iVOD / 15766

Field Value
IVOD_ID 15766
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/15766
日期 2024-03-27
會議資料.會議代碼 委員會-11-1-36-9
會議資料.會議代碼:str 第11屆第1會期司法及法制委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.委員會代碼:str[0] 司法及法制委員會
會議資料.標題 第11屆第1會期司法及法制委員會第9次全體委員會議
影片種類 Full
開始時間 2024-03-27T08:31:20+08:00
結束時間 2024-03-27T12:07:00+08:00
影片長度 03:35:40
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/8d241381c4f8c7fc25f9b1f895064d3b1fc48310b441d33d3be8d109af184be4c458a61f6a8281d05ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2024-03-27T09:00:00+08:00
會議名稱 立法院第11屆第1會期司法及法制委員會第9次全體委員會議(事由:一、邀請行政院人事行政總處人事長及行政院相關機關(含事業單位)列席就「政府機關推動人事服務數位轉型」進行專題報告,並備質詢。 二、審查及處理113年度中央政府總預算關於行政院人事行政總處及所屬主管預算凍結項目共8案。 【其中7案如經院會復議,則不予審查、處理】)
委員名稱 完整會議
委員發言時間 08:31:20 - 12:07:00
transcript.pyannote[0].speaker SPEAKER_04
transcript.pyannote[0].start 1720.62284375
transcript.pyannote[0].end 1724.85846875
transcript.pyannote[1].speaker SPEAKER_08
transcript.pyannote[1].start 1725.29721875
transcript.pyannote[1].end 1729.48221875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 1729.80284375
transcript.pyannote[2].end 1730.03909375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 1730.32596875
transcript.pyannote[3].end 1735.11846875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 1735.30409375
transcript.pyannote[4].end 1740.99096875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 1741.48034375
transcript.pyannote[5].end 1743.35346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 1743.57284375
transcript.pyannote[6].end 1745.91846875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 1746.13784375
transcript.pyannote[7].end 1748.09534375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 1748.29784375
transcript.pyannote[8].end 1751.06534375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 1751.26784375
transcript.pyannote[9].end 1753.05659375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 1753.37721875
transcript.pyannote[10].end 1756.22909375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 1756.46534375
transcript.pyannote[11].end 1762.94534375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 1763.02971875
transcript.pyannote[12].end 1765.12221875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 1765.39221875
transcript.pyannote[13].end 1767.85596875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 1768.14284375
transcript.pyannote[14].end 1770.74159375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 1771.02846875
transcript.pyannote[15].end 1772.44596875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 1772.64846875
transcript.pyannote[16].end 1780.66409375
transcript.pyannote[17].speaker SPEAKER_08
transcript.pyannote[17].start 1784.34284375
transcript.pyannote[17].end 1795.80096875
transcript.pyannote[18].speaker SPEAKER_08
transcript.pyannote[18].start 1796.39159375
transcript.pyannote[18].end 1805.67284375
transcript.pyannote[19].speaker SPEAKER_08
transcript.pyannote[19].start 1806.43221875
transcript.pyannote[19].end 1809.18284375
transcript.pyannote[20].speaker SPEAKER_08
transcript.pyannote[20].start 1810.66784375
transcript.pyannote[20].end 1814.73471875
transcript.pyannote[21].speaker SPEAKER_08
transcript.pyannote[21].start 1815.84846875
transcript.pyannote[21].end 1818.53159375
transcript.pyannote[22].speaker SPEAKER_08
transcript.pyannote[22].start 1819.13909375
transcript.pyannote[22].end 1819.79721875
transcript.pyannote[23].speaker SPEAKER_08
transcript.pyannote[23].start 1820.91096875
transcript.pyannote[23].end 1825.99034375
transcript.pyannote[24].speaker SPEAKER_08
transcript.pyannote[24].start 1827.98159375
transcript.pyannote[24].end 1831.47471875
transcript.pyannote[25].speaker SPEAKER_08
transcript.pyannote[25].start 1832.97659375
transcript.pyannote[25].end 1836.35159375
transcript.pyannote[26].speaker SPEAKER_08
transcript.pyannote[26].start 1837.41471875
transcript.pyannote[26].end 1841.26221875
transcript.pyannote[27].speaker SPEAKER_08
transcript.pyannote[27].start 1842.61221875
transcript.pyannote[27].end 1844.85659375
transcript.pyannote[28].speaker SPEAKER_08
transcript.pyannote[28].start 1845.51471875
transcript.pyannote[28].end 1846.08846875
transcript.pyannote[29].speaker SPEAKER_08
transcript.pyannote[29].start 1847.69159375
transcript.pyannote[29].end 1851.28596875
transcript.pyannote[30].speaker SPEAKER_08
transcript.pyannote[30].start 1851.96096875
transcript.pyannote[30].end 1854.98159375
transcript.pyannote[31].speaker SPEAKER_08
transcript.pyannote[31].start 1855.57221875
transcript.pyannote[31].end 1860.43221875
transcript.pyannote[32].speaker SPEAKER_08
transcript.pyannote[32].start 1861.20846875
transcript.pyannote[32].end 1866.55784375
transcript.pyannote[33].speaker SPEAKER_08
transcript.pyannote[33].start 1867.63784375
transcript.pyannote[33].end 1871.55284375
transcript.pyannote[34].speaker SPEAKER_08
transcript.pyannote[34].start 1872.04221875
transcript.pyannote[34].end 1872.59909375
transcript.pyannote[35].speaker SPEAKER_08
transcript.pyannote[35].start 1874.05034375
transcript.pyannote[35].end 1875.28221875
transcript.pyannote[36].speaker SPEAKER_08
transcript.pyannote[36].start 1875.80534375
transcript.pyannote[36].end 1878.82596875
transcript.pyannote[37].speaker SPEAKER_08
transcript.pyannote[37].start 1879.38284375
transcript.pyannote[37].end 1882.18409375
transcript.pyannote[38].speaker SPEAKER_08
transcript.pyannote[38].start 1884.20909375
transcript.pyannote[38].end 1884.46221875
transcript.pyannote[39].speaker SPEAKER_08
transcript.pyannote[39].start 1886.20034375
transcript.pyannote[39].end 1886.60534375
transcript.pyannote[40].speaker SPEAKER_08
transcript.pyannote[40].start 1887.55034375
transcript.pyannote[40].end 1912.98096875
transcript.pyannote[41].speaker SPEAKER_08
transcript.pyannote[41].start 1913.87534375
transcript.pyannote[41].end 1916.59221875
transcript.pyannote[42].speaker SPEAKER_08
transcript.pyannote[42].start 1916.71034375
transcript.pyannote[42].end 1923.05534375
transcript.pyannote[43].speaker SPEAKER_08
transcript.pyannote[43].start 1923.37596875
transcript.pyannote[43].end 1925.11409375
transcript.pyannote[44].speaker SPEAKER_08
transcript.pyannote[44].start 1925.48534375
transcript.pyannote[44].end 1926.00846875
transcript.pyannote[45].speaker SPEAKER_08
transcript.pyannote[45].start 1926.93659375
transcript.pyannote[45].end 1931.15534375
transcript.pyannote[46].speaker SPEAKER_08
transcript.pyannote[46].start 1931.59409375
transcript.pyannote[46].end 1952.33346875
transcript.pyannote[47].speaker SPEAKER_04
transcript.pyannote[47].start 1955.26971875
transcript.pyannote[47].end 1964.61846875
transcript.pyannote[48].speaker SPEAKER_04
transcript.pyannote[48].start 1964.83784375
transcript.pyannote[48].end 1986.70784375
transcript.pyannote[49].speaker SPEAKER_04
transcript.pyannote[49].start 1987.92284375
transcript.pyannote[49].end 2009.13471875
transcript.pyannote[50].speaker SPEAKER_04
transcript.pyannote[50].start 2009.48909375
transcript.pyannote[50].end 2020.47471875
transcript.pyannote[51].speaker SPEAKER_04
transcript.pyannote[51].start 2020.69409375
transcript.pyannote[51].end 2035.07159375
transcript.pyannote[52].speaker SPEAKER_04
transcript.pyannote[52].start 2035.44284375
transcript.pyannote[52].end 2077.02284375
transcript.pyannote[53].speaker SPEAKER_04
transcript.pyannote[53].start 2077.49534375
transcript.pyannote[53].end 2078.45721875
transcript.pyannote[54].speaker SPEAKER_04
transcript.pyannote[54].start 2079.36846875
transcript.pyannote[54].end 2140.82721875
transcript.pyannote[55].speaker SPEAKER_04
transcript.pyannote[55].start 2141.48534375
transcript.pyannote[55].end 2144.37096875
transcript.pyannote[56].speaker SPEAKER_04
transcript.pyannote[56].start 2144.43846875
transcript.pyannote[56].end 2158.30971875
transcript.pyannote[57].speaker SPEAKER_04
transcript.pyannote[57].start 2158.96784375
transcript.pyannote[57].end 2197.88159375
transcript.pyannote[58].speaker SPEAKER_08
transcript.pyannote[58].start 2197.88159375
transcript.pyannote[58].end 2197.89846875
transcript.pyannote[59].speaker SPEAKER_08
transcript.pyannote[59].start 2200.04159375
transcript.pyannote[59].end 2206.13346875
transcript.pyannote[60].speaker SPEAKER_17
transcript.pyannote[60].start 2221.25346875
transcript.pyannote[60].end 2224.32471875
transcript.pyannote[61].speaker SPEAKER_17
transcript.pyannote[61].start 2224.83096875
transcript.pyannote[61].end 2226.60284375
transcript.pyannote[62].speaker SPEAKER_17
transcript.pyannote[62].start 2227.29471875
transcript.pyannote[62].end 2228.30721875
transcript.pyannote[63].speaker SPEAKER_17
transcript.pyannote[63].start 2228.71221875
transcript.pyannote[63].end 2237.90909375
transcript.pyannote[64].speaker SPEAKER_17
transcript.pyannote[64].start 2238.49971875
transcript.pyannote[64].end 2242.24596875
transcript.pyannote[65].speaker SPEAKER_17
transcript.pyannote[65].start 2243.05596875
transcript.pyannote[65].end 2244.35534375
transcript.pyannote[66].speaker SPEAKER_17
transcript.pyannote[66].start 2244.86159375
transcript.pyannote[66].end 2247.40971875
transcript.pyannote[67].speaker SPEAKER_17
transcript.pyannote[67].start 2247.94971875
transcript.pyannote[67].end 2250.95346875
transcript.pyannote[68].speaker SPEAKER_17
transcript.pyannote[68].start 2251.17284375
transcript.pyannote[68].end 2251.99971875
transcript.pyannote[69].speaker SPEAKER_17
transcript.pyannote[69].start 2252.38784375
transcript.pyannote[69].end 2253.94034375
transcript.pyannote[70].speaker SPEAKER_17
transcript.pyannote[70].start 2254.21034375
transcript.pyannote[70].end 2254.73346875
transcript.pyannote[71].speaker SPEAKER_17
transcript.pyannote[71].start 2254.98659375
transcript.pyannote[71].end 2255.64471875
transcript.pyannote[72].speaker SPEAKER_17
transcript.pyannote[72].start 2255.91471875
transcript.pyannote[72].end 2256.57284375
transcript.pyannote[73].speaker SPEAKER_17
transcript.pyannote[73].start 2256.96096875
transcript.pyannote[73].end 2261.82096875
transcript.pyannote[74].speaker SPEAKER_17
transcript.pyannote[74].start 2262.10784375
transcript.pyannote[74].end 2265.71909375
transcript.pyannote[75].speaker SPEAKER_17
transcript.pyannote[75].start 2265.93846875
transcript.pyannote[75].end 2269.39784375
transcript.pyannote[76].speaker SPEAKER_17
transcript.pyannote[76].start 2269.92096875
transcript.pyannote[76].end 2271.35534375
transcript.pyannote[77].speaker SPEAKER_17
transcript.pyannote[77].start 2271.84471875
transcript.pyannote[77].end 2274.81471875
transcript.pyannote[78].speaker SPEAKER_17
transcript.pyannote[78].start 2275.33784375
transcript.pyannote[78].end 2281.14284375
transcript.pyannote[79].speaker SPEAKER_17
transcript.pyannote[79].start 2282.93159375
transcript.pyannote[79].end 2286.67784375
transcript.pyannote[80].speaker SPEAKER_17
transcript.pyannote[80].start 2286.89721875
transcript.pyannote[80].end 2288.02784375
transcript.pyannote[81].speaker SPEAKER_17
transcript.pyannote[81].start 2288.63534375
transcript.pyannote[81].end 2291.65596875
transcript.pyannote[82].speaker SPEAKER_17
transcript.pyannote[82].start 2292.12846875
transcript.pyannote[82].end 2295.23346875
transcript.pyannote[83].speaker SPEAKER_17
transcript.pyannote[83].start 2295.97596875
transcript.pyannote[83].end 2298.11909375
transcript.pyannote[84].speaker SPEAKER_17
transcript.pyannote[84].start 2298.94596875
transcript.pyannote[84].end 2301.84846875
transcript.pyannote[85].speaker SPEAKER_17
transcript.pyannote[85].start 2302.23659375
transcript.pyannote[85].end 2304.61596875
transcript.pyannote[86].speaker SPEAKER_17
transcript.pyannote[86].start 2304.63284375
transcript.pyannote[86].end 2307.14721875
transcript.pyannote[87].speaker SPEAKER_17
transcript.pyannote[87].start 2307.61971875
transcript.pyannote[87].end 2315.88846875
transcript.pyannote[88].speaker SPEAKER_17
transcript.pyannote[88].start 2316.22596875
transcript.pyannote[88].end 2320.56284375
transcript.pyannote[89].speaker SPEAKER_17
transcript.pyannote[89].start 2320.84971875
transcript.pyannote[89].end 2323.41471875
transcript.pyannote[90].speaker SPEAKER_17
transcript.pyannote[90].start 2323.63409375
transcript.pyannote[90].end 2326.82346875
transcript.pyannote[91].speaker SPEAKER_17
transcript.pyannote[91].start 2327.41409375
transcript.pyannote[91].end 2329.25346875
transcript.pyannote[92].speaker SPEAKER_17
transcript.pyannote[92].start 2329.50659375
transcript.pyannote[92].end 2331.44721875
transcript.pyannote[93].speaker SPEAKER_17
transcript.pyannote[93].start 2331.95346875
transcript.pyannote[93].end 2333.48909375
transcript.pyannote[94].speaker SPEAKER_17
transcript.pyannote[94].start 2333.62409375
transcript.pyannote[94].end 2334.82221875
transcript.pyannote[95].speaker SPEAKER_17
transcript.pyannote[95].start 2335.31159375
transcript.pyannote[95].end 2336.40846875
transcript.pyannote[96].speaker SPEAKER_17
transcript.pyannote[96].start 2336.98221875
transcript.pyannote[96].end 2367.32346875
transcript.pyannote[97].speaker SPEAKER_17
transcript.pyannote[97].start 2367.52596875
transcript.pyannote[97].end 2375.62596875
transcript.pyannote[98].speaker SPEAKER_17
transcript.pyannote[98].start 2376.04784375
transcript.pyannote[98].end 2385.68346875
transcript.pyannote[99].speaker SPEAKER_17
transcript.pyannote[99].start 2386.12221875
transcript.pyannote[99].end 2387.45534375
transcript.pyannote[100].speaker SPEAKER_17
transcript.pyannote[100].start 2388.02909375
transcript.pyannote[100].end 2393.20971875
transcript.pyannote[101].speaker SPEAKER_17
transcript.pyannote[101].start 2393.49659375
transcript.pyannote[101].end 2400.04409375
transcript.pyannote[102].speaker SPEAKER_17
transcript.pyannote[102].start 2400.36471875
transcript.pyannote[102].end 2401.64721875
transcript.pyannote[103].speaker SPEAKER_17
transcript.pyannote[103].start 2401.81596875
transcript.pyannote[103].end 2403.89159375
transcript.pyannote[104].speaker SPEAKER_17
transcript.pyannote[104].start 2404.26284375
transcript.pyannote[104].end 2414.57346875
transcript.pyannote[105].speaker SPEAKER_17
transcript.pyannote[105].start 2414.70846875
transcript.pyannote[105].end 2417.39159375
transcript.pyannote[106].speaker SPEAKER_17
transcript.pyannote[106].start 2417.86409375
transcript.pyannote[106].end 2422.96034375
transcript.pyannote[107].speaker SPEAKER_17
transcript.pyannote[107].start 2423.34846875
transcript.pyannote[107].end 2426.85846875
transcript.pyannote[108].speaker SPEAKER_17
transcript.pyannote[108].start 2427.22971875
transcript.pyannote[108].end 2428.54596875
transcript.pyannote[109].speaker SPEAKER_17
transcript.pyannote[109].start 2428.69784375
transcript.pyannote[109].end 2431.14471875
transcript.pyannote[110].speaker SPEAKER_17
transcript.pyannote[110].start 2431.51596875
transcript.pyannote[110].end 2434.40159375
transcript.pyannote[111].speaker SPEAKER_17
transcript.pyannote[111].start 2434.41846875
transcript.pyannote[111].end 2436.07221875
transcript.pyannote[112].speaker SPEAKER_17
transcript.pyannote[112].start 2436.25784375
transcript.pyannote[112].end 2437.62471875
transcript.pyannote[113].speaker SPEAKER_17
transcript.pyannote[113].start 2438.14784375
transcript.pyannote[113].end 2448.03659375
transcript.pyannote[114].speaker SPEAKER_08
transcript.pyannote[114].start 2448.03659375
transcript.pyannote[114].end 2448.05346875
transcript.pyannote[115].speaker SPEAKER_17
transcript.pyannote[115].start 2448.05346875
transcript.pyannote[115].end 2448.67784375
transcript.pyannote[116].speaker SPEAKER_08
transcript.pyannote[116].start 2448.67784375
transcript.pyannote[116].end 2448.74534375
transcript.pyannote[117].speaker SPEAKER_08
transcript.pyannote[117].start 2449.38659375
transcript.pyannote[117].end 2475.45846875
transcript.pyannote[118].speaker SPEAKER_08
transcript.pyannote[118].start 2475.71159375
transcript.pyannote[118].end 2477.39909375
transcript.pyannote[119].speaker SPEAKER_08
transcript.pyannote[119].start 2477.87159375
transcript.pyannote[119].end 2480.21721875
transcript.pyannote[120].speaker SPEAKER_08
transcript.pyannote[120].start 2480.84159375
transcript.pyannote[120].end 2483.77784375
transcript.pyannote[121].speaker SPEAKER_08
transcript.pyannote[121].start 2484.14909375
transcript.pyannote[121].end 2486.79846875
transcript.pyannote[122].speaker SPEAKER_08
transcript.pyannote[122].start 2486.96721875
transcript.pyannote[122].end 2489.90346875
transcript.pyannote[123].speaker SPEAKER_08
transcript.pyannote[123].start 2490.54471875
transcript.pyannote[123].end 2492.99159375
transcript.pyannote[124].speaker SPEAKER_08
transcript.pyannote[124].start 2493.68346875
transcript.pyannote[124].end 2509.78221875
transcript.pyannote[125].speaker SPEAKER_08
transcript.pyannote[125].start 2510.82846875
transcript.pyannote[125].end 2511.40221875
transcript.pyannote[126].speaker SPEAKER_21
transcript.pyannote[126].start 2531.11221875
transcript.pyannote[126].end 2533.47471875
transcript.pyannote[127].speaker SPEAKER_08
transcript.pyannote[127].start 2533.71096875
transcript.pyannote[127].end 2534.62221875
transcript.pyannote[128].speaker SPEAKER_21
transcript.pyannote[128].start 2542.08096875
transcript.pyannote[128].end 2552.66159375
transcript.pyannote[129].speaker SPEAKER_21
transcript.pyannote[129].start 2552.96534375
transcript.pyannote[129].end 2555.80034375
transcript.pyannote[130].speaker SPEAKER_21
transcript.pyannote[130].start 2556.74534375
transcript.pyannote[130].end 2562.78659375
transcript.pyannote[131].speaker SPEAKER_21
transcript.pyannote[131].start 2562.93846875
transcript.pyannote[131].end 2564.27159375
transcript.pyannote[132].speaker SPEAKER_21
transcript.pyannote[132].start 2564.86221875
transcript.pyannote[132].end 2565.18284375
transcript.pyannote[133].speaker SPEAKER_21
transcript.pyannote[133].start 2565.48659375
transcript.pyannote[133].end 2568.22034375
transcript.pyannote[134].speaker SPEAKER_21
transcript.pyannote[134].start 2568.74346875
transcript.pyannote[134].end 2573.56971875
transcript.pyannote[135].speaker SPEAKER_21
transcript.pyannote[135].start 2573.95784375
transcript.pyannote[135].end 2575.32471875
transcript.pyannote[136].speaker SPEAKER_21
transcript.pyannote[136].start 2575.71284375
transcript.pyannote[136].end 2578.32846875
transcript.pyannote[137].speaker SPEAKER_04
transcript.pyannote[137].start 2579.34096875
transcript.pyannote[137].end 2591.38971875
transcript.pyannote[138].speaker SPEAKER_21
transcript.pyannote[138].start 2591.11971875
transcript.pyannote[138].end 2595.10221875
transcript.pyannote[139].speaker SPEAKER_21
transcript.pyannote[139].start 2595.70971875
transcript.pyannote[139].end 2597.17784375
transcript.pyannote[140].speaker SPEAKER_21
transcript.pyannote[140].start 2597.83596875
transcript.pyannote[140].end 2600.06346875
transcript.pyannote[141].speaker SPEAKER_21
transcript.pyannote[141].start 2600.50221875
transcript.pyannote[141].end 2604.14721875
transcript.pyannote[142].speaker SPEAKER_21
transcript.pyannote[142].start 2605.15971875
transcript.pyannote[142].end 2608.80471875
transcript.pyannote[143].speaker SPEAKER_04
transcript.pyannote[143].start 2609.32784375
transcript.pyannote[143].end 2610.47534375
transcript.pyannote[144].speaker SPEAKER_21
transcript.pyannote[144].start 2610.47534375
transcript.pyannote[144].end 2610.94784375
transcript.pyannote[145].speaker SPEAKER_21
transcript.pyannote[145].start 2611.20096875
transcript.pyannote[145].end 2613.91784375
transcript.pyannote[146].speaker SPEAKER_21
transcript.pyannote[146].start 2613.95159375
transcript.pyannote[146].end 2616.16221875
transcript.pyannote[147].speaker SPEAKER_21
transcript.pyannote[147].start 2616.63471875
transcript.pyannote[147].end 2619.55409375
transcript.pyannote[148].speaker SPEAKER_21
transcript.pyannote[148].start 2620.00971875
transcript.pyannote[148].end 2625.59534375
transcript.pyannote[149].speaker SPEAKER_21
transcript.pyannote[149].start 2626.03409375
transcript.pyannote[149].end 2628.93659375
transcript.pyannote[150].speaker SPEAKER_21
transcript.pyannote[150].start 2630.30346875
transcript.pyannote[150].end 2633.00346875
transcript.pyannote[151].speaker SPEAKER_04
transcript.pyannote[151].start 2633.52659375
transcript.pyannote[151].end 2646.08159375
transcript.pyannote[152].speaker SPEAKER_21
transcript.pyannote[152].start 2646.21659375
transcript.pyannote[152].end 2648.89971875
transcript.pyannote[153].speaker SPEAKER_21
transcript.pyannote[153].start 2649.35534375
transcript.pyannote[153].end 2651.61659375
transcript.pyannote[154].speaker SPEAKER_21
transcript.pyannote[154].start 2652.40971875
transcript.pyannote[154].end 2656.05471875
transcript.pyannote[155].speaker SPEAKER_21
transcript.pyannote[155].start 2658.34971875
transcript.pyannote[155].end 2659.39596875
transcript.pyannote[156].speaker SPEAKER_04
transcript.pyannote[156].start 2660.72909375
transcript.pyannote[156].end 2661.08346875
transcript.pyannote[157].speaker SPEAKER_04
transcript.pyannote[157].start 2661.50534375
transcript.pyannote[157].end 2667.32721875
transcript.pyannote[158].speaker SPEAKER_04
transcript.pyannote[158].start 2667.58034375
transcript.pyannote[158].end 2673.89159375
transcript.pyannote[159].speaker SPEAKER_21
transcript.pyannote[159].start 2673.53721875
transcript.pyannote[159].end 2674.49909375
transcript.pyannote[160].speaker SPEAKER_04
transcript.pyannote[160].start 2675.30909375
transcript.pyannote[160].end 2675.64659375
transcript.pyannote[161].speaker SPEAKER_04
transcript.pyannote[161].start 2676.11909375
transcript.pyannote[161].end 2676.89534375
transcript.pyannote[162].speaker SPEAKER_04
transcript.pyannote[162].start 2677.68846875
transcript.pyannote[162].end 2680.38846875
transcript.pyannote[163].speaker SPEAKER_21
transcript.pyannote[163].start 2680.10159375
transcript.pyannote[163].end 2684.11784375
transcript.pyannote[164].speaker SPEAKER_21
transcript.pyannote[164].start 2684.47221875
transcript.pyannote[164].end 2684.91096875
transcript.pyannote[165].speaker SPEAKER_21
transcript.pyannote[165].start 2685.48471875
transcript.pyannote[165].end 2689.21409375
transcript.pyannote[166].speaker SPEAKER_21
transcript.pyannote[166].start 2689.45034375
transcript.pyannote[166].end 2693.46659375
transcript.pyannote[167].speaker SPEAKER_21
transcript.pyannote[167].start 2694.04034375
transcript.pyannote[167].end 2695.30596875
transcript.pyannote[168].speaker SPEAKER_21
transcript.pyannote[168].start 2695.96409375
transcript.pyannote[168].end 2696.31846875
transcript.pyannote[169].speaker SPEAKER_21
transcript.pyannote[169].start 2697.01034375
transcript.pyannote[169].end 2699.03534375
transcript.pyannote[170].speaker SPEAKER_21
transcript.pyannote[170].start 2699.45721875
transcript.pyannote[170].end 2700.35159375
transcript.pyannote[171].speaker SPEAKER_21
transcript.pyannote[171].start 2701.60034375
transcript.pyannote[171].end 2709.36284375
transcript.pyannote[172].speaker SPEAKER_04
transcript.pyannote[172].start 2709.36284375
transcript.pyannote[172].end 2709.66659375
transcript.pyannote[173].speaker SPEAKER_21
transcript.pyannote[173].start 2709.66659375
transcript.pyannote[173].end 2710.10534375
transcript.pyannote[174].speaker SPEAKER_21
transcript.pyannote[174].start 2710.69596875
transcript.pyannote[174].end 2713.96971875
transcript.pyannote[175].speaker SPEAKER_21
transcript.pyannote[175].start 2714.27346875
transcript.pyannote[175].end 2717.54721875
transcript.pyannote[176].speaker SPEAKER_21
transcript.pyannote[176].start 2718.27284375
transcript.pyannote[176].end 2723.03159375
transcript.pyannote[177].speaker SPEAKER_21
transcript.pyannote[177].start 2723.53784375
transcript.pyannote[177].end 2724.07784375
transcript.pyannote[178].speaker SPEAKER_21
transcript.pyannote[178].start 2725.22534375
transcript.pyannote[178].end 2725.78221875
transcript.pyannote[179].speaker SPEAKER_21
transcript.pyannote[179].start 2726.55846875
transcript.pyannote[179].end 2727.06471875
transcript.pyannote[180].speaker SPEAKER_21
transcript.pyannote[180].start 2727.70596875
transcript.pyannote[180].end 2728.87034375
transcript.pyannote[181].speaker SPEAKER_21
transcript.pyannote[181].start 2729.68034375
transcript.pyannote[181].end 2730.67596875
transcript.pyannote[182].speaker SPEAKER_21
transcript.pyannote[182].start 2731.24971875
transcript.pyannote[182].end 2732.51534375
transcript.pyannote[183].speaker SPEAKER_21
transcript.pyannote[183].start 2733.17346875
transcript.pyannote[183].end 2733.83159375
transcript.pyannote[184].speaker SPEAKER_21
transcript.pyannote[184].start 2734.37159375
transcript.pyannote[184].end 2734.99596875
transcript.pyannote[185].speaker SPEAKER_21
transcript.pyannote[185].start 2735.77221875
transcript.pyannote[185].end 2736.81846875
transcript.pyannote[186].speaker SPEAKER_21
transcript.pyannote[186].start 2737.42596875
transcript.pyannote[186].end 2738.23596875
transcript.pyannote[187].speaker SPEAKER_21
transcript.pyannote[187].start 2739.02909375
transcript.pyannote[187].end 2740.02471875
transcript.pyannote[188].speaker SPEAKER_21
transcript.pyannote[188].start 2740.37909375
transcript.pyannote[188].end 2754.01409375
transcript.pyannote[189].speaker SPEAKER_21
transcript.pyannote[189].start 2754.08159375
transcript.pyannote[189].end 2764.27409375
transcript.pyannote[190].speaker SPEAKER_21
transcript.pyannote[190].start 2765.79284375
transcript.pyannote[190].end 2768.15534375
transcript.pyannote[191].speaker SPEAKER_21
transcript.pyannote[191].start 2768.94846875
transcript.pyannote[191].end 2769.31971875
transcript.pyannote[192].speaker SPEAKER_21
transcript.pyannote[192].start 2769.89346875
transcript.pyannote[192].end 2773.30221875
transcript.pyannote[193].speaker SPEAKER_21
transcript.pyannote[193].start 2773.77471875
transcript.pyannote[193].end 2787.34221875
transcript.pyannote[194].speaker SPEAKER_21
transcript.pyannote[194].start 2788.10159375
transcript.pyannote[194].end 2795.13846875
transcript.pyannote[195].speaker SPEAKER_21
transcript.pyannote[195].start 2795.66159375
transcript.pyannote[195].end 2796.60659375
transcript.pyannote[196].speaker SPEAKER_21
transcript.pyannote[196].start 2797.18034375
transcript.pyannote[196].end 2798.00721875
transcript.pyannote[197].speaker SPEAKER_21
transcript.pyannote[197].start 2798.36159375
transcript.pyannote[197].end 2801.95596875
transcript.pyannote[198].speaker SPEAKER_21
transcript.pyannote[198].start 2802.34409375
transcript.pyannote[198].end 2803.32284375
transcript.pyannote[199].speaker SPEAKER_21
transcript.pyannote[199].start 2804.01471875
transcript.pyannote[199].end 2810.93346875
transcript.pyannote[200].speaker SPEAKER_21
transcript.pyannote[200].start 2810.95034375
transcript.pyannote[200].end 2814.08909375
transcript.pyannote[201].speaker SPEAKER_21
transcript.pyannote[201].start 2814.61221875
transcript.pyannote[201].end 2815.01721875
transcript.pyannote[202].speaker SPEAKER_21
transcript.pyannote[202].start 2815.30409375
transcript.pyannote[202].end 2818.51034375
transcript.pyannote[203].speaker SPEAKER_21
transcript.pyannote[203].start 2818.93221875
transcript.pyannote[203].end 2825.90159375
transcript.pyannote[204].speaker SPEAKER_21
transcript.pyannote[204].start 2826.44159375
transcript.pyannote[204].end 2828.21346875
transcript.pyannote[205].speaker SPEAKER_21
transcript.pyannote[205].start 2828.90534375
transcript.pyannote[205].end 2830.49159375
transcript.pyannote[206].speaker SPEAKER_21
transcript.pyannote[206].start 2831.40284375
transcript.pyannote[206].end 2839.70534375
transcript.pyannote[207].speaker SPEAKER_21
transcript.pyannote[207].start 2840.38034375
transcript.pyannote[207].end 2841.37596875
transcript.pyannote[208].speaker SPEAKER_21
transcript.pyannote[208].start 2843.35034375
transcript.pyannote[208].end 2844.32909375
transcript.pyannote[209].speaker SPEAKER_21
transcript.pyannote[209].start 2845.34159375
transcript.pyannote[209].end 2846.50596875
transcript.pyannote[210].speaker SPEAKER_21
transcript.pyannote[210].start 2848.46346875
transcript.pyannote[210].end 2850.08346875
transcript.pyannote[211].speaker SPEAKER_21
transcript.pyannote[211].start 2851.34909375
transcript.pyannote[211].end 2855.31471875
transcript.pyannote[212].speaker SPEAKER_21
transcript.pyannote[212].start 2855.73659375
transcript.pyannote[212].end 2856.54659375
transcript.pyannote[213].speaker SPEAKER_21
transcript.pyannote[213].start 2857.32284375
transcript.pyannote[213].end 2858.43659375
transcript.pyannote[214].speaker SPEAKER_21
transcript.pyannote[214].start 2859.02721875
transcript.pyannote[214].end 2860.84971875
transcript.pyannote[215].speaker SPEAKER_21
transcript.pyannote[215].start 2861.33909375
transcript.pyannote[215].end 2864.14034375
transcript.pyannote[216].speaker SPEAKER_21
transcript.pyannote[216].start 2865.62534375
transcript.pyannote[216].end 2866.97534375
transcript.pyannote[217].speaker SPEAKER_21
transcript.pyannote[217].start 2867.53221875
transcript.pyannote[217].end 2872.35846875
transcript.pyannote[218].speaker SPEAKER_21
transcript.pyannote[218].start 2872.66221875
transcript.pyannote[218].end 2875.26096875
transcript.pyannote[219].speaker SPEAKER_21
transcript.pyannote[219].start 2876.07096875
transcript.pyannote[219].end 2879.36159375
transcript.pyannote[220].speaker SPEAKER_21
transcript.pyannote[220].start 2880.47534375
transcript.pyannote[220].end 2884.03596875
transcript.pyannote[221].speaker SPEAKER_04
transcript.pyannote[221].start 2888.20409375
transcript.pyannote[221].end 2888.45721875
transcript.pyannote[222].speaker SPEAKER_04
transcript.pyannote[222].start 2889.79034375
transcript.pyannote[222].end 2891.84909375
transcript.pyannote[223].speaker SPEAKER_21
transcript.pyannote[223].start 2892.13596875
transcript.pyannote[223].end 2894.66721875
transcript.pyannote[224].speaker SPEAKER_21
transcript.pyannote[224].start 2895.62909375
transcript.pyannote[224].end 2899.22346875
transcript.pyannote[225].speaker SPEAKER_04
transcript.pyannote[225].start 2900.45534375
transcript.pyannote[225].end 2904.40409375
transcript.pyannote[226].speaker SPEAKER_21
transcript.pyannote[226].start 2904.40409375
transcript.pyannote[226].end 2905.77096875
transcript.pyannote[227].speaker SPEAKER_04
transcript.pyannote[227].start 2906.22659375
transcript.pyannote[227].end 2908.21784375
transcript.pyannote[228].speaker SPEAKER_21
transcript.pyannote[228].start 2907.66096875
transcript.pyannote[228].end 2909.50034375
transcript.pyannote[229].speaker SPEAKER_04
transcript.pyannote[229].start 2909.50034375
transcript.pyannote[229].end 2911.64346875
transcript.pyannote[230].speaker SPEAKER_21
transcript.pyannote[230].start 2910.15846875
transcript.pyannote[230].end 2910.36096875
transcript.pyannote[231].speaker SPEAKER_21
transcript.pyannote[231].start 2911.64346875
transcript.pyannote[231].end 2914.41096875
transcript.pyannote[232].speaker SPEAKER_21
transcript.pyannote[232].start 2914.79909375
transcript.pyannote[232].end 2915.76096875
transcript.pyannote[233].speaker SPEAKER_21
transcript.pyannote[233].start 2915.79471875
transcript.pyannote[233].end 2919.35534375
transcript.pyannote[234].speaker SPEAKER_04
transcript.pyannote[234].start 2919.35534375
transcript.pyannote[234].end 2920.31721875
transcript.pyannote[235].speaker SPEAKER_21
transcript.pyannote[235].start 2920.70534375
transcript.pyannote[235].end 2925.90284375
transcript.pyannote[236].speaker SPEAKER_21
transcript.pyannote[236].start 2926.49346875
transcript.pyannote[236].end 2934.03659375
transcript.pyannote[237].speaker SPEAKER_21
transcript.pyannote[237].start 2934.45846875
transcript.pyannote[237].end 2936.92221875
transcript.pyannote[238].speaker SPEAKER_04
transcript.pyannote[238].start 2937.90096875
transcript.pyannote[238].end 2938.74471875
transcript.pyannote[239].speaker SPEAKER_04
transcript.pyannote[239].start 2939.08221875
transcript.pyannote[239].end 2941.66409375
transcript.pyannote[240].speaker SPEAKER_04
transcript.pyannote[240].start 2941.83284375
transcript.pyannote[240].end 2942.81159375
transcript.pyannote[241].speaker SPEAKER_04
transcript.pyannote[241].start 2942.92971875
transcript.pyannote[241].end 2942.96346875
transcript.pyannote[242].speaker SPEAKER_21
transcript.pyannote[242].start 2942.96346875
transcript.pyannote[242].end 2944.27971875
transcript.pyannote[243].speaker SPEAKER_04
transcript.pyannote[243].start 2944.27971875
transcript.pyannote[243].end 2944.98846875
transcript.pyannote[244].speaker SPEAKER_21
transcript.pyannote[244].start 2944.98846875
transcript.pyannote[244].end 2955.41721875
transcript.pyannote[245].speaker SPEAKER_04
transcript.pyannote[245].start 2948.43096875
transcript.pyannote[245].end 2950.47284375
transcript.pyannote[246].speaker SPEAKER_04
transcript.pyannote[246].start 2956.96971875
transcript.pyannote[246].end 2961.28971875
transcript.pyannote[247].speaker SPEAKER_04
transcript.pyannote[247].start 2961.52596875
transcript.pyannote[247].end 2963.97284375
transcript.pyannote[248].speaker SPEAKER_21
transcript.pyannote[248].start 2963.97284375
