyannote[10].end 48.07409375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 48.74909375
transcript.pyannote[11].end 55.95471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 56.22471875
transcript.pyannote[12].end 58.92471875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 59.19471875
transcript.pyannote[13].end 61.54034375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 61.62471875
transcript.pyannote[14].end 63.29534375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 63.66659375
transcript.pyannote[15].end 67.02471875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 67.63221875
transcript.pyannote[16].end 69.42096875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 69.62346875
transcript.pyannote[17].end 73.09971875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 73.42034375
transcript.pyannote[18].end 73.82534375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 74.17971875
transcript.pyannote[19].end 77.90909375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 78.06096875
transcript.pyannote[20].end 81.63846875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 81.90846875
transcript.pyannote[21].end 83.37659375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 83.52846875
transcript.pyannote[22].end 88.59096875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 88.79346875
transcript.pyannote[23].end 94.78409375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 95.07096875
transcript.pyannote[24].end 96.15096875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 96.72471875
transcript.pyannote[25].end 105.61784375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 104.20034375
transcript.pyannote[26].end 104.50409375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 106.02284375
transcript.pyannote[27].end 111.40596875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 106.05659375
transcript.pyannote[28].end 106.47846875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 108.70596875
transcript.pyannote[29].end 109.26284375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 111.91221875
transcript.pyannote[30].end 115.33784375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 115.52346875
transcript.pyannote[31].end 125.85096875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 126.20534375
transcript.pyannote[32].end 129.25971875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 129.63096875
transcript.pyannote[33].end 132.12846875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 132.41534375
transcript.pyannote[34].end 134.72721875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 135.06471875
transcript.pyannote[35].end 139.70534375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 139.80659375
transcript.pyannote[36].end 141.64596875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 141.98346875
transcript.pyannote[37].end 147.70409375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 148.00784375
transcript.pyannote[38].end 149.34096875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 149.47596875
transcript.pyannote[39].end 150.58971875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 151.21409375
transcript.pyannote[40].end 157.77846875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 158.55471875
transcript.pyannote[41].end 169.67534375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 163.14471875
transcript.pyannote[42].end 163.24596875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 163.49909375
transcript.pyannote[43].end 163.54971875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 170.02971875
transcript.pyannote[44].end 176.98221875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 177.18471875
transcript.pyannote[45].end 179.85096875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 180.00284375
transcript.pyannote[46].end 197.31659375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 197.41784375
transcript.pyannote[47].end 200.45534375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 200.60721875
transcript.pyannote[48].end 210.39471875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 210.66471875
transcript.pyannote[49].end 217.34721875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 217.36409375
transcript.pyannote[50].end 223.30409375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 223.47284375
transcript.pyannote[51].end 227.25284375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 227.47221875
transcript.pyannote[52].end 229.36221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 229.51409375
transcript.pyannote[53].end 231.01596875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 231.10034375
transcript.pyannote[54].end 241.37721875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 241.73159375
transcript.pyannote[55].end 248.81909375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 249.03846875
transcript.pyannote[56].end 254.32034375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 254.67471875