transcript.pyannote[248].end 2974.14846875
transcript.pyannote[249].speaker SPEAKER_21
transcript.pyannote[249].start 2974.73909375
transcript.pyannote[249].end 2989.80846875
transcript.pyannote[250].speaker SPEAKER_04
transcript.pyannote[250].start 2991.36096875
transcript.pyannote[250].end 2992.77846875
transcript.pyannote[251].speaker SPEAKER_04
transcript.pyannote[251].start 2994.04409375
transcript.pyannote[251].end 3002.24534375
transcript.pyannote[252].speaker SPEAKER_21
transcript.pyannote[252].start 3001.73909375
transcript.pyannote[252].end 3002.75159375
transcript.pyannote[253].speaker SPEAKER_21
transcript.pyannote[253].start 3003.42659375
transcript.pyannote[253].end 3019.49159375
transcript.pyannote[254].speaker SPEAKER_21
transcript.pyannote[254].start 3020.26784375
transcript.pyannote[254].end 3021.02721875
transcript.pyannote[255].speaker SPEAKER_04
transcript.pyannote[255].start 3023.28846875
transcript.pyannote[255].end 3035.01659375
transcript.pyannote[256].speaker SPEAKER_21
transcript.pyannote[256].start 3033.76784375
transcript.pyannote[256].end 3035.03346875
transcript.pyannote[257].speaker SPEAKER_04
transcript.pyannote[257].start 3035.03346875
transcript.pyannote[257].end 3035.05034375
transcript.pyannote[258].speaker SPEAKER_21
transcript.pyannote[258].start 3035.05034375
transcript.pyannote[258].end 3035.06721875
transcript.pyannote[259].speaker SPEAKER_04
transcript.pyannote[259].start 3035.06721875
transcript.pyannote[259].end 3035.10096875
transcript.pyannote[260].speaker SPEAKER_21
transcript.pyannote[260].start 3035.10096875
transcript.pyannote[260].end 3035.11784375
transcript.pyannote[261].speaker SPEAKER_21
transcript.pyannote[261].start 3035.33721875
transcript.pyannote[261].end 3041.19284375
transcript.pyannote[262].speaker SPEAKER_21
transcript.pyannote[262].start 3041.64846875
transcript.pyannote[262].end 3043.70721875
transcript.pyannote[263].speaker SPEAKER_21
transcript.pyannote[263].start 3044.17971875
transcript.pyannote[263].end 3045.51284375
transcript.pyannote[264].speaker SPEAKER_22
transcript.pyannote[264].start 3045.42846875
transcript.pyannote[264].end 3045.44534375
transcript.pyannote[265].speaker SPEAKER_04
transcript.pyannote[265].start 3045.44534375
transcript.pyannote[265].end 3045.81659375
transcript.pyannote[266].speaker SPEAKER_21
transcript.pyannote[266].start 3045.81659375
transcript.pyannote[266].end 3050.77784375
transcript.pyannote[267].speaker SPEAKER_04
transcript.pyannote[267].start 3051.01409375
transcript.pyannote[267].end 3052.43159375
transcript.pyannote[268].speaker SPEAKER_21
transcript.pyannote[268].start 3052.16159375
transcript.pyannote[268].end 3052.68471875
transcript.pyannote[269].speaker SPEAKER_21
transcript.pyannote[269].start 3052.90409375
transcript.pyannote[269].end 3059.08034375
transcript.pyannote[270].speaker SPEAKER_21
transcript.pyannote[270].start 3059.50221875
transcript.pyannote[270].end 3060.70034375
transcript.pyannote[271].speaker SPEAKER_21
transcript.pyannote[271].start 3061.35846875
transcript.pyannote[271].end 3063.97409375
transcript.pyannote[272].speaker SPEAKER_21
transcript.pyannote[272].start 3064.95284375
transcript.pyannote[272].end 3066.72471875
transcript.pyannote[273].speaker SPEAKER_21
transcript.pyannote[273].start 3067.43346875
transcript.pyannote[273].end 3074.36909375
transcript.pyannote[274].speaker SPEAKER_04
transcript.pyannote[274].start 3074.36909375
transcript.pyannote[274].end 3075.36471875
transcript.pyannote[275].speaker SPEAKER_21
transcript.pyannote[275].start 3075.55034375
transcript.pyannote[275].end 3082.87409375
transcript.pyannote[276].speaker SPEAKER_04
transcript.pyannote[276].start 3084.07221875
transcript.pyannote[276].end 3098.09534375
transcript.pyannote[277].speaker SPEAKER_21
transcript.pyannote[277].start 3095.07471875
transcript.pyannote[277].end 3115.89846875
transcript.pyannote[278].speaker SPEAKER_21
transcript.pyannote[278].start 3117.11346875
transcript.pyannote[278].end 3127.30596875
transcript.pyannote[279].speaker SPEAKER_21
transcript.pyannote[279].start 3127.69409375
transcript.pyannote[279].end 3128.99346875
transcript.pyannote[280].speaker SPEAKER_21
transcript.pyannote[280].start 3129.90471875
transcript.pyannote[280].end 3133.58346875
transcript.pyannote[281].speaker SPEAKER_21
transcript.pyannote[281].start 3134.22471875
transcript.pyannote[281].end 3137.19471875
transcript.pyannote[282].speaker SPEAKER_21
transcript.pyannote[282].start 3137.58284375
transcript.pyannote[282].end 3140.01284375
transcript.pyannote[283].speaker SPEAKER_21
transcript.pyannote[283].start 3140.53596875
transcript.pyannote[283].end 3142.52721875
transcript.pyannote[284].speaker SPEAKER_21
transcript.pyannote[284].start 3142.94909375
transcript.pyannote[284].end 3143.65784375
transcript.pyannote[285].speaker SPEAKER_21
transcript.pyannote[285].start 3144.34971875
transcript.pyannote[285].end 3144.99096875
transcript.pyannote[286].speaker SPEAKER_21
transcript.pyannote[286].start 3146.22284375
transcript.pyannote[286].end 3148.38284375
transcript.pyannote[287].speaker SPEAKER_21
transcript.pyannote[287].start 3148.48409375
transcript.pyannote[287].end 3151.62284375
transcript.pyannote[288].speaker SPEAKER_21
transcript.pyannote[288].start 3152.11221875
transcript.pyannote[288].end 3156.12846875
transcript.pyannote[289].speaker SPEAKER_21
transcript.pyannote[289].start 3156.41534375
transcript.pyannote[289].end 3157.25909375
transcript.pyannote[290].speaker SPEAKER_21
transcript.pyannote[290].start 3158.01846875
transcript.pyannote[290].end 3158.79471875
transcript.pyannote[291].speaker SPEAKER_04
transcript.pyannote[291].start 3159.38534375
transcript.pyannote[291].end 3171.18096875
transcript.pyannote[292].speaker SPEAKER_21
transcript.pyannote[292].start 3171.43409375
transcript.pyannote[292].end 3180.15846875
transcript.pyannote[293].speaker SPEAKER_04
transcript.pyannote[293].start 3180.51284375
transcript.pyannote[293].end 3203.04096875
transcript.pyannote[294].speaker SPEAKER_21
transcript.pyannote[294].start 3203.46284375
transcript.pyannote[294].end 3206.61846875
transcript.pyannote[295].speaker SPEAKER_21
transcript.pyannote[295].start 3207.19221875
transcript.pyannote[295].end 3213.16596875
transcript.pyannote[296].speaker SPEAKER_21
transcript.pyannote[296].start 3213.52034375
transcript.pyannote[296].end 3216.55784375
transcript.pyannote[297].speaker SPEAKER_21
transcript.pyannote[297].start 3217.11471875
transcript.pyannote[297].end 3223.34159375
transcript.pyannote[298].speaker SPEAKER_21
transcript.pyannote[298].start 3223.62846875
transcript.pyannote[298].end 3229.04534375
transcript.pyannote[299].speaker SPEAKER_16
transcript.pyannote[299].start 3229.77096875
transcript.pyannote[299].end 3230.29409375
transcript.pyannote[300].speaker SPEAKER_21
transcript.pyannote[300].start 3229.80471875
transcript.pyannote[300].end 3236.85846875
transcript.pyannote[301].speaker SPEAKER_08
transcript.pyannote[301].start 3237.60096875
transcript.pyannote[301].end 3242.27534375
transcript.pyannote[302].speaker SPEAKER_08
transcript.pyannote[302].start 3242.79846875
transcript.pyannote[302].end 3245.49846875
transcript.pyannote[303].speaker SPEAKER_01
transcript.pyannote[303].start 3259.90971875
transcript.pyannote[303].end 3262.45784375
transcript.pyannote[304].speaker SPEAKER_01
transcript.pyannote[304].start 3262.67721875
transcript.pyannote[304].end 3264.01034375
transcript.pyannote[305].speaker SPEAKER_01
transcript.pyannote[305].start 3267.72284375
transcript.pyannote[305].end 3268.26284375
transcript.pyannote[306].speaker SPEAKER_01
transcript.pyannote[306].start 3268.75221875
transcript.pyannote[306].end 3269.52846875
transcript.pyannote[307].speaker SPEAKER_01
transcript.pyannote[307].start 3270.25409375
transcript.pyannote[307].end 3275.36721875
transcript.pyannote[308].speaker SPEAKER_01
transcript.pyannote[308].start 3275.89034375
transcript.pyannote[308].end 3283.85534375
transcript.pyannote[309].speaker SPEAKER_01
transcript.pyannote[309].start 3284.15909375
transcript.pyannote[309].end 3286.43721875
transcript.pyannote[310].speaker SPEAKER_01
transcript.pyannote[310].start 3287.04471875
transcript.pyannote[310].end 3291.11159375
transcript.pyannote[311].speaker SPEAKER_01
transcript.pyannote[311].start 3291.70221875
transcript.pyannote[311].end 3297.74346875
transcript.pyannote[312].speaker SPEAKER_01
transcript.pyannote[312].start 3297.89534375
transcript.pyannote[312].end 3307.86846875
transcript.pyannote[313].speaker SPEAKER_01
transcript.pyannote[313].start 3308.49284375
transcript.pyannote[313].end 3315.25971875
transcript.pyannote[314].speaker SPEAKER_01
transcript.pyannote[314].start 3315.63096875
transcript.pyannote[314].end 3316.74471875
transcript.pyannote[315].speaker SPEAKER_01
transcript.pyannote[315].start 3317.09909375
transcript.pyannote[315].end 3323.10659375
transcript.pyannote[316].speaker SPEAKER_01
transcript.pyannote[316].start 3323.54534375
transcript.pyannote[316].end 3332.84346875
transcript.pyannote[317].speaker SPEAKER_01
transcript.pyannote[317].start 3333.02909375
transcript.pyannote[317].end 3334.02471875
transcript.pyannote[318].speaker SPEAKER_01
transcript.pyannote[318].start 3334.63221875
transcript.pyannote[318].end 3339.79596875
transcript.pyannote[319].speaker SPEAKER_01
transcript.pyannote[319].start 3340.35284375
transcript.pyannote[319].end 3343.10346875
transcript.pyannote[320].speaker SPEAKER_01
transcript.pyannote[320].start 3343.50846875
transcript.pyannote[320].end 3345.55034375
transcript.pyannote[321].speaker SPEAKER_01
transcript.pyannote[321].start 3346.00596875
transcript.pyannote[321].end 3348.60471875
transcript.pyannote[322].speaker SPEAKER_01
transcript.pyannote[322].start 3348.94221875
transcript.pyannote[322].end 3350.57909375
transcript.pyannote[323].speaker SPEAKER_01
transcript.pyannote[323].start 3351.23721875
transcript.pyannote[323].end 3352.99221875
transcript.pyannote[324].speaker SPEAKER_04
transcript.pyannote[324].start 3353.58284375
transcript.pyannote[324].end 3368.46659375
transcript.pyannote[325].speaker SPEAKER_01
transcript.pyannote[325].start 3357.24471875
transcript.pyannote[325].end 3357.90284375
transcript.pyannote[326].speaker SPEAKER_01
transcript.pyannote[326].start 3368.75346875
transcript.pyannote[326].end 3373.61346875
transcript.pyannote[327].speaker SPEAKER_01
transcript.pyannote[327].start 3373.93409375
transcript.pyannote[327].end 3380.24534375
transcript.pyannote[328].speaker SPEAKER_01
transcript.pyannote[328].start 3381.15659375
transcript.pyannote[328].end 3384.32909375
transcript.pyannote[329].speaker SPEAKER_01
transcript.pyannote[329].start 3384.56534375
transcript.pyannote[329].end 3388.53096875
transcript.pyannote[330].speaker SPEAKER_01
transcript.pyannote[330].start 3389.17221875
transcript.pyannote[330].end 3393.44159375
transcript.pyannote[331].speaker SPEAKER_01
transcript.pyannote[331].start 3393.86346875
transcript.pyannote[331].end 3396.51284375
transcript.pyannote[332].speaker SPEAKER_01
transcript.pyannote[332].start 3396.88409375
transcript.pyannote[332].end 3397.35659375
transcript.pyannote[333].speaker SPEAKER_01
transcript.pyannote[333].start 3397.52534375
transcript.pyannote[333].end 3399.66846875
transcript.pyannote[334].speaker SPEAKER_01
transcript.pyannote[334].start 3399.85409375
transcript.pyannote[334].end 3402.55409375
transcript.pyannote[335].speaker SPEAKER_01
transcript.pyannote[335].start 3403.12784375
transcript.pyannote[335].end 3407.71784375
transcript.pyannote[336].speaker SPEAKER_01
transcript.pyannote[336].start 3408.37596875
transcript.pyannote[336].end 3408.71346875
transcript.pyannote[337].speaker SPEAKER_01
transcript.pyannote[337].start 3409.13534375
transcript.pyannote[337].end 3412.74659375
transcript.pyannote[338].speaker SPEAKER_01
transcript.pyannote[338].start 3413.48909375
transcript.pyannote[338].end 3413.99534375
transcript.pyannote[339].speaker SPEAKER_01
transcript.pyannote[339].start 3414.45096875
transcript.pyannote[339].end 3417.69096875
transcript.pyannote[340].speaker SPEAKER_01
transcript.pyannote[340].start 3418.09596875
transcript.pyannote[340].end 3420.28971875
transcript.pyannote[341].speaker SPEAKER_01
transcript.pyannote[341].start 3420.62721875
transcript.pyannote[341].end 3423.04034375
transcript.pyannote[342].speaker SPEAKER_01
transcript.pyannote[342].start 3425.08221875
transcript.pyannote[342].end 3425.97659375
transcript.pyannote[343].speaker SPEAKER_04
transcript.pyannote[343].start 3425.97659375
transcript.pyannote[343].end 3426.02721875
transcript.pyannote[344].speaker SPEAKER_01
transcript.pyannote[344].start 3426.02721875
transcript.pyannote[344].end 3426.17909375
transcript.pyannote[345].speaker SPEAKER_04
transcript.pyannote[345].start 3426.17909375
transcript.pyannote[345].end 3426.24659375
transcript.pyannote[346].speaker SPEAKER_01
transcript.pyannote[346].start 3426.24659375
transcript.pyannote[346].end 3426.31409375
transcript.pyannote[347].speaker SPEAKER_04
transcript.pyannote[347].start 3426.31409375
transcript.pyannote[347].end 3426.43221875
transcript.pyannote[348].speaker SPEAKER_01
transcript.pyannote[348].start 3426.43221875
transcript.pyannote[348].end 3426.51659375
transcript.pyannote[349].speaker SPEAKER_01
transcript.pyannote[349].start 3426.65159375
transcript.pyannote[349].end 3427.41096875
transcript.pyannote[350].speaker SPEAKER_01
transcript.pyannote[350].start 3427.76534375
transcript.pyannote[350].end 3437.62034375
transcript.pyannote[351].speaker SPEAKER_01
transcript.pyannote[351].start 3444.74159375
transcript.pyannote[351].end 3446.00721875
transcript.pyannote[352].speaker SPEAKER_01
transcript.pyannote[352].start 3446.32784375
transcript.pyannote[352].end 3449.02784375
transcript.pyannote[353].speaker SPEAKER_01
transcript.pyannote[353].start 3449.88846875
transcript.pyannote[353].end 3452.68971875
transcript.pyannote[354].speaker SPEAKER_01
transcript.pyannote[354].start 3452.82471875
transcript.pyannote[354].end 3455.84534375
transcript.pyannote[355].speaker SPEAKER_04
transcript.pyannote[355].start 3455.84534375
transcript.pyannote[355].end 3457.65096875
transcript.pyannote[356].speaker SPEAKER_01
transcript.pyannote[356].start 3458.10659375
transcript.pyannote[356].end 3458.47784375
transcript.pyannote[357].speaker SPEAKER_01
transcript.pyannote[357].start 3458.91659375
transcript.pyannote[357].end 3473.64846875
transcript.pyannote[358].speaker SPEAKER_01
transcript.pyannote[358].start 3474.13784375
transcript.pyannote[358].end 3476.28096875
transcript.pyannote[359].speaker SPEAKER_01
transcript.pyannote[359].start 3476.82096875
transcript.pyannote[359].end 3477.39471875
transcript.pyannote[360].speaker SPEAKER_01
transcript.pyannote[360].start 3477.73221875
transcript.pyannote[360].end 3478.08659375
transcript.pyannote[361].speaker SPEAKER_01
transcript.pyannote[361].start 3478.59284375
transcript.pyannote[361].end 3488.95409375
transcript.pyannote[362].speaker SPEAKER_01
transcript.pyannote[362].start 3489.71346875
transcript.pyannote[362].end 3500.47971875
transcript.pyannote[363].speaker SPEAKER_04
transcript.pyannote[363].start 3500.05784375
transcript.pyannote[363].end 3502.48784375
transcript.pyannote[364].speaker SPEAKER_01
transcript.pyannote[364].start 3502.48784375
transcript.pyannote[364].end 3505.81221875
transcript.pyannote[365].speaker SPEAKER_04
transcript.pyannote[365].start 3505.81221875
transcript.pyannote[365].end 3508.46159375
transcript.pyannote[366].speaker SPEAKER_01
transcript.pyannote[366].start 3506.41971875
transcript.pyannote[366].end 3507.21284375
transcript.pyannote[367].speaker SPEAKER_01
transcript.pyannote[367].start 3508.79909375
transcript.pyannote[367].end 3516.27471875
transcript.pyannote[368].speaker SPEAKER_01
transcript.pyannote[368].start 3517.10159375
transcript.pyannote[368].end 3517.96221875
transcript.pyannote[369].speaker SPEAKER_04
transcript.pyannote[369].start 3520.32471875
transcript.pyannote[369].end 3532.96409375
transcript.pyannote[370].speaker SPEAKER_01
transcript.pyannote[370].start 3532.42409375
transcript.pyannote[370].end 3536.28846875
transcript.pyannote[371].speaker SPEAKER_04
transcript.pyannote[371].start 3537.84096875
transcript.pyannote[371].end 3538.58346875
transcript.pyannote[372].speaker SPEAKER_14
transcript.pyannote[372].start 3538.73534375
transcript.pyannote[372].end 3550.39596875
transcript.pyannote[373].speaker SPEAKER_14
transcript.pyannote[373].start 3550.93596875
transcript.pyannote[373].end 3557.66909375
transcript.pyannote[374].speaker SPEAKER_14
transcript.pyannote[374].start 3558.24284375
transcript.pyannote[374].end 3563.30534375
transcript.pyannote[375].speaker SPEAKER_01
transcript.pyannote[375].start 3562.32659375
transcript.pyannote[375].end 3569.85284375
transcript.pyannote[376].speaker SPEAKER_01
transcript.pyannote[376].start 3570.15659375
transcript.pyannote[376].end 3570.47721875
transcript.pyannote[377].speaker SPEAKER_01
transcript.pyannote[377].start 3571.25346875
transcript.pyannote[377].end 3576.63659375
transcript.pyannote[378].speaker SPEAKER_01
transcript.pyannote[378].start 3577.59846875
transcript.pyannote[378].end 3583.94346875
transcript.pyannote[379].speaker SPEAKER_01
transcript.pyannote[379].start 3584.71971875
transcript.pyannote[379].end 3585.86721875
transcript.pyannote[380].speaker SPEAKER_01
transcript.pyannote[380].start 3586.01909375
transcript.pyannote[380].end 3592.04346875
transcript.pyannote[381].speaker SPEAKER_16
transcript.pyannote[381].start 3587.35221875
transcript.pyannote[381].end 3587.40284375
transcript.pyannote[382].speaker SPEAKER_04
transcript.pyannote[382].start 3587.40284375
transcript.pyannote[382].end 3587.55471875
transcript.pyannote[383].speaker SPEAKER_16
transcript.pyannote[383].start 3587.55471875
transcript.pyannote[383].end 3587.62221875
transcript.pyannote[384].speaker SPEAKER_04
transcript.pyannote[384].start 3587.62221875
transcript.pyannote[384].end 3587.70659375
transcript.pyannote[385].speaker SPEAKER_16
transcript.pyannote[385].start 3587.70659375
transcript.pyannote[385].end 3587.75721875
transcript.pyannote[386].speaker SPEAKER_14
transcript.pyannote[386].start 3592.16159375
transcript.pyannote[386].end 3597.88221875
transcript.pyannote[387].speaker SPEAKER_01
transcript.pyannote[387].start 3597.35909375
transcript.pyannote[387].end 3601.89846875
transcript.pyannote[388].speaker SPEAKER_14
transcript.pyannote[388].start 3601.22346875
transcript.pyannote[388].end 3603.75471875
transcript.pyannote[389].speaker SPEAKER_01
transcript.pyannote[389].start 3602.69159375
transcript.pyannote[389].end 3605.15534375
transcript.pyannote[390].speaker SPEAKER_01
transcript.pyannote[390].start 3605.71221875
transcript.pyannote[390].end 3611.24721875
transcript.pyannote[391].speaker SPEAKER_01
transcript.pyannote[391].start 3611.34846875
transcript.pyannote[391].end 3613.15409375
transcript.pyannote[392].speaker SPEAKER_04
transcript.pyannote[392].start 3612.10784375
transcript.pyannote[392].end 3615.19596875
transcript.pyannote[393].speaker SPEAKER_01
transcript.pyannote[393].start 3614.68971875
transcript.pyannote[393].end 3619.46534375
transcript.pyannote[394].speaker SPEAKER_04
transcript.pyannote[394].start 3617.20409375
transcript.pyannote[394].end 3618.50346875
transcript.pyannote[395].speaker SPEAKER_04
transcript.pyannote[395].start 3619.04346875
transcript.pyannote[395].end 3620.22471875
transcript.pyannote[396].speaker SPEAKER_01
transcript.pyannote[396].start 3620.22471875
transcript.pyannote[396].end 3623.41409375
transcript.pyannote[397].speaker SPEAKER_01
transcript.pyannote[397].start 3624.22409375
transcript.pyannote[397].end 3626.18159375
transcript.pyannote[398].speaker SPEAKER_04
transcript.pyannote[398].start 3625.81034375
transcript.pyannote[398].end 3630.02909375
transcript.pyannote[399].speaker SPEAKER_01
transcript.pyannote[399].start 3629.62409375
transcript.pyannote[399].end 3629.96159375
transcript.pyannote[400].speaker SPEAKER_01
transcript.pyannote[400].start 3630.01221875
transcript.pyannote[400].end 3630.38346875
transcript.pyannote[401].speaker SPEAKER_04
transcript.pyannote[401].start 3630.09659375
transcript.pyannote[401].end 3642.85409375
transcript.pyannote[402].speaker SPEAKER_16
transcript.pyannote[402].start 3630.38346875
transcript.pyannote[402].end 3630.56909375
transcript.pyannote[403].speaker SPEAKER_01
transcript.pyannote[403].start 3630.56909375
transcript.pyannote[403].end 3631.05846875
transcript.pyannote[404].speaker SPEAKER_01
transcript.pyannote[404].start 3642.80346875
transcript.pyannote[404].end 3643.84971875
transcript.pyannote[405].speaker SPEAKER_04
transcript.pyannote[405].start 3643.46159375
transcript.pyannote[405].end 3643.95096875
transcript.pyannote[406].speaker SPEAKER_01
transcript.pyannote[406].start 3644.33909375
transcript.pyannote[406].end 3651.67971875
transcript.pyannote[407].speaker SPEAKER_01
transcript.pyannote[407].start 3653.18159375
transcript.pyannote[407].end 3659.17221875
transcript.pyannote[408].speaker SPEAKER_01
transcript.pyannote[408].start 3659.81346875
transcript.pyannote[408].end 3661.24784375
transcript.pyannote[409].speaker SPEAKER_04
transcript.pyannote[409].start 3659.98221875
transcript.pyannote[409].end 3664.33596875
transcript.pyannote[410].speaker SPEAKER_01
transcript.pyannote[410].start 3662.86784375
transcript.pyannote[410].end 3664.15034375
transcript.pyannote[411].speaker SPEAKER_01
transcript.pyannote[411].start 3664.92659375
transcript.pyannote[411].end 3664.94346875
transcript.pyannote[412].speaker SPEAKER_04
transcript.pyannote[412].start 3664.94346875
transcript.pyannote[412].end 3670.34346875
transcript.pyannote[413].speaker SPEAKER_01
transcript.pyannote[413].start 3664.96034375
transcript.pyannote[413].end 3665.85471875
transcript.pyannote[414].speaker SPEAKER_01
transcript.pyannote[414].start 3669.82034375
transcript.pyannote[414].end 3670.86659375
transcript.pyannote[415].speaker SPEAKER_04
transcript.pyannote[415].start 3670.86659375
transcript.pyannote[415].end 3673.98846875
transcript.pyannote[416].speaker SPEAKER_01
transcript.pyannote[416].start 3673.31346875
transcript.pyannote[416].end 3682.93221875
transcript.pyannote[417].speaker SPEAKER_04
transcript.pyannote[417].start 3674.42721875
transcript.pyannote[417].end 3674.74784375
transcript.pyannote[418].speaker SPEAKER_04
transcript.pyannote[418].start 3676.58721875
transcript.pyannote[418].end 3677.63346875
transcript.pyannote[419].speaker SPEAKER_04
transcript.pyannote[419].start 3682.93221875
transcript.pyannote[419].end 3690.00284375
transcript.pyannote[420].speaker SPEAKER_01
transcript.pyannote[420].start 3689.53034375
transcript.pyannote[420].end 3692.06159375
transcript.pyannote[421].speaker SPEAKER_04
transcript.pyannote[421].start 3691.33596875
transcript.pyannote[421].end 3694.12034375
transcript.pyannote[422].speaker SPEAKER_01
transcript.pyannote[422].start 3694.87971875
transcript.pyannote[422].end 3696.22971875
transcript.pyannote[423].speaker SPEAKER_01
transcript.pyannote[423].start 3697.09034375
transcript.pyannote[423].end 3698.47409375
transcript.pyannote[424].speaker SPEAKER_01
transcript.pyannote[424].start 3699.09846875
transcript.pyannote[424].end 3707.78909375
transcript.pyannote[425].speaker SPEAKER_01
transcript.pyannote[425].start 3708.44721875
transcript.pyannote[425].end 3723.36471875
transcript.pyannote[426].speaker SPEAKER_01
transcript.pyannote[426].start 3723.98909375
transcript.pyannote[426].end 3731.90346875
transcript.pyannote[427].speaker SPEAKER_01
transcript.pyannote[427].start 3732.56159375
transcript.pyannote[427].end 3735.61596875
transcript.pyannote[428].speaker SPEAKER_01
transcript.pyannote[428].start 3736.07159375
transcript.pyannote[428].end 3739.54784375
transcript.pyannote[429].speaker SPEAKER_01
transcript.pyannote[429].start 3739.58159375
transcript.pyannote[429].end 3743.83409375
transcript.pyannote[430].speaker SPEAKER_01
transcript.pyannote[430].start 3744.25596875
transcript.pyannote[430].end 3745.15034375
transcript.pyannote[431].speaker SPEAKER_01
transcript.pyannote[431].start 3745.48784375
transcript.pyannote[431].end 3755.03909375
transcript.pyannote[432].speaker SPEAKER_01
transcript.pyannote[432].start 3755.25846875
transcript.pyannote[432].end 3757.03034375
transcript.pyannote[433].speaker SPEAKER_01
transcript.pyannote[433].start 3757.36784375
transcript.pyannote[433].end 3763.40909375
transcript.pyannote[434].speaker SPEAKER_01
transcript.pyannote[434].start 3763.67909375
transcript.pyannote[434].end 3764.99534375
transcript.pyannote[435].speaker SPEAKER_01
transcript.pyannote[435].start 3765.40034375
transcript.pyannote[435].end 3766.36221875
transcript.pyannote[436].speaker SPEAKER_04
transcript.pyannote[436].start 3766.80096875
transcript.pyannote[436].end 3790.49346875
transcript.pyannote[437].speaker SPEAKER_01
transcript.pyannote[437].start 3787.54034375
transcript.pyannote[437].end 3814.10159375
transcript.pyannote[438].speaker SPEAKER_04
transcript.pyannote[438].start 3814.55721875
transcript.pyannote[438].end 3827.04471875
transcript.pyannote[439].speaker SPEAKER_01
transcript.pyannote[439].start 3826.94346875
transcript.pyannote[439].end 3828.42846875
transcript.pyannote[440].speaker SPEAKER_01
transcript.pyannote[440].start 3828.68159375
transcript.pyannote[440].end 3830.03159375
transcript.pyannote[441].speaker SPEAKER_01
transcript.pyannote[441].start 3830.47034375
transcript.pyannote[441].end 3833.59221875
transcript.pyannote[442].speaker SPEAKER_01
transcript.pyannote[442].start 3833.86221875
transcript.pyannote[442].end 3836.29221875
transcript.pyannote[443].speaker SPEAKER_04
transcript.pyannote[443].start 3836.29221875
transcript.pyannote[443].end 3836.30909375
transcript.pyannote[444].speaker SPEAKER_04
transcript.pyannote[444].start 3837.16971875
transcript.pyannote[444].end 3845.82659375
transcript.pyannote[445].speaker SPEAKER_01
transcript.pyannote[445].start 3842.83971875
transcript.pyannote[445].end 3845.80971875
transcript.pyannote[446].speaker SPEAKER_01
transcript.pyannote[446].start 3845.82659375
transcript.pyannote[446].end 3845.84346875
transcript.pyannote[447].speaker SPEAKER_01
transcript.pyannote[447].start 3846.63659375
transcript.pyannote[447].end 3849.65721875
transcript.pyannote[448].speaker SPEAKER_04
transcript.pyannote[448].start 3851.12534375
transcript.pyannote[448].end 3858.26346875
transcript.pyannote[449].speaker SPEAKER_01
transcript.pyannote[449].start 3858.44909375
transcript.pyannote[449].end 3859.64721875
transcript.pyannote[450].speaker SPEAKER_04
transcript.pyannote[450].start 3859.22534375
transcript.pyannote[450].end 3859.95096875
transcript.pyannote[451].speaker SPEAKER_01
transcript.pyannote[451].start 3859.95096875
transcript.pyannote[451].end 3859.96784375
transcript.pyannote[452].speaker SPEAKER_04
transcript.pyannote[452].start 3859.96784375
transcript.pyannote[452].end 3859.98471875
transcript.pyannote[453].speaker SPEAKER_01
transcript.pyannote[453].start 3859.98471875
transcript.pyannote[453].end 3860.82846875
transcript.pyannote[454].speaker SPEAKER_01
transcript.pyannote[454].start 3861.23346875
transcript.pyannote[454].end 3861.90846875
transcript.pyannote[455].speaker SPEAKER_01
transcript.pyannote[455].start 3862.36409375
transcript.pyannote[455].end 3865.58721875
transcript.pyannote[456].speaker SPEAKER_01
transcript.pyannote[456].start 3865.92471875
transcript.pyannote[456].end 3867.69659375
transcript.pyannote[457].speaker SPEAKER_01
transcript.pyannote[457].start 3867.73034375
transcript.pyannote[457].end 3877.09596875
transcript.pyannote[458].speaker SPEAKER_04
transcript.pyannote[458].start 3877.24784375
transcript.pyannote[458].end 3878.73284375
transcript.pyannote[459].speaker SPEAKER_01
transcript.pyannote[459].start 3878.51346875
transcript.pyannote[459].end 3878.98596875
transcript.pyannote[460].speaker SPEAKER_01
transcript.pyannote[460].start 3880.01534375
transcript.pyannote[460].end 3880.69034375
transcript.pyannote[461].speaker SPEAKER_01
transcript.pyannote[461].start 3881.51721875
transcript.pyannote[461].end 3882.56346875
transcript.pyannote[462].speaker SPEAKER_01
transcript.pyannote[462].start 3883.81221875
transcript.pyannote[462].end 3886.59659375
transcript.pyannote[463].speaker SPEAKER_01
transcript.pyannote[463].start 3886.81596875
transcript.pyannote[463].end 3889.83659375
transcript.pyannote[464].speaker SPEAKER_01
transcript.pyannote[464].start 3890.25846875
transcript.pyannote[464].end 3891.99659375
transcript.pyannote[465].speaker SPEAKER_01
transcript.pyannote[465].start 3892.50284375
transcript.pyannote[465].end 3902.64471875
transcript.pyannote[466].speaker SPEAKER_01
transcript.pyannote[466].start 3902.67846875
transcript.pyannote[466].end 3911.80784375
transcript.pyannote[467].speaker SPEAKER_01
transcript.pyannote[467].start 3912.02721875
transcript.pyannote[467].end 3913.15784375
transcript.pyannote[468].speaker SPEAKER_04
transcript.pyannote[468].start 3913.51221875
transcript.pyannote[468].end 3921.08909375
transcript.pyannote[469].speaker SPEAKER_01
transcript.pyannote[469].start 3920.17784375
transcript.pyannote[469].end 3921.05534375
transcript.pyannote[470].speaker SPEAKER_01
transcript.pyannote[470].start 3921.08909375
transcript.pyannote[470].end 3921.20721875
transcript.pyannote[471].speaker SPEAKER_04
transcript.pyannote[471].start 3921.20721875
transcript.pyannote[471].end 3921.22409375
transcript.pyannote[472].speaker SPEAKER_01
transcript.pyannote[472].start 3921.22409375
transcript.pyannote[472].end 3921.24096875
transcript.pyannote[473].speaker SPEAKER_04
transcript.pyannote[473].start 3921.24096875
transcript.pyannote[473].end 3921.66284375
transcript.pyannote[474].speaker SPEAKER_01
transcript.pyannote[474].start 3921.66284375
transcript.pyannote[474].end 3927.23159375
transcript.pyannote[475].speaker SPEAKER_04
transcript.pyannote[475].start 3921.67971875
transcript.pyannote[475].end 3922.45596875
transcript.pyannote[476].speaker SPEAKER_01
transcript.pyannote[476].start 3927.72096875
transcript.pyannote[476].end 3928.95284375
transcript.pyannote[477].speaker SPEAKER_01
transcript.pyannote[477].start 3929.59409375
transcript.pyannote[477].end 3931.14659375
transcript.pyannote[478].speaker SPEAKER_01
transcript.pyannote[478].start 3931.85534375
transcript.pyannote[478].end 3935.58471875
transcript.pyannote[479].speaker SPEAKER_04
transcript.pyannote[479].start 3937.64346875
transcript.pyannote[479].end 3948.03846875
transcript.pyannote[480].speaker SPEAKER_01
transcript.pyannote[480].start 3947.51534375
transcript.pyannote[480].end 3953.62409375
transcript.pyannote[481].speaker SPEAKER_04
transcript.pyannote[481].start 3953.10096875
transcript.pyannote[481].end 3953.89409375
transcript.pyannote[482].speaker SPEAKER_01
transcript.pyannote[482].start 3953.64096875
transcript.pyannote[482].end 3953.65784375
transcript.pyannote[483].speaker SPEAKER_01
transcript.pyannote[483].start 3953.82659375
transcript.pyannote[483].end 3955.85159375
transcript.pyannote[484].speaker SPEAKER_04
transcript.pyannote[484].start 3956.81346875
transcript.pyannote[484].end 3961.33596875
transcript.pyannote[485].speaker SPEAKER_01
transcript.pyannote[485].start 3959.91846875
transcript.pyannote[485].end 3970.83659375
transcript.pyannote[486].speaker SPEAKER_04
transcript.pyannote[486].start 3970.48221875
transcript.pyannote[486].end 3970.68471875
transcript.pyannote[487].speaker SPEAKER_04
transcript.pyannote[487].start 3971.15721875
transcript.pyannote[487].end 3971.44409375
transcript.pyannote[488].speaker SPEAKER_01
transcript.pyannote[488].start 3971.44409375
transcript.pyannote[488].end 3971.83221875
transcript.pyannote[489].speaker SPEAKER_04
transcript.pyannote[489].start 3971.95034375
transcript.pyannote[489].end 3972.28784375
transcript.pyannote[490].speaker SPEAKER_01
transcript.pyannote[490].start 3973.06409375
transcript.pyannote[490].end 3976.75971875
transcript.pyannote[491].speaker SPEAKER_04
transcript.pyannote[491].start 3973.31721875
transcript.pyannote[491].end 3973.63784375
transcript.pyannote[492].speaker SPEAKER_04
transcript.pyannote[492].start 3977.38409375
transcript.pyannote[492].end 3977.40096875
transcript.pyannote[493].speaker SPEAKER_01
transcript.pyannote[493].start 3977.40096875
transcript.pyannote[493].end 3977.97471875
transcript.pyannote[494].speaker SPEAKER_04
transcript.pyannote[494].start 3977.97471875
transcript.pyannote[494].end 3978.10971875
transcript.pyannote[495].speaker SPEAKER_01
transcript.pyannote[495].start 3978.10971875
transcript.pyannote[495].end 3978.14346875
transcript.pyannote[496].speaker SPEAKER_04
transcript.pyannote[496].start 3978.14346875
transcript.pyannote[496].end 3978.16034375
transcript.pyannote[497].speaker SPEAKER_01
transcript.pyannote[497].start 3978.16034375
transcript.pyannote[497].end 3978.29534375
transcript.pyannote[498].speaker SPEAKER_04
transcript.pyannote[498].start 3978.29534375