transcript.pyannote[57].end 261.23909375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 262.18409375
transcript.pyannote[58].end 265.54221875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 265.77846875
transcript.pyannote[59].end 267.36471875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 267.90471875
transcript.pyannote[60].end 269.74409375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 269.92971875
transcript.pyannote[61].end 276.15659375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 276.78096875
transcript.pyannote[62].end 282.43409375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 282.70409375
transcript.pyannote[63].end 283.05846875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 283.05846875
transcript.pyannote[64].end 287.47971875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 287.96909375
transcript.pyannote[65].end 289.84221875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 289.96034375
transcript.pyannote[66].end 293.70659375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 293.80784375
transcript.pyannote[67].end 293.82471875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 293.82471875
transcript.pyannote[68].end 294.16221875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 293.89221875
transcript.pyannote[69].end 296.91284375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 297.26721875
transcript.pyannote[70].end 302.29596875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 302.44784375
transcript.pyannote[71].end 304.50659375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 304.64159375
transcript.pyannote[72].end 306.27846875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 306.56534375
transcript.pyannote[73].end 312.26909375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 312.52221875
transcript.pyannote[74].end 313.95659375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 314.53034375
transcript.pyannote[75].end 327.65909375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 328.46909375
transcript.pyannote[76].end 337.24409375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 338.07096875
transcript.pyannote[77].end 341.61471875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 342.08721875
transcript.pyannote[78].end 345.54659375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 346.13721875
transcript.pyannote[79].end 356.92034375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 357.20721875
transcript.pyannote[80].end 357.79784375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 357.96659375
transcript.pyannote[81].end 358.45596875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 358.45596875
transcript.pyannote[82].end 364.02471875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 364.31159375
transcript.pyannote[83].end 370.79159375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 370.85909375
transcript.pyannote[84].end 371.63534375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 372.15846875
transcript.pyannote[85].end 374.75721875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 375.07784375
transcript.pyannote[86].end 387.22784375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 387.43034375
transcript.pyannote[87].end 392.61096875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 392.83034375
transcript.pyannote[88].end 393.99471875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 394.43346875
transcript.pyannote[89].end 395.76659375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 396.28971875
transcript.pyannote[90].end 398.28096875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 398.70284375
transcript.pyannote[91].end 400.57596875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 400.99784375
transcript.pyannote[92].end 401.92596875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 402.36471875
transcript.pyannote[93].end 405.30096875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 405.63846875
transcript.pyannote[94].end 407.10659375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 407.35971875
transcript.pyannote[95].end 408.11909375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 408.91221875
transcript.pyannote[96].end 410.02596875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 410.09346875
transcript.pyannote[97].end 412.13534375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 412.38846875
transcript.pyannote[98].end 413.92409375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 414.73409375
transcript.pyannote[99].end 418.81784375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 419.49284375
transcript.pyannote[100].end 420.65721875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 420.96096875
transcript.pyannote[101].end 428.28471875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 428.57159375
transcript.pyannote[102].end 432.48659375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 432.77346875
transcript.pyannote[103].end 442.02096875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 442.32471875
transcript.pyannote[104].end 443.69159375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 444.02909375
transcript.pyannote[105].end 447.82596875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 448.04534375
transcript.pyannote[106].end 450.86346875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 451.06596875
transcript.pyannote[107].end 451.82534375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 452.06159375
transcript.pyannote[108].end 456.26346875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 456.36471875
transcript.pyannote[109].end 460.83659375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 461.12346875
transcript.pyannote[110].end 472.31159375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 471.68721875
transcript.pyannote[111].end 478.25159375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 478.40346875
transcript.pyannote[112].end 485.82846875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 486.30096875
transcript.pyannote[113].end 490.67159375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 486.36846875
transcript.pyannote[114].end 486.82409375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 489.84471875
transcript.pyannote[115].end 501.01596875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 491.73471875
transcript.pyannote[116].end 491.88659375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 501.23534375
transcript.pyannote[117].end 504.94784375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 505.18409375
transcript.pyannote[118].end 509.82471875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 510.17909375
transcript.pyannote[119].end 522.10971875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 522.76784375
transcript.pyannote[120].end 526.78409375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 527.39159375
transcript.pyannote[121].end 530.02409375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 530.44596875
transcript.pyannote[122].end 532.84221875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 533.50034375
transcript.pyannote[123].end 536.33534375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 536.85846875
transcript.pyannote[124].end 538.68096875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 539.11971875
transcript.pyannote[125].end 542.19096875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 542.41034375
transcript.pyannote[126].end 543.23721875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 544.18221875
transcript.pyannote[127].end 547.84409375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 548.58659375
transcript.pyannote[128].end 554.93159375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 555.55596875
transcript.pyannote[129].end 561.19221875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 561.58034375
transcript.pyannote[130].end 563.70659375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 563.87534375
transcript.pyannote[131].end 566.67659375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 566.89596875
transcript.pyannote[132].end 570.28784375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 570.38909375
transcript.pyannote[133].end 582.57284375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 582.94409375
transcript.pyannote[134].end 584.56409375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 585.08721875
transcript.pyannote[135].end 590.94284375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 591.80346875
transcript.pyannote[136].end 597.62534375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 598.08096875
transcript.pyannote[137].end 604.30784375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 604.89846875
transcript.pyannote[138].end 613.74096875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 613.97721875
transcript.pyannote[139].end 623.24159375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 623.51159375
transcript.pyannote[140].end 625.51971875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 625.82346875
transcript.pyannote[141].end 627.22409375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 627.71346875
transcript.pyannote[142].end 629.97471875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 630.24471875
transcript.pyannote[143].end 634.42971875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 634.73346875
transcript.pyannote[144].end 638.10846875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 638.22659375
transcript.pyannote[145].end 641.56784375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 641.68596875
transcript.pyannote[146].end 648.80721875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 648.80721875
transcript.pyannote[147].end 658.42596875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 649.07721875
transcript.pyannote[148].end 650.03909375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 658.52721875
transcript.pyannote[149].end 672.71909375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 672.92159375
transcript.pyannote[150].end 685.02096875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 685.34159375