transcript.pyannote[498].end 3978.46409375
transcript.pyannote[499].speaker SPEAKER_01
transcript.pyannote[499].start 3978.46409375
transcript.pyannote[499].end 3978.78471875
transcript.pyannote[500].speaker SPEAKER_04
transcript.pyannote[500].start 3978.78471875
transcript.pyannote[500].end 3980.08409375
transcript.pyannote[501].speaker SPEAKER_01
transcript.pyannote[501].start 3980.08409375
transcript.pyannote[501].end 3983.05409375
transcript.pyannote[502].speaker SPEAKER_04
transcript.pyannote[502].start 3980.26971875
transcript.pyannote[502].end 3981.11346875
transcript.pyannote[503].speaker SPEAKER_01
transcript.pyannote[503].start 3983.59409375
transcript.pyannote[503].end 3984.30284375
transcript.pyannote[504].speaker SPEAKER_01
transcript.pyannote[504].start 3984.97784375
transcript.pyannote[504].end 4006.66221875
transcript.pyannote[505].speaker SPEAKER_01
transcript.pyannote[505].start 4007.48909375
transcript.pyannote[505].end 4008.78846875
transcript.pyannote[506].speaker SPEAKER_01
transcript.pyannote[506].start 4010.20596875
transcript.pyannote[506].end 4015.84221875
transcript.pyannote[507].speaker SPEAKER_01
transcript.pyannote[507].start 4016.34846875
transcript.pyannote[507].end 4019.18346875
transcript.pyannote[508].speaker SPEAKER_08
transcript.pyannote[508].start 4019.33534375
transcript.pyannote[508].end 4025.76471875
transcript.pyannote[509].speaker SPEAKER_23
transcript.pyannote[509].start 4050.58784375
transcript.pyannote[509].end 4056.03846875
transcript.pyannote[510].speaker SPEAKER_23
transcript.pyannote[510].start 4058.90721875
transcript.pyannote[510].end 4071.04034375
transcript.pyannote[511].speaker SPEAKER_23
transcript.pyannote[511].start 4071.32721875
transcript.pyannote[511].end 4083.91596875
transcript.pyannote[512].speaker SPEAKER_23
transcript.pyannote[512].start 4084.18596875
transcript.pyannote[512].end 4101.75284375
transcript.pyannote[513].speaker SPEAKER_23
transcript.pyannote[513].start 4102.14096875
transcript.pyannote[513].end 4117.66596875
transcript.pyannote[514].speaker SPEAKER_23
transcript.pyannote[514].start 4118.25659375
transcript.pyannote[514].end 4124.28096875
transcript.pyannote[515].speaker SPEAKER_23
transcript.pyannote[515].start 4125.19221875
transcript.pyannote[515].end 4146.85971875
transcript.pyannote[516].speaker SPEAKER_04
transcript.pyannote[516].start 4148.17596875
transcript.pyannote[516].end 4217.86971875
transcript.pyannote[517].speaker SPEAKER_04
transcript.pyannote[517].start 4218.12284375
transcript.pyannote[517].end 4236.61784375
transcript.pyannote[518].speaker SPEAKER_23
transcript.pyannote[518].start 4234.08659375
transcript.pyannote[518].end 4234.15409375
transcript.pyannote[519].speaker SPEAKER_23
transcript.pyannote[519].start 4234.49159375
transcript.pyannote[519].end 4234.66034375
transcript.pyannote[520].speaker SPEAKER_23
transcript.pyannote[520].start 4237.12409375
transcript.pyannote[520].end 4270.53659375
transcript.pyannote[521].speaker SPEAKER_23
transcript.pyannote[521].start 4271.26221875
transcript.pyannote[521].end 4276.51034375
transcript.pyannote[522].speaker SPEAKER_23
transcript.pyannote[522].start 4277.50596875
transcript.pyannote[522].end 4277.52284375
transcript.pyannote[523].speaker SPEAKER_04
transcript.pyannote[523].start 4277.52284375
transcript.pyannote[523].end 4342.93034375
transcript.pyannote[524].speaker SPEAKER_16
transcript.pyannote[524].start 4291.79909375
transcript.pyannote[524].end 4292.01846875
transcript.pyannote[525].speaker SPEAKER_04
transcript.pyannote[525].start 4343.63909375
transcript.pyannote[525].end 4343.89221875
transcript.pyannote[526].speaker SPEAKER_04
transcript.pyannote[526].start 4344.17909375
transcript.pyannote[526].end 4346.55846875
transcript.pyannote[527].speaker SPEAKER_23
transcript.pyannote[527].start 4346.55846875
transcript.pyannote[527].end 4346.57534375
transcript.pyannote[528].speaker SPEAKER_04
transcript.pyannote[528].start 4347.14909375
transcript.pyannote[528].end 4347.16596875
transcript.pyannote[529].speaker SPEAKER_23
transcript.pyannote[529].start 4347.16596875
transcript.pyannote[529].end 4349.74784375
transcript.pyannote[530].speaker SPEAKER_23
transcript.pyannote[530].start 4349.98409375
transcript.pyannote[530].end 4359.33284375
transcript.pyannote[531].speaker SPEAKER_23
transcript.pyannote[531].start 4359.50159375
transcript.pyannote[531].end 4360.12596875
transcript.pyannote[532].speaker SPEAKER_23
transcript.pyannote[532].start 4360.49721875
transcript.pyannote[532].end 4370.13284375
transcript.pyannote[533].speaker SPEAKER_23
transcript.pyannote[533].start 4370.89221875
transcript.pyannote[533].end 4378.63784375
transcript.pyannote[534].speaker SPEAKER_23
transcript.pyannote[534].start 4379.36346875
transcript.pyannote[534].end 4380.57846875
transcript.pyannote[535].speaker SPEAKER_23
transcript.pyannote[535].start 4380.93284375
transcript.pyannote[535].end 4383.43034375
transcript.pyannote[536].speaker SPEAKER_23
transcript.pyannote[536].start 4383.78471875
transcript.pyannote[536].end 4399.36034375
transcript.pyannote[537].speaker SPEAKER_04
transcript.pyannote[537].start 4400.42346875
transcript.pyannote[537].end 4457.32596875
transcript.pyannote[538].speaker SPEAKER_23
transcript.pyannote[538].start 4457.32596875
transcript.pyannote[538].end 4457.41034375
transcript.pyannote[539].speaker SPEAKER_04
transcript.pyannote[539].start 4457.41034375
transcript.pyannote[539].end 4457.44409375
transcript.pyannote[540].speaker SPEAKER_23
transcript.pyannote[540].start 4457.44409375
transcript.pyannote[540].end 4457.46096875
transcript.pyannote[541].speaker SPEAKER_04
transcript.pyannote[541].start 4457.46096875
transcript.pyannote[541].end 4457.96721875
transcript.pyannote[542].speaker SPEAKER_23
transcript.pyannote[542].start 4457.96721875
transcript.pyannote[542].end 4461.83159375
transcript.pyannote[543].speaker SPEAKER_23
transcript.pyannote[543].start 4461.94971875
transcript.pyannote[543].end 4467.04596875
transcript.pyannote[544].speaker SPEAKER_23
transcript.pyannote[544].start 4467.85596875
transcript.pyannote[544].end 4470.30284375
transcript.pyannote[545].speaker SPEAKER_23
transcript.pyannote[545].start 4470.60659375
transcript.pyannote[545].end 4471.12971875
transcript.pyannote[546].speaker SPEAKER_23
transcript.pyannote[546].start 4472.80034375
transcript.pyannote[546].end 4487.21159375
transcript.pyannote[547].speaker SPEAKER_23
transcript.pyannote[547].start 4488.13971875
transcript.pyannote[547].end 4488.17346875
transcript.pyannote[548].speaker SPEAKER_04
transcript.pyannote[548].start 4488.17346875
transcript.pyannote[548].end 4543.96221875
transcript.pyannote[549].speaker SPEAKER_23
transcript.pyannote[549].start 4543.96221875
transcript.pyannote[549].end 4556.92221875
transcript.pyannote[550].speaker SPEAKER_23
transcript.pyannote[550].start 4557.24284375
transcript.pyannote[550].end 4564.02659375
transcript.pyannote[551].speaker SPEAKER_04
transcript.pyannote[551].start 4564.02659375
transcript.pyannote[551].end 4564.11096875
transcript.pyannote[552].speaker SPEAKER_23
transcript.pyannote[552].start 4564.11096875
transcript.pyannote[552].end 4564.29659375
transcript.pyannote[553].speaker SPEAKER_23
transcript.pyannote[553].start 4564.71846875
transcript.pyannote[553].end 4564.73534375
transcript.pyannote[554].speaker SPEAKER_04
transcript.pyannote[554].start 4564.73534375
transcript.pyannote[554].end 4593.57471875
transcript.pyannote[555].speaker SPEAKER_23
transcript.pyannote[555].start 4593.57471875
transcript.pyannote[555].end 4593.87846875
transcript.pyannote[556].speaker SPEAKER_04
transcript.pyannote[556].start 4593.87846875
transcript.pyannote[556].end 4593.96284375
transcript.pyannote[557].speaker SPEAKER_23
transcript.pyannote[557].start 4593.96284375
transcript.pyannote[557].end 4594.23284375
transcript.pyannote[558].speaker SPEAKER_04
transcript.pyannote[558].start 4594.23284375
transcript.pyannote[558].end 4594.40159375
transcript.pyannote[559].speaker SPEAKER_23
transcript.pyannote[559].start 4594.40159375
transcript.pyannote[559].end 4621.46909375
transcript.pyannote[560].speaker SPEAKER_04
transcript.pyannote[560].start 4621.90784375
transcript.pyannote[560].end 4676.85284375
transcript.pyannote[561].speaker SPEAKER_04
transcript.pyannote[561].start 4677.29159375
transcript.pyannote[561].end 4698.97596875
transcript.pyannote[562].speaker SPEAKER_23
transcript.pyannote[562].start 4698.97596875
transcript.pyannote[562].end 4704.34221875
transcript.pyannote[563].speaker SPEAKER_23
transcript.pyannote[563].start 4705.75971875
transcript.pyannote[563].end 4726.71846875
transcript.pyannote[564].speaker SPEAKER_04
transcript.pyannote[564].start 4726.53284375
transcript.pyannote[564].end 4756.50284375
transcript.pyannote[565].speaker SPEAKER_04
transcript.pyannote[565].start 4756.63784375
transcript.pyannote[565].end 4758.40971875
transcript.pyannote[566].speaker SPEAKER_08
transcript.pyannote[566].start 4759.20284375
transcript.pyannote[566].end 4761.88596875
transcript.pyannote[567].speaker SPEAKER_08
transcript.pyannote[567].start 4762.10534375
transcript.pyannote[567].end 4765.02471875
transcript.pyannote[568].speaker SPEAKER_08
transcript.pyannote[568].start 4768.93971875
transcript.pyannote[568].end 4770.28971875
transcript.pyannote[569].speaker SPEAKER_02
transcript.pyannote[569].start 4773.78284375
transcript.pyannote[569].end 4779.38534375
transcript.pyannote[570].speaker SPEAKER_02
transcript.pyannote[570].start 4781.84909375
transcript.pyannote[570].end 4788.85221875
transcript.pyannote[571].speaker SPEAKER_02
transcript.pyannote[571].start 4789.56096875
transcript.pyannote[571].end 4792.58159375
transcript.pyannote[572].speaker SPEAKER_04
transcript.pyannote[572].start 4792.58159375
transcript.pyannote[572].end 4792.59846875
transcript.pyannote[573].speaker SPEAKER_02
transcript.pyannote[573].start 4794.25221875
transcript.pyannote[573].end 4794.35346875
transcript.pyannote[574].speaker SPEAKER_04
transcript.pyannote[574].start 4794.35346875
transcript.pyannote[574].end 4812.51096875
transcript.pyannote[575].speaker SPEAKER_02
transcript.pyannote[575].start 4811.05971875
transcript.pyannote[575].end 4811.49846875
transcript.pyannote[576].speaker SPEAKER_02
transcript.pyannote[576].start 4812.51096875
transcript.pyannote[576].end 4812.73034375
transcript.pyannote[577].speaker SPEAKER_04
transcript.pyannote[577].start 4812.73034375
transcript.pyannote[577].end 4813.11846875
transcript.pyannote[578].speaker SPEAKER_02
transcript.pyannote[578].start 4812.79784375
transcript.pyannote[578].end 4817.33721875
transcript.pyannote[579].speaker SPEAKER_04
transcript.pyannote[579].start 4817.33721875
transcript.pyannote[579].end 4826.71971875
transcript.pyannote[580].speaker SPEAKER_02
transcript.pyannote[580].start 4822.88909375
transcript.pyannote[580].end 4831.37721875
transcript.pyannote[581].speaker SPEAKER_02
transcript.pyannote[581].start 4832.08596875
transcript.pyannote[581].end 4844.53971875
transcript.pyannote[582].speaker SPEAKER_02
transcript.pyannote[582].start 4844.82659375
transcript.pyannote[582].end 4856.48721875
transcript.pyannote[583].speaker SPEAKER_02
transcript.pyannote[583].start 4857.11159375
transcript.pyannote[583].end 4859.49096875
transcript.pyannote[584].speaker SPEAKER_02
transcript.pyannote[584].start 4860.11534375
transcript.pyannote[584].end 4861.49909375
transcript.pyannote[585].speaker SPEAKER_04
transcript.pyannote[585].start 4861.49909375
transcript.pyannote[585].end 4878.30659375
transcript.pyannote[586].speaker SPEAKER_02
transcript.pyannote[586].start 4862.35971875
transcript.pyannote[586].end 4863.15284375
transcript.pyannote[587].speaker SPEAKER_02
transcript.pyannote[587].start 4870.03784375
transcript.pyannote[587].end 4870.39221875
transcript.pyannote[588].speaker SPEAKER_02
transcript.pyannote[588].start 4877.81721875
transcript.pyannote[588].end 4879.90971875
transcript.pyannote[589].speaker SPEAKER_02
transcript.pyannote[589].start 4880.16284375
transcript.pyannote[589].end 4887.04784375
transcript.pyannote[590].speaker SPEAKER_02
transcript.pyannote[590].start 4887.06471875
transcript.pyannote[590].end 4892.76846875
transcript.pyannote[591].speaker SPEAKER_02
transcript.pyannote[591].start 4893.34221875
transcript.pyannote[591].end 4904.44596875
transcript.pyannote[592].speaker SPEAKER_02
transcript.pyannote[592].start 4905.52596875
transcript.pyannote[592].end 4916.56221875
transcript.pyannote[593].speaker SPEAKER_16
transcript.pyannote[593].start 4905.66096875
transcript.pyannote[593].end 4905.93096875
transcript.pyannote[594].speaker SPEAKER_04
transcript.pyannote[594].start 4917.45659375
transcript.pyannote[594].end 4956.75846875
transcript.pyannote[595].speaker SPEAKER_02
transcript.pyannote[595].start 4953.56909375
transcript.pyannote[595].end 4954.95284375
transcript.pyannote[596].speaker SPEAKER_02
transcript.pyannote[596].start 4955.96534375
transcript.pyannote[596].end 4969.43159375
transcript.pyannote[597].speaker SPEAKER_02
transcript.pyannote[597].start 4969.71846875
transcript.pyannote[597].end 4989.27659375
transcript.pyannote[598].speaker SPEAKER_04
transcript.pyannote[598].start 4989.22596875
transcript.pyannote[598].end 4991.53784375
transcript.pyannote[599].speaker SPEAKER_02
transcript.pyannote[599].start 4991.20034375
transcript.pyannote[599].end 5003.83971875
transcript.pyannote[600].speaker SPEAKER_04
transcript.pyannote[600].start 5000.80221875
transcript.pyannote[600].end 5003.28284375
transcript.pyannote[601].speaker SPEAKER_02
transcript.pyannote[601].start 5004.68346875
transcript.pyannote[601].end 5009.79659375
transcript.pyannote[602].speaker SPEAKER_02
transcript.pyannote[602].start 5010.47159375
transcript.pyannote[602].end 5015.38221875
transcript.pyannote[603].speaker SPEAKER_02
transcript.pyannote[603].start 5015.56784375
transcript.pyannote[603].end 5017.18784375
transcript.pyannote[604].speaker SPEAKER_02
transcript.pyannote[604].start 5017.79534375
transcript.pyannote[604].end 5023.61721875
transcript.pyannote[605].speaker SPEAKER_02
transcript.pyannote[605].start 5023.75221875
transcript.pyannote[605].end 5025.92909375
transcript.pyannote[606].speaker SPEAKER_02
transcript.pyannote[606].start 5026.95846875
transcript.pyannote[606].end 5027.48159375
transcript.pyannote[607].speaker SPEAKER_02
transcript.pyannote[607].start 5028.27471875
transcript.pyannote[607].end 5029.43909375
transcript.pyannote[608].speaker SPEAKER_02
transcript.pyannote[608].start 5036.66159375
transcript.pyannote[608].end 5038.38284375
transcript.pyannote[609].speaker SPEAKER_02
transcript.pyannote[609].start 5039.39534375
transcript.pyannote[609].end 5041.42034375
transcript.pyannote[610].speaker SPEAKER_02
transcript.pyannote[610].start 5043.61409375
transcript.pyannote[610].end 5045.25096875
transcript.pyannote[611].speaker SPEAKER_02
transcript.pyannote[611].start 5046.44909375
transcript.pyannote[611].end 5050.39784375
transcript.pyannote[612].speaker SPEAKER_02
transcript.pyannote[612].start 5060.89409375
transcript.pyannote[612].end 5124.07409375
transcript.pyannote[613].speaker SPEAKER_02
transcript.pyannote[613].start 5124.61409375
transcript.pyannote[613].end 5127.83721875
transcript.pyannote[614].speaker SPEAKER_04
transcript.pyannote[614].start 5127.83721875
transcript.pyannote[614].end 5193.12659375
transcript.pyannote[615].speaker SPEAKER_02
transcript.pyannote[615].start 5190.39284375
transcript.pyannote[615].end 5190.78096875
transcript.pyannote[616].speaker SPEAKER_02
transcript.pyannote[616].start 5193.12659375
transcript.pyannote[616].end 5232.02346875
transcript.pyannote[617].speaker SPEAKER_04
transcript.pyannote[617].start 5232.02346875
transcript.pyannote[617].end 5232.54659375
transcript.pyannote[618].speaker SPEAKER_02
transcript.pyannote[618].start 5232.54659375
transcript.pyannote[618].end 5232.68159375
transcript.pyannote[619].speaker SPEAKER_04
transcript.pyannote[619].start 5232.68159375
transcript.pyannote[619].end 5232.73221875
transcript.pyannote[620].speaker SPEAKER_04
transcript.pyannote[620].start 5233.81221875
transcript.pyannote[620].end 5233.84596875
transcript.pyannote[621].speaker SPEAKER_04
transcript.pyannote[621].start 5234.16659375
transcript.pyannote[621].end 5296.18221875
transcript.pyannote[622].speaker SPEAKER_00
transcript.pyannote[622].start 5259.47909375
transcript.pyannote[622].end 5259.78284375
transcript.pyannote[623].speaker SPEAKER_02
transcript.pyannote[623].start 5296.43534375
transcript.pyannote[623].end 5297.02596875
transcript.pyannote[624].speaker SPEAKER_02
transcript.pyannote[624].start 5297.14409375
transcript.pyannote[624].end 5316.17909375
transcript.pyannote[625].speaker SPEAKER_02
transcript.pyannote[625].start 5316.55034375
transcript.pyannote[625].end 5327.35034375
transcript.pyannote[626].speaker SPEAKER_02
transcript.pyannote[626].start 5327.53596875
transcript.pyannote[626].end 5337.77909375
transcript.pyannote[627].speaker SPEAKER_02
transcript.pyannote[627].start 5339.51721875
transcript.pyannote[627].end 5344.81596875
transcript.pyannote[628].speaker SPEAKER_02
transcript.pyannote[628].start 5344.96784375
transcript.pyannote[628].end 5355.91971875
transcript.pyannote[629].speaker SPEAKER_04
transcript.pyannote[629].start 5355.91971875
transcript.pyannote[629].end 5371.98471875
transcript.pyannote[630].speaker SPEAKER_04
transcript.pyannote[630].start 5372.22096875
transcript.pyannote[630].end 5392.25159375
transcript.pyannote[631].speaker SPEAKER_02
transcript.pyannote[631].start 5391.23909375
transcript.pyannote[631].end 5405.31284375
transcript.pyannote[632].speaker SPEAKER_04
transcript.pyannote[632].start 5394.32721875
transcript.pyannote[632].end 5396.99346875
transcript.pyannote[633].speaker SPEAKER_02
transcript.pyannote[633].start 5406.02159375
transcript.pyannote[633].end 5419.09971875
transcript.pyannote[634].speaker SPEAKER_22
transcript.pyannote[634].start 5409.34596875
transcript.pyannote[634].end 5409.81846875
transcript.pyannote[635].speaker SPEAKER_00
transcript.pyannote[635].start 5411.15159375
transcript.pyannote[635].end 5412.78846875
transcript.pyannote[636].speaker SPEAKER_00
transcript.pyannote[636].start 5413.64909375
transcript.pyannote[636].end 5414.03721875
transcript.pyannote[637].speaker SPEAKER_04
transcript.pyannote[637].start 5414.03721875
transcript.pyannote[637].end 5414.66159375
transcript.pyannote[638].speaker SPEAKER_00
transcript.pyannote[638].start 5414.66159375
transcript.pyannote[638].end 5414.99909375
transcript.pyannote[639].speaker SPEAKER_02
transcript.pyannote[639].start 5420.50034375
transcript.pyannote[639].end 5421.02346875
transcript.pyannote[640].speaker SPEAKER_04
transcript.pyannote[640].start 5421.02346875
transcript.pyannote[640].end 5424.76971875
transcript.pyannote[641].speaker SPEAKER_04
transcript.pyannote[641].start 5425.00596875
transcript.pyannote[641].end 5425.41096875
transcript.pyannote[642].speaker SPEAKER_04
transcript.pyannote[642].start 5425.71471875
transcript.pyannote[642].end 5434.60784375
transcript.pyannote[643].speaker SPEAKER_02
transcript.pyannote[643].start 5434.01721875
transcript.pyannote[643].end 5442.03284375
transcript.pyannote[644].speaker SPEAKER_02
transcript.pyannote[644].start 5442.08346875
transcript.pyannote[644].end 5449.86284375
transcript.pyannote[645].speaker SPEAKER_04
transcript.pyannote[645].start 5449.64346875
transcript.pyannote[645].end 5463.10971875
transcript.pyannote[646].speaker SPEAKER_02
transcript.pyannote[646].start 5460.78096875
transcript.pyannote[646].end 5488.97909375
transcript.pyannote[647].speaker SPEAKER_00
transcript.pyannote[647].start 5476.37346875
transcript.pyannote[647].end 5476.39034375
transcript.pyannote[648].speaker SPEAKER_16
transcript.pyannote[648].start 5476.39034375
transcript.pyannote[648].end 5476.50846875
transcript.pyannote[649].speaker SPEAKER_00
transcript.pyannote[649].start 5476.50846875
transcript.pyannote[649].end 5476.52534375
transcript.pyannote[650].speaker SPEAKER_02
transcript.pyannote[650].start 5489.67096875
transcript.pyannote[650].end 5491.24034375
transcript.pyannote[651].speaker SPEAKER_02
transcript.pyannote[651].start 5491.84784375
transcript.pyannote[651].end 5498.19284375
transcript.pyannote[652].speaker SPEAKER_04
transcript.pyannote[652].start 5498.19284375
transcript.pyannote[652].end 5502.74909375
transcript.pyannote[653].speaker SPEAKER_02
transcript.pyannote[653].start 5498.64846875
transcript.pyannote[653].end 5498.98596875
transcript.pyannote[654].speaker SPEAKER_02
transcript.pyannote[654].start 5502.29346875
transcript.pyannote[654].end 5510.95034375
transcript.pyannote[655].speaker SPEAKER_04
transcript.pyannote[655].start 5503.45784375
transcript.pyannote[655].end 5504.36909375
transcript.pyannote[656].speaker SPEAKER_04
transcript.pyannote[656].start 5506.69784375
transcript.pyannote[656].end 5510.03909375
transcript.pyannote[657].speaker SPEAKER_12
transcript.pyannote[657].start 5510.03909375
transcript.pyannote[657].end 5511.94596875
transcript.pyannote[658].speaker SPEAKER_02
transcript.pyannote[658].start 5511.64221875
transcript.pyannote[658].end 5514.40971875
transcript.pyannote[659].speaker SPEAKER_12
transcript.pyannote[659].start 5513.02596875
transcript.pyannote[659].end 5513.21159375
transcript.pyannote[660].speaker SPEAKER_12
transcript.pyannote[660].start 5513.86971875
transcript.pyannote[660].end 5520.67034375
transcript.pyannote[661].speaker SPEAKER_05
transcript.pyannote[661].start 5528.82096875
transcript.pyannote[661].end 5530.37346875
transcript.pyannote[662].speaker SPEAKER_05
transcript.pyannote[662].start 5530.76159375
transcript.pyannote[662].end 5531.99346875
transcript.pyannote[663].speaker SPEAKER_05
transcript.pyannote[663].start 5535.77346875
transcript.pyannote[663].end 5536.41471875
transcript.pyannote[664].speaker SPEAKER_05
transcript.pyannote[664].start 5536.90409375
transcript.pyannote[664].end 5549.99909375
transcript.pyannote[665].speaker SPEAKER_04
transcript.pyannote[665].start 5551.75409375
transcript.pyannote[665].end 5567.97096875
transcript.pyannote[666].speaker SPEAKER_05
transcript.pyannote[666].start 5567.97096875
transcript.pyannote[666].end 5601.73784375
transcript.pyannote[667].speaker SPEAKER_04
transcript.pyannote[667].start 5602.17659375
transcript.pyannote[667].end 5615.42346875
transcript.pyannote[668].speaker SPEAKER_05
transcript.pyannote[668].start 5615.42346875
transcript.pyannote[668].end 5621.98784375
transcript.pyannote[669].speaker SPEAKER_04
transcript.pyannote[669].start 5622.15659375
transcript.pyannote[669].end 5628.97409375
transcript.pyannote[670].speaker SPEAKER_05
transcript.pyannote[670].start 5628.97409375
transcript.pyannote[670].end 5641.09034375
transcript.pyannote[671].speaker SPEAKER_04
transcript.pyannote[671].start 5642.05221875
transcript.pyannote[671].end 5646.00096875
transcript.pyannote[672].speaker SPEAKER_05
transcript.pyannote[672].start 5643.57096875
transcript.pyannote[672].end 5645.27534375
transcript.pyannote[673].speaker SPEAKER_05
transcript.pyannote[673].start 5646.11909375
transcript.pyannote[673].end 5661.03659375
transcript.pyannote[674].speaker SPEAKER_04
transcript.pyannote[674].start 5661.99846875
transcript.pyannote[674].end 5667.78659375
transcript.pyannote[675].speaker SPEAKER_05
transcript.pyannote[675].start 5667.87096875
transcript.pyannote[675].end 5673.37221875
transcript.pyannote[676].speaker SPEAKER_04
transcript.pyannote[676].start 5673.64221875
transcript.pyannote[676].end 5678.09721875
transcript.pyannote[677].speaker SPEAKER_05
transcript.pyannote[677].start 5676.71346875
transcript.pyannote[677].end 5681.43846875
transcript.pyannote[678].speaker SPEAKER_05
transcript.pyannote[678].start 5681.79284375
transcript.pyannote[678].end 5684.18909375
transcript.pyannote[679].speaker SPEAKER_05
transcript.pyannote[679].start 5684.94846875
transcript.pyannote[679].end 5685.96096875
transcript.pyannote[680].speaker SPEAKER_05
transcript.pyannote[680].start 5689.13346875
transcript.pyannote[680].end 5696.57534375
transcript.pyannote[681].speaker SPEAKER_05
transcript.pyannote[681].start 5697.13221875
transcript.pyannote[681].end 5701.18221875
transcript.pyannote[682].speaker SPEAKER_04
transcript.pyannote[682].start 5702.70096875
transcript.pyannote[682].end 5708.77596875
transcript.pyannote[683].speaker SPEAKER_04
transcript.pyannote[683].start 5708.86034375
transcript.pyannote[683].end 5716.79159375
transcript.pyannote[684].speaker SPEAKER_05
transcript.pyannote[684].start 5715.79596875
transcript.pyannote[684].end 5722.07346875
transcript.pyannote[685].speaker SPEAKER_05
transcript.pyannote[685].start 5723.13659375
transcript.pyannote[685].end 5723.54159375
transcript.pyannote[686].speaker SPEAKER_05
transcript.pyannote[686].start 5723.86221875
transcript.pyannote[686].end 5753.57909375
transcript.pyannote[687].speaker SPEAKER_05
transcript.pyannote[687].start 5754.42284375
transcript.pyannote[687].end 5768.78346875
transcript.pyannote[688].speaker SPEAKER_04
transcript.pyannote[688].start 5769.15471875
transcript.pyannote[688].end 5769.62721875
transcript.pyannote[689].speaker SPEAKER_05
transcript.pyannote[689].start 5769.66096875
transcript.pyannote[689].end 5771.01096875
transcript.pyannote[690].speaker SPEAKER_05
transcript.pyannote[690].start 5771.71971875
transcript.pyannote[690].end 5799.81659375
transcript.pyannote[691].speaker SPEAKER_05
transcript.pyannote[691].start 5800.25534375
transcript.pyannote[691].end 5800.99784375
transcript.pyannote[692].speaker SPEAKER_05
transcript.pyannote[692].start 5801.26784375
transcript.pyannote[692].end 5806.11096875
transcript.pyannote[693].speaker SPEAKER_04
transcript.pyannote[693].start 5806.27971875
transcript.pyannote[693].end 5814.46409375
transcript.pyannote[694].speaker SPEAKER_05
transcript.pyannote[694].start 5813.94096875
transcript.pyannote[694].end 5816.15159375
transcript.pyannote[695].speaker SPEAKER_04
transcript.pyannote[695].start 5815.69596875
transcript.pyannote[695].end 5840.16471875
transcript.pyannote[696].speaker SPEAKER_05
transcript.pyannote[696].start 5839.48971875
transcript.pyannote[696].end 5846.72909375
transcript.pyannote[697].speaker SPEAKER_05
transcript.pyannote[697].start 5847.52221875
transcript.pyannote[697].end 5852.11221875
transcript.pyannote[698].speaker SPEAKER_05
transcript.pyannote[698].start 5852.75346875
transcript.pyannote[698].end 5857.30971875
transcript.pyannote[699].speaker SPEAKER_05
transcript.pyannote[699].start 5857.59659375
transcript.pyannote[699].end 5863.68846875
transcript.pyannote[700].speaker SPEAKER_05
transcript.pyannote[700].start 5863.82346875
transcript.pyannote[700].end 5877.39096875
transcript.pyannote[701].speaker SPEAKER_05
transcript.pyannote[701].start 5878.09971875
transcript.pyannote[701].end 5882.52096875
transcript.pyannote[702].speaker SPEAKER_05
transcript.pyannote[702].start 5882.79096875
transcript.pyannote[702].end 5883.43221875
transcript.pyannote[703].speaker SPEAKER_05
transcript.pyannote[703].start 5884.25909375
transcript.pyannote[703].end 5906.12909375
transcript.pyannote[704].speaker SPEAKER_05
transcript.pyannote[704].start 5907.41159375
transcript.pyannote[704].end 5911.47846875
transcript.pyannote[705].speaker SPEAKER_05
transcript.pyannote[705].start 5912.60909375
transcript.pyannote[705].end 5913.21659375
transcript.pyannote[706].speaker SPEAKER_05
transcript.pyannote[706].start 5913.48659375
transcript.pyannote[706].end 5914.19534375
transcript.pyannote[707].speaker SPEAKER_05
transcript.pyannote[707].start 5914.36409375
transcript.pyannote[707].end 5927.03721875
transcript.pyannote[708].speaker SPEAKER_05
transcript.pyannote[708].start 5927.37471875
transcript.pyannote[708].end 5934.46221875
transcript.pyannote[709].speaker SPEAKER_05
transcript.pyannote[709].start 5934.88409375
transcript.pyannote[709].end 5936.18346875
transcript.pyannote[710].speaker SPEAKER_05
transcript.pyannote[710].start 5936.57159375
transcript.pyannote[710].end 5941.95471875
transcript.pyannote[711].speaker SPEAKER_04
transcript.pyannote[711].start 5943.79409375
transcript.pyannote[711].end 5957.51346875
transcript.pyannote[712].speaker SPEAKER_05
transcript.pyannote[712].start 5946.27471875
transcript.pyannote[712].end 5946.54471875
transcript.pyannote[713].speaker SPEAKER_00
transcript.pyannote[713].start 5951.79284375
transcript.pyannote[713].end 5953.12596875
transcript.pyannote[714].speaker SPEAKER_00
transcript.pyannote[714].start 5953.51409375
transcript.pyannote[714].end 5953.85159375
transcript.pyannote[715].speaker SPEAKER_04
transcript.pyannote[715].start 5958.05346875
transcript.pyannote[715].end 5960.70284375
transcript.pyannote[716].speaker SPEAKER_04
transcript.pyannote[716].start 5960.98971875
transcript.pyannote[716].end 5961.36096875
transcript.pyannote[717].speaker SPEAKER_04
transcript.pyannote[717].start 5961.63096875
transcript.pyannote[717].end 5964.97221875
transcript.pyannote[718].speaker SPEAKER_05
transcript.pyannote[718].start 5964.39846875
transcript.pyannote[718].end 5964.83721875
transcript.pyannote[719].speaker SPEAKER_05
transcript.pyannote[719].start 5964.97221875
transcript.pyannote[719].end 5965.27596875
transcript.pyannote[720].speaker SPEAKER_04
transcript.pyannote[720].start 5965.27596875
transcript.pyannote[720].end 5965.52909375
transcript.pyannote[721].speaker SPEAKER_05
transcript.pyannote[721].start 5965.52909375
transcript.pyannote[721].end 5970.23721875
transcript.pyannote[722].speaker SPEAKER_05
transcript.pyannote[722].start 5970.77721875
transcript.pyannote[722].end 5976.54846875
transcript.pyannote[723].speaker SPEAKER_17
transcript.pyannote[723].start 5976.95346875
transcript.pyannote[723].end 5977.44284375
transcript.pyannote[724].speaker SPEAKER_05
transcript.pyannote[724].start 5977.44284375
transcript.pyannote[724].end 6009.18471875
transcript.pyannote[725].speaker SPEAKER_05
transcript.pyannote[725].start 6009.97784375
transcript.pyannote[725].end 6014.75346875
transcript.pyannote[726].speaker SPEAKER_05
transcript.pyannote[726].start 6014.92221875
transcript.pyannote[726].end 6016.17096875
transcript.pyannote[727].speaker SPEAKER_04
transcript.pyannote[727].start 6017.06534375
transcript.pyannote[727].end 6023.96721875
transcript.pyannote[728].speaker SPEAKER_05
transcript.pyannote[728].start 6023.96721875
transcript.pyannote[728].end 6045.76971875
transcript.pyannote[729].speaker SPEAKER_22
transcript.pyannote[729].start 6033.99096875
transcript.pyannote[729].end 6034.02471875
transcript.pyannote[730].speaker SPEAKER_16
transcript.pyannote[730].start 6034.02471875
transcript.pyannote[730].end 6034.63221875
transcript.pyannote[731].speaker SPEAKER_22
transcript.pyannote[731].start 6034.63221875
transcript.pyannote[731].end 6034.64909375
transcript.pyannote[732].speaker SPEAKER_04
transcript.pyannote[732].start 6045.76971875
transcript.pyannote[732].end 6046.20846875
transcript.pyannote[733].speaker SPEAKER_05
transcript.pyannote[733].start 6046.15784375
transcript.pyannote[733].end 6061.78409375
transcript.pyannote[734].speaker SPEAKER_04
transcript.pyannote[734].start 6062.91471875
transcript.pyannote[734].end 6072.76971875
transcript.pyannote[735].speaker SPEAKER_05
transcript.pyannote[735].start 6072.76971875
transcript.pyannote[735].end 6075.72284375
transcript.pyannote[736].speaker SPEAKER_05
transcript.pyannote[736].start 6075.97596875
transcript.pyannote[736].end 6086.01659375
transcript.pyannote[737].speaker SPEAKER_04
transcript.pyannote[737].start 6076.63409375
transcript.pyannote[737].end 6077.22471875
transcript.pyannote[738].speaker SPEAKER_05
transcript.pyannote[738].start 6087.45096875
transcript.pyannote[738].end 6105.54096875
transcript.pyannote[739].speaker SPEAKER_04
transcript.pyannote[739].start 6106.14846875
transcript.pyannote[739].end 6112.79721875
transcript.pyannote[740].speaker SPEAKER_05
transcript.pyannote[740].start 6111.97034375
transcript.pyannote[740].end 6116.02034375
transcript.pyannote[741].speaker SPEAKER_04
transcript.pyannote[741].start 6116.76284375
transcript.pyannote[741].end 6117.97784375
transcript.pyannote[742].speaker SPEAKER_05
transcript.pyannote[742].start 6117.97784375
transcript.pyannote[742].end 6124.79534375
transcript.pyannote[743].speaker SPEAKER_04
transcript.pyannote[743].start 6118.07909375
transcript.pyannote[743].end 6119.04096875
transcript.pyannote[744].speaker SPEAKER_05
transcript.pyannote[744].start 6126.46596875
transcript.pyannote[744].end 6126.48284375
transcript.pyannote[745].speaker SPEAKER_04
transcript.pyannote[745].start 6126.48284375
transcript.pyannote[745].end 6131.79846875
transcript.pyannote[746].speaker SPEAKER_05
transcript.pyannote[746].start 6131.79846875
transcript.pyannote[746].end 6141.28221875
transcript.pyannote[747].speaker SPEAKER_05
transcript.pyannote[747].start 6142.59846875
transcript.pyannote[747].end 6146.02409375
transcript.pyannote[748].speaker SPEAKER_05
transcript.pyannote[748].start 6146.27721875