transcript.pyannote[151].end 693.96471875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 694.38659375
transcript.pyannote[152].end 695.92221875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 696.46221875
transcript.pyannote[153].end 697.47471875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 697.60971875
transcript.pyannote[154].end 698.50409375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 699.14534375
transcript.pyannote[155].end 708.73034375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 709.37159375
transcript.pyannote[156].end 711.19409375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 711.78471875
transcript.pyannote[157].end 715.24409375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 715.64909375
transcript.pyannote[158].end 716.30721875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 716.83034375
transcript.pyannote[159].end 719.51346875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 719.74971875
transcript.pyannote[160].end 720.89721875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 721.50471875
transcript.pyannote[161].end 722.16284375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 722.65221875
transcript.pyannote[162].end 724.82909375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 725.52096875
transcript.pyannote[163].end 730.07721875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 730.31346875
transcript.pyannote[164].end 733.48596875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 733.60409375
transcript.pyannote[165].end 744.92721875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 746.32784375
transcript.pyannote[166].end 750.74909375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 751.72784375
transcript.pyannote[167].end 753.21284375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 753.46596875
transcript.pyannote[168].end 753.51659375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 753.51659375
transcript.pyannote[169].end 754.49534375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 753.63471875
transcript.pyannote[170].end 754.91721875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 755.08596875
transcript.pyannote[171].end 755.67659375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 756.08159375
transcript.pyannote[172].end 764.89034375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 763.27034375
transcript.pyannote[173].end 763.81034375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 765.29534375
transcript.pyannote[174].end 772.31534375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 772.80471875
transcript.pyannote[175].end 776.71971875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 777.05721875
transcript.pyannote[176].end 786.42284375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 785.69721875
transcript.pyannote[177].end 788.14409375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 788.24534375
transcript.pyannote[178].end 791.14784375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 790.94534375
transcript.pyannote[179].end 791.19846875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 791.19846875
transcript.pyannote[180].end 791.23221875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 791.41784375
transcript.pyannote[181].end 793.84784375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 793.93221875
transcript.pyannote[182].end 796.76721875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 796.86846875
transcript.pyannote[183].end 804.04034375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 804.05721875
transcript.pyannote[184].end 808.15784375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 808.86659375
transcript.pyannote[185].end 811.88721875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 812.46096875
transcript.pyannote[186].end 813.38909375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 813.69284375
transcript.pyannote[187].end 814.31721875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 814.80659375
transcript.pyannote[188].end 817.08471875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 817.30409375
transcript.pyannote[189].end 820.42596875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 820.79721875
transcript.pyannote[190].end 821.59034375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 821.37096875
transcript.pyannote[191].end 833.87534375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 834.11159375
transcript.pyannote[192].end 836.69346875
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 836.84534375
transcript.pyannote[193].end 838.92096875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 839.19096875
transcript.pyannote[194].end 839.78159375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 840.42284375
transcript.pyannote[195].end 840.81096875
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 841.30034375
transcript.pyannote[196].end 844.16909375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 844.50659375
transcript.pyannote[197].end 852.20159375
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 852.57284375
transcript.pyannote[198].end 858.05721875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 858.10784375
transcript.pyannote[199].end 860.03159375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 860.58846875
transcript.pyannote[200].end 869.59971875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 870.10596875
transcript.pyannote[201].end 870.54471875
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 870.76409375
transcript.pyannote[202].end 871.15221875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 871.16909375
transcript.pyannote[203].end 880.51784375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 881.31096875
transcript.pyannote[204].end 881.51346875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 881.73284375
transcript.pyannote[205].end 909.07034375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 909.91409375
transcript.pyannote[206].end 928.00409375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 928.13909375
transcript.pyannote[207].end 949.57034375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 950.04284375
transcript.pyannote[208].end 952.28721875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 953.09721875
transcript.pyannote[209].end 967.30596875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 967.71096875
transcript.pyannote[210].end 975.00096875
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 976.01346875
transcript.pyannote[211].end 981.97034375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 982.29096875
transcript.pyannote[212].end 983.57346875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 984.23159375
transcript.pyannote[213].end 984.90659375
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 985.17659375
transcript.pyannote[214].end 986.07096875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 986.45909375
transcript.pyannote[215].end 986.98221875
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 987.74159375
transcript.pyannote[216].end 988.92284375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 989.36159375
transcript.pyannote[217].end 994.66034375
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 995.30159375
transcript.pyannote[218].end 997.14096875
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 997.41096875
transcript.pyannote[219].end 999.63846875
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 1000.02659375
transcript.pyannote[220].end 1007.04659375
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 1007.38409375
transcript.pyannote[221].end 1013.45909375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 1013.59409375
transcript.pyannote[222].end 1014.55596875
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 1014.82596875
transcript.pyannote[223].end 1016.59784375
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 1016.66534375
transcript.pyannote[224].end 1018.21784375
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 1018.57221875
transcript.pyannote[225].end 1020.04034375
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 1020.34409375
transcript.pyannote[226].end 1037.32034375
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 1037.60721875
transcript.pyannote[227].end 1044.39096875
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 1044.77909375
transcript.pyannote[228].end 1047.02346875
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 1047.20909375
transcript.pyannote[229].end 1049.99346875
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 1050.53346875
transcript.pyannote[230].end 1051.86659375
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 1052.00159375
transcript.pyannote[231].end 1053.77346875
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 1054.11096875
transcript.pyannote[232].end 1060.03409375
transcript.pyannote[233].speaker SPEAKER_01
transcript.pyannote[233].start 1060.11846875
transcript.pyannote[233].end 1062.53159375
transcript.pyannote[234].speaker SPEAKER_01
transcript.pyannote[234].start 1062.71721875
transcript.pyannote[234].end 1066.37909375
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 1066.61534375
transcript.pyannote[235].end 1070.10846875
transcript.pyannote[236].speaker SPEAKER_01
transcript.pyannote[236].start 1070.34471875
transcript.pyannote[236].end 1074.25971875
transcript.pyannote[237].speaker SPEAKER_00
transcript.pyannote[237].start 1074.90096875
transcript.pyannote[237].end 1078.10721875
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 1078.56284375
transcript.pyannote[238].end 1079.38971875
transcript.pyannote[239].speaker SPEAKER_00
transcript.pyannote[239].start 1079.82846875
transcript.pyannote[239].end 1083.16971875
transcript.pyannote[240].speaker SPEAKER_00
transcript.pyannote[240].start 1083.37221875
transcript.pyannote[240].end 1083.84471875
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 1084.23284375
transcript.pyannote[241].end 1086.24096875
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 1086.93284375
transcript.pyannote[242].end 1088.35034375