transcript.pyannote[748].end 6148.77471875
transcript.pyannote[749].speaker SPEAKER_05
transcript.pyannote[749].start 6148.89284375
transcript.pyannote[749].end 6149.87159375
transcript.pyannote[750].speaker SPEAKER_05
transcript.pyannote[750].start 6151.12034375
transcript.pyannote[750].end 6165.48096875
transcript.pyannote[751].speaker SPEAKER_05
transcript.pyannote[751].start 6166.34159375
transcript.pyannote[751].end 6170.42534375
transcript.pyannote[752].speaker SPEAKER_04
transcript.pyannote[752].start 6171.18471875
transcript.pyannote[752].end 6176.97284375
transcript.pyannote[753].speaker SPEAKER_05
transcript.pyannote[753].start 6176.97284375
transcript.pyannote[753].end 6183.28409375
transcript.pyannote[754].speaker SPEAKER_04
transcript.pyannote[754].start 6181.66409375
transcript.pyannote[754].end 6181.74846875
transcript.pyannote[755].speaker SPEAKER_04
transcript.pyannote[755].start 6181.84971875
transcript.pyannote[755].end 6188.54909375
transcript.pyannote[756].speaker SPEAKER_04
transcript.pyannote[756].start 6189.15659375
transcript.pyannote[756].end 6189.96659375
transcript.pyannote[757].speaker SPEAKER_05
transcript.pyannote[757].start 6189.96659375
transcript.pyannote[757].end 6192.17721875
transcript.pyannote[758].speaker SPEAKER_05
transcript.pyannote[758].start 6192.93659375
transcript.pyannote[758].end 6218.29971875
transcript.pyannote[759].speaker SPEAKER_05
transcript.pyannote[759].start 6218.46846875
transcript.pyannote[759].end 6222.23159375
transcript.pyannote[760].speaker SPEAKER_12
transcript.pyannote[760].start 6222.23159375
transcript.pyannote[760].end 6222.65346875
transcript.pyannote[761].speaker SPEAKER_05
transcript.pyannote[761].start 6222.65346875
transcript.pyannote[761].end 6222.68721875
transcript.pyannote[762].speaker SPEAKER_12
transcript.pyannote[762].start 6222.68721875
transcript.pyannote[762].end 6229.09971875
transcript.pyannote[763].speaker SPEAKER_08
transcript.pyannote[763].start 6240.35534375
transcript.pyannote[763].end 6241.97534375
transcript.pyannote[764].speaker SPEAKER_08
transcript.pyannote[764].start 6242.24534375
transcript.pyannote[764].end 6246.16034375
transcript.pyannote[765].speaker SPEAKER_08
transcript.pyannote[765].start 6246.31221875
transcript.pyannote[765].end 6252.50534375
transcript.pyannote[766].speaker SPEAKER_12
transcript.pyannote[766].start 6249.28221875
transcript.pyannote[766].end 6249.97409375
transcript.pyannote[767].speaker SPEAKER_08
transcript.pyannote[767].start 6252.55596875
transcript.pyannote[767].end 6257.02784375
transcript.pyannote[768].speaker SPEAKER_12
transcript.pyannote[768].start 6252.64034375
transcript.pyannote[768].end 6253.99034375
transcript.pyannote[769].speaker SPEAKER_12
transcript.pyannote[769].start 6254.49659375
transcript.pyannote[769].end 6255.05346875
transcript.pyannote[770].speaker SPEAKER_12
transcript.pyannote[770].start 6257.34846875
transcript.pyannote[770].end 6260.38596875
transcript.pyannote[771].speaker SPEAKER_08
transcript.pyannote[771].start 6269.11034375
transcript.pyannote[771].end 6273.10971875
transcript.pyannote[772].speaker SPEAKER_00
transcript.pyannote[772].start 6270.96659375
transcript.pyannote[772].end 6272.26596875
transcript.pyannote[773].speaker SPEAKER_08
transcript.pyannote[773].start 6273.54846875
transcript.pyannote[773].end 6279.92721875
transcript.pyannote[774].speaker SPEAKER_08
transcript.pyannote[774].start 6281.49659375
transcript.pyannote[774].end 6282.08721875
transcript.pyannote[775].speaker SPEAKER_04
transcript.pyannote[775].start 6282.08721875
transcript.pyannote[775].end 6282.30659375
transcript.pyannote[776].speaker SPEAKER_08
transcript.pyannote[776].start 6282.30659375
transcript.pyannote[776].end 6284.09534375
transcript.pyannote[777].speaker SPEAKER_04
transcript.pyannote[777].start 6282.34034375
transcript.pyannote[777].end 6283.09971875
transcript.pyannote[778].speaker SPEAKER_08
transcript.pyannote[778].start 6284.43284375
transcript.pyannote[778].end 6290.45721875
transcript.pyannote[779].speaker SPEAKER_04
transcript.pyannote[779].start 6291.65534375
transcript.pyannote[779].end 6293.35971875
transcript.pyannote[780].speaker SPEAKER_04
transcript.pyannote[780].start 6294.59159375
transcript.pyannote[780].end 6295.95846875
transcript.pyannote[781].speaker SPEAKER_08
transcript.pyannote[781].start 6295.65471875
transcript.pyannote[781].end 6298.54034375
transcript.pyannote[782].speaker SPEAKER_08
transcript.pyannote[782].start 6298.70909375
transcript.pyannote[782].end 6298.81034375
transcript.pyannote[783].speaker SPEAKER_04
transcript.pyannote[783].start 6298.81034375
transcript.pyannote[783].end 6299.58659375
transcript.pyannote[784].speaker SPEAKER_08
transcript.pyannote[784].start 6299.58659375
transcript.pyannote[784].end 6300.97034375
transcript.pyannote[785].speaker SPEAKER_04
transcript.pyannote[785].start 6299.60346875
transcript.pyannote[785].end 6300.34596875
transcript.pyannote[786].speaker SPEAKER_08
transcript.pyannote[786].start 6301.44284375
transcript.pyannote[786].end 6301.45971875
transcript.pyannote[787].speaker SPEAKER_04
transcript.pyannote[787].start 6301.45971875
transcript.pyannote[787].end 6301.93221875
transcript.pyannote[788].speaker SPEAKER_08
transcript.pyannote[788].start 6301.93221875
transcript.pyannote[788].end 6302.03346875
transcript.pyannote[789].speaker SPEAKER_04
transcript.pyannote[789].start 6302.03346875
transcript.pyannote[789].end 6303.06284375
transcript.pyannote[790].speaker SPEAKER_08
transcript.pyannote[790].start 6303.06284375
transcript.pyannote[790].end 6303.68721875
transcript.pyannote[791].speaker SPEAKER_08
transcript.pyannote[791].start 6304.19346875
transcript.pyannote[791].end 6306.69096875
transcript.pyannote[792].speaker SPEAKER_08
transcript.pyannote[792].start 6306.92721875
transcript.pyannote[792].end 6308.46284375
transcript.pyannote[793].speaker SPEAKER_08
transcript.pyannote[793].start 6308.85096875
transcript.pyannote[793].end 6311.39909375
transcript.pyannote[794].speaker SPEAKER_08
transcript.pyannote[794].start 6311.87159375
transcript.pyannote[794].end 6315.38159375
transcript.pyannote[795].speaker SPEAKER_08
transcript.pyannote[795].start 6315.65159375
transcript.pyannote[795].end 6316.20846875
transcript.pyannote[796].speaker SPEAKER_04
transcript.pyannote[796].start 6316.20846875
transcript.pyannote[796].end 6316.63034375
transcript.pyannote[797].speaker SPEAKER_08
transcript.pyannote[797].start 6316.63034375
transcript.pyannote[797].end 6318.67221875
transcript.pyannote[798].speaker SPEAKER_08
transcript.pyannote[798].start 6319.00971875
transcript.pyannote[798].end 6320.95034375
transcript.pyannote[799].speaker SPEAKER_08
transcript.pyannote[799].start 6321.47346875
transcript.pyannote[799].end 6323.44784375
transcript.pyannote[800].speaker SPEAKER_08
transcript.pyannote[800].start 6323.63346875
transcript.pyannote[800].end 6339.79971875
transcript.pyannote[801].speaker SPEAKER_04
transcript.pyannote[801].start 6340.94721875
transcript.pyannote[801].end 6344.35596875
transcript.pyannote[802].speaker SPEAKER_08
transcript.pyannote[802].start 6343.79909375
transcript.pyannote[802].end 6351.98346875
transcript.pyannote[803].speaker SPEAKER_04
transcript.pyannote[803].start 6353.08034375
transcript.pyannote[803].end 6357.65346875
transcript.pyannote[804].speaker SPEAKER_08
transcript.pyannote[804].start 6354.90284375
transcript.pyannote[804].end 6363.07034375
transcript.pyannote[805].speaker SPEAKER_08
transcript.pyannote[805].start 6363.35721875
transcript.pyannote[805].end 6376.46909375
transcript.pyannote[806].speaker SPEAKER_08
transcript.pyannote[806].start 6377.26221875
transcript.pyannote[806].end 6377.63346875
transcript.pyannote[807].speaker SPEAKER_08
transcript.pyannote[807].start 6379.03409375
transcript.pyannote[807].end 6384.48471875
transcript.pyannote[808].speaker SPEAKER_04
transcript.pyannote[808].start 6380.72159375
transcript.pyannote[808].end 6381.63284375
transcript.pyannote[809].speaker SPEAKER_08
transcript.pyannote[809].start 6385.21034375
transcript.pyannote[809].end 6386.07096875
transcript.pyannote[810].speaker SPEAKER_08
transcript.pyannote[810].start 6386.27346875
transcript.pyannote[810].end 6388.92284375
transcript.pyannote[811].speaker SPEAKER_08
transcript.pyannote[811].start 6393.85034375
transcript.pyannote[811].end 6396.17909375
transcript.pyannote[812].speaker SPEAKER_08
transcript.pyannote[812].start 6396.34784375
transcript.pyannote[812].end 6400.75221875
transcript.pyannote[813].speaker SPEAKER_08
transcript.pyannote[813].start 6400.98846875
transcript.pyannote[813].end 6404.68409375
transcript.pyannote[814].speaker SPEAKER_08
transcript.pyannote[814].start 6405.05534375
transcript.pyannote[814].end 6405.86534375
transcript.pyannote[815].speaker SPEAKER_08
transcript.pyannote[815].start 6406.65846875
transcript.pyannote[815].end 6408.05909375
transcript.pyannote[816].speaker SPEAKER_17
transcript.pyannote[816].start 6409.17284375
transcript.pyannote[816].end 6412.54784375
transcript.pyannote[817].speaker SPEAKER_08
transcript.pyannote[817].start 6412.54784375
transcript.pyannote[817].end 6413.00346875
transcript.pyannote[818].speaker SPEAKER_17
transcript.pyannote[818].start 6413.00346875
transcript.pyannote[818].end 6413.02034375
transcript.pyannote[819].speaker SPEAKER_08
transcript.pyannote[819].start 6413.02034375
transcript.pyannote[819].end 6413.07096875
transcript.pyannote[820].speaker SPEAKER_17
transcript.pyannote[820].start 6413.07096875
transcript.pyannote[820].end 6414.28596875
transcript.pyannote[821].speaker SPEAKER_08
transcript.pyannote[821].start 6413.76284375
transcript.pyannote[821].end 6419.51721875
transcript.pyannote[822].speaker SPEAKER_17
transcript.pyannote[822].start 6419.88846875
transcript.pyannote[822].end 6420.46221875
transcript.pyannote[823].speaker SPEAKER_08
transcript.pyannote[823].start 6420.46221875
transcript.pyannote[823].end 6422.58846875
transcript.pyannote[824].speaker SPEAKER_17
transcript.pyannote[824].start 6420.51284375
transcript.pyannote[824].end 6425.28846875
transcript.pyannote[825].speaker SPEAKER_17
transcript.pyannote[825].start 6425.35596875
transcript.pyannote[825].end 6426.01409375
transcript.pyannote[826].speaker SPEAKER_08
transcript.pyannote[826].start 6426.01409375
transcript.pyannote[826].end 6426.73971875
transcript.pyannote[827].speaker SPEAKER_17
transcript.pyannote[827].start 6426.73971875
transcript.pyannote[827].end 6427.14471875
transcript.pyannote[828].speaker SPEAKER_08
transcript.pyannote[828].start 6427.66784375
transcript.pyannote[828].end 6446.83784375
transcript.pyannote[829].speaker SPEAKER_08
transcript.pyannote[829].start 6447.10784375
transcript.pyannote[829].end 6450.16221875
transcript.pyannote[830].speaker SPEAKER_08
transcript.pyannote[830].start 6450.29721875
transcript.pyannote[830].end 6452.76096875
transcript.pyannote[831].speaker SPEAKER_08
transcript.pyannote[831].start 6453.25034375
transcript.pyannote[831].end 6455.00534375
transcript.pyannote[832].speaker SPEAKER_08
transcript.pyannote[832].start 6455.61284375
transcript.pyannote[832].end 6456.86159375
transcript.pyannote[833].speaker SPEAKER_08
transcript.pyannote[833].start 6457.19909375
transcript.pyannote[833].end 6458.73471875
transcript.pyannote[834].speaker SPEAKER_04
transcript.pyannote[834].start 6459.51096875
transcript.pyannote[834].end 6461.60346875
transcript.pyannote[835].speaker SPEAKER_04
transcript.pyannote[835].start 6461.89034375
transcript.pyannote[835].end 6462.63284375
transcript.pyannote[836].speaker SPEAKER_08
transcript.pyannote[836].start 6462.04221875
transcript.pyannote[836].end 6462.61596875
transcript.pyannote[837].speaker SPEAKER_08
transcript.pyannote[837].start 6462.63284375
transcript.pyannote[837].end 6462.90284375
transcript.pyannote[838].speaker SPEAKER_04
transcript.pyannote[838].start 6462.90284375
transcript.pyannote[838].end 6463.05471875
transcript.pyannote[839].speaker SPEAKER_04
transcript.pyannote[839].start 6463.20659375
transcript.pyannote[839].end 6464.57346875
transcript.pyannote[840].speaker SPEAKER_04
transcript.pyannote[840].start 6464.70846875
transcript.pyannote[840].end 6468.77534375
transcript.pyannote[841].speaker SPEAKER_08
transcript.pyannote[841].start 6467.27346875
transcript.pyannote[841].end 6467.96534375
transcript.pyannote[842].speaker SPEAKER_04
transcript.pyannote[842].start 6469.31534375
transcript.pyannote[842].end 6479.79471875
transcript.pyannote[843].speaker SPEAKER_08
transcript.pyannote[843].start 6471.12096875
transcript.pyannote[843].end 6471.25596875
transcript.pyannote[844].speaker SPEAKER_08
transcript.pyannote[844].start 6476.57159375
transcript.pyannote[844].end 6477.56721875
transcript.pyannote[845].speaker SPEAKER_08
transcript.pyannote[845].start 6478.73159375
transcript.pyannote[845].end 6482.59596875
transcript.pyannote[846].speaker SPEAKER_04
transcript.pyannote[846].start 6482.98409375
transcript.pyannote[846].end 6487.65846875
transcript.pyannote[847].speaker SPEAKER_08
transcript.pyannote[847].start 6487.65846875
transcript.pyannote[847].end 6487.69221875
transcript.pyannote[848].speaker SPEAKER_04
transcript.pyannote[848].start 6488.24909375
transcript.pyannote[848].end 6488.97471875
transcript.pyannote[849].speaker SPEAKER_08
transcript.pyannote[849].start 6488.97471875
transcript.pyannote[849].end 6491.53971875
transcript.pyannote[850].speaker SPEAKER_08
transcript.pyannote[850].start 6491.82659375
transcript.pyannote[850].end 6498.55971875
transcript.pyannote[851].speaker SPEAKER_08
transcript.pyannote[851].start 6498.67784375
transcript.pyannote[851].end 6504.98909375
transcript.pyannote[852].speaker SPEAKER_08
transcript.pyannote[852].start 6505.29284375
transcript.pyannote[852].end 6508.29659375
transcript.pyannote[853].speaker SPEAKER_08
transcript.pyannote[853].start 6508.76909375
transcript.pyannote[853].end 6510.42284375
transcript.pyannote[854].speaker SPEAKER_17
transcript.pyannote[854].start 6511.57034375
transcript.pyannote[854].end 6512.27909375
transcript.pyannote[855].speaker SPEAKER_08
transcript.pyannote[855].start 6512.34659375
transcript.pyannote[855].end 6513.52784375
transcript.pyannote[856].speaker SPEAKER_08
transcript.pyannote[856].start 6513.88221875
transcript.pyannote[856].end 6526.74096875
transcript.pyannote[857].speaker SPEAKER_08
transcript.pyannote[857].start 6526.97721875
transcript.pyannote[857].end 6527.61846875
transcript.pyannote[858].speaker SPEAKER_08
transcript.pyannote[858].start 6527.73659375
transcript.pyannote[858].end 6531.07784375
transcript.pyannote[859].speaker SPEAKER_17
transcript.pyannote[859].start 6532.56284375
transcript.pyannote[859].end 6543.78471875
transcript.pyannote[860].speaker SPEAKER_17
transcript.pyannote[860].start 6544.54409375
transcript.pyannote[860].end 6545.13471875
transcript.pyannote[861].speaker SPEAKER_17
transcript.pyannote[861].start 6545.35409375
transcript.pyannote[861].end 6553.43721875
transcript.pyannote[862].speaker SPEAKER_17
transcript.pyannote[862].start 6554.24721875
transcript.pyannote[862].end 6555.15846875
transcript.pyannote[863].speaker SPEAKER_06
transcript.pyannote[863].start 6554.26409375
transcript.pyannote[863].end 6555.14159375
transcript.pyannote[864].speaker SPEAKER_06
transcript.pyannote[864].start 6555.15846875
transcript.pyannote[864].end 6555.42846875
transcript.pyannote[865].speaker SPEAKER_17
transcript.pyannote[865].start 6555.42846875
transcript.pyannote[865].end 6559.69784375
transcript.pyannote[866].speaker SPEAKER_06
transcript.pyannote[866].start 6556.44096875
transcript.pyannote[866].end 6557.48721875
transcript.pyannote[867].speaker SPEAKER_08
transcript.pyannote[867].start 6558.16221875
transcript.pyannote[867].end 6558.63471875
transcript.pyannote[868].speaker SPEAKER_08
transcript.pyannote[868].start 6559.69784375
transcript.pyannote[868].end 6565.28346875
transcript.pyannote[869].speaker SPEAKER_08
transcript.pyannote[869].start 6565.67159375
transcript.pyannote[869].end 6587.38971875
transcript.pyannote[870].speaker SPEAKER_00
transcript.pyannote[870].start 6573.33284375
transcript.pyannote[870].end 6573.67034375
transcript.pyannote[871].speaker SPEAKER_00
transcript.pyannote[871].start 6575.89784375
transcript.pyannote[871].end 6575.93159375
transcript.pyannote[872].speaker SPEAKER_22
transcript.pyannote[872].start 6575.93159375
transcript.pyannote[872].end 6576.15096875
transcript.pyannote[873].speaker SPEAKER_00
transcript.pyannote[873].start 6576.15096875
transcript.pyannote[873].end 6576.16784375
transcript.pyannote[874].speaker SPEAKER_08
transcript.pyannote[874].start 6587.40659375
transcript.pyannote[874].end 6587.44034375
transcript.pyannote[875].speaker SPEAKER_16
transcript.pyannote[875].start 6587.44034375
transcript.pyannote[875].end 6587.45721875
transcript.pyannote[876].speaker SPEAKER_17
transcript.pyannote[876].start 6587.45721875
transcript.pyannote[876].end 6587.77784375
transcript.pyannote[877].speaker SPEAKER_08
transcript.pyannote[877].start 6587.74409375
transcript.pyannote[877].end 6588.57096875
transcript.pyannote[878].speaker SPEAKER_08
transcript.pyannote[878].start 6589.09409375
transcript.pyannote[878].end 6591.64221875
transcript.pyannote[879].speaker SPEAKER_17
transcript.pyannote[879].start 6591.74346875
transcript.pyannote[879].end 6592.06409375
transcript.pyannote[880].speaker SPEAKER_08
transcript.pyannote[880].start 6592.19909375
transcript.pyannote[880].end 6592.72221875
transcript.pyannote[881].speaker SPEAKER_08
transcript.pyannote[881].start 6593.04284375
transcript.pyannote[881].end 6595.54034375
transcript.pyannote[882].speaker SPEAKER_04
transcript.pyannote[882].start 6596.63721875
transcript.pyannote[882].end 6616.19534375
transcript.pyannote[883].speaker SPEAKER_08
transcript.pyannote[883].start 6615.94221875
transcript.pyannote[883].end 6616.17846875
transcript.pyannote[884].speaker SPEAKER_08
transcript.pyannote[884].start 6616.19534375
transcript.pyannote[884].end 6616.29659375
transcript.pyannote[885].speaker SPEAKER_04
transcript.pyannote[885].start 6616.29659375
transcript.pyannote[885].end 6616.92096875
transcript.pyannote[886].speaker SPEAKER_08
transcript.pyannote[886].start 6616.92096875
transcript.pyannote[886].end 6617.30909375
transcript.pyannote[887].speaker SPEAKER_04
transcript.pyannote[887].start 6617.30909375
transcript.pyannote[887].end 6617.32596875
transcript.pyannote[888].speaker SPEAKER_08
transcript.pyannote[888].start 6617.32596875
transcript.pyannote[888].end 6617.35971875
transcript.pyannote[889].speaker SPEAKER_08
transcript.pyannote[889].start 6617.62971875
transcript.pyannote[889].end 6619.43534375
transcript.pyannote[890].speaker SPEAKER_08
transcript.pyannote[890].start 6619.75596875
transcript.pyannote[890].end 6625.45971875
transcript.pyannote[891].speaker SPEAKER_01
transcript.pyannote[891].start 6625.32471875
transcript.pyannote[891].end 6625.69596875
transcript.pyannote[892].speaker SPEAKER_08
transcript.pyannote[892].start 6625.51034375
transcript.pyannote[892].end 6637.03596875
transcript.pyannote[893].speaker SPEAKER_08
transcript.pyannote[893].start 6637.08659375
transcript.pyannote[893].end 6640.95096875
transcript.pyannote[894].speaker SPEAKER_17
transcript.pyannote[894].start 6641.22096875
transcript.pyannote[894].end 6641.52471875
transcript.pyannote[895].speaker SPEAKER_08
transcript.pyannote[895].start 6641.52471875
transcript.pyannote[895].end 6643.34721875
transcript.pyannote[896].speaker SPEAKER_17
transcript.pyannote[896].start 6643.34721875
transcript.pyannote[896].end 6651.31221875
transcript.pyannote[897].speaker SPEAKER_08
transcript.pyannote[897].start 6649.30409375
transcript.pyannote[897].end 6650.90721875
transcript.pyannote[898].speaker SPEAKER_08
transcript.pyannote[898].start 6651.31221875
transcript.pyannote[898].end 6651.32909375
transcript.pyannote[899].speaker SPEAKER_17
transcript.pyannote[899].start 6651.32909375
transcript.pyannote[899].end 6653.94471875
transcript.pyannote[900].speaker SPEAKER_08
transcript.pyannote[900].start 6653.30346875
transcript.pyannote[900].end 6668.74409375
transcript.pyannote[901].speaker SPEAKER_17
transcript.pyannote[901].start 6659.34471875
transcript.pyannote[901].end 6659.74971875
transcript.pyannote[902].speaker SPEAKER_17
transcript.pyannote[902].start 6664.28909375
transcript.pyannote[902].end 6664.64346875
transcript.pyannote[903].speaker SPEAKER_08
transcript.pyannote[903].start 6670.22909375
transcript.pyannote[903].end 6685.73721875
transcript.pyannote[904].speaker SPEAKER_08
transcript.pyannote[904].start 6686.15909375
transcript.pyannote[904].end 6688.16721875
transcript.pyannote[905].speaker SPEAKER_18
transcript.pyannote[905].start 6690.17534375
transcript.pyannote[905].end 6697.39784375
transcript.pyannote[906].speaker SPEAKER_08
transcript.pyannote[906].start 6696.60471875
transcript.pyannote[906].end 6699.62534375
transcript.pyannote[907].speaker SPEAKER_08
transcript.pyannote[907].start 6699.72659375
transcript.pyannote[907].end 6700.97534375
transcript.pyannote[908].speaker SPEAKER_08
transcript.pyannote[908].start 6701.26221875
transcript.pyannote[908].end 6702.25784375
transcript.pyannote[909].speaker SPEAKER_08
transcript.pyannote[909].start 6704.82284375
transcript.pyannote[909].end 6707.82659375
transcript.pyannote[910].speaker SPEAKER_04
transcript.pyannote[910].start 6705.27846875
transcript.pyannote[910].end 6705.54846875
transcript.pyannote[911].speaker SPEAKER_04
transcript.pyannote[911].start 6706.91534375
transcript.pyannote[911].end 6707.64096875
transcript.pyannote[912].speaker SPEAKER_04
transcript.pyannote[912].start 6707.82659375
transcript.pyannote[912].end 6742.03221875
transcript.pyannote[913].speaker SPEAKER_16
transcript.pyannote[913].start 6716.11221875
transcript.pyannote[913].end 6716.38221875
transcript.pyannote[914].speaker SPEAKER_19
transcript.pyannote[914].start 6723.65534375
transcript.pyannote[914].end 6724.02659375
transcript.pyannote[915].speaker SPEAKER_19
transcript.pyannote[915].start 6724.44846875
transcript.pyannote[915].end 6724.61721875
transcript.pyannote[916].speaker SPEAKER_00
transcript.pyannote[916].start 6729.79784375
transcript.pyannote[916].end 6730.11846875
transcript.pyannote[917].speaker SPEAKER_08
transcript.pyannote[917].start 6737.83034375
transcript.pyannote[917].end 6738.82596875
transcript.pyannote[918].speaker SPEAKER_08
transcript.pyannote[918].start 6739.51784375
transcript.pyannote[918].end 6740.69909375
transcript.pyannote[919].speaker SPEAKER_08
transcript.pyannote[919].start 6742.03221875
transcript.pyannote[919].end 6742.09971875
transcript.pyannote[920].speaker SPEAKER_04
transcript.pyannote[920].start 6742.09971875
transcript.pyannote[920].end 6743.44971875
transcript.pyannote[921].speaker SPEAKER_08
transcript.pyannote[921].start 6742.15034375
transcript.pyannote[921].end 6745.89659375
transcript.pyannote[922].speaker SPEAKER_04
transcript.pyannote[922].start 6745.45784375
transcript.pyannote[922].end 6746.97659375
transcript.pyannote[923].speaker SPEAKER_08
transcript.pyannote[923].start 6746.97659375
transcript.pyannote[923].end 6752.29221875
transcript.pyannote[924].speaker SPEAKER_04
transcript.pyannote[924].start 6747.24659375
transcript.pyannote[924].end 6748.56284375
transcript.pyannote[925].speaker SPEAKER_04
transcript.pyannote[925].start 6751.87034375
transcript.pyannote[925].end 6752.27534375
transcript.pyannote[926].speaker SPEAKER_04
transcript.pyannote[926].start 6752.29221875
transcript.pyannote[926].end 6753.57471875
transcript.pyannote[927].speaker SPEAKER_08
transcript.pyannote[927].start 6753.57471875
transcript.pyannote[927].end 6756.12284375
transcript.pyannote[928].speaker SPEAKER_04
transcript.pyannote[928].start 6753.59159375
transcript.pyannote[928].end 6754.53659375
transcript.pyannote[929].speaker SPEAKER_18
transcript.pyannote[929].start 6757.38846875
transcript.pyannote[929].end 6758.09721875
transcript.pyannote[930].speaker SPEAKER_18
transcript.pyannote[930].start 6758.38409375
transcript.pyannote[930].end 6759.31221875
transcript.pyannote[931].speaker SPEAKER_08
transcript.pyannote[931].start 6758.73846875
transcript.pyannote[931].end 6758.97471875
transcript.pyannote[932].speaker SPEAKER_18
transcript.pyannote[932].start 6759.80159375
transcript.pyannote[932].end 6765.48846875
transcript.pyannote[933].speaker SPEAKER_08
transcript.pyannote[933].start 6764.22284375
transcript.pyannote[933].end 6767.54721875
transcript.pyannote[934].speaker SPEAKER_18
transcript.pyannote[934].start 6767.27721875
transcript.pyannote[934].end 6780.01784375
transcript.pyannote[935].speaker SPEAKER_08
transcript.pyannote[935].start 6779.98409375
transcript.pyannote[935].end 6780.00096875
transcript.pyannote[936].speaker SPEAKER_08
transcript.pyannote[936].start 6780.01784375
transcript.pyannote[936].end 6786.64971875
transcript.pyannote[937].speaker SPEAKER_08
transcript.pyannote[937].start 6787.56096875
transcript.pyannote[937].end 6796.38659375
transcript.pyannote[938].speaker SPEAKER_07
transcript.pyannote[938].start 6797.31471875
transcript.pyannote[938].end 6798.64784375
transcript.pyannote[939].speaker SPEAKER_08
transcript.pyannote[939].start 6798.64784375
transcript.pyannote[939].end 6798.83346875
transcript.pyannote[940].speaker SPEAKER_07
transcript.pyannote[940].start 6798.83346875
transcript.pyannote[940].end 6798.96846875
transcript.pyannote[941].speaker SPEAKER_08
transcript.pyannote[941].start 6798.96846875
transcript.pyannote[941].end 6826.59284375
transcript.pyannote[942].speaker SPEAKER_08
transcript.pyannote[942].start 6826.93034375
transcript.pyannote[942].end 6830.03534375
transcript.pyannote[943].speaker SPEAKER_08
transcript.pyannote[943].start 6830.17034375
transcript.pyannote[943].end 6836.81909375
transcript.pyannote[944].speaker SPEAKER_08
transcript.pyannote[944].start 6836.92034375
transcript.pyannote[944].end 6841.91534375
transcript.pyannote[945].speaker SPEAKER_07
transcript.pyannote[945].start 6837.49409375
transcript.pyannote[945].end 6837.64596875
transcript.pyannote[946].speaker SPEAKER_07
transcript.pyannote[946].start 6841.91534375
transcript.pyannote[946].end 6845.94846875
transcript.pyannote[947].speaker SPEAKER_08
transcript.pyannote[947].start 6845.07096875
transcript.pyannote[947].end 6846.99471875
transcript.pyannote[948].speaker SPEAKER_08
transcript.pyannote[948].start 6847.45034375
transcript.pyannote[948].end 6852.47909375
transcript.pyannote[949].speaker SPEAKER_08
transcript.pyannote[949].start 6853.99784375
transcript.pyannote[949].end 6854.53784375
transcript.pyannote[950].speaker SPEAKER_07
transcript.pyannote[950].start 6854.03159375
transcript.pyannote[950].end 6855.71909375
transcript.pyannote[951].speaker SPEAKER_08
transcript.pyannote[951].start 6855.31409375
transcript.pyannote[951].end 6856.78221875
transcript.pyannote[952].speaker SPEAKER_07
transcript.pyannote[952].start 6857.76096875
transcript.pyannote[952].end 6859.71846875
transcript.pyannote[953].speaker SPEAKER_08
transcript.pyannote[953].start 6859.31346875
transcript.pyannote[953].end 6861.84471875
transcript.pyannote[954].speaker SPEAKER_07
transcript.pyannote[954].start 6862.50284375
transcript.pyannote[954].end 6863.75159375
transcript.pyannote[955].speaker SPEAKER_08
transcript.pyannote[955].start 6863.61659375
transcript.pyannote[955].end 6865.33784375
transcript.pyannote[956].speaker SPEAKER_07
transcript.pyannote[956].start 6866.41784375
transcript.pyannote[956].end 6866.45159375
transcript.pyannote[957].speaker SPEAKER_08
transcript.pyannote[957].start 6866.45159375
transcript.pyannote[957].end 6869.45534375
transcript.pyannote[958].speaker SPEAKER_07
transcript.pyannote[958].start 6866.48534375
transcript.pyannote[958].end 6867.00846875
transcript.pyannote[959].speaker SPEAKER_07
transcript.pyannote[959].start 6868.25721875
transcript.pyannote[959].end 6869.11784375
transcript.pyannote[960].speaker SPEAKER_07
transcript.pyannote[960].start 6869.25284375
transcript.pyannote[960].end 6869.28659375
transcript.pyannote[961].speaker SPEAKER_08
transcript.pyannote[961].start 6869.55659375
transcript.pyannote[961].end 6869.57346875
transcript.pyannote[962].speaker SPEAKER_07
transcript.pyannote[962].start 6869.57346875
transcript.pyannote[962].end 6869.59034375
transcript.pyannote[963].speaker SPEAKER_08
transcript.pyannote[963].start 6869.59034375
transcript.pyannote[963].end 6871.49721875
transcript.pyannote[964].speaker SPEAKER_08
transcript.pyannote[964].start 6873.08346875
transcript.pyannote[964].end 6874.90596875
transcript.pyannote[965].speaker SPEAKER_04
transcript.pyannote[965].start 6874.48409375
transcript.pyannote[965].end 6874.70346875
transcript.pyannote[966].speaker SPEAKER_04
transcript.pyannote[966].start 6874.90596875
transcript.pyannote[966].end 6875.90159375
transcript.pyannote[967].speaker SPEAKER_08
transcript.pyannote[967].start 6875.90159375
transcript.pyannote[967].end 6880.59284375
transcript.pyannote[968].speaker SPEAKER_08
transcript.pyannote[968].start 6880.72784375
transcript.pyannote[968].end 6881.52096875
transcript.pyannote[969].speaker SPEAKER_08
transcript.pyannote[969].start 6881.92596875
transcript.pyannote[969].end 6885.82409375
transcript.pyannote[970].speaker SPEAKER_08
transcript.pyannote[970].start 6886.34721875
transcript.pyannote[970].end 6888.45659375
transcript.pyannote[971].speaker SPEAKER_08
transcript.pyannote[971].start 6888.97971875
transcript.pyannote[971].end 6890.04284375
transcript.pyannote[972].speaker SPEAKER_08
transcript.pyannote[972].start 6890.38034375
transcript.pyannote[972].end 6892.23659375
transcript.pyannote[973].speaker SPEAKER_08
transcript.pyannote[973].start 6893.04659375
transcript.pyannote[973].end 6895.56096875
transcript.pyannote[974].speaker SPEAKER_08
transcript.pyannote[974].start 6895.67909375
transcript.pyannote[974].end 6897.40034375
transcript.pyannote[975].speaker SPEAKER_08
transcript.pyannote[975].start 6898.02471875
transcript.pyannote[975].end 6902.32784375
transcript.pyannote[976].speaker SPEAKER_08
transcript.pyannote[976].start 6902.61471875
transcript.pyannote[976].end 6904.63971875
transcript.pyannote[977].speaker SPEAKER_08
transcript.pyannote[977].start 6905.43284375
transcript.pyannote[977].end 6905.85471875
transcript.pyannote[978].speaker SPEAKER_08
transcript.pyannote[978].start 6905.93909375
transcript.pyannote[978].end 6907.27221875
transcript.pyannote[979].speaker SPEAKER_08
transcript.pyannote[979].start 6907.89659375
transcript.pyannote[979].end 6909.14534375
transcript.pyannote[980].speaker SPEAKER_08
transcript.pyannote[980].start 6909.66846875
transcript.pyannote[980].end 6910.46159375
transcript.pyannote[981].speaker SPEAKER_07
transcript.pyannote[981].start 6912.40221875
transcript.pyannote[981].end 6912.94221875
transcript.pyannote[982].speaker SPEAKER_07
transcript.pyannote[982].start 6912.97596875
transcript.pyannote[982].end 6916.06409375
transcript.pyannote[983].speaker SPEAKER_08
transcript.pyannote[983].start 6916.06409375
transcript.pyannote[983].end 6917.31284375
transcript.pyannote[984].speaker SPEAKER_08
transcript.pyannote[984].start 6917.71784375
transcript.pyannote[984].end 6923.03346875
transcript.pyannote[985].speaker SPEAKER_08
transcript.pyannote[985].start 6923.45534375
transcript.pyannote[985].end 6927.43784375
transcript.pyannote[986].speaker SPEAKER_08
transcript.pyannote[986].start 6928.02846875
transcript.pyannote[986].end 6929.59784375
transcript.pyannote[987].speaker SPEAKER_08
transcript.pyannote[987].start 6930.52596875
transcript.pyannote[987].end 6931.50471875
transcript.pyannote[988].speaker SPEAKER_08
transcript.pyannote[988].start 6931.96034375
transcript.pyannote[988].end 6933.12471875
transcript.pyannote[989].speaker SPEAKER_08
transcript.pyannote[989].start 6933.44534375
transcript.pyannote[989].end 6934.64346875
transcript.pyannote[990].speaker SPEAKER_08
transcript.pyannote[990].start 6935.25096875
transcript.pyannote[990].end 6941.51159375
transcript.pyannote[991].speaker SPEAKER_08
transcript.pyannote[991].start 6941.93346875
transcript.pyannote[991].end 6942.50721875
transcript.pyannote[992].speaker SPEAKER_08
transcript.pyannote[992].start 6942.79409375
transcript.pyannote[992].end 6943.57034375
transcript.pyannote[993].speaker SPEAKER_08
transcript.pyannote[993].start 6944.48159375
transcript.pyannote[993].end 6945.66284375
transcript.pyannote[994].speaker SPEAKER_08
transcript.pyannote[994].start 6946.11846875
transcript.pyannote[994].end 6947.45159375
transcript.pyannote[995].speaker SPEAKER_07
transcript.pyannote[995].start 6948.56534375
transcript.pyannote[995].end 6948.58221875
transcript.pyannote[996].speaker SPEAKER_04
transcript.pyannote[996].start 6948.58221875
transcript.pyannote[996].end 6949.59471875
transcript.pyannote[997].speaker SPEAKER_07
transcript.pyannote[997].start 6949.13909375
transcript.pyannote[997].end 6949.20659375
transcript.pyannote[998].speaker SPEAKER_08
transcript.pyannote[998].start 6949.20659375