transcript.pyannote[243].speaker SPEAKER_01
transcript.pyannote[243].start 1088.56971875
transcript.pyannote[243].end 1092.87284375
transcript.pyannote[244].speaker SPEAKER_01
transcript.pyannote[244].start 1092.97409375
transcript.pyannote[244].end 1096.92284375
transcript.pyannote[245].speaker SPEAKER_01
transcript.pyannote[245].start 1097.15909375
transcript.pyannote[245].end 1108.63409375
transcript.pyannote[246].speaker SPEAKER_01
transcript.pyannote[246].start 1109.05596875
transcript.pyannote[246].end 1109.73096875
transcript.pyannote[247].speaker SPEAKER_00
transcript.pyannote[247].start 1109.14034375
transcript.pyannote[247].end 1118.03346875
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 1118.47221875
transcript.pyannote[248].end 1119.38346875
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 1120.04159375
transcript.pyannote[249].end 1126.72409375
transcript.pyannote[250].speaker SPEAKER_00
transcript.pyannote[250].start 1127.07846875
transcript.pyannote[250].end 1130.65596875
transcript.pyannote[251].speaker SPEAKER_00
transcript.pyannote[251].start 1131.71909375
transcript.pyannote[251].end 1133.79471875
transcript.pyannote[252].speaker SPEAKER_00
transcript.pyannote[252].start 1134.95909375
transcript.pyannote[252].end 1137.22034375
transcript.pyannote[253].speaker SPEAKER_00
transcript.pyannote[253].start 1137.99659375
transcript.pyannote[253].end 1139.07659375
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 1140.52784375
transcript.pyannote[254].end 1143.19409375
transcript.pyannote[255].speaker SPEAKER_00
transcript.pyannote[255].start 1144.42596875
transcript.pyannote[255].end 1146.92346875
transcript.pyannote[256].speaker SPEAKER_00
transcript.pyannote[256].start 1147.81784375
transcript.pyannote[256].end 1149.26909375
transcript.pyannote[257].speaker SPEAKER_00
transcript.pyannote[257].start 1149.52221875
transcript.pyannote[257].end 1150.21409375
transcript.pyannote[258].speaker SPEAKER_00
transcript.pyannote[258].start 1150.60221875
transcript.pyannote[258].end 1151.53034375
transcript.pyannote[259].speaker SPEAKER_00
transcript.pyannote[259].start 1152.42471875
transcript.pyannote[259].end 1154.75346875
transcript.pyannote[260].speaker SPEAKER_00
transcript.pyannote[260].start 1155.17534375
transcript.pyannote[260].end 1156.39034375
transcript.pyannote[261].speaker SPEAKER_00
transcript.pyannote[261].start 1156.94721875
transcript.pyannote[261].end 1158.02721875
transcript.pyannote[262].speaker SPEAKER_00
transcript.pyannote[262].start 1158.60096875
transcript.pyannote[262].end 1159.69784375
transcript.pyannote[263].speaker SPEAKER_00
transcript.pyannote[263].start 1160.69346875
transcript.pyannote[263].end 1168.91159375
transcript.pyannote[264].speaker SPEAKER_00
transcript.pyannote[264].start 1169.33346875
transcript.pyannote[264].end 1194.17346875
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 1194.78096875
transcript.pyannote[265].end 1195.84409375
transcript.pyannote[266].speaker SPEAKER_00
transcript.pyannote[266].start 1196.63721875
transcript.pyannote[266].end 1199.03346875
transcript.pyannote[267].speaker SPEAKER_00
transcript.pyannote[267].start 1199.26971875
transcript.pyannote[267].end 1201.71659375
transcript.pyannote[268].speaker SPEAKER_00
transcript.pyannote[268].start 1202.10471875
transcript.pyannote[268].end 1203.69096875
transcript.pyannote[269].speaker SPEAKER_00
transcript.pyannote[269].start 1203.80909375
transcript.pyannote[269].end 1204.88909375
transcript.pyannote[270].speaker SPEAKER_00
transcript.pyannote[270].start 1205.51346875
transcript.pyannote[270].end 1206.49221875
transcript.pyannote[271].speaker SPEAKER_00
transcript.pyannote[271].start 1206.86346875
transcript.pyannote[271].end 1210.98096875
transcript.pyannote[272].speaker SPEAKER_00
transcript.pyannote[272].start 1211.20034375
transcript.pyannote[272].end 1216.02659375
transcript.pyannote[273].speaker SPEAKER_00
transcript.pyannote[273].start 1216.12784375
transcript.pyannote[273].end 1217.54534375
transcript.pyannote[274].speaker SPEAKER_00
transcript.pyannote[274].start 1218.23721875
transcript.pyannote[274].end 1219.30034375
transcript.pyannote[275].speaker SPEAKER_00
transcript.pyannote[275].start 1219.57034375
transcript.pyannote[275].end 1220.76846875
transcript.pyannote[276].speaker SPEAKER_00
transcript.pyannote[276].start 1225.22346875
transcript.pyannote[276].end 1226.52284375
transcript.pyannote[277].speaker SPEAKER_00
transcript.pyannote[277].start 1227.38346875
transcript.pyannote[277].end 1227.75471875
transcript.whisperx[0].start 6.666
transcript.whisperx[0].end 13.49
transcript.whisperx[0].text 謝謝主席那是有請我們備題名人邱備題名人備題名人請答詢蔡委員好
transcript.whisperx[1].start 19.58
transcript.whisperx[1].end 47.811
transcript.whisperx[1].text 邱委員、邱老師很高興可以在考試委員的審查會我相信可以就幾個議題可以跟邱老師來探討我們知道邱老師本身是工程背景工程背景事實上也會讓我們發現在基層普遍在反映的一件事情就是基層公務員工程背景的人留不住人才
transcript.whisperx[2].start 49.37
transcript.whisperx[2].end 66.807
transcript.whisperx[2].text 這個留不住人才有蠻多因素的首先在任何機關不管是中央機關或是地方機關尤其越基層的機關在三級政府的鄉鎮公所幾乎是留不住包括土木包括工程類的人才
transcript.whisperx[3].start 67.668
transcript.whisperx[3].end 95.634
transcript.whisperx[3].text 那這主要也是來自於說第一個他們的工作辛苦第二個他們本身在工作上附帶的風險高第三個如果這些人才他們到民間他們會有更好的待遇所以變成在於這些人留在公務系統替我們政府來做事的意願是不高的所以我想要請教邱老師你對這一塊未來你當考試委員後你會有怎樣的一個具體的主張嗎
transcript.whisperx[4].start 97.146
transcript.whisperx[4].end 115.052
transcript.whisperx[4].text 謝謝蔡委員我想這個工程類科的缺額其實是非常明顯的像去年的話大概缺了130幾位建築的話我講的是土木建築的話大概是缺了11位所以缺額的情況是非常清楚的
transcript.whisperx[5].start 115.672
transcript.whisperx[5].end 141.087
transcript.whisperx[5].text 但是由他的能不能留任跟他的大環境是有關係跟我們的大環境有關係外面的這個待遇師部門的待遇可能比公務員好一點所以這個是整個經濟環境的一個狀況那考試院這邊我看到相關的資料他們是希望說也可能從私人部門也能夠讓專機人員轉任公務員這是一個應急之道
transcript.whisperx[6].start 142.048
transcript.whisperx[6].end 169.221
transcript.whisperx[6].text 但是另外一方面在考試方面是不是讓這個工程類科的人他將來在找工作的時候能夠切合這個用人機關的一個需求所以這個部分的溝通其實非常重要我們準考試委員我想跟你分享一下因為我看到好多基層的這個工程界的第一個他們不想留在工程單位
transcript.whisperx[7].start 170.277
transcript.whisperx[7].end 188.193
transcript.whisperx[7].text 他們在工程單位他們盡量會去爭取去調到非實際工程單位這是第一個我覺得比較麻煩的第二個就是說他們在公務員任職期間他們會盡量去考計師只要一旦他們有民間的計師的牌照他們就離開公務系統這個非常的
transcript.whisperx[8].start 190.205
transcript.whisperx[8].end 210.068
transcript.whisperx[8].text 可惜啦因為我覺得我們最近有這麼多的預算包括這幾年的前瞻預算以及公務預算我們在投資這些工件的一些計畫的時候基本上都是需要這些基層的公務員他們在第一線不管是在做工程的設計或者是事後工程的把關都是需要他們
transcript.whisperx[9].start 211.049
transcript.whisperx[9].end 236.536
transcript.whisperx[9].text 那當然今年8月1號我看到行政院有公布一個命令就是針對工程人才無法留在公務系統他們有做幾個是用獎金包括要用專業家籍專業家籍說你實際從事公務我就每個月給你三千塊包括說我給你留任獎金留任獎金就是分第一年、第三年、第五年那就給他三萬塊、四萬五跟六萬年底給
transcript.whisperx[10].start 237.236
transcript.whisperx[10].end 260.813
transcript.whisperx[10].text 就是說他希望把他的配他的薪資待遇拉高然後來促使這些人是希望他留在公務但是我覺得這個火候還是不夠啊力道還是不夠因為我相信真正這些好的人才他在民間一定會有更好的待遇所以這部分涉及到了整個這些優秀的人才而且他實際上從事公務
transcript.whisperx[11].start 262.25
transcript.whisperx[11].end 286.966
transcript.whisperx[11].text 我覺得最基本的還是待遇不足的問題那我想就教一下我們被提名人就這樣你覺得好的人才到底要怎麼樣才讓他可以留在我們的公務系統呢委員是的確是看到一個很重要的議題現在在外面缺工的情況是非常嚴重那當然公司部門的待遇的相互競爭也是一個議題
transcript.whisperx[12].start 288.207
transcript.whisperx[12].end 313.59
transcript.whisperx[12].text 我現在看到像學校因為我過去在學校服務學校裡面有所謂的彈性薪資彈性薪資意思就是說我有一個專案的計畫我們可以把這個經費調整調整以後它就會超過了它現在的本質的經費這個薪資甚至有些薪資大學教授可能高過於部會所長
transcript.whisperx[13].start 314.671
transcript.whisperx[13].end 326.596
transcript.whisperx[13].text 所以這種情況也是有的所以我的意思是說我非常贊同委員的看法在薪資結構方面的調整有沒有更大的一個彈性甚至運用一些專案計畫的一個經費來做這個挹注對 所以我是覺得這個檢討起來就專業人員我們不要讓他的專業讓他平庸化
transcript.whisperx[14].start 338.778
transcript.whisperx[14].end 357.453
transcript.whisperx[14].text 這幾年他有專頁,這類專頁值得多少Page值得多少政府應該要給他的薪水就應該要盡量拉高,這是我一個主張我希望未來您當選考試委員後,你也可以支持這樣然後來支持這些基層的工程人員,可以嗎
transcript.whisperx[15].start 358.951
transcript.whisperx[15].end 371.031
transcript.whisperx[15].text 那第二個是關於因為台灣的因為是考試院嘛那考試院當然在這個教考訓用這樣的一個一條邊
transcript.whisperx[16].start 372.359
transcript.whisperx[16].end 394.724
transcript.whisperx[16].text 一條邊的方式當然這個也是跟一條邊的方式就是由考試院來尋找人才以及做人才上如何去發配到各機關去這是一條邊的一個方式但是在於我們鄰近的國家日本跟韓國他不是用這樣的方式他是直接由選才機關
transcript.whisperx[17].start 396.708
transcript.whisperx[17].end 418.393
transcript.whisperx[17].text 選才之官自己辦考試然後自己去面試他想要的人這樣是兩條不同的形式那我想要請教我們被提名人你對於這樣兩個形式基本上你認為我們現在的方法會優於日韓嗎還是日韓有它的優點
transcript.whisperx[18].start 419.779
transcript.whisperx[18].end 447.362
transcript.whisperx[18].text 跟委員報告我們公務人員的這個體制文官受到保障或者是他的臨用其實是憲法的一個架構之下所以公務人員要進來的話他必須經過國家的考試但是國外確實是有很多的一些測驗的機構或者民間機構來做選擇甚至他考試的時候可能分階段第一個可能是基本考基本類科的考試再來就是用人機關的面試
transcript.whisperx[19].start 448.123
transcript.whisperx[19].end 449.804
transcript.whisperx[19].text Iwan NawiIwan Nawi
transcript.whisperx[20].start 471.799
transcript.whisperx[20].end 483.192
transcript.whisperx[20].text 被提名的你也不排斥說未來我們打破一條邊讓各機關可以他們自行去臨選不管是他們自行召辦考試、自行去面試、去找他們要來臨載
transcript.whisperx[21].start 486.465
transcript.whisperx[21].end 507.637
transcript.whisperx[21].text 這一條選材方式你認為也不用去排斥就對了我覺得長期來看是可以來討論可以來考慮但是現在的情況就是說以公務人員的體系來或許跟用人機關之間有更密切的一個聯繫我覺得這個部分是可以在現在就可以來進行但是未來剛剛委員關心的這個部分
transcript.whisperx[22].start 508.217
transcript.whisperx[22].end 536.221
transcript.whisperx[22].text 是不是兩個軌道這個方式這是比較涉及到長期的一個制度性的問題所以我想我們我會把這個意見請教我們的考試院同仁來進行更整密的一個研究好那再來就叫一個就是關於這個商調的因為現在很多機關事實上在公務員事實上常常遇到商調的時候要原機關同意
transcript.whisperx[23].start 536.889
transcript.whisperx[23].end 546.565
transcript.whisperx[23].text 那很多公務員礙於沒有辦法取得原機關的同意他可能會做一件事他重新考因為我沒辦法調到其他的機關我訂課
transcript.whisperx[24].start 548.646
transcript.whisperx[24].end 574.902
transcript.whisperx[24].text 我重考然後再想辦法分發到其他的一個機關那我認為說基本上這樣的一個方式變得說他對於公務員的商調相對沒有彈性他就是卡在原機關同意甚至我們之前有在爭取就是說你公務員他有1到3歲的子女要養的時候我們盡量讓他擴大他的彈性可以到他
transcript.whisperx[25].start 575.562
transcript.whisperx[25].end 604.031
transcript.whisperx[25].text 以就養、撫養小孩子方便的地方來做公務機關的一個任職但是還是原機關要同意所以這個原機關同意這件事就造成了公務員他們流動的一個困難那我想要請教貝琦你上任後就這樣一個商調的現行的規定有可能來做你的主張來做一些修正或者是你的看法
transcript.whisperx[26].start 605.55
transcript.whisperx[26].end 627.148
transcript.whisperx[26].text 我想我這個部分會把委員的意見帶回去讓我們考試院來做一個討論特別是這個部分剛剛提到是非常實際的問題例如說有很多的育嬰假的他要請假或是他要上吊的時候他必須經過原機關同意但是原機關可能就沒辦法同意讓他就非常的困難只好另謀出路
transcript.whisperx[27].start 627.968
transcript.whisperx[27].end 645.091
transcript.whisperx[27].text 但是這個部分是牽涉到未來國內的資源人才庫怎麼樣建立一個比較完善的一個流用的一個制度或者是將來跟戶調的一個方式我想這個涉及到整個人才庫的一個建立
transcript.whisperx[28].start 645.672
transcript.whisperx[28].end 662.107