transcript.pyannote[998].end 6949.79721875
transcript.pyannote[999].speaker SPEAKER_07
transcript.pyannote[999].start 6949.59471875
transcript.pyannote[999].end 6951.04596875
transcript.pyannote[1000].speaker SPEAKER_04
transcript.pyannote[1000].start 6950.05034375
transcript.pyannote[1000].end 6950.18534375
transcript.pyannote[1001].speaker SPEAKER_04
transcript.pyannote[1001].start 6952.32846875
transcript.pyannote[1001].end 6956.39534375
transcript.pyannote[1002].speaker SPEAKER_08
transcript.pyannote[1002].start 6956.95221875
transcript.pyannote[1002].end 6960.42846875
transcript.pyannote[1003].speaker SPEAKER_08
transcript.pyannote[1003].start 6960.91784375
transcript.pyannote[1003].end 6961.96409375
transcript.pyannote[1004].speaker SPEAKER_07
transcript.pyannote[1004].start 6961.96409375
transcript.pyannote[1004].end 6961.98096875
transcript.pyannote[1005].speaker SPEAKER_08
transcript.pyannote[1005].start 6961.98096875
transcript.pyannote[1005].end 6963.02721875
transcript.pyannote[1006].speaker SPEAKER_07
transcript.pyannote[1006].start 6963.02721875
transcript.pyannote[1006].end 6963.11159375
transcript.pyannote[1007].speaker SPEAKER_08
transcript.pyannote[1007].start 6963.11159375
transcript.pyannote[1007].end 6963.80346875
transcript.pyannote[1008].speaker SPEAKER_07
transcript.pyannote[1008].start 6963.80346875
transcript.pyannote[1008].end 6963.82034375
transcript.pyannote[1009].speaker SPEAKER_08
transcript.pyannote[1009].start 6963.82034375
transcript.pyannote[1009].end 6963.97221875
transcript.pyannote[1010].speaker SPEAKER_07
transcript.pyannote[1010].start 6963.97221875
transcript.pyannote[1010].end 6964.02284375
transcript.pyannote[1011].speaker SPEAKER_07
transcript.pyannote[1011].start 6964.25909375
transcript.pyannote[1011].end 6964.27596875
transcript.pyannote[1012].speaker SPEAKER_08
transcript.pyannote[1012].start 6964.27596875
transcript.pyannote[1012].end 6964.30971875
transcript.pyannote[1013].speaker SPEAKER_07
transcript.pyannote[1013].start 6964.30971875
transcript.pyannote[1013].end 6965.00159375
transcript.pyannote[1014].speaker SPEAKER_07
transcript.pyannote[1014].start 6966.43596875
transcript.pyannote[1014].end 6966.45284375
transcript.pyannote[1015].speaker SPEAKER_08
transcript.pyannote[1015].start 6966.45284375
transcript.pyannote[1015].end 6966.46971875
transcript.pyannote[1016].speaker SPEAKER_07
transcript.pyannote[1016].start 6966.46971875
transcript.pyannote[1016].end 6967.31346875
transcript.pyannote[1017].speaker SPEAKER_08
transcript.pyannote[1017].start 6966.48659375
transcript.pyannote[1017].end 6967.17846875
transcript.pyannote[1018].speaker SPEAKER_08
transcript.pyannote[1018].start 6967.31346875
transcript.pyannote[1018].end 6967.39784375
transcript.pyannote[1019].speaker SPEAKER_07
transcript.pyannote[1019].start 6967.39784375
transcript.pyannote[1019].end 6971.85284375
transcript.pyannote[1020].speaker SPEAKER_08
transcript.pyannote[1020].start 6967.46534375
transcript.pyannote[1020].end 6967.80284375
transcript.pyannote[1021].speaker SPEAKER_08
transcript.pyannote[1021].start 6970.65471875
transcript.pyannote[1021].end 6971.61659375
transcript.pyannote[1022].speaker SPEAKER_08
transcript.pyannote[1022].start 6971.85284375
transcript.pyannote[1022].end 6974.33346875
transcript.pyannote[1023].speaker SPEAKER_08
transcript.pyannote[1023].start 6974.63721875
transcript.pyannote[1023].end 6975.68346875
transcript.pyannote[1024].speaker SPEAKER_08
transcript.pyannote[1024].start 6976.79721875
transcript.pyannote[1024].end 6978.36659375
transcript.pyannote[1025].speaker SPEAKER_07
transcript.pyannote[1025].start 6979.07534375
transcript.pyannote[1025].end 6979.71659375
transcript.pyannote[1026].speaker SPEAKER_08
transcript.pyannote[1026].start 6979.46346875
transcript.pyannote[1026].end 6987.19221875
transcript.pyannote[1027].speaker SPEAKER_07
transcript.pyannote[1027].start 6988.17096875
transcript.pyannote[1027].end 6991.73159375
transcript.pyannote[1028].speaker SPEAKER_08
transcript.pyannote[1028].start 6991.30971875
transcript.pyannote[1028].end 6993.75659375
transcript.pyannote[1029].speaker SPEAKER_08
transcript.pyannote[1029].start 6994.06034375
transcript.pyannote[1029].end 6999.29159375
transcript.pyannote[1030].speaker SPEAKER_08
transcript.pyannote[1030].start 6999.54471875
transcript.pyannote[1030].end 7002.05909375
transcript.pyannote[1031].speaker SPEAKER_08
transcript.pyannote[1031].start 7002.73409375
transcript.pyannote[1031].end 7003.86471875
transcript.pyannote[1032].speaker SPEAKER_08
transcript.pyannote[1032].start 7004.64096875
transcript.pyannote[1032].end 7006.31159375
transcript.pyannote[1033].speaker SPEAKER_08
transcript.pyannote[1033].start 7006.46346875
transcript.pyannote[1033].end 7008.37034375
transcript.pyannote[1034].speaker SPEAKER_08
transcript.pyannote[1034].start 7008.58971875
transcript.pyannote[1034].end 7009.82159375
transcript.pyannote[1035].speaker SPEAKER_08
transcript.pyannote[1035].start 7010.15909375
transcript.pyannote[1035].end 7012.89284375
transcript.pyannote[1036].speaker SPEAKER_08
transcript.pyannote[1036].start 7013.17971875
transcript.pyannote[1036].end 7014.85034375
transcript.pyannote[1037].speaker SPEAKER_08
transcript.pyannote[1037].start 7016.52096875
transcript.pyannote[1037].end 7017.83721875
transcript.pyannote[1038].speaker SPEAKER_07
transcript.pyannote[1038].start 7017.17909375
transcript.pyannote[1038].end 7017.60096875
transcript.pyannote[1039].speaker SPEAKER_07
transcript.pyannote[1039].start 7017.83721875
transcript.pyannote[1039].end 7018.12409375
transcript.pyannote[1040].speaker SPEAKER_07
transcript.pyannote[1040].start 7018.24221875
transcript.pyannote[1040].end 7018.93409375
transcript.pyannote[1041].speaker SPEAKER_08
transcript.pyannote[1041].start 7018.86659375
transcript.pyannote[1041].end 7019.37284375
transcript.pyannote[1042].speaker SPEAKER_08
transcript.pyannote[1042].start 7019.92971875
transcript.pyannote[1042].end 7025.29596875
transcript.pyannote[1043].speaker SPEAKER_08
transcript.pyannote[1043].start 7025.32971875
transcript.pyannote[1043].end 7029.53159375
transcript.pyannote[1044].speaker SPEAKER_08
transcript.pyannote[1044].start 7030.27409375
transcript.pyannote[1044].end 7030.76346875
transcript.pyannote[1045].speaker SPEAKER_08
transcript.pyannote[1045].start 7031.13471875
transcript.pyannote[1045].end 7033.88534375
transcript.pyannote[1046].speaker SPEAKER_08
transcript.pyannote[1046].start 7034.39159375
transcript.pyannote[1046].end 7035.67409375
transcript.pyannote[1047].speaker SPEAKER_08
transcript.pyannote[1047].start 7036.38284375
transcript.pyannote[1047].end 7036.41659375
transcript.pyannote[1048].speaker SPEAKER_04
transcript.pyannote[1048].start 7036.41659375
transcript.pyannote[1048].end 7036.88909375
transcript.pyannote[1049].speaker SPEAKER_04
transcript.pyannote[1049].start 7038.94784375
transcript.pyannote[1049].end 7040.87159375
transcript.pyannote[1050].speaker SPEAKER_12
transcript.pyannote[1050].start 7041.95159375
transcript.pyannote[1050].end 7053.27471875
transcript.pyannote[1051].speaker SPEAKER_08
transcript.pyannote[1051].start 7058.45534375
transcript.pyannote[1051].end 7060.46346875
transcript.pyannote[1052].speaker SPEAKER_08
transcript.pyannote[1052].start 7061.23971875
transcript.pyannote[1052].end 7063.01159375
transcript.pyannote[1053].speaker SPEAKER_12
transcript.pyannote[1053].start 7067.75346875
transcript.pyannote[1053].end 7078.73909375
transcript.pyannote[1054].speaker SPEAKER_12
transcript.pyannote[1054].start 7078.92471875
transcript.pyannote[1054].end 7079.93721875
transcript.pyannote[1055].speaker SPEAKER_12
transcript.pyannote[1055].start 7081.72596875
transcript.pyannote[1055].end 7085.37096875
transcript.pyannote[1056].speaker SPEAKER_12
transcript.pyannote[1056].start 7085.65784375
transcript.pyannote[1056].end 7087.49721875
transcript.pyannote[1057].speaker SPEAKER_12
transcript.pyannote[1057].start 7087.78409375
transcript.pyannote[1057].end 7089.67409375
transcript.pyannote[1058].speaker SPEAKER_12
transcript.pyannote[1058].start 7089.70784375
transcript.pyannote[1058].end 7118.83409375
transcript.pyannote[1059].speaker SPEAKER_12
transcript.pyannote[1059].start 7119.03659375
transcript.pyannote[1059].end 7131.97971875
transcript.pyannote[1060].speaker SPEAKER_12
transcript.pyannote[1060].start 7132.48596875
transcript.pyannote[1060].end 7135.69221875
transcript.pyannote[1061].speaker SPEAKER_12
transcript.pyannote[1061].start 7135.87784375
transcript.pyannote[1061].end 7141.14284375
transcript.pyannote[1062].speaker SPEAKER_12
transcript.pyannote[1062].start 7141.61534375
transcript.pyannote[1062].end 7151.89221875
transcript.pyannote[1063].speaker SPEAKER_12
transcript.pyannote[1063].start 7152.48284375
transcript.pyannote[1063].end 7167.90659375
transcript.pyannote[1064].speaker SPEAKER_12
transcript.pyannote[1064].start 7168.14284375
transcript.pyannote[1064].end 7169.42534375
transcript.pyannote[1065].speaker SPEAKER_12
transcript.pyannote[1065].start 7170.10034375
transcript.pyannote[1065].end 7183.76909375
transcript.pyannote[1066].speaker SPEAKER_12
transcript.pyannote[1066].start 7184.73096875
transcript.pyannote[1066].end 7208.23784375
transcript.pyannote[1067].speaker SPEAKER_12
transcript.pyannote[1067].start 7208.57534375
transcript.pyannote[1067].end 7227.72846875
transcript.pyannote[1068].speaker SPEAKER_12
transcript.pyannote[1068].start 7228.38659375
transcript.pyannote[1068].end 7229.43284375
transcript.pyannote[1069].speaker SPEAKER_12
transcript.pyannote[1069].start 7230.39471875
transcript.pyannote[1069].end 7232.06534375
transcript.pyannote[1070].speaker SPEAKER_12
transcript.pyannote[1070].start 7232.50409375
transcript.pyannote[1070].end 7257.05721875
transcript.pyannote[1071].speaker SPEAKER_12
transcript.pyannote[1071].start 7257.49596875
transcript.pyannote[1071].end 7259.35221875
transcript.pyannote[1072].speaker SPEAKER_12
transcript.pyannote[1072].start 7259.87534375
transcript.pyannote[1072].end 7263.50346875
transcript.pyannote[1073].speaker SPEAKER_12
transcript.pyannote[1073].start 7264.14471875
transcript.pyannote[1073].end 7267.53659375
transcript.pyannote[1074].speaker SPEAKER_12
transcript.pyannote[1074].start 7267.68846875
transcript.pyannote[1074].end 7277.07096875
transcript.pyannote[1075].speaker SPEAKER_12
transcript.pyannote[1075].start 7278.10034375
transcript.pyannote[1075].end 7279.50096875
transcript.pyannote[1076].speaker SPEAKER_12
transcript.pyannote[1076].start 7280.00721875
transcript.pyannote[1076].end 7312.96409375
transcript.pyannote[1077].speaker SPEAKER_04
transcript.pyannote[1077].start 7313.89221875
transcript.pyannote[1077].end 7321.55346875
transcript.pyannote[1078].speaker SPEAKER_04
transcript.pyannote[1078].start 7322.86971875
transcript.pyannote[1078].end 7366.03596875
transcript.pyannote[1079].speaker SPEAKER_12
transcript.pyannote[1079].start 7366.03596875
transcript.pyannote[1079].end 7372.73534375
transcript.pyannote[1080].speaker SPEAKER_12
transcript.pyannote[1080].start 7373.07284375
transcript.pyannote[1080].end 7380.98721875
transcript.pyannote[1081].speaker SPEAKER_12
transcript.pyannote[1081].start 7381.37534375
transcript.pyannote[1081].end 7408.99971875
transcript.pyannote[1082].speaker SPEAKER_00
transcript.pyannote[1082].start 7385.93159375
transcript.pyannote[1082].end 7386.15096875
transcript.pyannote[1083].speaker SPEAKER_12
transcript.pyannote[1083].start 7409.33721875
transcript.pyannote[1083].end 7413.65721875
transcript.pyannote[1084].speaker SPEAKER_12
transcript.pyannote[1084].start 7414.38284375
transcript.pyannote[1084].end 7432.92846875
transcript.pyannote[1085].speaker SPEAKER_12
transcript.pyannote[1085].start 7433.46846875
transcript.pyannote[1085].end 7448.95971875
transcript.pyannote[1086].speaker SPEAKER_12
transcript.pyannote[1086].start 7449.38159375
transcript.pyannote[1086].end 7449.98909375
transcript.pyannote[1087].speaker SPEAKER_12
transcript.pyannote[1087].start 7450.37721875
transcript.pyannote[1087].end 7453.09409375
transcript.pyannote[1088].speaker SPEAKER_12
transcript.pyannote[1088].start 7454.27534375
transcript.pyannote[1088].end 7454.30909375
transcript.pyannote[1089].speaker SPEAKER_04
transcript.pyannote[1089].start 7454.30909375
transcript.pyannote[1089].end 7465.71659375
transcript.pyannote[1090].speaker SPEAKER_04
transcript.pyannote[1090].start 7465.80096875
transcript.pyannote[1090].end 7493.62784375
transcript.pyannote[1091].speaker SPEAKER_12
transcript.pyannote[1091].start 7493.94846875
transcript.pyannote[1091].end 7528.76159375
transcript.pyannote[1092].speaker SPEAKER_12
transcript.pyannote[1092].start 7529.03159375
transcript.pyannote[1092].end 7538.16096875
transcript.pyannote[1093].speaker SPEAKER_12
transcript.pyannote[1093].start 7539.05534375
transcript.pyannote[1093].end 7543.15596875
transcript.pyannote[1094].speaker SPEAKER_12
transcript.pyannote[1094].start 7543.83096875
transcript.pyannote[1094].end 7549.51784375
transcript.pyannote[1095].speaker SPEAKER_12
transcript.pyannote[1095].start 7549.82159375
transcript.pyannote[1095].end 7552.23471875
transcript.pyannote[1096].speaker SPEAKER_12
transcript.pyannote[1096].start 7552.75784375
transcript.pyannote[1096].end 7553.46659375
transcript.pyannote[1097].speaker SPEAKER_12
transcript.pyannote[1097].start 7553.63534375
transcript.pyannote[1097].end 7557.66846875
transcript.pyannote[1098].speaker SPEAKER_12
transcript.pyannote[1098].start 7558.68096875
transcript.pyannote[1098].end 7559.54159375
transcript.pyannote[1099].speaker SPEAKER_12
transcript.pyannote[1099].start 7560.90846875
transcript.pyannote[1099].end 7563.32159375
transcript.pyannote[1100].speaker SPEAKER_19
transcript.pyannote[1100].start 7563.60846875
transcript.pyannote[1100].end 7586.03534375
transcript.pyannote[1101].speaker SPEAKER_12
transcript.pyannote[1101].start 7586.03534375
transcript.pyannote[1101].end 7618.38471875
transcript.pyannote[1102].speaker SPEAKER_12
transcript.pyannote[1102].start 7619.90346875
transcript.pyannote[1102].end 7621.03409375
transcript.pyannote[1103].speaker SPEAKER_12
transcript.pyannote[1103].start 7621.11846875
transcript.pyannote[1103].end 7622.68784375
transcript.pyannote[1104].speaker SPEAKER_12
transcript.pyannote[1104].start 7623.21096875
transcript.pyannote[1104].end 7625.05034375
transcript.pyannote[1105].speaker SPEAKER_12
transcript.pyannote[1105].start 7626.73784375
transcript.pyannote[1105].end 7635.04034375
transcript.pyannote[1106].speaker SPEAKER_12
transcript.pyannote[1106].start 7635.91784375
transcript.pyannote[1106].end 7647.73034375
transcript.pyannote[1107].speaker SPEAKER_12
transcript.pyannote[1107].start 7648.47284375
transcript.pyannote[1107].end 7649.13096875
transcript.pyannote[1108].speaker SPEAKER_12
transcript.pyannote[1108].start 7649.31659375
transcript.pyannote[1108].end 7652.30346875
transcript.pyannote[1109].speaker SPEAKER_12
transcript.pyannote[1109].start 7652.47221875
transcript.pyannote[1109].end 7654.32846875
transcript.pyannote[1110].speaker SPEAKER_12
transcript.pyannote[1110].start 7654.78409375
transcript.pyannote[1110].end 7659.79596875
transcript.pyannote[1111].speaker SPEAKER_12
transcript.pyannote[1111].start 7660.80846875
transcript.pyannote[1111].end 7662.66471875
transcript.pyannote[1112].speaker SPEAKER_04
transcript.pyannote[1112].start 7663.49159375
transcript.pyannote[1112].end 7672.38471875
transcript.pyannote[1113].speaker SPEAKER_04
transcript.pyannote[1113].start 7672.87409375
transcript.pyannote[1113].end 7674.17346875
transcript.pyannote[1114].speaker SPEAKER_12
transcript.pyannote[1114].start 7672.89096875
transcript.pyannote[1114].end 7673.88659375
transcript.pyannote[1115].speaker SPEAKER_12
transcript.pyannote[1115].start 7674.17346875
transcript.pyannote[1115].end 7674.52784375
transcript.pyannote[1116].speaker SPEAKER_04
transcript.pyannote[1116].start 7674.40971875
transcript.pyannote[1116].end 7674.76409375
transcript.pyannote[1117].speaker SPEAKER_04
transcript.pyannote[1117].start 7675.28721875
transcript.pyannote[1117].end 7675.32096875
transcript.pyannote[1118].speaker SPEAKER_12
transcript.pyannote[1118].start 7675.32096875
transcript.pyannote[1118].end 7677.27846875
transcript.pyannote[1119].speaker SPEAKER_12
transcript.pyannote[1119].start 7677.70034375
transcript.pyannote[1119].end 7680.61971875
transcript.pyannote[1120].speaker SPEAKER_12
transcript.pyannote[1120].start 7680.83909375
transcript.pyannote[1120].end 7684.04534375
transcript.pyannote[1121].speaker SPEAKER_12
transcript.pyannote[1121].start 7686.61034375
transcript.pyannote[1121].end 7687.53846875
transcript.pyannote[1122].speaker SPEAKER_17
transcript.pyannote[1122].start 7687.53846875
transcript.pyannote[1122].end 7687.90971875
transcript.pyannote[1123].speaker SPEAKER_12
transcript.pyannote[1123].start 7687.90971875
transcript.pyannote[1123].end 7690.74471875
transcript.pyannote[1124].speaker SPEAKER_17
transcript.pyannote[1124].start 7687.92659375
transcript.pyannote[1124].end 7687.97721875
transcript.pyannote[1125].speaker SPEAKER_16
transcript.pyannote[1125].start 7687.97721875
transcript.pyannote[1125].end 7688.29784375
transcript.pyannote[1126].speaker SPEAKER_17
transcript.pyannote[1126].start 7688.29784375
transcript.pyannote[1126].end 7688.34846875
transcript.pyannote[1127].speaker SPEAKER_16
transcript.pyannote[1127].start 7688.34846875
transcript.pyannote[1127].end 7688.36534375
transcript.pyannote[1128].speaker SPEAKER_12
transcript.pyannote[1128].start 7690.86284375
transcript.pyannote[1128].end 7690.89659375
transcript.pyannote[1129].speaker SPEAKER_16
transcript.pyannote[1129].start 7690.89659375
transcript.pyannote[1129].end 7691.21721875
transcript.pyannote[1130].speaker SPEAKER_12
transcript.pyannote[1130].start 7691.06534375
transcript.pyannote[1130].end 7692.70221875
transcript.pyannote[1131].speaker SPEAKER_12
transcript.pyannote[1131].start 7692.97221875
transcript.pyannote[1131].end 7695.79034375
transcript.pyannote[1132].speaker SPEAKER_12
transcript.pyannote[1132].start 7696.90409375
transcript.pyannote[1132].end 7698.00096875
transcript.pyannote[1133].speaker SPEAKER_12
transcript.pyannote[1133].start 7700.78534375
transcript.pyannote[1133].end 7703.06346875
transcript.pyannote[1134].speaker SPEAKER_17
transcript.pyannote[1134].start 7703.06346875
transcript.pyannote[1134].end 7705.18971875
transcript.pyannote[1135].speaker SPEAKER_17
transcript.pyannote[1135].start 7705.35846875
transcript.pyannote[1135].end 7710.85971875
transcript.pyannote[1136].speaker SPEAKER_17
transcript.pyannote[1136].start 7711.26471875
transcript.pyannote[1136].end 7715.41596875
transcript.pyannote[1137].speaker SPEAKER_12
transcript.pyannote[1137].start 7715.41596875
transcript.pyannote[1137].end 7734.48471875
transcript.pyannote[1138].speaker SPEAKER_12
transcript.pyannote[1138].start 7735.83471875
transcript.pyannote[1138].end 7736.15534375
transcript.pyannote[1139].speaker SPEAKER_12
transcript.pyannote[1139].start 7736.56034375
transcript.pyannote[1139].end 7737.92721875
transcript.pyannote[1140].speaker SPEAKER_04
transcript.pyannote[1140].start 7737.99471875
transcript.pyannote[1140].end 7738.23096875
transcript.pyannote[1141].speaker SPEAKER_12
transcript.pyannote[1141].start 7738.73721875
transcript.pyannote[1141].end 7739.69909375
transcript.pyannote[1142].speaker SPEAKER_12
transcript.pyannote[1142].start 7739.83409375
transcript.pyannote[1142].end 7739.91846875
transcript.pyannote[1143].speaker SPEAKER_04
transcript.pyannote[1143].start 7739.91846875
transcript.pyannote[1143].end 7743.73221875
transcript.pyannote[1144].speaker SPEAKER_12
transcript.pyannote[1144].start 7739.96909375
transcript.pyannote[1144].end 7741.18409375
transcript.pyannote[1145].speaker SPEAKER_12
transcript.pyannote[1145].start 7741.97721875
transcript.pyannote[1145].end 7748.27159375
transcript.pyannote[1146].speaker SPEAKER_04
transcript.pyannote[1146].start 7743.79971875
transcript.pyannote[1146].end 7744.23846875
transcript.pyannote[1147].speaker SPEAKER_12
transcript.pyannote[1147].start 7748.89596875
transcript.pyannote[1147].end 7763.39159375
transcript.pyannote[1148].speaker SPEAKER_04
transcript.pyannote[1148].start 7757.62034375
transcript.pyannote[1148].end 7758.44721875
transcript.pyannote[1149].speaker SPEAKER_08
transcript.pyannote[1149].start 7763.39159375
transcript.pyannote[1149].end 7764.85971875
transcript.pyannote[1150].speaker SPEAKER_12
transcript.pyannote[1150].start 7763.66159375
transcript.pyannote[1150].end 7764.60659375
transcript.pyannote[1151].speaker SPEAKER_08
transcript.pyannote[1151].start 7765.33221875
transcript.pyannote[1151].end 7771.77846875
transcript.pyannote[1152].speaker SPEAKER_08
transcript.pyannote[1152].start 7772.40284375
transcript.pyannote[1152].end 7783.21971875
transcript.pyannote[1153].speaker SPEAKER_13
transcript.pyannote[1153].start 7788.58596875
transcript.pyannote[1153].end 7793.85096875
transcript.pyannote[1154].speaker SPEAKER_08
transcript.pyannote[1154].start 7793.96909375
transcript.pyannote[1154].end 7796.83784375
transcript.pyannote[1155].speaker SPEAKER_13
transcript.pyannote[1155].start 7801.27596875
transcript.pyannote[1155].end 7804.61721875
transcript.pyannote[1156].speaker SPEAKER_13
transcript.pyannote[1156].start 7804.97159375
transcript.pyannote[1156].end 7818.28596875
transcript.pyannote[1157].speaker SPEAKER_04
transcript.pyannote[1157].start 7819.50096875
transcript.pyannote[1157].end 7819.55159375
transcript.pyannote[1158].speaker SPEAKER_13
transcript.pyannote[1158].start 7819.87221875
transcript.pyannote[1158].end 7820.49659375
transcript.pyannote[1159].speaker SPEAKER_10
transcript.pyannote[1159].start 7820.49659375
transcript.pyannote[1159].end 7820.51346875
transcript.pyannote[1160].speaker SPEAKER_04
transcript.pyannote[1160].start 7821.96471875
transcript.pyannote[1160].end 7822.72409375
transcript.pyannote[1161].speaker SPEAKER_22
transcript.pyannote[1161].start 7822.72409375
transcript.pyannote[1161].end 7822.79159375
transcript.pyannote[1162].speaker SPEAKER_10
transcript.pyannote[1162].start 7823.19659375
transcript.pyannote[1162].end 7830.09846875
transcript.pyannote[1163].speaker SPEAKER_10
transcript.pyannote[1163].start 7830.16596875
transcript.pyannote[1163].end 7838.53596875
transcript.pyannote[1164].speaker SPEAKER_04
transcript.pyannote[1164].start 7836.78096875
transcript.pyannote[1164].end 7843.98659375
transcript.pyannote[1165].speaker SPEAKER_13
transcript.pyannote[1165].start 7838.53596875
transcript.pyannote[1165].end 7838.55284375
transcript.pyannote[1166].speaker SPEAKER_10
transcript.pyannote[1166].start 7839.26159375
transcript.pyannote[1166].end 7840.07159375
transcript.pyannote[1167].speaker SPEAKER_13
transcript.pyannote[1167].start 7840.07159375
transcript.pyannote[1167].end 7840.37534375
transcript.pyannote[1168].speaker SPEAKER_13
transcript.pyannote[1168].start 7844.47596875
transcript.pyannote[1168].end 7886.47784375
transcript.pyannote[1169].speaker SPEAKER_13
transcript.pyannote[1169].start 7886.88284375
transcript.pyannote[1169].end 7891.79346875
transcript.pyannote[1170].speaker SPEAKER_04
transcript.pyannote[1170].start 7893.10971875
transcript.pyannote[1170].end 7893.68346875
transcript.pyannote[1171].speaker SPEAKER_13
transcript.pyannote[1171].start 7893.31221875
transcript.pyannote[1171].end 7897.10909375
transcript.pyannote[1172].speaker SPEAKER_04
transcript.pyannote[1172].start 7897.10909375
transcript.pyannote[1172].end 7898.40846875
transcript.pyannote[1173].speaker SPEAKER_13
transcript.pyannote[1173].start 7898.40846875
transcript.pyannote[1173].end 7899.97784375
transcript.pyannote[1174].speaker SPEAKER_04
transcript.pyannote[1174].start 7898.98221875
transcript.pyannote[1174].end 7905.96846875
transcript.pyannote[1175].speaker SPEAKER_13
transcript.pyannote[1175].start 7906.17096875
transcript.pyannote[1175].end 7907.06534375
transcript.pyannote[1176].speaker SPEAKER_04
transcript.pyannote[1176].start 7906.77846875
transcript.pyannote[1176].end 7909.83284375
transcript.pyannote[1177].speaker SPEAKER_13
transcript.pyannote[1177].start 7909.20846875
transcript.pyannote[1177].end 7924.27784375
transcript.pyannote[1178].speaker SPEAKER_13
transcript.pyannote[1178].start 7924.68284375
transcript.pyannote[1178].end 8003.86034375
transcript.pyannote[1179].speaker SPEAKER_13
transcript.pyannote[1179].start 8004.70409375
transcript.pyannote[1179].end 8005.22721875
transcript.pyannote[1180].speaker SPEAKER_13
transcript.pyannote[1180].start 8006.10471875
transcript.pyannote[1180].end 8057.47221875
transcript.pyannote[1181].speaker SPEAKER_13
transcript.pyannote[1181].start 8058.16409375
transcript.pyannote[1181].end 8061.79221875
transcript.pyannote[1182].speaker SPEAKER_13
transcript.pyannote[1182].start 8061.97784375
transcript.pyannote[1182].end 8080.52346875
transcript.pyannote[1183].speaker SPEAKER_13
transcript.pyannote[1183].start 8081.41784375
transcript.pyannote[1183].end 8082.83534375
transcript.pyannote[1184].speaker SPEAKER_13
transcript.pyannote[1184].start 8083.79721875
transcript.pyannote[1184].end 8087.88096875
transcript.pyannote[1185].speaker SPEAKER_13
transcript.pyannote[1185].start 8088.43784375
transcript.pyannote[1185].end 8112.36659375
transcript.pyannote[1186].speaker SPEAKER_13
transcript.pyannote[1186].start 8113.04159375
transcript.pyannote[1186].end 8119.43721875
transcript.pyannote[1187].speaker SPEAKER_13
transcript.pyannote[1187].start 8120.46659375
transcript.pyannote[1187].end 8121.52971875
transcript.pyannote[1188].speaker SPEAKER_13
transcript.pyannote[1188].start 8121.98534375
transcript.pyannote[1188].end 8129.32596875
transcript.pyannote[1189].speaker SPEAKER_13
transcript.pyannote[1189].start 8129.78159375
transcript.pyannote[1189].end 8144.07471875
transcript.pyannote[1190].speaker SPEAKER_13
transcript.pyannote[1190].start 8144.47971875
transcript.pyannote[1190].end 8147.34846875
transcript.pyannote[1191].speaker SPEAKER_13
transcript.pyannote[1191].start 8147.55096875
transcript.pyannote[1191].end 8160.62909375
transcript.pyannote[1192].speaker SPEAKER_13
transcript.pyannote[1192].start 8161.42221875
transcript.pyannote[1192].end 8163.29534375
transcript.pyannote[1193].speaker SPEAKER_13
transcript.pyannote[1193].start 8163.70034375
transcript.pyannote[1193].end 8166.51846875
transcript.pyannote[1194].speaker SPEAKER_13
transcript.pyannote[1194].start 8169.30284375
transcript.pyannote[1194].end 8175.17534375
transcript.pyannote[1195].speaker SPEAKER_13
transcript.pyannote[1195].start 8175.61409375
transcript.pyannote[1195].end 8189.62034375
transcript.pyannote[1196].speaker SPEAKER_13
transcript.pyannote[1196].start 8190.63284375
transcript.pyannote[1196].end 8193.85596875
transcript.pyannote[1197].speaker SPEAKER_04
transcript.pyannote[1197].start 8194.98659375
transcript.pyannote[1197].end 8216.31659375
transcript.pyannote[1198].speaker SPEAKER_16
transcript.pyannote[1198].start 8213.41409375
transcript.pyannote[1198].end 8213.78534375
transcript.pyannote[1199].speaker SPEAKER_16
transcript.pyannote[1199].start 8213.97096875
transcript.pyannote[1199].end 8214.71346875
transcript.pyannote[1200].speaker SPEAKER_04
transcript.pyannote[1200].start 8217.39659375
transcript.pyannote[1200].end 8222.34096875
transcript.pyannote[1201].speaker SPEAKER_13
transcript.pyannote[1201].start 8220.60284375
transcript.pyannote[1201].end 8220.72096875
transcript.pyannote[1202].speaker SPEAKER_13
transcript.pyannote[1202].start 8222.32409375
transcript.pyannote[1202].end 8224.65284375
transcript.pyannote[1203].speaker SPEAKER_04
transcript.pyannote[1203].start 8224.60221875
transcript.pyannote[1203].end 8245.59471875
transcript.pyannote[1204].speaker SPEAKER_16
transcript.pyannote[1204].start 8230.77846875
transcript.pyannote[1204].end 8230.79534375
transcript.pyannote[1205].speaker SPEAKER_13
transcript.pyannote[1205].start 8230.79534375
transcript.pyannote[1205].end 8231.84159375
transcript.pyannote[1206].speaker SPEAKER_16
transcript.pyannote[1206].start 8231.84159375
transcript.pyannote[1206].end 8231.89221875
transcript.pyannote[1207].speaker SPEAKER_16
transcript.pyannote[1207].start 8234.67659375
transcript.pyannote[1207].end 8235.36846875
transcript.pyannote[1208].speaker SPEAKER_13
transcript.pyannote[1208].start 8235.36846875
transcript.pyannote[1208].end 8236.98846875
transcript.pyannote[1209].speaker SPEAKER_13
transcript.pyannote[1209].start 8239.03034375
transcript.pyannote[1209].end 8240.46471875
transcript.pyannote[1210].speaker SPEAKER_13
transcript.pyannote[1210].start 8244.97034375
transcript.pyannote[1210].end 8283.81659375
transcript.pyannote[1211].speaker SPEAKER_13
transcript.pyannote[1211].start 8284.17096875
transcript.pyannote[1211].end 8308.15034375
transcript.pyannote[1212].speaker SPEAKER_13
transcript.pyannote[1212].start 8308.69034375
transcript.pyannote[1212].end 8325.02534375
transcript.pyannote[1213].speaker SPEAKER_13
transcript.pyannote[1213].start 8325.31221875
transcript.pyannote[1213].end 8349.64596875
transcript.pyannote[1214].speaker SPEAKER_13
transcript.pyannote[1214].start 8349.96659375
transcript.pyannote[1214].end 8354.53971875
transcript.pyannote[1215].speaker SPEAKER_13
transcript.pyannote[1215].start 8355.26534375
transcript.pyannote[1215].end 8366.20034375
transcript.pyannote[1216].speaker SPEAKER_13
transcript.pyannote[1216].start 8366.55471875
transcript.pyannote[1216].end 8388.35721875
transcript.pyannote[1217].speaker SPEAKER_13
transcript.pyannote[1217].start 8388.84659375
transcript.pyannote[1217].end 8390.14596875
transcript.pyannote[1218].speaker SPEAKER_13
transcript.pyannote[1218].start 8391.56346875
transcript.pyannote[1218].end 8396.72721875
transcript.pyannote[1219].speaker SPEAKER_13
transcript.pyannote[1219].start 8397.41909375
transcript.pyannote[1219].end 8400.72659375
transcript.pyannote[1220].speaker SPEAKER_13
transcript.pyannote[1220].start 8401.14846875
transcript.pyannote[1220].end 8404.62471875
transcript.pyannote[1221].speaker SPEAKER_13
transcript.pyannote[1221].start 8404.96221875
transcript.pyannote[1221].end 8413.73721875
transcript.pyannote[1222].speaker SPEAKER_13
transcript.pyannote[1222].start 8414.32784375
transcript.pyannote[1222].end 8423.13659375
transcript.pyannote[1223].speaker SPEAKER_13
transcript.pyannote[1223].start 8423.71034375
transcript.pyannote[1223].end 8426.27534375
transcript.pyannote[1224].speaker SPEAKER_13
transcript.pyannote[1224].start 8426.68034375
transcript.pyannote[1224].end 8432.35034375
transcript.pyannote[1225].speaker SPEAKER_13
transcript.pyannote[1225].start 8432.60346875
transcript.pyannote[1225].end 8434.69596875
transcript.pyannote[1226].speaker SPEAKER_13
transcript.pyannote[1226].start 8435.70846875
transcript.pyannote[1226].end 8441.05784375
transcript.pyannote[1227].speaker SPEAKER_13
transcript.pyannote[1227].start 8441.42909375
transcript.pyannote[1227].end 8449.10721875
transcript.pyannote[1228].speaker SPEAKER_13
transcript.pyannote[1228].start 8450.28846875
transcript.pyannote[1228].end 8454.84471875
transcript.pyannote[1229].speaker SPEAKER_04
transcript.pyannote[1229].start 8455.63784375
transcript.pyannote[1229].end 8462.28659375
transcript.pyannote[1230].speaker SPEAKER_13
transcript.pyannote[1230].start 8462.01659375
transcript.pyannote[1230].end 8465.86409375
transcript.pyannote[1231].speaker SPEAKER_04
transcript.pyannote[1231].start 8463.14721875
transcript.pyannote[1231].end 8463.73784375
transcript.pyannote[1232].speaker SPEAKER_04
transcript.pyannote[1232].start 8465.29034375
transcript.pyannote[1232].end 8468.61471875
transcript.pyannote[1233].speaker SPEAKER_13
transcript.pyannote[1233].start 8468.42909375
transcript.pyannote[1233].end 8470.04909375
transcript.pyannote[1234].speaker SPEAKER_04
transcript.pyannote[1234].start 8471.09534375
transcript.pyannote[1234].end 8471.98971875
transcript.pyannote[1235].speaker SPEAKER_13
transcript.pyannote[1235].start 8471.68596875
transcript.pyannote[1235].end 8476.73159375
transcript.pyannote[1236].speaker SPEAKER_13
transcript.pyannote[1236].start 8477.94659375
transcript.pyannote[1236].end 8496.62721875
transcript.pyannote[1237].speaker SPEAKER_13
transcript.pyannote[1237].start 8497.04909375
transcript.pyannote[1237].end 8502.55034375
transcript.pyannote[1238].speaker SPEAKER_13
transcript.pyannote[1238].start 8502.78659375
transcript.pyannote[1238].end 8504.32221875
transcript.pyannote[1239].speaker SPEAKER_13
transcript.pyannote[1239].start 8504.94659375
transcript.pyannote[1239].end 8525.16284375
transcript.pyannote[1240].speaker SPEAKER_13
transcript.pyannote[1240].start 8525.19659375
transcript.pyannote[1240].end 8527.22159375
transcript.pyannote[1241].speaker SPEAKER_13
transcript.pyannote[1241].start 8527.79534375
transcript.pyannote[1241].end 8544.33284375
transcript.pyannote[1242].speaker SPEAKER_13
transcript.pyannote[1242].start 8544.55221875
transcript.pyannote[1242].end 8555.31846875