transcript.whisperx[28].text 那委員的這個關心我會把他帶回去因為未來如果你當選後考試委員畢竟就是跟公務員就是要站著會所以未來也許你的立場會跟立法院不一樣可是我期待的考試委員應該要更站在公務人員的一個立場
transcript.whisperx[29].start 662.988
transcript.whisperx[29].end 678.793
transcript.whisperx[29].text 把公務人員的心聲把他帶出來那讓我們在未來我們立法院在立法的時候可以聽到你們替公務人員發聲然後我們來來修法修的也許讓他更有彈性或者是讓公務員更可以符合他們在
transcript.whisperx[30].start 679.053
transcript.whisperx[30].end 708.325
transcript.whisperx[30].text 在任職的時候的一個比較好的一個福祉的一個環境還有我剛剛有講到的考試的一個問題公務員考試現在公務員考試很多機關事實上還是有所謂的體能考試那我常常遇到遇到那種就是比試過了結果就卡在這個體能的一個測試尤其是像在拉單槓或者是百米的跑步或者是立定跳遠
transcript.whisperx[31].start 710.132
transcript.whisperx[31].end 724.373
transcript.whisperx[31].text 有時候就差一點點差一點點 變成他那一次的比試就沒了未來要再重考他就要把時間繼續耗在他的準備考試上
transcript.whisperx[32].start 725.675
transcript.whisperx[32].end 750.485
transcript.whisperx[32].text 那我覺得這件事也有它不合理的地方就是說既然我筆試已經過了那為什麼我這個筆試不能仿照像會計師他有做保留的幾年因為他是差在提示那結果就等於說他要把他的時間耗在準備考試身上對 所以我想要請教這部分我們被提名人
transcript.whisperx[33].start 756.135
transcript.whisperx[33].end 771.566
transcript.whisperx[33].text 考試資格的保留跟未來的體能訓練的部分是不是可以有一個比較彈性的處理這其實是應該要討論的我是覺得這個部分我會把這個意見帶回去讓我們同仁一起來研究
transcript.whisperx[34].start 772.947
transcript.whisperx[34].end 786.933
transcript.whisperx[34].text 基本上呢如果我們回歸到憲法的規定這些憲法的規定就是公務人員政府不應該歧視任何的一個種族啊或者是一個人一個族群嘛所以在公平的這個倒也不是歧視這個是變成說
transcript.whisperx[35].start 788.394
transcript.whisperx[35].end 807.828
transcript.whisperx[35].text 我每個人的體能狀況不一樣嘛像有的人他拉杠杆比較適合像我現在啦可能一下都拉不上去所以縱使我很高科技的沒好因為我一次都拉不上去的不過這個當然是有年齡的年齡事實上也已經超過了就是我講的意思就是說
transcript.whisperx[36].start 808.922
transcript.whisperx[36].end 830.662
transcript.whisperx[36].text 因為卡在體能這個因素造成他的筆試無效要等來年再來一次我覺得這件事情是有檢討的空間那我也希望說你不只是要把他帶回去而已你們應該考試委員嘛你們可以有你們的一個見解很多事情我知道要特別修緩不過本來這個就是
transcript.whisperx[37].start 834.405
transcript.whisperx[37].end 859.76
transcript.whisperx[37].text 現在五權分立的一個架構之下那考試委員我希望就是說可以聽取民意的考試委員可以接地氣的大家的意見你們如果收集起來你們覺得要怎麼去修法你們事實上還是有你們可以提出修法的建議嘛然後由我們立法院這邊看大家就修法這邊來交換意見我希望考試委員可以多一點
transcript.whisperx[38].start 860.88
transcript.whisperx[38].end 879.968
transcript.whisperx[38].text 主張然後認為說應該哪部分要調整那就應該要替這些公務員來做主張以及這些參加考試的人我想這個在未來的考試規則裡面我們再仔細的去思考有沒有其他比較彈性的一個做法或者是說比較合理的一個處置
transcript.whisperx[39].start 882.608
transcript.whisperx[39].end 907.653
transcript.whisperx[39].text 最後我想請教貝提銘人因為貝提銘人你的自傳裡面你也強調說國家考試為國舉財那事實上你的專業是在海洋領域這一塊那你在海洋領域裡面有很多的一些你的主張跟見解那看起來現在台灣
transcript.whisperx[40].start 910.143
transcript.whisperx[40].end 936.377
transcript.whisperx[40].text 賴清德在520就職的演說有確認三個國家方向其中一個就是探索海洋就是要把台灣是一個海洋國家我們台灣的人民是海洋的公民擁有海洋文化的DNA那所以如何讓台灣跟海洋是親近的那尤其未來我們知道包括在於這一個探會裡面其中燃炭的部分就是在強調這個
transcript.whisperx[41].start 938.494
transcript.whisperx[41].end 952.029
transcript.whisperx[41].text 海洋要怎麼樣 未來造就了這些碳匯的價值或者是我們台灣因為過去海禁 我們跟海的距離太遠那未來我們要怎麼親近海洋
transcript.whisperx[42].start 953.374
transcript.whisperx[42].end 973.989
transcript.whisperx[42].text 那這部分是不是有辦法從公務體系公務人員的一個訓練開始讓這個公務體系是可以更親近海洋的我想請教一下被提名人你有怎樣的報復讓你的對於台灣要親近海洋這個主張可以在你任職考試委員的時候讓他有更有發揮嗎
transcript.whisperx[43].start 976.469
transcript.whisperx[43].end 988.421
transcript.whisperx[43].text 我以澳洲的海洋政策白筆書提出三個願景一個叫做Understanding就是我們關心海洋
transcript.whisperx[44].start 995.347
transcript.whisperx[44].end 1016.483
transcript.whisperx[44].text 但是我們也要了解海洋然後再來是永續的利用海洋所以這個部分臺灣有那麼多的海洋資源而且我們是以海為生的一個國家包括我們的漁業、遠洋漁業包括我們的航運等等其實還包括我們現在談到這個近年碳排的時候燃炭的一個部分到底怎麼處理我覺得這個教育非常重要
transcript.whisperx[45].start 1016.983
transcript.whisperx[45].end 1044.022
transcript.whisperx[45].text 當然這裡面不是說每一個部會都各做各的所以現在正在修訂的這個叫做國家海洋政策白皮書它就是一個統整的一個方向希望各個部會都能一起來做不管是科研的、我們的產業的發展還有包括我們的這個將來的資源的一個分配那最重要的就是環境的教育、海洋的教育所以我想這個部分應該可以大力的來推動那當然
transcript.whisperx[46].start 1045.102
transcript.whisperx[46].end 1072.904
transcript.whisperx[46].text 很重要就是說親海愛海你必須要讓民眾接見海洋所以海岸的安全性它相關的設施它的相關的教育甚至跟地方上社區、學校、大學的結合這一點就非常的重要所以我想如果從這個方面一方面讓我們民眾來瞭解海洋、探索海洋但是更重要就是說我們追求我們相關的一些發展的機會讓國家能夠更為富強
transcript.whisperx[47].start 1074.943
transcript.whisperx[47].end 1100.321
transcript.whisperx[47].text 那被提名有可能把海洋領域的一些專業知識或者是一些對海洋的瞭解有可能未來成為考試的命題嗎這個在海洋行政類科裡面它有分為幾個考試的科目那事實上我看過他們過去的這些考題都有這方面的知識包括海洋的一些科學基礎的東西
transcript.whisperx[48].start 1101.237
transcript.whisperx[48].end 1129.988
transcript.whisperx[48].text 海洋科普的東西海洋政策的東西都有在這裡面所以我想以後應該考試院這邊會繼續加強這個部分就我還想跟北京朋友們分享以我的看法現在的公務人員對於海洋基本上還是保守甚至抗拒當然有例外就是海巡可能他們就親近海了嘛海委會當然他們就是以海為主但是我跟你分享的就是說你知道像農業部
transcript.whisperx[49].start 1132.063
transcript.whisperx[49].end 1155.389
transcript.whisperx[49].text 從業部好幾千億的預算那其中關於漁業署多少預算你知道嗎我直接跟你說因為這個就100億而已三四千億的預算漁業署只有100億那這是為什麼就是因為不重視少了關心我相信署長你對海洋這麼認識你覺得台灣有幾個漁港是會看一看
transcript.whisperx[50].start 1160.725
transcript.whisperx[50].end 1182.697
transcript.whisperx[50].text 我們去台灣看每一個國家事實上漁港漁港就是這個都市發展就是大概從港區開始往內陸發展結果台灣不一樣台灣是越走到港越破敗人口越老化越凋零然後那裡都沒有整修甚至你說我們的漁港有郵載可能一定一個郵載是十幾年前的事情後來就沒有郵載過了
transcript.whisperx[51].start 1185.518
transcript.whisperx[51].end 1204.238
transcript.whisperx[51].text 所以現在那些漁港都充滿著這個被海浪衝擊然後造成的那些污漬都在那個牆壁上然後也沒有去整理我覺得這一個依北京沒有你對海洋的瞭解我們對於沿海地區的漁港它就是長這個樣
transcript.whisperx[52].start 1205.558
transcript.whisperx[52].end 1226.067
transcript.whisperx[52].text 那這是為什麼呢就是公務員他的本質心態並沒有覺得漁港的一個美麗才是代表台灣這個海洋國家的一個美的一個開始沒有這樣的心態我覺得很可惜好謝謝蔡委員
IVOD_ID 157705
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157705
日期 2024-11-29
影片種類 Clip
開始時間 2024-11-29T15:41:07+08:00
結束時間 2024-11-29T16:01:35+08:00
支援功能[0] ai-transcript