transcript.pyannote[1243].speaker SPEAKER_04
transcript.pyannote[1243].start 8555.87534375
transcript.pyannote[1243].end 8572.37909375
transcript.pyannote[1244].speaker SPEAKER_13
transcript.pyannote[1244].start 8572.32846875
transcript.pyannote[1244].end 8587.07721875
transcript.pyannote[1245].speaker SPEAKER_04
transcript.pyannote[1245].start 8577.54284375
transcript.pyannote[1245].end 8578.15034375
transcript.pyannote[1246].speaker SPEAKER_08
transcript.pyannote[1246].start 8585.65971875
transcript.pyannote[1246].end 8592.25784375
transcript.pyannote[1247].speaker SPEAKER_16
transcript.pyannote[1247].start 8587.07721875
transcript.pyannote[1247].end 8587.09409375
transcript.pyannote[1248].speaker SPEAKER_13
transcript.pyannote[1248].start 8587.09409375
transcript.pyannote[1248].end 8587.12784375
transcript.pyannote[1249].speaker SPEAKER_15
transcript.pyannote[1249].start 8602.63596875
transcript.pyannote[1249].end 8604.34034375
transcript.pyannote[1250].speaker SPEAKER_15
transcript.pyannote[1250].start 8604.59346875
transcript.pyannote[1250].end 8605.28534375
transcript.pyannote[1251].speaker SPEAKER_15
transcript.pyannote[1251].start 8605.82534375
transcript.pyannote[1251].end 8606.80409375
transcript.pyannote[1252].speaker SPEAKER_08
transcript.pyannote[1252].start 8607.17534375
transcript.pyannote[1252].end 8608.32284375
transcript.pyannote[1253].speaker SPEAKER_15
transcript.pyannote[1253].start 8612.49096875
transcript.pyannote[1253].end 8613.41909375
transcript.pyannote[1254].speaker SPEAKER_15
transcript.pyannote[1254].start 8613.57096875
transcript.pyannote[1254].end 8627.44221875
transcript.pyannote[1255].speaker SPEAKER_08
transcript.pyannote[1255].start 8613.84096875
transcript.pyannote[1255].end 8613.85784375
transcript.pyannote[1256].speaker SPEAKER_14
transcript.pyannote[1256].start 8613.85784375
transcript.pyannote[1256].end 8613.90846875
transcript.pyannote[1257].speaker SPEAKER_08
transcript.pyannote[1257].start 8613.90846875
transcript.pyannote[1257].end 8614.00971875
transcript.pyannote[1258].speaker SPEAKER_14
transcript.pyannote[1258].start 8614.00971875
transcript.pyannote[1258].end 8614.21221875
transcript.pyannote[1259].speaker SPEAKER_15
transcript.pyannote[1259].start 8628.80909375
transcript.pyannote[1259].end 8641.48221875
transcript.pyannote[1260].speaker SPEAKER_15
transcript.pyannote[1260].start 8641.73534375
transcript.pyannote[1260].end 8647.13534375
transcript.pyannote[1261].speaker SPEAKER_15
transcript.pyannote[1261].start 8647.43909375
transcript.pyannote[1261].end 8652.29909375
transcript.pyannote[1262].speaker SPEAKER_15
transcript.pyannote[1262].start 8652.50159375
transcript.pyannote[1262].end 8654.23971875
transcript.pyannote[1263].speaker SPEAKER_15
transcript.pyannote[1263].start 8654.71221875
transcript.pyannote[1263].end 8657.42909375
transcript.pyannote[1264].speaker SPEAKER_15
transcript.pyannote[1264].start 8657.44596875
transcript.pyannote[1264].end 8659.08284375
transcript.pyannote[1265].speaker SPEAKER_15
transcript.pyannote[1265].start 8659.65659375
transcript.pyannote[1265].end 8662.79534375
transcript.pyannote[1266].speaker SPEAKER_15
transcript.pyannote[1266].start 8663.04846875
transcript.pyannote[1266].end 8667.53721875
transcript.pyannote[1267].speaker SPEAKER_15
transcript.pyannote[1267].start 8667.82409375
transcript.pyannote[1267].end 8681.88096875
transcript.pyannote[1268].speaker SPEAKER_15
transcript.pyannote[1268].start 8681.96534375
transcript.pyannote[1268].end 8694.40221875
transcript.pyannote[1269].speaker SPEAKER_15
transcript.pyannote[1269].start 8695.02659375
transcript.pyannote[1269].end 8699.16096875
transcript.pyannote[1270].speaker SPEAKER_15
transcript.pyannote[1270].start 8699.43096875
transcript.pyannote[1270].end 8699.63346875
transcript.pyannote[1271].speaker SPEAKER_15
transcript.pyannote[1271].start 8699.90346875
transcript.pyannote[1271].end 8702.73846875
transcript.pyannote[1272].speaker SPEAKER_15
transcript.pyannote[1272].start 8702.94096875
transcript.pyannote[1272].end 8703.90284375
transcript.pyannote[1273].speaker SPEAKER_15
transcript.pyannote[1273].start 8704.67909375
transcript.pyannote[1273].end 8717.70659375
transcript.pyannote[1274].speaker SPEAKER_15
transcript.pyannote[1274].start 8718.17909375
transcript.pyannote[1274].end 8726.36346875
transcript.pyannote[1275].speaker SPEAKER_15
transcript.pyannote[1275].start 8726.78534375
transcript.pyannote[1275].end 8730.71721875
transcript.pyannote[1276].speaker SPEAKER_15
transcript.pyannote[1276].start 8730.91971875
transcript.pyannote[1276].end 8733.18096875
transcript.pyannote[1277].speaker SPEAKER_15
transcript.pyannote[1277].start 8733.26534375
transcript.pyannote[1277].end 8733.77159375
transcript.pyannote[1278].speaker SPEAKER_15
transcript.pyannote[1278].start 8734.48034375
transcript.pyannote[1278].end 8773.29284375
transcript.pyannote[1279].speaker SPEAKER_15
transcript.pyannote[1279].start 8773.42784375
transcript.pyannote[1279].end 8780.02596875
transcript.pyannote[1280].speaker SPEAKER_04
transcript.pyannote[1280].start 8781.05534375
transcript.pyannote[1280].end 8838.56534375
transcript.pyannote[1281].speaker SPEAKER_15
transcript.pyannote[1281].start 8832.43971875
transcript.pyannote[1281].end 8832.45659375
transcript.pyannote[1282].speaker SPEAKER_14
transcript.pyannote[1282].start 8832.45659375
transcript.pyannote[1282].end 8832.49034375
transcript.pyannote[1283].speaker SPEAKER_15
transcript.pyannote[1283].start 8832.49034375
transcript.pyannote[1283].end 8833.09784375
transcript.pyannote[1284].speaker SPEAKER_15
transcript.pyannote[1284].start 8838.05909375
transcript.pyannote[1284].end 8843.42534375
transcript.pyannote[1285].speaker SPEAKER_15
transcript.pyannote[1285].start 8844.28596875
transcript.pyannote[1285].end 8870.96534375
transcript.pyannote[1286].speaker SPEAKER_04
transcript.pyannote[1286].start 8844.33659375
transcript.pyannote[1286].end 8845.66971875
transcript.pyannote[1287].speaker SPEAKER_11
transcript.pyannote[1287].start 8845.66971875
transcript.pyannote[1287].end 8845.75409375
transcript.pyannote[1288].speaker SPEAKER_04
transcript.pyannote[1288].start 8870.57721875
transcript.pyannote[1288].end 8880.19596875
transcript.pyannote[1289].speaker SPEAKER_15
transcript.pyannote[1289].start 8879.57159375
transcript.pyannote[1289].end 8885.46096875
transcript.pyannote[1290].speaker SPEAKER_04
transcript.pyannote[1290].start 8886.72659375
transcript.pyannote[1290].end 8893.35846875
transcript.pyannote[1291].speaker SPEAKER_15
transcript.pyannote[1291].start 8891.48534375
transcript.pyannote[1291].end 8891.82284375
transcript.pyannote[1292].speaker SPEAKER_15
transcript.pyannote[1292].start 8892.46409375
transcript.pyannote[1292].end 8907.12846875
transcript.pyannote[1293].speaker SPEAKER_04
transcript.pyannote[1293].start 8895.82221875
transcript.pyannote[1293].end 8898.08346875
transcript.pyannote[1294].speaker SPEAKER_15
transcript.pyannote[1294].start 8907.41534375
transcript.pyannote[1294].end 8945.63721875
transcript.pyannote[1295].speaker SPEAKER_15
transcript.pyannote[1295].start 8946.36284375
transcript.pyannote[1295].end 8947.83096875
transcript.pyannote[1296].speaker SPEAKER_04
transcript.pyannote[1296].start 8948.48909375
transcript.pyannote[1296].end 8959.17096875
transcript.pyannote[1297].speaker SPEAKER_15
transcript.pyannote[1297].start 8957.55096875
transcript.pyannote[1297].end 9001.45971875
transcript.pyannote[1298].speaker SPEAKER_04
transcript.pyannote[1298].start 9002.23596875
transcript.pyannote[1298].end 9003.75471875
transcript.pyannote[1299].speaker SPEAKER_15
transcript.pyannote[1299].start 9003.36659375
transcript.pyannote[1299].end 9013.57596875
transcript.pyannote[1300].speaker SPEAKER_15
transcript.pyannote[1300].start 9013.94721875
transcript.pyannote[1300].end 9019.06034375
transcript.pyannote[1301].speaker SPEAKER_04
transcript.pyannote[1301].start 9020.24159375
transcript.pyannote[1301].end 9029.38784375
transcript.pyannote[1302].speaker SPEAKER_15
transcript.pyannote[1302].start 9028.27409375
transcript.pyannote[1302].end 9031.98659375
transcript.pyannote[1303].speaker SPEAKER_15
transcript.pyannote[1303].start 9032.34096875
transcript.pyannote[1303].end 9066.27659375
transcript.pyannote[1304].speaker SPEAKER_04
transcript.pyannote[1304].start 9064.63971875
transcript.pyannote[1304].end 9069.06096875
transcript.pyannote[1305].speaker SPEAKER_15
transcript.pyannote[1305].start 9069.22971875
transcript.pyannote[1305].end 9090.66096875
transcript.pyannote[1306].speaker SPEAKER_04
transcript.pyannote[1306].start 9072.19971875
transcript.pyannote[1306].end 9072.72284375
transcript.pyannote[1307].speaker SPEAKER_04
transcript.pyannote[1307].start 9091.96034375
transcript.pyannote[1307].end 9097.88346875
transcript.pyannote[1308].speaker SPEAKER_04
transcript.pyannote[1308].start 9097.96784375
transcript.pyannote[1308].end 9098.00159375
transcript.pyannote[1309].speaker SPEAKER_04
transcript.pyannote[1309].start 9098.08596875
transcript.pyannote[1309].end 9099.36846875
transcript.pyannote[1310].speaker SPEAKER_15
transcript.pyannote[1310].start 9098.72721875
transcript.pyannote[1310].end 9102.32159375
transcript.pyannote[1311].speaker SPEAKER_04
transcript.pyannote[1311].start 9104.70096875
transcript.pyannote[1311].end 9105.69659375
transcript.pyannote[1312].speaker SPEAKER_15
transcript.pyannote[1312].start 9106.99596875
transcript.pyannote[1312].end 9115.28159375
transcript.pyannote[1313].speaker SPEAKER_18
transcript.pyannote[1313].start 9111.38346875
transcript.pyannote[1313].end 9112.22721875
transcript.pyannote[1314].speaker SPEAKER_18
transcript.pyannote[1314].start 9112.54784375
transcript.pyannote[1314].end 9112.81784375
transcript.pyannote[1315].speaker SPEAKER_15
transcript.pyannote[1315].start 9115.77096875
transcript.pyannote[1315].end 9116.42909375
transcript.pyannote[1316].speaker SPEAKER_15
transcript.pyannote[1316].start 9117.18846875
transcript.pyannote[1316].end 9118.20096875
transcript.pyannote[1317].speaker SPEAKER_15
transcript.pyannote[1317].start 9118.74096875
transcript.pyannote[1317].end 9119.56784375
transcript.pyannote[1318].speaker SPEAKER_15
transcript.pyannote[1318].start 9122.89221875
transcript.pyannote[1318].end 9126.09846875
transcript.pyannote[1319].speaker SPEAKER_15
transcript.pyannote[1319].start 9126.52034375
transcript.pyannote[1319].end 9140.27346875
transcript.pyannote[1320].speaker SPEAKER_15
transcript.pyannote[1320].start 9140.54346875
transcript.pyannote[1320].end 9172.97721875
transcript.pyannote[1321].speaker SPEAKER_15
transcript.pyannote[1321].start 9173.97284375
transcript.pyannote[1321].end 9174.98534375
transcript.pyannote[1322].speaker SPEAKER_11
transcript.pyannote[1322].start 9174.98534375
transcript.pyannote[1322].end 9178.41096875
transcript.pyannote[1323].speaker SPEAKER_15
transcript.pyannote[1323].start 9175.06971875
transcript.pyannote[1323].end 9175.42409375
transcript.pyannote[1324].speaker SPEAKER_11
transcript.pyannote[1324].start 9178.61346875
transcript.pyannote[1324].end 9192.02909375
transcript.pyannote[1325].speaker SPEAKER_15
transcript.pyannote[1325].start 9190.98284375
transcript.pyannote[1325].end 9191.40471875
transcript.pyannote[1326].speaker SPEAKER_15
transcript.pyannote[1326].start 9191.60721875
transcript.pyannote[1326].end 9199.65659375
transcript.pyannote[1327].speaker SPEAKER_15
transcript.pyannote[1327].start 9200.21346875
transcript.pyannote[1327].end 9208.31346875
transcript.pyannote[1328].speaker SPEAKER_15
transcript.pyannote[1328].start 9209.12346875
transcript.pyannote[1328].end 9257.33534375
transcript.pyannote[1329].speaker SPEAKER_15
transcript.pyannote[1329].start 9258.28034375
transcript.pyannote[1329].end 9258.55034375
transcript.pyannote[1330].speaker SPEAKER_15
transcript.pyannote[1330].start 9258.71909375
transcript.pyannote[1330].end 9269.63721875
transcript.pyannote[1331].speaker SPEAKER_15
transcript.pyannote[1331].start 9269.92409375
transcript.pyannote[1331].end 9275.45909375
transcript.pyannote[1332].speaker SPEAKER_15
transcript.pyannote[1332].start 9276.67409375
transcript.pyannote[1332].end 9277.60221875
transcript.pyannote[1333].speaker SPEAKER_15
transcript.pyannote[1333].start 9277.90596875
transcript.pyannote[1333].end 9293.43096875
transcript.pyannote[1334].speaker SPEAKER_15
transcript.pyannote[1334].start 9294.20721875
transcript.pyannote[1334].end 9324.86909375
transcript.pyannote[1335].speaker SPEAKER_00
transcript.pyannote[1335].start 9310.57596875
transcript.pyannote[1335].end 9310.86284375
transcript.pyannote[1336].speaker SPEAKER_04
transcript.pyannote[1336].start 9324.58221875
transcript.pyannote[1336].end 9347.97096875
transcript.pyannote[1337].speaker SPEAKER_15
transcript.pyannote[1337].start 9325.45971875
transcript.pyannote[1337].end 9325.96596875
transcript.pyannote[1338].speaker SPEAKER_08
transcript.pyannote[1338].start 9325.96596875
transcript.pyannote[1338].end 9326.82659375
transcript.pyannote[1339].speaker SPEAKER_15
transcript.pyannote[1339].start 9326.82659375
transcript.pyannote[1339].end 9326.91096875
transcript.pyannote[1340].speaker SPEAKER_08
transcript.pyannote[1340].start 9326.91096875
transcript.pyannote[1340].end 9326.92784375
transcript.pyannote[1341].speaker SPEAKER_15
transcript.pyannote[1341].start 9345.06846875
transcript.pyannote[1341].end 9346.33409375
transcript.pyannote[1342].speaker SPEAKER_15
transcript.pyannote[1342].start 9347.19471875
transcript.pyannote[1342].end 9350.68784375
transcript.pyannote[1343].speaker SPEAKER_04
transcript.pyannote[1343].start 9349.75971875
transcript.pyannote[1343].end 9351.27846875
transcript.pyannote[1344].speaker SPEAKER_08
transcript.pyannote[1344].start 9350.68784375
transcript.pyannote[1344].end 9350.72159375
transcript.pyannote[1345].speaker SPEAKER_15
transcript.pyannote[1345].start 9350.72159375
transcript.pyannote[1345].end 9350.77221875
transcript.pyannote[1346].speaker SPEAKER_08
transcript.pyannote[1346].start 9350.77221875
transcript.pyannote[1346].end 9350.83971875
transcript.pyannote[1347].speaker SPEAKER_15
transcript.pyannote[1347].start 9350.83971875
transcript.pyannote[1347].end 9350.87346875
transcript.pyannote[1348].speaker SPEAKER_08
transcript.pyannote[1348].start 9350.87346875
transcript.pyannote[1348].end 9351.12659375
transcript.pyannote[1349].speaker SPEAKER_15
transcript.pyannote[1349].start 9351.12659375
transcript.pyannote[1349].end 9351.16034375
transcript.pyannote[1350].speaker SPEAKER_08
transcript.pyannote[1350].start 9351.16034375
transcript.pyannote[1350].end 9352.18971875
transcript.pyannote[1351].speaker SPEAKER_15
transcript.pyannote[1351].start 9352.27409375
transcript.pyannote[1351].end 9353.97846875
transcript.pyannote[1352].speaker SPEAKER_08
transcript.pyannote[1352].start 9353.50596875
transcript.pyannote[1352].end 9358.02846875
transcript.pyannote[1353].speaker SPEAKER_06
transcript.pyannote[1353].start 9377.70471875
transcript.pyannote[1353].end 9383.56034375
transcript.pyannote[1354].speaker SPEAKER_08
transcript.pyannote[1354].start 9383.56034375
transcript.pyannote[1354].end 9383.57721875
transcript.pyannote[1355].speaker SPEAKER_06
transcript.pyannote[1355].start 9383.57721875
transcript.pyannote[1355].end 9383.59409375
transcript.pyannote[1356].speaker SPEAKER_08
transcript.pyannote[1356].start 9383.59409375
transcript.pyannote[1356].end 9386.44596875
transcript.pyannote[1357].speaker SPEAKER_06
transcript.pyannote[1357].start 9388.82534375
transcript.pyannote[1357].end 9389.68596875
transcript.pyannote[1358].speaker SPEAKER_06
transcript.pyannote[1358].start 9390.09096875
transcript.pyannote[1358].end 9390.69846875
transcript.pyannote[1359].speaker SPEAKER_06
transcript.pyannote[1359].start 9391.10346875
transcript.pyannote[1359].end 9391.67721875
transcript.pyannote[1360].speaker SPEAKER_06
transcript.pyannote[1360].start 9393.55034375
transcript.pyannote[1360].end 9394.41096875
transcript.pyannote[1361].speaker SPEAKER_06
transcript.pyannote[1361].start 9395.00159375
transcript.pyannote[1361].end 9398.02221875
transcript.pyannote[1362].speaker SPEAKER_06
transcript.pyannote[1362].start 9399.01784375
transcript.pyannote[1362].end 9403.13534375
transcript.pyannote[1363].speaker SPEAKER_06
transcript.pyannote[1363].start 9404.06346875
transcript.pyannote[1363].end 9406.67909375
transcript.pyannote[1364].speaker SPEAKER_06
transcript.pyannote[1364].start 9407.13471875
transcript.pyannote[1364].end 9409.95284375
transcript.pyannote[1365].speaker SPEAKER_06
transcript.pyannote[1365].start 9411.06659375
transcript.pyannote[1365].end 9412.77096875
transcript.pyannote[1366].speaker SPEAKER_06
transcript.pyannote[1366].start 9412.83846875
transcript.pyannote[1366].end 9413.93534375
transcript.pyannote[1367].speaker SPEAKER_06
transcript.pyannote[1367].start 9414.55971875
transcript.pyannote[1367].end 9419.23409375
transcript.pyannote[1368].speaker SPEAKER_06
transcript.pyannote[1368].start 9419.58846875
transcript.pyannote[1368].end 9420.76971875
transcript.pyannote[1369].speaker SPEAKER_06
transcript.pyannote[1369].start 9421.86659375
transcript.pyannote[1369].end 9423.90846875
transcript.pyannote[1370].speaker SPEAKER_06
transcript.pyannote[1370].start 9424.90409375
transcript.pyannote[1370].end 9428.02596875
transcript.pyannote[1371].speaker SPEAKER_06
transcript.pyannote[1371].start 9428.71784375
transcript.pyannote[1371].end 9429.96659375
transcript.pyannote[1372].speaker SPEAKER_06
transcript.pyannote[1372].start 9431.26596875
transcript.pyannote[1372].end 9434.45534375
transcript.pyannote[1373].speaker SPEAKER_06
transcript.pyannote[1373].start 9435.48471875
transcript.pyannote[1373].end 9437.07096875
transcript.pyannote[1374].speaker SPEAKER_06
transcript.pyannote[1374].start 9437.72909375
transcript.pyannote[1374].end 9438.57284375
transcript.pyannote[1375].speaker SPEAKER_06
transcript.pyannote[1375].start 9439.90596875
transcript.pyannote[1375].end 9441.47534375
transcript.pyannote[1376].speaker SPEAKER_06
transcript.pyannote[1376].start 9441.91409375
transcript.pyannote[1376].end 9443.29784375
transcript.pyannote[1377].speaker SPEAKER_06
transcript.pyannote[1377].start 9444.93471875
transcript.pyannote[1377].end 9445.54221875
transcript.pyannote[1378].speaker SPEAKER_06
transcript.pyannote[1378].start 9446.35221875
transcript.pyannote[1378].end 9448.05659375
transcript.pyannote[1379].speaker SPEAKER_06
transcript.pyannote[1379].start 9448.47846875
transcript.pyannote[1379].end 9449.94659375
transcript.pyannote[1380].speaker SPEAKER_06
transcript.pyannote[1380].start 9450.62159375
transcript.pyannote[1380].end 9452.95034375
transcript.pyannote[1381].speaker SPEAKER_06
transcript.pyannote[1381].start 9453.65909375
transcript.pyannote[1381].end 9457.16909375
transcript.pyannote[1382].speaker SPEAKER_06
transcript.pyannote[1382].start 9459.27846875
transcript.pyannote[1382].end 9461.43846875
transcript.pyannote[1383].speaker SPEAKER_06
transcript.pyannote[1383].start 9461.70846875
transcript.pyannote[1383].end 9462.13034375
transcript.pyannote[1384].speaker SPEAKER_06
transcript.pyannote[1384].start 9464.99909375
transcript.pyannote[1384].end 9467.36159375
transcript.pyannote[1385].speaker SPEAKER_04
transcript.pyannote[1385].start 9467.36159375
transcript.pyannote[1385].end 9467.78346875
transcript.pyannote[1386].speaker SPEAKER_04
transcript.pyannote[1386].start 9468.10409375
transcript.pyannote[1386].end 9468.32346875
transcript.pyannote[1387].speaker SPEAKER_04
transcript.pyannote[1387].start 9468.84659375
transcript.pyannote[1387].end 9480.59159375
transcript.pyannote[1388].speaker SPEAKER_06
transcript.pyannote[1388].start 9470.21346875
transcript.pyannote[1388].end 9470.55096875
transcript.pyannote[1389].speaker SPEAKER_06
transcript.pyannote[1389].start 9476.30534375
transcript.pyannote[1389].end 9476.98034375
transcript.pyannote[1390].speaker SPEAKER_06
transcript.pyannote[1390].start 9478.60034375
transcript.pyannote[1390].end 9481.89096875
transcript.pyannote[1391].speaker SPEAKER_06
transcript.pyannote[1391].start 9482.00909375
transcript.pyannote[1391].end 9482.76846875
transcript.pyannote[1392].speaker SPEAKER_06
transcript.pyannote[1392].start 9483.29159375
transcript.pyannote[1392].end 9485.60346875
transcript.pyannote[1393].speaker SPEAKER_06
transcript.pyannote[1393].start 9486.41346875
transcript.pyannote[1393].end 9492.25221875
transcript.pyannote[1394].speaker SPEAKER_06
transcript.pyannote[1394].start 9492.60659375
transcript.pyannote[1394].end 9495.91409375
transcript.pyannote[1395].speaker SPEAKER_06
transcript.pyannote[1395].start 9496.52159375
transcript.pyannote[1395].end 9502.84971875
transcript.pyannote[1396].speaker SPEAKER_06
transcript.pyannote[1396].start 9503.32221875
transcript.pyannote[1396].end 9504.70596875
transcript.pyannote[1397].speaker SPEAKER_06
transcript.pyannote[1397].start 9505.29659375
transcript.pyannote[1397].end 9507.60846875
transcript.pyannote[1398].speaker SPEAKER_06
transcript.pyannote[1398].start 9509.48159375
transcript.pyannote[1398].end 9511.16909375
transcript.pyannote[1399].speaker SPEAKER_06
transcript.pyannote[1399].start 9511.81034375
transcript.pyannote[1399].end 9520.73721875
transcript.pyannote[1400].speaker SPEAKER_06
transcript.pyannote[1400].start 9521.56409375
transcript.pyannote[1400].end 9522.61034375
transcript.pyannote[1401].speaker SPEAKER_22
transcript.pyannote[1401].start 9524.65221875
transcript.pyannote[1401].end 9524.85471875
transcript.pyannote[1402].speaker SPEAKER_06
transcript.pyannote[1402].start 9524.85471875
transcript.pyannote[1402].end 9529.15784375
transcript.pyannote[1403].speaker SPEAKER_22
transcript.pyannote[1403].start 9524.87159375
transcript.pyannote[1403].end 9524.88846875
transcript.pyannote[1404].speaker SPEAKER_06
transcript.pyannote[1404].start 9529.52909375
transcript.pyannote[1404].end 9532.02659375
transcript.pyannote[1405].speaker SPEAKER_04
transcript.pyannote[1405].start 9532.02659375
transcript.pyannote[1405].end 9532.31346875
transcript.pyannote[1406].speaker SPEAKER_04
transcript.pyannote[1406].start 9533.35971875
transcript.pyannote[1406].end 9551.97284375
transcript.pyannote[1407].speaker SPEAKER_06
transcript.pyannote[1407].start 9551.97284375
transcript.pyannote[1407].end 9554.30159375
transcript.pyannote[1408].speaker SPEAKER_06
transcript.pyannote[1408].start 9554.80784375
transcript.pyannote[1408].end 9557.54159375
transcript.pyannote[1409].speaker SPEAKER_06
transcript.pyannote[1409].start 9558.25034375
transcript.pyannote[1409].end 9562.73909375
transcript.pyannote[1410].speaker SPEAKER_06
transcript.pyannote[1410].start 9564.03846875
transcript.pyannote[1410].end 9564.89909375
transcript.pyannote[1411].speaker SPEAKER_06
transcript.pyannote[1411].start 9567.36284375
transcript.pyannote[1411].end 9568.02096875
transcript.pyannote[1412].speaker SPEAKER_06
transcript.pyannote[1412].start 9568.52721875
transcript.pyannote[1412].end 9573.60659375
transcript.pyannote[1413].speaker SPEAKER_06
transcript.pyannote[1413].start 9575.15909375
transcript.pyannote[1413].end 9576.52596875
transcript.pyannote[1414].speaker SPEAKER_06
transcript.pyannote[1414].start 9577.35284375
transcript.pyannote[1414].end 9577.84221875
transcript.pyannote[1415].speaker SPEAKER_06
transcript.pyannote[1415].start 9579.95159375
transcript.pyannote[1415].end 9582.66846875
transcript.pyannote[1416].speaker SPEAKER_06
transcript.pyannote[1416].start 9583.76534375
transcript.pyannote[1416].end 9585.65534375
transcript.pyannote[1417].speaker SPEAKER_06
transcript.pyannote[1417].start 9586.83659375
transcript.pyannote[1417].end 9592.99596875
transcript.pyannote[1418].speaker SPEAKER_06
transcript.pyannote[1418].start 9595.02096875
transcript.pyannote[1418].end 9596.13471875
transcript.pyannote[1419].speaker SPEAKER_06
transcript.pyannote[1419].start 9596.84346875
transcript.pyannote[1419].end 9597.92346875
transcript.pyannote[1420].speaker SPEAKER_06
transcript.pyannote[1420].start 9598.36221875
transcript.pyannote[1420].end 9600.06659375
transcript.pyannote[1421].speaker SPEAKER_06
transcript.pyannote[1421].start 9600.47159375
transcript.pyannote[1421].end 9602.71596875
transcript.pyannote[1422].speaker SPEAKER_06
transcript.pyannote[1422].start 9605.38221875
transcript.pyannote[1422].end 9606.90096875
transcript.pyannote[1423].speaker SPEAKER_06
transcript.pyannote[1423].start 9608.99346875
transcript.pyannote[1423].end 9610.93409375
transcript.pyannote[1424].speaker SPEAKER_06
transcript.pyannote[1424].start 9611.76096875
transcript.pyannote[1424].end 9615.89534375
transcript.pyannote[1425].speaker SPEAKER_06
transcript.pyannote[1425].start 9617.16096875
transcript.pyannote[1425].end 9617.61659375
transcript.pyannote[1426].speaker SPEAKER_06
transcript.pyannote[1426].start 9619.37159375
transcript.pyannote[1426].end 9620.23221875
transcript.pyannote[1427].speaker SPEAKER_06
transcript.pyannote[1427].start 9620.40096875
transcript.pyannote[1427].end 9622.12221875
transcript.pyannote[1428].speaker SPEAKER_06
transcript.pyannote[1428].start 9622.74659375
transcript.pyannote[1428].end 9623.97846875
transcript.pyannote[1429].speaker SPEAKER_04
transcript.pyannote[1429].start 9623.97846875
transcript.pyannote[1429].end 9624.01221875
transcript.pyannote[1430].speaker SPEAKER_06
transcript.pyannote[1430].start 9625.88534375
transcript.pyannote[1430].end 9629.71596875
transcript.pyannote[1431].speaker SPEAKER_04
transcript.pyannote[1431].start 9629.71596875
transcript.pyannote[1431].end 9629.73284375
transcript.pyannote[1432].speaker SPEAKER_04
transcript.pyannote[1432].start 9630.74534375
transcript.pyannote[1432].end 9630.76221875
transcript.pyannote[1433].speaker SPEAKER_06
transcript.pyannote[1433].start 9630.76221875
transcript.pyannote[1433].end 9637.90034375
transcript.pyannote[1434].speaker SPEAKER_06
transcript.pyannote[1434].start 9638.91284375
transcript.pyannote[1434].end 9641.15721875
transcript.pyannote[1435].speaker SPEAKER_04
transcript.pyannote[1435].start 9643.87409375
transcript.pyannote[1435].end 9651.45096875
transcript.pyannote[1436].speaker SPEAKER_06
transcript.pyannote[1436].start 9650.45534375
transcript.pyannote[1436].end 9652.81784375
transcript.pyannote[1437].speaker SPEAKER_04
transcript.pyannote[1437].start 9654.48846875
transcript.pyannote[1437].end 9661.49159375
transcript.pyannote[1438].speaker SPEAKER_06
transcript.pyannote[1438].start 9661.12034375
transcript.pyannote[1438].end 9669.55784375
transcript.pyannote[1439].speaker SPEAKER_06
transcript.pyannote[1439].start 9672.44346875
transcript.pyannote[1439].end 9673.42221875
transcript.pyannote[1440].speaker SPEAKER_06
transcript.pyannote[1440].start 9674.48534375
transcript.pyannote[1440].end 9679.46346875
transcript.pyannote[1441].speaker SPEAKER_17
transcript.pyannote[1441].start 9680.76284375
transcript.pyannote[1441].end 9681.13409375
transcript.pyannote[1442].speaker SPEAKER_06
transcript.pyannote[1442].start 9681.62346875
transcript.pyannote[1442].end 9682.04534375
transcript.pyannote[1443].speaker SPEAKER_17
transcript.pyannote[1443].start 9682.34909375
transcript.pyannote[1443].end 9682.93971875
transcript.pyannote[1444].speaker SPEAKER_06
transcript.pyannote[1444].start 9683.36159375
transcript.pyannote[1444].end 9684.37409375
transcript.pyannote[1445].speaker SPEAKER_17
transcript.pyannote[1445].start 9684.37409375
transcript.pyannote[1445].end 9684.39096875
transcript.pyannote[1446].speaker SPEAKER_06
transcript.pyannote[1446].start 9685.15034375
transcript.pyannote[1446].end 9687.24284375
transcript.pyannote[1447].speaker SPEAKER_06
transcript.pyannote[1447].start 9689.01471875
transcript.pyannote[1447].end 9690.14534375
transcript.pyannote[1448].speaker SPEAKER_06
transcript.pyannote[1448].start 9690.61784375
transcript.pyannote[1448].end 9692.77784375
transcript.pyannote[1449].speaker SPEAKER_17
transcript.pyannote[1449].start 9693.99284375
transcript.pyannote[1449].end 9696.72659375
transcript.pyannote[1450].speaker SPEAKER_06
transcript.pyannote[1450].start 9695.71409375
transcript.pyannote[1450].end 9696.82784375
transcript.pyannote[1451].speaker SPEAKER_06
transcript.pyannote[1451].start 9698.02596875
transcript.pyannote[1451].end 9698.39721875
transcript.pyannote[1452].speaker SPEAKER_17
transcript.pyannote[1452].start 9698.07659375
transcript.pyannote[1452].end 9699.08909375
transcript.pyannote[1453].speaker SPEAKER_06
transcript.pyannote[1453].start 9700.37159375
transcript.pyannote[1453].end 9701.02971875
transcript.pyannote[1454].speaker SPEAKER_06
transcript.pyannote[1454].start 9701.28284375
transcript.pyannote[1454].end 9702.10971875
transcript.pyannote[1455].speaker SPEAKER_17
transcript.pyannote[1455].start 9702.26159375
transcript.pyannote[1455].end 9702.56534375
transcript.pyannote[1456].speaker SPEAKER_06
transcript.pyannote[1456].start 9702.88596875
transcript.pyannote[1456].end 9703.67909375
transcript.pyannote[1457].speaker SPEAKER_06
transcript.pyannote[1457].start 9704.77596875
transcript.pyannote[1457].end 9707.15534375
transcript.pyannote[1458].speaker SPEAKER_06
transcript.pyannote[1458].start 9707.35784375
transcript.pyannote[1458].end 9707.69534375
transcript.pyannote[1459].speaker SPEAKER_06
transcript.pyannote[1459].start 9708.10034375
transcript.pyannote[1459].end 9709.78784375
transcript.pyannote[1460].speaker SPEAKER_06
transcript.pyannote[1460].start 9710.27721875
transcript.pyannote[1460].end 9711.37409375
transcript.pyannote[1461].speaker SPEAKER_06
transcript.pyannote[1461].start 9711.93096875
transcript.pyannote[1461].end 9718.05659375
transcript.pyannote[1462].speaker SPEAKER_06
transcript.pyannote[1462].start 9718.96784375
transcript.pyannote[1462].end 9720.68909375
transcript.pyannote[1463].speaker SPEAKER_06
transcript.pyannote[1463].start 9721.61721875
transcript.pyannote[1463].end 9722.37659375
transcript.pyannote[1464].speaker SPEAKER_17
transcript.pyannote[1464].start 9723.06846875
transcript.pyannote[1464].end 9726.94971875
transcript.pyannote[1465].speaker SPEAKER_06
transcript.pyannote[1465].start 9723.89534375
transcript.pyannote[1465].end 9724.50284375
transcript.pyannote[1466].speaker SPEAKER_17
transcript.pyannote[1466].start 9727.08471875
transcript.pyannote[1466].end 9727.84409375
transcript.pyannote[1467].speaker SPEAKER_17
transcript.pyannote[1467].start 9728.04659375
transcript.pyannote[1467].end 9731.11784375
transcript.pyannote[1468].speaker SPEAKER_17
transcript.pyannote[1468].start 9731.70846875
transcript.pyannote[1468].end 9734.50971875
transcript.pyannote[1469].speaker SPEAKER_17
transcript.pyannote[1469].start 9734.84721875
transcript.pyannote[1469].end 9735.48846875
transcript.pyannote[1470].speaker SPEAKER_17
transcript.pyannote[1470].start 9735.99471875
transcript.pyannote[1470].end 9741.15846875
transcript.pyannote[1471].speaker SPEAKER_06
transcript.pyannote[1471].start 9741.02346875
transcript.pyannote[1471].end 9741.34409375
transcript.pyannote[1472].speaker SPEAKER_06
transcript.pyannote[1472].start 9743.28471875
transcript.pyannote[1472].end 9745.14096875
transcript.pyannote[1473].speaker SPEAKER_06
transcript.pyannote[1473].start 9746.44034375
transcript.pyannote[1473].end 9747.63846875
transcript.pyannote[1474].speaker SPEAKER_06
transcript.pyannote[1474].start 9748.02659375
transcript.pyannote[1474].end 9749.30909375
transcript.pyannote[1475].speaker SPEAKER_06
transcript.pyannote[1475].start 9750.42284375
transcript.pyannote[1475].end 9752.49846875
transcript.pyannote[1476].speaker SPEAKER_06
transcript.pyannote[1476].start 9753.42659375
transcript.pyannote[1476].end 9755.56971875
transcript.pyannote[1477].speaker SPEAKER_06
transcript.pyannote[1477].start 9756.64971875
transcript.pyannote[1477].end 9757.67909375
transcript.pyannote[1478].speaker SPEAKER_06
transcript.pyannote[1478].start 9759.21471875
transcript.pyannote[1478].end 9763.39971875
transcript.pyannote[1479].speaker SPEAKER_06
transcript.pyannote[1479].start 9763.95659375
transcript.pyannote[1479].end 9766.13346875
transcript.pyannote[1480].speaker SPEAKER_06
transcript.pyannote[1480].start 9767.21346875
transcript.pyannote[1480].end 9769.42409375
transcript.pyannote[1481].speaker SPEAKER_06
transcript.pyannote[1481].start 9771.21284375
transcript.pyannote[1481].end 9771.55034375
transcript.pyannote[1482].speaker SPEAKER_06
transcript.pyannote[1482].start 9771.85409375
transcript.pyannote[1482].end 9774.35159375
transcript.pyannote[1483].speaker SPEAKER_06
transcript.pyannote[1483].start 9775.24596875
transcript.pyannote[1483].end 9776.88284375
transcript.pyannote[1484].speaker SPEAKER_06
transcript.pyannote[1484].start 9776.89971875
transcript.pyannote[1484].end 9777.79409375
transcript.pyannote[1485].speaker SPEAKER_06
transcript.pyannote[1485].start 9779.41409375
transcript.pyannote[1485].end 9780.64596875
transcript.pyannote[1486].speaker SPEAKER_06
transcript.pyannote[1486].start 9781.32096875
transcript.pyannote[1486].end 9783.37971875
transcript.pyannote[1487].speaker SPEAKER_06
transcript.pyannote[1487].start 9784.10534375
transcript.pyannote[1487].end 9786.33284375
transcript.pyannote[1488].speaker SPEAKER_06
transcript.pyannote[1488].start 9787.19346875
transcript.pyannote[1488].end 9790.09596875
transcript.pyannote[1489].speaker SPEAKER_06
transcript.pyannote[1489].start 9791.53034375
transcript.pyannote[1489].end 9793.84221875
transcript.pyannote[1490].speaker SPEAKER_06
transcript.pyannote[1490].start 9794.71971875
transcript.pyannote[1490].end 9795.63096875
transcript.pyannote[1491].speaker SPEAKER_06
transcript.pyannote[1491].start 9796.49159375
transcript.pyannote[1491].end 9797.33534375
transcript.pyannote[1492].speaker SPEAKER_06
transcript.pyannote[1492].start 9798.51659375
transcript.pyannote[1492].end 9802.53284375
transcript.pyannote[1493].speaker SPEAKER_06
transcript.pyannote[1493].start 9802.90409375
transcript.pyannote[1493].end 9804.20346875
transcript.pyannote[1494].speaker SPEAKER_06
transcript.pyannote[1494].start 9804.30471875
transcript.pyannote[1494].end 9808.45596875
transcript.pyannote[1495].speaker SPEAKER_06
transcript.pyannote[1495].start 9808.91159375
transcript.pyannote[1495].end 9809.56971875
transcript.pyannote[1496].speaker SPEAKER_06
transcript.pyannote[1496].start 9810.54846875
transcript.pyannote[1496].end 9811.18971875
transcript.pyannote[1497].speaker SPEAKER_06
transcript.pyannote[1497].start 9812.77596875
transcript.pyannote[1497].end 9813.29909375
transcript.pyannote[1498].speaker SPEAKER_06
transcript.pyannote[1498].start 9814.04159375
transcript.pyannote[1498].end 9814.36221875
transcript.pyannote[1499].speaker SPEAKER_06
transcript.pyannote[1499].start 9814.85159375
transcript.pyannote[1499].end 9815.40846875
transcript.pyannote[1500].speaker SPEAKER_06
transcript.pyannote[1500].start 9816.42096875
transcript.pyannote[1500].end 9817.85534375
transcript.pyannote[1501].speaker SPEAKER_06
transcript.pyannote[1501].start 9818.17596875
transcript.pyannote[1501].end 9818.69909375
transcript.pyannote[1502].speaker SPEAKER_16
transcript.pyannote[1502].start 9818.85096875
transcript.pyannote[1502].end 9819.03659375
transcript.pyannote[1503].speaker SPEAKER_06
transcript.pyannote[1503].start 9819.13784375
transcript.pyannote[1503].end 9820.72409375
transcript.pyannote[1504].speaker SPEAKER_06
transcript.pyannote[1504].start 9820.85909375
transcript.pyannote[1504].end 9822.29346875
transcript.pyannote[1505].speaker SPEAKER_06
transcript.pyannote[1505].start 9822.96846875
transcript.pyannote[1505].end 9825.21284375
transcript.pyannote[1506].speaker SPEAKER_06
transcript.pyannote[1506].start 9826.09034375
transcript.pyannote[1506].end 9828.99284375
transcript.pyannote[1507].speaker SPEAKER_06
transcript.pyannote[1507].start 9830.27534375
transcript.pyannote[1507].end 9831.42284375
transcript.pyannote[1508].speaker SPEAKER_06
transcript.pyannote[1508].start 9833.05971875
transcript.pyannote[1508].end 9833.71784375
transcript.pyannote[1509].speaker SPEAKER_17
transcript.pyannote[1509].start 9835.30409375
transcript.pyannote[1509].end 9836.56971875
transcript.pyannote[1510].speaker SPEAKER_06
transcript.pyannote[1510].start 9836.85659375
transcript.pyannote[1510].end 9837.04221875
transcript.pyannote[1511].speaker SPEAKER_17
transcript.pyannote[1511].start 9837.04221875
transcript.pyannote[1511].end 9838.78034375
transcript.pyannote[1512].speaker SPEAKER_06
transcript.pyannote[1512].start 9837.75096875
transcript.pyannote[1512].end 9839.53971875
transcript.pyannote[1513].speaker SPEAKER_17
transcript.pyannote[1513].start 9839.89409375
transcript.pyannote[1513].end 9841.75034375
transcript.pyannote[1514].speaker SPEAKER_06
transcript.pyannote[1514].start 9840.19784375
transcript.pyannote[1514].end 9841.66596875
transcript.pyannote[1515].speaker SPEAKER_17
transcript.pyannote[1515].start 9842.62784375
transcript.pyannote[1515].end 9846.84659375
transcript.pyannote[1516].speaker SPEAKER_06
transcript.pyannote[1516].start 9847.30221875
transcript.pyannote[1516].end 9849.20909375
transcript.pyannote[1517].speaker SPEAKER_06
transcript.pyannote[1517].start 9849.25971875
transcript.pyannote[1517].end 9852.85409375
transcript.pyannote[1518].speaker SPEAKER_17
transcript.pyannote[1518].start 9852.85409375
transcript.pyannote[1518].end 9852.90471875
transcript.pyannote[1519].speaker SPEAKER_06
transcript.pyannote[1519].start 9853.34346875
transcript.pyannote[1519].end 9856.71846875
transcript.pyannote[1520].speaker SPEAKER_17
transcript.pyannote[1520].start 9859.13159375
transcript.pyannote[1520].end 9874.31909375
transcript.pyannote[1521].speaker SPEAKER_06
transcript.pyannote[1521].start 9860.63346875
transcript.pyannote[1521].end 9861.79784375
transcript.pyannote[1522].speaker SPEAKER_06
transcript.pyannote[1522].start 9867.72096875
transcript.pyannote[1522].end 9867.75471875
transcript.pyannote[1523].speaker SPEAKER_08
transcript.pyannote[1523].start 9867.75471875
transcript.pyannote[1523].end 9868.19346875
transcript.pyannote[1524].speaker SPEAKER_06
transcript.pyannote[1524].start 9868.19346875
transcript.pyannote[1524].end 9868.21034375
transcript.pyannote[1525].speaker SPEAKER_08
transcript.pyannote[1525].start 9869.91471875
transcript.pyannote[1525].end 9870.03284375
transcript.pyannote[1526].speaker SPEAKER_06
transcript.pyannote[1526].start 9870.03284375
transcript.pyannote[1526].end 9870.25221875
transcript.pyannote[1527].speaker SPEAKER_08
transcript.pyannote[1527].start 9870.25221875
transcript.pyannote[1527].end 9870.40409375
transcript.pyannote[1528].speaker SPEAKER_06
transcript.pyannote[1528].start 9870.40409375
transcript.pyannote[1528].end 9870.42096875
transcript.pyannote[1529].speaker SPEAKER_06
transcript.pyannote[1529].start 9874.31909375
transcript.pyannote[1529].end 9875.01096875
transcript.pyannote[1530].speaker SPEAKER_17
transcript.pyannote[1530].start 9875.01096875
transcript.pyannote[1530].end 9875.07846875
transcript.pyannote[1531].speaker SPEAKER_06
transcript.pyannote[1531].start 9875.07846875
transcript.pyannote[1531].end 9875.09534375
transcript.pyannote[1532].speaker SPEAKER_17
transcript.pyannote[1532].start 9876.29346875
transcript.pyannote[1532].end 9876.31034375
transcript.pyannote[1533].speaker SPEAKER_06
transcript.pyannote[1533].start 9876.31034375
transcript.pyannote[1533].end 9877.49159375
transcript.pyannote[1534].speaker SPEAKER_06
transcript.pyannote[1534].start 9878.58846875
transcript.pyannote[1534].end 9882.25034375
transcript.pyannote[1535].speaker SPEAKER_06
transcript.pyannote[1535].start 9883.85346875
transcript.pyannote[1535].end 9885.03471875
transcript.pyannote[1536].speaker SPEAKER_06
transcript.pyannote[1536].start 9887.19471875
transcript.pyannote[1536].end 9888.42659375
transcript.pyannote[1537].speaker SPEAKER_06
transcript.pyannote[1537].start 9888.49409375
transcript.pyannote[1537].end 9889.42221875
transcript.pyannote[1538].speaker SPEAKER_06
transcript.pyannote[1538].start 9890.08034375
transcript.pyannote[1538].end 9895.59846875
transcript.pyannote[1539].speaker SPEAKER_06
transcript.pyannote[1539].start 9897.37034375
transcript.pyannote[1539].end 9898.09596875
transcript.pyannote[1540].speaker SPEAKER_06
transcript.pyannote[1540].start 9898.41659375
transcript.pyannote[1540].end 9899.46284375
transcript.pyannote[1541].speaker SPEAKER_06
transcript.pyannote[1541].start 9900.10409375
transcript.pyannote[1541].end 9900.69471875
transcript.pyannote[1542].speaker SPEAKER_06
transcript.pyannote[1542].start 9901.25159375
transcript.pyannote[1542].end 9904.81221875
transcript.pyannote[1543].speaker SPEAKER_06
transcript.pyannote[1543].start 9906.97221875
transcript.pyannote[1543].end 9910.51596875
transcript.pyannote[1544].speaker SPEAKER_06
transcript.pyannote[1544].start 9911.17409375
transcript.pyannote[1544].end 9917.67096875
transcript.pyannote[1545].speaker SPEAKER_06
transcript.pyannote[1545].start 9918.14346875
transcript.pyannote[1545].end 9918.95346875
transcript.pyannote[1546].speaker SPEAKER_17
transcript.pyannote[1546].start 9921.92346875
transcript.pyannote[1546].end 9930.69846875
transcript.pyannote[1547].speaker SPEAKER_06
transcript.pyannote[1547].start 9922.98659375
transcript.pyannote[1547].end 9923.64471875
transcript.pyannote[1548].speaker SPEAKER_06
transcript.pyannote[1548].start 9929.87159375
transcript.pyannote[1548].end 9931.94721875
transcript.pyannote[1549].speaker SPEAKER_17
transcript.pyannote[1549].start 9932.47034375
transcript.pyannote[1549].end 9933.68534375
transcript.pyannote[1550].speaker SPEAKER_17
transcript.pyannote[1550].start 9933.85409375
transcript.pyannote[1550].end 9933.88784375
transcript.pyannote[1551].speaker SPEAKER_06
transcript.pyannote[1551].start 9933.88784375
transcript.pyannote[1551].end 9934.76534375
transcript.pyannote[1552].speaker SPEAKER_06
transcript.pyannote[1552].start 9935.99721875
transcript.pyannote[1552].end 9937.58346875
transcript.pyannote[1553].speaker SPEAKER_17
transcript.pyannote[1553].start 9938.41034375
transcript.pyannote[1553].end 9940.18221875
transcript.pyannote[1554].speaker SPEAKER_06
transcript.pyannote[1554].start 9939.96284375
transcript.pyannote[1554].end 9940.67159375
transcript.pyannote[1555].speaker SPEAKER_06
transcript.pyannote[1555].start 9941.05971875
transcript.pyannote[1555].end 9941.90346875
transcript.pyannote[1556].speaker SPEAKER_06
transcript.pyannote[1556].start 9942.52784375
transcript.pyannote[1556].end 9943.59096875
transcript.pyannote[1557].speaker SPEAKER_06
transcript.pyannote[1557].start 9944.85659375
transcript.pyannote[1557].end 9945.73409375
transcript.pyannote[1558].speaker SPEAKER_06
transcript.pyannote[1558].start 9947.08409375
transcript.pyannote[1558].end 9947.89409375
transcript.pyannote[1559].speaker SPEAKER_06
transcript.pyannote[1559].start 9948.41721875
transcript.pyannote[1559].end 9949.49721875
transcript.pyannote[1560].speaker SPEAKER_06
transcript.pyannote[1560].start 9950.79659375
transcript.pyannote[1560].end 9951.85971875
transcript.pyannote[1561].speaker SPEAKER_06
transcript.pyannote[1561].start 9954.28971875
transcript.pyannote[1561].end 9955.57221875
transcript.pyannote[1562].speaker SPEAKER_06
transcript.pyannote[1562].start 9957.54659375
transcript.pyannote[1562].end 9959.04846875
transcript.pyannote[1563].speaker SPEAKER_06
transcript.pyannote[1563].start 9960.49971875
transcript.pyannote[1563].end 9961.81596875
transcript.pyannote[1564].speaker SPEAKER_06
transcript.pyannote[1564].start 9963.48659375
transcript.pyannote[1564].end 9964.16159375
transcript.pyannote[1565].speaker SPEAKER_17
transcript.pyannote[1565].start 9966.84471875
transcript.pyannote[1565].end 9968.68409375
transcript.pyannote[1566].speaker SPEAKER_06
transcript.pyannote[1566].start 9968.46471875
transcript.pyannote[1566].end 9972.12659375
transcript.pyannote[1567].speaker SPEAKER_17
transcript.pyannote[1567].start 9972.12659375
transcript.pyannote[1567].end 9972.44721875
transcript.pyannote[1568].speaker SPEAKER_06
transcript.pyannote[1568].start 9972.24471875
transcript.pyannote[1568].end 9974.60721875
transcript.pyannote[1569].speaker SPEAKER_06
transcript.pyannote[1569].start 9976.22721875
transcript.pyannote[1569].end 9978.57284375
transcript.pyannote[1570].speaker SPEAKER_06
transcript.pyannote[1570].start 9980.09159375
transcript.pyannote[1570].end 9982.36971875
transcript.pyannote[1571].speaker SPEAKER_06
transcript.pyannote[1571].start 9984.02346875
transcript.pyannote[1571].end 9984.37784375
transcript.pyannote[1572].speaker SPEAKER_17
transcript.pyannote[1572].start 9984.85034375
transcript.pyannote[1572].end 9984.98534375
transcript.pyannote[1573].speaker SPEAKER_06
transcript.pyannote[1573].start 9985.32284375
transcript.pyannote[1573].end 9987.78659375
transcript.pyannote[1574].speaker SPEAKER_17
transcript.pyannote[1574].start 9988.00596875
transcript.pyannote[1574].end 9988.39409375
transcript.pyannote[1575].speaker SPEAKER_17
transcript.pyannote[1575].start 9988.63034375
transcript.pyannote[1575].end 9989.33909375
transcript.pyannote[1576].speaker SPEAKER_06
transcript.pyannote[1576].start 9989.00159375
transcript.pyannote[1576].end 9989.50784375
transcript.pyannote[1577].speaker SPEAKER_17
transcript.pyannote[1577].start 9989.50784375
transcript.pyannote[1577].end 9990.41909375
transcript.pyannote[1578].speaker SPEAKER_17
transcript.pyannote[1578].start 9990.73971875
transcript.pyannote[1578].end 9991.22909375
transcript.pyannote[1579].speaker SPEAKER_06
transcript.pyannote[1579].start 9993.50721875
transcript.pyannote[1579].end 9994.13159375
transcript.pyannote[1580].speaker SPEAKER_06
transcript.pyannote[1580].start 9995.19471875
transcript.pyannote[1580].end 9995.73471875
transcript.pyannote[1581].speaker SPEAKER_06
transcript.pyannote[1581].start 9996.34221875
transcript.pyannote[1581].end 9996.89909375
transcript.pyannote[1582].speaker SPEAKER_08
transcript.pyannote[1582].start 9997.20284375
transcript.pyannote[1582].end 9997.35471875
transcript.pyannote[1583].speaker SPEAKER_17
transcript.pyannote[1583].start 9997.35471875
transcript.pyannote[1583].end 9997.38846875
transcript.pyannote[1584].speaker SPEAKER_08
transcript.pyannote[1584].start 9997.38846875
transcript.pyannote[1584].end 9997.43909375
transcript.pyannote[1585].speaker SPEAKER_17
transcript.pyannote[1585].start 9997.43909375
transcript.pyannote[1585].end 9997.50659375
transcript.pyannote[1586].speaker SPEAKER_06
transcript.pyannote[1586].start 9997.50659375
transcript.pyannote[1586].end 9997.57409375
transcript.pyannote[1587].speaker SPEAKER_06
transcript.pyannote[1587].start 9997.87784375
transcript.pyannote[1587].end 9999.17721875
transcript.pyannote[1588].speaker SPEAKER_08
transcript.pyannote[1588].start 10000.18971875
transcript.pyannote[1588].end 10007.53034375
transcript.pyannote[1589].speaker SPEAKER_08
transcript.pyannote[1589].start 10010.04471875
transcript.pyannote[1589].end 10023.54471875
transcript.pyannote[1590].speaker SPEAKER_09
transcript.pyannote[1590].start 10031.81346875
transcript.pyannote[1590].end 10034.02409375
transcript.pyannote[1591].speaker SPEAKER_09
transcript.pyannote[1591].start 10038.61409375
transcript.pyannote[1591].end 10039.44096875
transcript.pyannote[1592].speaker SPEAKER_09
transcript.pyannote[1592].start 10040.45346875
transcript.pyannote[1592].end 10043.91284375
transcript.pyannote[1593].speaker SPEAKER_09
transcript.pyannote[1593].start 10044.58784375
transcript.pyannote[1593].end 10045.68471875
transcript.pyannote[1594].speaker SPEAKER_09
transcript.pyannote[1594].start 10046.29221875
transcript.pyannote[1594].end 10047.52409375
transcript.pyannote[1595].speaker SPEAKER_09
transcript.pyannote[1595].start 10048.33409375
transcript.pyannote[1595].end 10050.42659375
transcript.pyannote[1596].speaker SPEAKER_09
transcript.pyannote[1596].start 10050.91596875
transcript.pyannote[1596].end 10052.70471875
transcript.pyannote[1597].speaker SPEAKER_09
transcript.pyannote[1597].start 10053.26159375
transcript.pyannote[1597].end 10054.05471875
transcript.pyannote[1598].speaker SPEAKER_09
transcript.pyannote[1598].start 10054.61159375
transcript.pyannote[1598].end 10057.14284375
transcript.pyannote[1599].speaker SPEAKER_09
transcript.pyannote[1599].start 10058.03721875
transcript.pyannote[1599].end 10062.13784375
transcript.pyannote[1600].speaker SPEAKER_09
transcript.pyannote[1600].start 10063.08284375
transcript.pyannote[1600].end 10065.14159375
transcript.pyannote[1601].speaker SPEAKER_09
transcript.pyannote[1601].start 10065.61409375
transcript.pyannote[1601].end 10067.36909375
transcript.pyannote[1602].speaker SPEAKER_09
transcript.pyannote[1602].start 10067.50409375
transcript.pyannote[1602].end 10069.05659375
transcript.pyannote[1603].speaker SPEAKER_09
transcript.pyannote[1603].start 10069.51221875
transcript.pyannote[1603].end 10069.54596875
transcript.pyannote[1604].speaker SPEAKER_04
transcript.pyannote[1604].start 10069.54596875
transcript.pyannote[1604].end 10071.52034375
transcript.pyannote[1605].speaker SPEAKER_09
transcript.pyannote[1605].start 10070.08596875
transcript.pyannote[1605].end 10085.64471875
transcript.pyannote[1606].speaker SPEAKER_04
transcript.pyannote[1606].start 10072.17846875
transcript.pyannote[1606].end 10073.30909375
transcript.pyannote[1607].speaker SPEAKER_04
transcript.pyannote[1607].start 10080.04221875
transcript.pyannote[1607].end 10080.97034375
transcript.pyannote[1608].speaker SPEAKER_03
transcript.pyannote[1608].start 10080.97034375
transcript.pyannote[1608].end 10080.98721875
transcript.pyannote[1609].speaker SPEAKER_16
transcript.pyannote[1609].start 10081.18971875
transcript.pyannote[1609].end 10081.25721875
transcript.pyannote[1610].speaker SPEAKER_03
transcript.pyannote[1610].start 10081.25721875
transcript.pyannote[1610].end 10081.51034375
transcript.pyannote[1611].speaker SPEAKER_16
transcript.pyannote[1611].start 10081.51034375
transcript.pyannote[1611].end 10081.57784375
transcript.pyannote[1612].speaker SPEAKER_09
transcript.pyannote[1612].start 10086.55596875
transcript.pyannote[1612].end 10088.54721875
transcript.pyannote[1613].speaker SPEAKER_09
transcript.pyannote[1613].start 10088.71596875
transcript.pyannote[1613].end 10089.59346875
transcript.pyannote[1614].speaker SPEAKER_09
transcript.pyannote[1614].start 10090.11659375
transcript.pyannote[1614].end 10092.09096875
transcript.pyannote[1615].speaker SPEAKER_16
transcript.pyannote[1615].start 10092.34409375
transcript.pyannote[1615].end 10092.56346875
transcript.pyannote[1616].speaker SPEAKER_09
transcript.pyannote[1616].start 10092.56346875
transcript.pyannote[1616].end 10097.15346875
transcript.pyannote[1617].speaker SPEAKER_09
transcript.pyannote[1617].start 10097.33909375
transcript.pyannote[1617].end 10101.84471875
transcript.pyannote[1618].speaker SPEAKER_09
transcript.pyannote[1618].start 10102.31721875
transcript.pyannote[1618].end 10102.87409375
transcript.pyannote[1619].speaker SPEAKER_09
transcript.pyannote[1619].start 10103.54909375
transcript.pyannote[1619].end 10105.43909375
transcript.pyannote[1620].speaker SPEAKER_09
transcript.pyannote[1620].start 10105.92846875
transcript.pyannote[1620].end 10105.94534375
transcript.pyannote[1621].speaker SPEAKER_09
transcript.pyannote[1621].start 10105.96221875
transcript.pyannote[1621].end 10105.97909375
transcript.pyannote[1622].speaker SPEAKER_09
transcript.pyannote[1622].start 10106.46846875
transcript.pyannote[1622].end 10107.53159375
transcript.pyannote[1623].speaker SPEAKER_09
transcript.pyannote[1623].start 10108.69596875
transcript.pyannote[1623].end 10109.21909375
transcript.pyannote[1624].speaker SPEAKER_09
transcript.pyannote[1624].start 10109.48909375
transcript.pyannote[1624].end 10110.33284375
transcript.pyannote[1625].speaker SPEAKER_09
transcript.pyannote[1625].start 10111.78409375
transcript.pyannote[1625].end 10112.30721875
transcript.pyannote[1626].speaker SPEAKER_09
transcript.pyannote[1626].start 10112.69534375
transcript.pyannote[1626].end 10113.01596875
transcript.pyannote[1627].speaker SPEAKER_09
transcript.pyannote[1627].start 10113.55596875
transcript.pyannote[1627].end 10115.85096875
transcript.pyannote[1628].speaker SPEAKER_09
transcript.pyannote[1628].start 10116.39096875
transcript.pyannote[1628].end 10117.79159375
transcript.pyannote[1629].speaker SPEAKER_09
transcript.pyannote[1629].start 10118.51721875
transcript.pyannote[1629].end 10119.10784375
transcript.pyannote[1630].speaker SPEAKER_09
transcript.pyannote[1630].start 10120.54221875
transcript.pyannote[1630].end 10121.77409375
transcript.pyannote[1631].speaker SPEAKER_09
transcript.pyannote[1631].start 10122.33096875
transcript.pyannote[1631].end 10126.06034375
transcript.pyannote[1632].speaker SPEAKER_09
transcript.pyannote[1632].start 10126.51596875
transcript.pyannote[1632].end 10134.59909375
transcript.pyannote[1633].speaker SPEAKER_09
transcript.pyannote[1633].start 10134.97034375
transcript.pyannote[1633].end 10136.74221875
transcript.pyannote[1634].speaker SPEAKER_09
transcript.pyannote[1634].start 10136.92784375
transcript.pyannote[1634].end 10138.15971875
transcript.pyannote[1635].speaker SPEAKER_09
transcript.pyannote[1635].start 10138.48034375
transcript.pyannote[1635].end 10139.10471875
transcript.pyannote[1636].speaker SPEAKER_09
transcript.pyannote[1636].start 10139.79659375
transcript.pyannote[1636].end 10141.65284375
transcript.pyannote[1637].speaker SPEAKER_09
transcript.pyannote[1637].start 10142.22659375
transcript.pyannote[1637].end 10143.69471875
transcript.pyannote[1638].speaker SPEAKER_09
transcript.pyannote[1638].start 10146.05721875
transcript.pyannote[1638].end 10147.22159375
transcript.pyannote[1639].speaker SPEAKER_09
transcript.pyannote[1639].start 10147.44096875
transcript.pyannote[1639].end 10149.02721875
transcript.pyannote[1640].speaker SPEAKER_09
transcript.pyannote[1640].start 10149.68534375
transcript.pyannote[1640].end 10151.45721875
transcript.pyannote[1641].speaker SPEAKER_09
transcript.pyannote[1641].start 10151.94659375
transcript.pyannote[1641].end 10155.97971875
transcript.pyannote[1642].speaker SPEAKER_09
transcript.pyannote[1642].start 10156.23284375
transcript.pyannote[1642].end 10160.51909375
transcript.pyannote[1643].speaker SPEAKER_09
transcript.pyannote[1643].start 10161.16034375
transcript.pyannote[1643].end 10161.46409375
transcript.pyannote[1644].speaker SPEAKER_09
transcript.pyannote[1644].start 10161.85221875
transcript.pyannote[1644].end 10164.11346875
transcript.pyannote[1645].speaker SPEAKER_04
transcript.pyannote[1645].start 10164.11346875
transcript.pyannote[1645].end 10164.16409375
transcript.pyannote[1646].speaker SPEAKER_09
transcript.pyannote[1646].start 10165.00784375
transcript.pyannote[1646].end 10165.04159375
transcript.pyannote[1647].speaker SPEAKER_04
transcript.pyannote[1647].start 10165.04159375
transcript.pyannote[1647].end 10202.13284375
transcript.pyannote[1648].speaker SPEAKER_09
transcript.pyannote[1648].start 10200.24284375
transcript.pyannote[1648].end 10200.61409375
transcript.pyannote[1649].speaker SPEAKER_04
transcript.pyannote[1649].start 10202.40284375
transcript.pyannote[1649].end 10204.30971875
transcript.pyannote[1650].speaker SPEAKER_09
transcript.pyannote[1650].start 10204.30971875
transcript.pyannote[1650].end 10204.42784375
transcript.pyannote[1651].speaker SPEAKER_04
transcript.pyannote[1651].start 10204.42784375
transcript.pyannote[1651].end 10204.44471875
transcript.pyannote[1652].speaker SPEAKER_04
transcript.pyannote[1652].start 10204.51221875
transcript.pyannote[1652].end 10204.96784375
transcript.pyannote[1653].speaker SPEAKER_09
transcript.pyannote[1653].start 10204.96784375
transcript.pyannote[1653].end 10206.95909375
transcript.pyannote[1654].speaker SPEAKER_09
transcript.pyannote[1654].start 10207.60034375
transcript.pyannote[1654].end 10209.92909375
transcript.pyannote[1655].speaker SPEAKER_09
transcript.pyannote[1655].start 10210.33409375
transcript.pyannote[1655].end 10212.10596875
transcript.pyannote[1656].speaker SPEAKER_09
transcript.pyannote[1656].start 10213.65846875
transcript.pyannote[1656].end 10214.92409375
transcript.pyannote[1657].speaker SPEAKER_09
transcript.pyannote[1657].start 10215.19409375
transcript.pyannote[1657].end 10216.34159375
transcript.pyannote[1658].speaker SPEAKER_09
transcript.pyannote[1658].start 10217.38784375
transcript.pyannote[1658].end 10220.05409375
transcript.pyannote[1659].speaker SPEAKER_09
transcript.pyannote[1659].start 10220.62784375
transcript.pyannote[1659].end 10221.70784375
transcript.pyannote[1660].speaker SPEAKER_09
transcript.pyannote[1660].start 10222.53471875
transcript.pyannote[1660].end 10224.03659375
transcript.pyannote[1661].speaker SPEAKER_09
transcript.pyannote[1661].start 10224.15471875
transcript.pyannote[1661].end 10226.07846875
transcript.pyannote[1662].speaker SPEAKER_09
transcript.pyannote[1662].start 10226.97284375
transcript.pyannote[1662].end 10228.40721875
transcript.pyannote[1663].speaker SPEAKER_09
transcript.pyannote[1663].start 10228.72784375
transcript.pyannote[1663].end 10229.89221875
transcript.pyannote[1664].speaker SPEAKER_09
transcript.pyannote[1664].start 10230.16221875
transcript.pyannote[1664].end 10231.02284375
transcript.pyannote[1665].speaker SPEAKER_09
transcript.pyannote[1665].start 10231.78221875
transcript.pyannote[1665].end 10236.70971875
transcript.pyannote[1666].speaker SPEAKER_09
transcript.pyannote[1666].start 10236.77721875
transcript.pyannote[1666].end 10245.99096875
transcript.pyannote[1667].speaker SPEAKER_09
transcript.pyannote[1667].start 10246.59846875
transcript.pyannote[1667].end 10250.26034375
transcript.pyannote[1668].speaker SPEAKER_09
transcript.pyannote[1668].start 10251.23909375
transcript.pyannote[1668].end 10257.76971875
transcript.pyannote[1669].speaker SPEAKER_09
transcript.pyannote[1669].start 10258.14096875
transcript.pyannote[1669].end 10259.72721875
transcript.pyannote[1670].speaker SPEAKER_09
transcript.pyannote[1670].start 10261.36409375
transcript.pyannote[1670].end 10268.68784375
transcript.pyannote[1671].speaker SPEAKER_09
transcript.pyannote[1671].start 10269.91971875
transcript.pyannote[1671].end 10273.24409375
transcript.pyannote[1672].speaker SPEAKER_09
transcript.pyannote[1672].start 10273.98659375
transcript.pyannote[1672].end 10278.00284375
transcript.pyannote[1673].speaker SPEAKER_09
transcript.pyannote[1673].start 10278.77909375
transcript.pyannote[1673].end 10281.49596875
transcript.pyannote[1674].speaker SPEAKER_09
transcript.pyannote[1674].start 10282.69409375
transcript.pyannote[1674].end 10284.98909375
transcript.pyannote[1675].speaker SPEAKER_09
transcript.pyannote[1675].start 10286.06909375
transcript.pyannote[1675].end 10286.33909375
transcript.pyannote[1676].speaker SPEAKER_09
transcript.pyannote[1676].start 10286.50784375
transcript.pyannote[1676].end 10288.14471875
transcript.pyannote[1677].speaker SPEAKER_09
transcript.pyannote[1677].start 10288.81971875
transcript.pyannote[1677].end 10292.68409375
transcript.pyannote[1678].speaker SPEAKER_09
transcript.pyannote[1678].start 10293.19034375
transcript.pyannote[1678].end 10293.84846875
transcript.pyannote[1679].speaker SPEAKER_09
transcript.pyannote[1679].start 10294.59096875
transcript.pyannote[1679].end 10302.47159375
transcript.pyannote[1680].speaker SPEAKER_09
transcript.pyannote[1680].start 10302.97784375
transcript.pyannote[1680].end 10305.94784375
transcript.pyannote[1681].speaker SPEAKER_09
transcript.pyannote[1681].start 10306.55534375
transcript.pyannote[1681].end 10309.69409375
transcript.pyannote[1682].speaker SPEAKER_09
transcript.pyannote[1682].start 10310.25096875
transcript.pyannote[1682].end 10311.65159375
transcript.pyannote[1683].speaker SPEAKER_09
transcript.pyannote[1683].start 10311.83721875
transcript.pyannote[1683].end 10312.91721875
transcript.pyannote[1684].speaker SPEAKER_09
transcript.pyannote[1684].start 10313.27159375
transcript.pyannote[1684].end 10317.28784375
transcript.pyannote[1685].speaker SPEAKER_09
transcript.pyannote[1685].start 10317.42284375
transcript.pyannote[1685].end 10317.43971875
transcript.pyannote[1686].speaker SPEAKER_09
transcript.pyannote[1686].start 10317.49034375
transcript.pyannote[1686].end 10322.56971875
transcript.pyannote[1687].speaker SPEAKER_09
transcript.pyannote[1687].start 10323.29534375
transcript.pyannote[1687].end 10325.72534375
transcript.pyannote[1688].speaker SPEAKER_09
transcript.pyannote[1688].start 10326.29909375
transcript.pyannote[1688].end 10329.20159375
transcript.pyannote[1689].speaker SPEAKER_09
transcript.pyannote[1689].start 10330.82159375
transcript.pyannote[1689].end 10331.96909375
transcript.pyannote[1690].speaker SPEAKER_04
transcript.pyannote[1690].start 10331.96909375
transcript.pyannote[1690].end 10332.03659375
transcript.pyannote[1691].speaker SPEAKER_10
transcript.pyannote[1691].start 10332.69471875
transcript.pyannote[1691].end 10332.94784375
transcript.pyannote[1692].speaker SPEAKER_04
transcript.pyannote[1692].start 10332.94784375
transcript.pyannote[1692].end 10336.00221875
transcript.pyannote[1693].speaker SPEAKER_04
transcript.pyannote[1693].start 10336.39034375
transcript.pyannote[1693].end 10386.54284375
transcript.pyannote[1694].speaker SPEAKER_09
transcript.pyannote[1694].start 10385.66534375
transcript.pyannote[1694].end 10387.48784375
transcript.pyannote[1695].speaker SPEAKER_09
transcript.pyannote[1695].start 10387.92659375
transcript.pyannote[1695].end 10393.05659375
transcript.pyannote[1696].speaker SPEAKER_09
transcript.pyannote[1696].start 10393.27596875
transcript.pyannote[1696].end 10398.55784375
transcript.pyannote[1697].speaker SPEAKER_09
transcript.pyannote[1697].start 10398.97971875
transcript.pyannote[1697].end 10405.12221875
transcript.pyannote[1698].speaker SPEAKER_09
transcript.pyannote[1698].start 10405.56096875
transcript.pyannote[1698].end 10406.86034375
transcript.pyannote[1699].speaker SPEAKER_09
transcript.pyannote[1699].start 10407.56909375
transcript.pyannote[1699].end 10408.12596875
transcript.pyannote[1700].speaker SPEAKER_09
transcript.pyannote[1700].start 10409.15534375
transcript.pyannote[1700].end 10410.11721875
transcript.pyannote[1701].speaker SPEAKER_09
transcript.pyannote[1701].start 10410.53909375
transcript.pyannote[1701].end 10413.22221875
transcript.pyannote[1702].speaker SPEAKER_09
transcript.pyannote[1702].start 10413.79596875
transcript.pyannote[1702].end 10421.96346875
transcript.pyannote[1703].speaker SPEAKER_09
transcript.pyannote[1703].start 10422.28409375
transcript.pyannote[1703].end 10424.19096875
transcript.pyannote[1704].speaker SPEAKER_09
transcript.pyannote[1704].start 10424.42721875
transcript.pyannote[1704].end 10424.78159375
transcript.pyannote[1705].speaker SPEAKER_09
transcript.pyannote[1705].start 10425.18659375
transcript.pyannote[1705].end 10426.14846875
transcript.pyannote[1706].speaker SPEAKER_09
transcript.pyannote[1706].start 10426.51971875
transcript.pyannote[1706].end 10428.35909375
transcript.pyannote[1707].speaker SPEAKER_09
transcript.pyannote[1707].start 10428.76409375
transcript.pyannote[1707].end 10429.03409375
transcript.pyannote[1708].speaker SPEAKER_09
transcript.pyannote[1708].start 10429.47284375
transcript.pyannote[1708].end 10434.99096875
transcript.pyannote[1709].speaker SPEAKER_09
transcript.pyannote[1709].start 10435.53096875
transcript.pyannote[1709].end 10440.82971875
transcript.pyannote[1710].speaker SPEAKER_09
transcript.pyannote[1710].start 10441.25159375
transcript.pyannote[1710].end 10443.41159375
transcript.pyannote[1711].speaker SPEAKER_09
transcript.pyannote[1711].start 10444.71096875
transcript.pyannote[1711].end 10447.68096875
transcript.pyannote[1712].speaker SPEAKER_09
transcript.pyannote[1712].start 10448.40659375
transcript.pyannote[1712].end 10468.45409375
transcript.pyannote[1713].speaker SPEAKER_09
transcript.pyannote[1713].start 10469.23034375
transcript.pyannote[1713].end 10473.82034375
transcript.pyannote[1714].speaker SPEAKER_09
transcript.pyannote[1714].start 10474.30971875
transcript.pyannote[1714].end 10498.03596875
transcript.pyannote[1715].speaker SPEAKER_09
transcript.pyannote[1715].start 10498.86284375
transcript.pyannote[1715].end 10500.14534375
transcript.pyannote[1716].speaker SPEAKER_09
transcript.pyannote[1716].start 10501.02284375
transcript.pyannote[1716].end 10501.74846875
transcript.pyannote[1717].speaker SPEAKER_09
transcript.pyannote[1717].start 10502.05221875
transcript.pyannote[1717].end 10504.49909375
transcript.pyannote[1718].speaker SPEAKER_09
transcript.pyannote[1718].start 10505.74784375
transcript.pyannote[1718].end 10507.08096875
transcript.pyannote[1719].speaker SPEAKER_09
transcript.pyannote[1719].start 10507.50284375
transcript.pyannote[1719].end 10515.21471875
transcript.pyannote[1720].speaker SPEAKER_09
transcript.pyannote[1720].start 10515.94034375
transcript.pyannote[1720].end 10520.81721875
transcript.pyannote[1721].speaker SPEAKER_09
transcript.pyannote[1721].start 10521.18846875
transcript.pyannote[1721].end 10522.30221875
transcript.pyannote[1722].speaker SPEAKER_09
transcript.pyannote[1722].start 10522.89284375
transcript.pyannote[1722].end 10525.20471875
transcript.pyannote[1723].speaker SPEAKER_09
transcript.pyannote[1723].start 10525.50846875
transcript.pyannote[1723].end 10526.38596875
transcript.pyannote[1724].speaker SPEAKER_09
transcript.pyannote[1724].start 10527.43221875
transcript.pyannote[1724].end 10529.22096875
transcript.pyannote[1725].speaker SPEAKER_09
transcript.pyannote[1725].start 10529.67659375
transcript.pyannote[1725].end 10533.45659375
transcript.pyannote[1726].speaker SPEAKER_09
transcript.pyannote[1726].start 10534.85721875
transcript.pyannote[1726].end 10537.84409375
transcript.pyannote[1727].speaker SPEAKER_09
transcript.pyannote[1727].start 10538.48534375
transcript.pyannote[1727].end 10540.79721875
transcript.pyannote[1728].speaker SPEAKER_09
transcript.pyannote[1728].start 10541.48909375
transcript.pyannote[1728].end 10544.40846875
transcript.pyannote[1729].speaker SPEAKER_09
transcript.pyannote[1729].start 10545.04971875
transcript.pyannote[1729].end 10545.31971875
transcript.pyannote[1730].speaker SPEAKER_09
transcript.pyannote[1730].start 10546.04534375
transcript.pyannote[1730].end 10548.72846875
transcript.pyannote[1731].speaker SPEAKER_09
transcript.pyannote[1731].start 10549.99409375
transcript.pyannote[1731].end 10553.85846875
transcript.pyannote[1732].speaker SPEAKER_09
transcript.pyannote[1732].start 10554.55034375
transcript.pyannote[1732].end 10554.82034375
transcript.pyannote[1733].speaker SPEAKER_09
transcript.pyannote[1733].start 10555.69784375
transcript.pyannote[1733].end 10557.68909375
transcript.pyannote[1734].speaker SPEAKER_09
transcript.pyannote[1734].start 10558.53284375
transcript.pyannote[1734].end 10573.43346875
transcript.pyannote[1735].speaker SPEAKER_09
transcript.pyannote[1735].start 10574.49659375
transcript.pyannote[1735].end 10576.45409375
transcript.pyannote[1736].speaker SPEAKER_09
transcript.pyannote[1736].start 10576.77471875
transcript.pyannote[1736].end 10582.56284375
transcript.pyannote[1737].speaker SPEAKER_09
transcript.pyannote[1737].start 10583.20409375
transcript.pyannote[1737].end 10584.09846875
transcript.pyannote[1738].speaker SPEAKER_09
transcript.pyannote[1738].start 10584.82409375
transcript.pyannote[1738].end 10588.40159375
transcript.pyannote[1739].speaker SPEAKER_09
transcript.pyannote[1739].start 10588.73909375
transcript.pyannote[1739].end 10591.15221875
transcript.pyannote[1740].speaker SPEAKER_09
transcript.pyannote[1740].start 10591.69221875
transcript.pyannote[1740].end 10596.02909375
transcript.pyannote[1741].speaker SPEAKER_09
transcript.pyannote[1741].start 10596.41721875
transcript.pyannote[1741].end 10597.96971875
transcript.pyannote[1742].speaker SPEAKER_09
transcript.pyannote[1742].start 10598.64471875
transcript.pyannote[1742].end 10598.84721875
transcript.pyannote[1743].speaker SPEAKER_09
transcript.pyannote[1743].start 10599.45471875
transcript.pyannote[1743].end 10603.26846875
transcript.pyannote[1744].speaker SPEAKER_09
transcript.pyannote[1744].start 10603.97721875
transcript.pyannote[1744].end 10606.22159375
transcript.pyannote[1745].speaker SPEAKER_09
transcript.pyannote[1745].start 10606.96409375
transcript.pyannote[1745].end 10614.64221875
transcript.pyannote[1746].speaker SPEAKER_09
transcript.pyannote[1746].start 10614.91221875
transcript.pyannote[1746].end 10615.48596875
transcript.pyannote[1747].speaker SPEAKER_09
transcript.pyannote[1747].start 10616.31284375
transcript.pyannote[1747].end 10621.07159375
transcript.pyannote[1748].speaker SPEAKER_09
transcript.pyannote[1748].start 10621.30784375
transcript.pyannote[1748].end 10625.20596875
transcript.pyannote[1749].speaker SPEAKER_09
transcript.pyannote[1749].start 10625.83034375
transcript.pyannote[1749].end 10630.90971875
transcript.pyannote[1750].speaker SPEAKER_09
transcript.pyannote[1750].start 10631.63534375
transcript.pyannote[1750].end 10635.29721875
transcript.pyannote[1751].speaker SPEAKER_09
transcript.pyannote[1751].start 10636.03971875
transcript.pyannote[1751].end 10641.62534375
transcript.pyannote[1752].speaker SPEAKER_09
transcript.pyannote[1752].start 10642.14846875
transcript.pyannote[1752].end 10644.86534375
transcript.pyannote[1753].speaker SPEAKER_09
transcript.pyannote[1753].start 10645.54034375
transcript.pyannote[1753].end 10647.19409375
transcript.pyannote[1754].speaker SPEAKER_09
transcript.pyannote[1754].start 10649.03346875
transcript.pyannote[1754].end 10655.44596875
transcript.pyannote[1755].speaker SPEAKER_09
transcript.pyannote[1755].start 10655.64846875
transcript.pyannote[1755].end 10658.85471875
transcript.pyannote[1756].speaker SPEAKER_09
transcript.pyannote[1756].start 10659.39471875
transcript.pyannote[1756].end 10659.86721875
transcript.pyannote[1757].speaker SPEAKER_09
transcript.pyannote[1757].start 10660.08659375
transcript.pyannote[1757].end 10663.24221875
transcript.pyannote[1758].speaker SPEAKER_09
transcript.pyannote[1758].start 10663.47846875
transcript.pyannote[1758].end 10666.60034375
transcript.pyannote[1759].speaker SPEAKER_09
transcript.pyannote[1759].start 10667.39346875
transcript.pyannote[1759].end 10667.71409375
transcript.pyannote[1760].speaker SPEAKER_09
transcript.pyannote[1760].start 10668.16971875
transcript.pyannote[1760].end 10675.30784375
transcript.pyannote[1761].speaker SPEAKER_09
transcript.pyannote[1761].start 10675.89846875
transcript.pyannote[1761].end 10677.51846875
transcript.pyannote[1762].speaker SPEAKER_09
transcript.pyannote[1762].start 10678.04159375
transcript.pyannote[1762].end 10679.08784375
transcript.pyannote[1763].speaker SPEAKER_09
transcript.pyannote[1763].start 10679.59409375
transcript.pyannote[1763].end 10681.68659375
transcript.pyannote[1764].speaker SPEAKER_09
transcript.pyannote[1764].start 10682.58096875
transcript.pyannote[1764].end 10684.01534375
transcript.pyannote[1765].speaker SPEAKER_09
transcript.pyannote[1765].start 10684.75784375
transcript.pyannote[1765].end 10686.22596875
transcript.pyannote[1766].speaker SPEAKER_09
transcript.pyannote[1766].start 10686.71534375
transcript.pyannote[1766].end 10687.64346875
transcript.pyannote[1767].speaker SPEAKER_09
transcript.pyannote[1767].start 10688.20034375
transcript.pyannote[1767].end 10702.00409375
transcript.pyannote[1768].speaker SPEAKER_09
transcript.pyannote[1768].start 10702.84784375
transcript.pyannote[1768].end 10706.05409375
transcript.pyannote[1769].speaker SPEAKER_09
transcript.pyannote[1769].start 10706.13846875
transcript.pyannote[1769].end 10706.20596875
transcript.pyannote[1770].speaker SPEAKER_04
transcript.pyannote[1770].start 10706.20596875
transcript.pyannote[1770].end 10713.07409375
transcript.pyannote[1771].speaker SPEAKER_09
transcript.pyannote[1771].start 10713.07409375
transcript.pyannote[1771].end 10713.09096875
transcript.pyannote[1772].speaker SPEAKER_04
transcript.pyannote[1772].start 10713.83346875
transcript.pyannote[1772].end 10714.77846875
transcript.pyannote[1773].speaker SPEAKER_09
transcript.pyannote[1773].start 10714.77846875
transcript.pyannote[1773].end 10714.81221875
transcript.pyannote[1774].speaker SPEAKER_04
transcript.pyannote[1774].start 10715.45346875
transcript.pyannote[1774].end 10715.47034375
transcript.pyannote[1775].speaker SPEAKER_09
transcript.pyannote[1775].start 10715.47034375
transcript.pyannote[1775].end 10717.22534375
transcript.pyannote[1776].speaker SPEAKER_09
transcript.pyannote[1776].start 10717.78221875
transcript.pyannote[1776].end 10719.90846875
transcript.pyannote[1777].speaker SPEAKER_09
transcript.pyannote[1777].start 10720.60034375
transcript.pyannote[1777].end 10723.04721875
transcript.pyannote[1778].speaker SPEAKER_09
transcript.pyannote[1778].start 10723.58721875
transcript.pyannote[1778].end 10727.97471875
transcript.pyannote[1779].speaker SPEAKER_04
transcript.pyannote[1779].start 10727.97471875
transcript.pyannote[1779].end 10728.02534375
transcript.pyannote[1780].speaker SPEAKER_08
transcript.pyannote[1780].start 10728.02534375
transcript.pyannote[1780].end 10728.04221875
transcript.pyannote[1781].speaker SPEAKER_04
transcript.pyannote[1781].start 10728.04221875
transcript.pyannote[1781].end 10728.26159375
transcript.pyannote[1782].speaker SPEAKER_08
transcript.pyannote[1782].start 10728.26159375
transcript.pyannote[1782].end 10729.47659375
transcript.pyannote[1783].speaker SPEAKER_04
transcript.pyannote[1783].start 10729.84784375
transcript.pyannote[1783].end 10729.86471875
transcript.pyannote[1784].speaker SPEAKER_08
transcript.pyannote[1784].start 10729.86471875
transcript.pyannote[1784].end 10730.32034375
transcript.pyannote[1785].speaker SPEAKER_04
transcript.pyannote[1785].start 10730.32034375
transcript.pyannote[1785].end 10731.23159375
transcript.pyannote[1786].speaker SPEAKER_08
transcript.pyannote[1786].start 10732.34534375
transcript.pyannote[1786].end 10737.15471875
transcript.pyannote[1787].speaker SPEAKER_22
transcript.pyannote[1787].start 10744.25909375
transcript.pyannote[1787].end 10748.35971875
transcript.pyannote[1788].speaker SPEAKER_16
transcript.pyannote[1788].start 10819.42034375
transcript.pyannote[1788].end 10819.60596875
transcript.pyannote[1789].speaker SPEAKER_22
transcript.pyannote[1789].start 10819.60596875
transcript.pyannote[1789].end 10819.65659375
transcript.pyannote[1790].speaker SPEAKER_16
transcript.pyannote[1790].start 10819.65659375
transcript.pyannote[1790].end 10820.26409375
transcript.pyannote[1791].speaker SPEAKER_22
transcript.pyannote[1791].start 10844.96909375
transcript.pyannote[1791].end 10846.25159375
transcript.pyannote[1792].speaker SPEAKER_22
transcript.pyannote[1792].start 10847.48346875
transcript.pyannote[1792].end 10851.02721875
transcript.pyannote[1793].speaker SPEAKER_08
transcript.pyannote[1793].start 11044.17846875
transcript.pyannote[1793].end 11047.33409375
transcript.pyannote[1794].speaker SPEAKER_20
transcript.pyannote[1794].start 11050.27034375
transcript.pyannote[1794].end 11050.97909375
transcript.pyannote[1795].speaker SPEAKER_20
transcript.pyannote[1795].start 11051.11409375
transcript.pyannote[1795].end 11051.62034375
transcript.pyannote[1796].speaker SPEAKER_08
transcript.pyannote[1796].start 11052.07596875
transcript.pyannote[1796].end 11053.40909375
transcript.pyannote[1797].speaker SPEAKER_20
transcript.pyannote[1797].start 11055.36659375
transcript.pyannote[1797].end 11057.54346875
transcript.pyannote[1798].speaker SPEAKER_08
transcript.pyannote[1798].start 11055.72096875
transcript.pyannote[1798].end 11056.37909375
transcript.pyannote[1799].speaker SPEAKER_20
transcript.pyannote[1799].start 11057.84721875
transcript.pyannote[1799].end 11067.48284375
transcript.pyannote[1800].speaker SPEAKER_20
transcript.pyannote[1800].start 11067.95534375
transcript.pyannote[1800].end 11072.05596875
transcript.pyannote[1801].speaker SPEAKER_20
transcript.pyannote[1801].start 11072.46096875
transcript.pyannote[1801].end 11079.26159375
transcript.pyannote[1802].speaker SPEAKER_20
transcript.pyannote[1802].start 11079.54846875
transcript.pyannote[1802].end 11083.05846875
transcript.pyannote[1803].speaker SPEAKER_20
transcript.pyannote[1803].start 11083.39596875
transcript.pyannote[1803].end 11085.18471875
transcript.pyannote[1804].speaker SPEAKER_20
transcript.pyannote[1804].start 11085.45471875
transcript.pyannote[1804].end 11089.18409375
transcript.pyannote[1805].speaker SPEAKER_20
transcript.pyannote[1805].start 11089.58909375
transcript.pyannote[1805].end 11092.06971875
transcript.pyannote[1806].speaker SPEAKER_20
transcript.pyannote[1806].start 11092.28909375
transcript.pyannote[1806].end 11092.87971875
transcript.pyannote[1807].speaker SPEAKER_20
transcript.pyannote[1807].start 11093.47034375
transcript.pyannote[1807].end 11101.03034375
transcript.pyannote[1808].speaker SPEAKER_20
transcript.pyannote[1808].start 11101.11471875
transcript.pyannote[1808].end 11104.70909375
transcript.pyannote[1809].speaker SPEAKER_20
transcript.pyannote[1809].start 11104.92846875
transcript.pyannote[1809].end 11106.61596875
transcript.pyannote[1810].speaker SPEAKER_20
transcript.pyannote[1810].start 11107.44284375
transcript.pyannote[1810].end 11108.47221875
transcript.pyannote[1811].speaker SPEAKER_20
transcript.pyannote[1811].start 11108.77596875
transcript.pyannote[1811].end 11111.02034375
transcript.pyannote[1812].speaker SPEAKER_20
transcript.pyannote[1812].start 11111.30721875
transcript.pyannote[1812].end 11114.36159375
transcript.pyannote[1813].speaker SPEAKER_20
transcript.pyannote[1813].start 11115.17159375
transcript.pyannote[1813].end 11115.37409375
transcript.pyannote[1814].speaker SPEAKER_20
transcript.pyannote[1814].start 11116.08284375
transcript.pyannote[1814].end 11125.65096875
transcript.pyannote[1815].speaker SPEAKER_04
transcript.pyannote[1815].start 11126.20784375
transcript.pyannote[1815].end 11135.05034375
transcript.pyannote[1816].speaker SPEAKER_04
transcript.pyannote[1816].start 11135.50596875
transcript.pyannote[1816].end 11182.94159375
transcript.pyannote[1817].speaker SPEAKER_04
transcript.pyannote[1817].start 11183.27909375
transcript.pyannote[1817].end 11206.68471875
transcript.pyannote[1818].speaker SPEAKER_04
transcript.pyannote[1818].start 11206.78596875
transcript.pyannote[1818].end 11209.40159375
transcript.pyannote[1819].speaker SPEAKER_20
transcript.pyannote[1819].start 11209.70534375
transcript.pyannote[1819].end 11211.46034375
transcript.pyannote[1820].speaker SPEAKER_04
transcript.pyannote[1820].start 11211.69659375
transcript.pyannote[1820].end 11214.85221875
transcript.pyannote[1821].speaker SPEAKER_20
transcript.pyannote[1821].start 11213.28284375
transcript.pyannote[1821].end 11213.70471875
transcript.pyannote[1822].speaker SPEAKER_20
transcript.pyannote[1822].start 11215.02096875
transcript.pyannote[1822].end 11221.65284375
transcript.pyannote[1823].speaker SPEAKER_20
transcript.pyannote[1823].start 11221.87221875
transcript.pyannote[1823].end 11224.09971875
transcript.pyannote[1824].speaker SPEAKER_20
transcript.pyannote[1824].start 11224.42034375
transcript.pyannote[1824].end 11225.04471875
transcript.pyannote[1825].speaker SPEAKER_20
transcript.pyannote[1825].start 11225.41596875
transcript.pyannote[1825].end 11227.30596875
transcript.pyannote[1826].speaker SPEAKER_20
transcript.pyannote[1826].start 11227.76159375
transcript.pyannote[1826].end 11231.94659375
transcript.pyannote[1827].speaker SPEAKER_20
transcript.pyannote[1827].start 11232.31784375
transcript.pyannote[1827].end 11236.06409375
transcript.pyannote[1828].speaker SPEAKER_20
transcript.pyannote[1828].start 11236.23284375
transcript.pyannote[1828].end 11239.52346875
transcript.pyannote[1829].speaker SPEAKER_20
transcript.pyannote[1829].start 11239.81034375
transcript.pyannote[1829].end 11240.31659375
transcript.pyannote[1830].speaker SPEAKER_20
transcript.pyannote[1830].start 11241.10971875
transcript.pyannote[1830].end 11241.56534375
transcript.pyannote[1831].speaker SPEAKER_20
transcript.pyannote[1831].start 11242.10534375
transcript.pyannote[1831].end 11246.40846875
transcript.pyannote[1832].speaker SPEAKER_20
transcript.pyannote[1832].start 11246.49284375
transcript.pyannote[1832].end 11251.50471875
transcript.pyannote[1833].speaker SPEAKER_04
transcript.pyannote[1833].start 11252.43284375
transcript.pyannote[1833].end 11255.35221875
transcript.pyannote[1834].speaker SPEAKER_04
transcript.pyannote[1834].start 11255.70659375
transcript.pyannote[1834].end 11280.24284375
transcript.pyannote[1835].speaker SPEAKER_04
transcript.pyannote[1835].start 11280.36096875
transcript.pyannote[1835].end 11297.67471875
transcript.pyannote[1836].speaker SPEAKER_20
transcript.pyannote[1836].start 11297.57346875
transcript.pyannote[1836].end 11297.82659375
transcript.pyannote[1837].speaker SPEAKER_20
transcript.pyannote[1837].start 11297.97846875
transcript.pyannote[1837].end 11305.28534375
transcript.pyannote[1838].speaker SPEAKER_20
transcript.pyannote[1838].start 11305.43721875
transcript.pyannote[1838].end 11308.40721875
transcript.pyannote[1839].speaker SPEAKER_20
transcript.pyannote[1839].start 11308.72784375
transcript.pyannote[1839].end 11312.03534375
transcript.pyannote[1840].speaker SPEAKER_20
transcript.pyannote[1840].start 11312.50784375
transcript.pyannote[1840].end 11316.94596875
transcript.pyannote[1841].speaker SPEAKER_20
transcript.pyannote[1841].start 11317.55346875
transcript.pyannote[1841].end 11321.01284375
transcript.pyannote[1842].speaker SPEAKER_20
transcript.pyannote[1842].start 11321.29971875
transcript.pyannote[1842].end 11324.97846875
transcript.pyannote[1843].speaker SPEAKER_20
transcript.pyannote[1843].start 11325.14721875
transcript.pyannote[1843].end 11328.40409375
transcript.pyannote[1844].speaker SPEAKER_20
transcript.pyannote[1844].start 11328.47159375
transcript.pyannote[1844].end 11328.79221875
transcript.pyannote[1845].speaker SPEAKER_20
transcript.pyannote[1845].start 11329.06221875
transcript.pyannote[1845].end 11336.50409375
transcript.pyannote[1846].speaker SPEAKER_20
transcript.pyannote[1846].start 11336.63909375
transcript.pyannote[1846].end 11337.85409375
transcript.pyannote[1847].speaker SPEAKER_20
transcript.pyannote[1847].start 11338.19159375
transcript.pyannote[1847].end 11339.13659375
transcript.pyannote[1848].speaker SPEAKER_20
transcript.pyannote[1848].start 11339.64284375
transcript.pyannote[1848].end 11342.20784375
transcript.pyannote[1849].speaker SPEAKER_04
transcript.pyannote[1849].start 11343.89534375
transcript.pyannote[1849].end 11350.79721875
transcript.pyannote[1850].speaker SPEAKER_04
transcript.pyannote[1850].start 11351.20221875
transcript.pyannote[1850].end 11398.92471875
transcript.pyannote[1851].speaker SPEAKER_04
transcript.pyannote[1851].start 11399.81909375
transcript.pyannote[1851].end 11409.80909375
transcript.pyannote[1852].speaker SPEAKER_20
transcript.pyannote[1852].start 11409.80909375
transcript.pyannote[1852].end 11415.66471875
transcript.pyannote[1853].speaker SPEAKER_20
transcript.pyannote[1853].start 11415.88409375
transcript.pyannote[1853].end 11421.99284375
transcript.pyannote[1854].speaker SPEAKER_20
transcript.pyannote[1854].start 11422.16159375
transcript.pyannote[1854].end 11425.30034375
transcript.pyannote[1855].speaker SPEAKER_20
transcript.pyannote[1855].start 11425.45221875
transcript.pyannote[1855].end 11427.88221875
transcript.pyannote[1856].speaker SPEAKER_20
transcript.pyannote[1856].start 11428.00034375
transcript.pyannote[1856].end 11429.90721875
transcript.pyannote[1857].speaker SPEAKER_20
transcript.pyannote[1857].start 11430.24471875
transcript.pyannote[1857].end 11433.56909375
transcript.pyannote[1858].speaker SPEAKER_20
transcript.pyannote[1858].start 11434.04159375
transcript.pyannote[1858].end 11436.13409375
transcript.pyannote[1859].speaker SPEAKER_20
transcript.pyannote[1859].start 11436.48846875
transcript.pyannote[1859].end 11440.31909375
transcript.pyannote[1860].speaker SPEAKER_20
transcript.pyannote[1860].start 11440.53846875
transcript.pyannote[1860].end 11441.68596875
transcript.pyannote[1861].speaker SPEAKER_20
transcript.pyannote[1861].start 11441.85471875
transcript.pyannote[1861].end 11444.79096875
transcript.pyannote[1862].speaker SPEAKER_04
transcript.pyannote[1862].start 11444.03159375
transcript.pyannote[1862].end 11448.36846875
transcript.pyannote[1863].speaker SPEAKER_20
transcript.pyannote[1863].start 11444.90909375
transcript.pyannote[1863].end 11445.04409375
transcript.pyannote[1864].speaker SPEAKER_04
transcript.pyannote[1864].start 11448.79034375
transcript.pyannote[1864].end 11457.54846875
transcript.pyannote[1865].speaker SPEAKER_20
transcript.pyannote[1865].start 11450.49471875
transcript.pyannote[1865].end 11450.96721875
transcript.pyannote[1866].speaker SPEAKER_16
transcript.pyannote[1866].start 11450.96721875
transcript.pyannote[1866].end 11451.38909375
transcript.pyannote[1867].speaker SPEAKER_20
transcript.pyannote[1867].start 11451.38909375
transcript.pyannote[1867].end 11451.42284375
transcript.pyannote[1868].speaker SPEAKER_04
transcript.pyannote[1868].start 11457.58221875
transcript.pyannote[1868].end 11470.06971875
transcript.pyannote[1869].speaker SPEAKER_20
transcript.pyannote[1869].start 11461.37909375
transcript.pyannote[1869].end 11463.01596875
transcript.pyannote[1870].speaker SPEAKER_20
transcript.pyannote[1870].start 11469.86721875
transcript.pyannote[1870].end 11470.74471875
transcript.pyannote[1871].speaker SPEAKER_20
transcript.pyannote[1871].start 11471.43659375
transcript.pyannote[1871].end 11474.32221875
transcript.pyannote[1872].speaker SPEAKER_04
transcript.pyannote[1872].start 11471.94284375
transcript.pyannote[1872].end 11479.40159375
transcript.pyannote[1873].speaker SPEAKER_20
transcript.pyannote[1873].start 11475.62159375
transcript.pyannote[1873].end 11476.49909375
transcript.pyannote[1874].speaker SPEAKER_20
transcript.pyannote[1874].start 11478.32159375
transcript.pyannote[1874].end 11487.23159375
transcript.pyannote[1875].speaker SPEAKER_20
transcript.pyannote[1875].start 11487.60284375
transcript.pyannote[1875].end 11488.17659375
transcript.pyannote[1876].speaker SPEAKER_20
transcript.pyannote[1876].start 11488.69971875
transcript.pyannote[1876].end 11490.28596875
transcript.pyannote[1877].speaker SPEAKER_20
transcript.pyannote[1877].start 11490.53909375
transcript.pyannote[1877].end 11495.02784375
transcript.pyannote[1878].speaker SPEAKER_20
transcript.pyannote[1878].start 11495.24721875
transcript.pyannote[1878].end 11500.07346875
transcript.pyannote[1879].speaker SPEAKER_20
transcript.pyannote[1879].start 11500.64721875
transcript.pyannote[1879].end 11504.68034375
transcript.pyannote[1880].speaker SPEAKER_04
transcript.pyannote[1880].start 11506.63784375
transcript.pyannote[1880].end 11508.62909375
transcript.pyannote[1881].speaker SPEAKER_04
transcript.pyannote[1881].start 11508.76409375
transcript.pyannote[1881].end 11510.40096875
transcript.pyannote[1882].speaker SPEAKER_04
transcript.pyannote[1882].start 11510.70471875
transcript.pyannote[1882].end 11513.89409375
transcript.pyannote[1883].speaker SPEAKER_04
transcript.pyannote[1883].start 11514.63659375
transcript.pyannote[1883].end 11547.39096875
transcript.pyannote[1884].speaker SPEAKER_04
transcript.pyannote[1884].start 11547.67784375
transcript.pyannote[1884].end 11573.76659375
transcript.pyannote[1885].speaker SPEAKER_04
transcript.pyannote[1885].start 11574.72846875
transcript.pyannote[1885].end 11613.77721875
transcript.pyannote[1886].speaker SPEAKER_20
transcript.pyannote[1886].start 11613.77721875
transcript.pyannote[1886].end 11615.88659375
transcript.pyannote[1887].speaker SPEAKER_20
transcript.pyannote[1887].start 11615.92034375
transcript.pyannote[1887].end 11615.97096875
transcript.pyannote[1888].speaker SPEAKER_20
transcript.pyannote[1888].start 11616.19034375
transcript.pyannote[1888].end 11630.23034375
transcript.pyannote[1889].speaker SPEAKER_20
transcript.pyannote[1889].start 11630.63534375
transcript.pyannote[1889].end 11632.74471875
transcript.pyannote[1890].speaker SPEAKER_20
transcript.pyannote[1890].start 11632.93034375
transcript.pyannote[1890].end 11635.17471875
transcript.pyannote[1891].speaker SPEAKER_20
transcript.pyannote[1891].start 11635.90034375
transcript.pyannote[1891].end 11636.91284375
transcript.pyannote[1892].speaker SPEAKER_20
transcript.pyannote[1892].start 11636.96346875
transcript.pyannote[1892].end 11667.86159375
transcript.pyannote[1893].speaker SPEAKER_08
transcript.pyannote[1893].start 11668.08096875
transcript.pyannote[1893].end 11668.62096875
transcript.pyannote[1894].speaker SPEAKER_08
transcript.pyannote[1894].start 11669.07659375
transcript.pyannote[1894].end 11669.29596875
transcript.pyannote[1895].speaker SPEAKER_08
transcript.pyannote[1895].start 11669.65034375
transcript.pyannote[1895].end 11675.28659375
transcript.pyannote[1896].speaker SPEAKER_20
transcript.pyannote[1896].start 11687.68971875
transcript.pyannote[1896].end 11689.90034375
transcript.pyannote[1897].speaker SPEAKER_03
transcript.pyannote[1897].start 11693.51159375
transcript.pyannote[1897].end 11696.51534375
transcript.pyannote[1898].speaker SPEAKER_03
transcript.pyannote[1898].start 11700.46409375
transcript.pyannote[1898].end 11703.14721875
transcript.pyannote[1899].speaker SPEAKER_03
transcript.pyannote[1899].start 11703.87284375
transcript.pyannote[1899].end 11707.55159375
transcript.pyannote[1900].speaker SPEAKER_03
transcript.pyannote[1900].start 11708.20971875
transcript.pyannote[1900].end 11712.61409375
transcript.pyannote[1901].speaker SPEAKER_03
transcript.pyannote[1901].start 11713.15409375
transcript.pyannote[1901].end 11714.65596875
transcript.pyannote[1902].speaker SPEAKER_03
transcript.pyannote[1902].start 11715.41534375
transcript.pyannote[1902].end 11721.27096875
transcript.pyannote[1903].speaker SPEAKER_03
transcript.pyannote[1903].start 11721.87846875
transcript.pyannote[1903].end 11723.66721875
transcript.pyannote[1904].speaker SPEAKER_03
transcript.pyannote[1904].start 11723.93721875
transcript.pyannote[1904].end 11726.65409375
transcript.pyannote[1905].speaker SPEAKER_03
transcript.pyannote[1905].start 11727.14346875
transcript.pyannote[1905].end 11731.21034375
transcript.pyannote[1906].speaker SPEAKER_03
transcript.pyannote[1906].start 11731.86846875
transcript.pyannote[1906].end 11734.75409375
transcript.pyannote[1907].speaker SPEAKER_03
transcript.pyannote[1907].start 11735.29409375
transcript.pyannote[1907].end 11740.27221875
transcript.pyannote[1908].speaker SPEAKER_03
transcript.pyannote[1908].start 11740.44096875
transcript.pyannote[1908].end 11741.89221875
transcript.pyannote[1909].speaker SPEAKER_03
transcript.pyannote[1909].start 11742.80346875
transcript.pyannote[1909].end 11743.73159375
transcript.pyannote[1910].speaker SPEAKER_03
transcript.pyannote[1910].start 11743.95096875
transcript.pyannote[1910].end 11745.04784375
transcript.pyannote[1911].speaker SPEAKER_03
transcript.pyannote[1911].start 11745.94221875
transcript.pyannote[1911].end 11746.66784375
transcript.pyannote[1912].speaker SPEAKER_03
transcript.pyannote[1912].start 11747.86596875
transcript.pyannote[1912].end 11749.38471875
transcript.pyannote[1913].speaker SPEAKER_03
transcript.pyannote[1913].start 11750.11034375
transcript.pyannote[1913].end 11750.53221875
transcript.pyannote[1914].speaker SPEAKER_03
transcript.pyannote[1914].start 11750.97096875
transcript.pyannote[1914].end 11752.47284375
transcript.pyannote[1915].speaker SPEAKER_03
transcript.pyannote[1915].start 11753.41784375
transcript.pyannote[1915].end 11755.10534375
transcript.pyannote[1916].speaker SPEAKER_03
transcript.pyannote[1916].start 11757.40034375
transcript.pyannote[1916].end 11759.76284375
transcript.pyannote[1917].speaker SPEAKER_03
transcript.pyannote[1917].start 11760.57284375
transcript.pyannote[1917].end 11761.93971875
transcript.pyannote[1918].speaker SPEAKER_03
transcript.pyannote[1918].start 11762.95221875
transcript.pyannote[1918].end 11766.36096875
transcript.pyannote[1919].speaker SPEAKER_03
transcript.pyannote[1919].start 11767.01909375
transcript.pyannote[1919].end 11767.45784375
transcript.pyannote[1920].speaker SPEAKER_03
transcript.pyannote[1920].start 11768.04846875
transcript.pyannote[1920].end 11770.49534375
transcript.pyannote[1921].speaker SPEAKER_03
transcript.pyannote[1921].start 11771.01846875
transcript.pyannote[1921].end 11772.50346875
transcript.pyannote[1922].speaker SPEAKER_03
transcript.pyannote[1922].start 11773.61721875
transcript.pyannote[1922].end 11774.73096875
transcript.pyannote[1923].speaker SPEAKER_03
transcript.pyannote[1923].start 11774.88284375
transcript.pyannote[1923].end 11776.23284375
transcript.pyannote[1924].speaker SPEAKER_03
transcript.pyannote[1924].start 11777.19471875
transcript.pyannote[1924].end 11778.20721875
transcript.pyannote[1925].speaker SPEAKER_03
transcript.pyannote[1925].start 11778.49409375
transcript.pyannote[1925].end 11780.09721875
transcript.pyannote[1926].speaker SPEAKER_03
transcript.pyannote[1926].start 11781.04221875
transcript.pyannote[1926].end 11783.48909375
transcript.pyannote[1927].speaker SPEAKER_03
transcript.pyannote[1927].start 11783.65784375
transcript.pyannote[1927].end 11784.45096875
transcript.pyannote[1928].speaker SPEAKER_03
transcript.pyannote[1928].start 11785.83471875
transcript.pyannote[1928].end 11786.96534375
transcript.pyannote[1929].speaker SPEAKER_03
transcript.pyannote[1929].start 11787.70784375
transcript.pyannote[1929].end 11789.63159375
transcript.pyannote[1930].speaker SPEAKER_03
transcript.pyannote[1930].start 11790.37409375
transcript.pyannote[1930].end 11791.31909375
transcript.pyannote[1931].speaker SPEAKER_03
transcript.pyannote[1931].start 11791.55534375
transcript.pyannote[1931].end 11792.39909375
transcript.pyannote[1932].speaker SPEAKER_03
transcript.pyannote[1932].start 11793.07409375
transcript.pyannote[1932].end 11794.08659375
transcript.pyannote[1933].speaker SPEAKER_03
transcript.pyannote[1933].start 11795.45346875
transcript.pyannote[1933].end 11801.34284375
transcript.pyannote[1934].speaker SPEAKER_03
transcript.pyannote[1934].start 11802.16971875
transcript.pyannote[1934].end 11805.56159375
transcript.pyannote[1935].speaker SPEAKER_03
transcript.pyannote[1935].start 11805.84846875
transcript.pyannote[1935].end 11807.16471875
transcript.pyannote[1936].speaker SPEAKER_03
transcript.pyannote[1936].start 11807.92409375
transcript.pyannote[1936].end 11809.64534375
transcript.pyannote[1937].speaker SPEAKER_03
transcript.pyannote[1937].start 11811.04596875
transcript.pyannote[1937].end 11812.31159375
transcript.pyannote[1938].speaker SPEAKER_03
transcript.pyannote[1938].start 11812.63221875
transcript.pyannote[1938].end 11814.30284375
transcript.pyannote[1939].speaker SPEAKER_03
transcript.pyannote[1939].start 11814.91034375
transcript.pyannote[1939].end 11815.97346875
transcript.pyannote[1940].speaker SPEAKER_03
transcript.pyannote[1940].start 11817.08721875
transcript.pyannote[1940].end 11818.08284375
transcript.pyannote[1941].speaker SPEAKER_03
transcript.pyannote[1941].start 11818.65659375
transcript.pyannote[1941].end 11819.97284375
transcript.pyannote[1942].speaker SPEAKER_03
transcript.pyannote[1942].start 11820.90096875
transcript.pyannote[1942].end 11821.91346875
transcript.pyannote[1943].speaker SPEAKER_03
transcript.pyannote[1943].start 11822.92596875
transcript.pyannote[1943].end 11824.47846875
transcript.pyannote[1944].speaker SPEAKER_03
transcript.pyannote[1944].start 11825.03534375
transcript.pyannote[1944].end 11826.63846875
transcript.pyannote[1945].speaker SPEAKER_03
transcript.pyannote[1945].start 11827.11096875
transcript.pyannote[1945].end 11828.20784375
transcript.pyannote[1946].speaker SPEAKER_03
transcript.pyannote[1946].start 11828.68034375
transcript.pyannote[1946].end 11829.89534375
transcript.pyannote[1947].speaker SPEAKER_03
transcript.pyannote[1947].start 11830.50284375
transcript.pyannote[1947].end 11831.83596875
transcript.pyannote[1948].speaker SPEAKER_04
transcript.pyannote[1948].start 11832.83159375
transcript.pyannote[1948].end 11833.47284375
transcript.pyannote[1949].speaker SPEAKER_04
transcript.pyannote[1949].start 11833.64159375
transcript.pyannote[1949].end 11841.72471875
transcript.pyannote[1950].speaker SPEAKER_03
transcript.pyannote[1950].start 11841.40409375
transcript.pyannote[1950].end 11841.70784375
transcript.pyannote[1951].speaker SPEAKER_03
transcript.pyannote[1951].start 11841.72471875
transcript.pyannote[1951].end 11841.80909375
transcript.pyannote[1952].speaker SPEAKER_04
transcript.pyannote[1952].start 11841.80909375
transcript.pyannote[1952].end 11841.84284375
transcript.pyannote[1953].speaker SPEAKER_04
transcript.pyannote[1953].start 11842.43346875
transcript.pyannote[1953].end 11843.64846875
transcript.pyannote[1954].speaker SPEAKER_03
transcript.pyannote[1954].start 11843.64846875
transcript.pyannote[1954].end 11843.66534375
transcript.pyannote[1955].speaker SPEAKER_04
transcript.pyannote[1955].start 11844.69471875
transcript.pyannote[1955].end 11844.71159375
transcript.pyannote[1956].speaker SPEAKER_03
transcript.pyannote[1956].start 11844.71159375
transcript.pyannote[1956].end 11845.13346875
transcript.pyannote[1957].speaker SPEAKER_03
transcript.pyannote[1957].start 11845.26846875
transcript.pyannote[1957].end 11846.50034375
transcript.pyannote[1958].speaker SPEAKER_04
transcript.pyannote[1958].start 11847.25971875
transcript.pyannote[1958].end 11847.39471875
transcript.pyannote[1959].speaker SPEAKER_03
transcript.pyannote[1959].start 11847.39471875
transcript.pyannote[1959].end 11848.57596875
transcript.pyannote[1960].speaker SPEAKER_03
transcript.pyannote[1960].start 11849.04846875
transcript.pyannote[1960].end 11850.63471875
transcript.pyannote[1961].speaker SPEAKER_03
transcript.pyannote[1961].start 11851.05659375
transcript.pyannote[1961].end 11852.57534375
transcript.pyannote[1962].speaker SPEAKER_03
transcript.pyannote[1962].start 11853.75659375
transcript.pyannote[1962].end 11854.88721875
transcript.pyannote[1963].speaker SPEAKER_03
transcript.pyannote[1963].start 11855.12346875
transcript.pyannote[1963].end 11856.52409375
transcript.pyannote[1964].speaker SPEAKER_03
transcript.pyannote[1964].start 11857.60409375
transcript.pyannote[1964].end 11858.88659375
transcript.pyannote[1965].speaker SPEAKER_03
transcript.pyannote[1965].start 11859.25784375
transcript.pyannote[1965].end 11860.97909375
transcript.pyannote[1966].speaker SPEAKER_03
transcript.pyannote[1966].start 11861.28284375
transcript.pyannote[1966].end 11862.05909375
transcript.pyannote[1967].speaker SPEAKER_03
transcript.pyannote[1967].start 11862.44721875
transcript.pyannote[1967].end 11863.13909375
transcript.pyannote[1968].speaker SPEAKER_03
transcript.pyannote[1968].start 11863.88159375
transcript.pyannote[1968].end 11864.53971875
transcript.pyannote[1969].speaker SPEAKER_03
transcript.pyannote[1969].start 11864.92784375
transcript.pyannote[1969].end 11867.37471875
transcript.pyannote[1970].speaker SPEAKER_03
transcript.pyannote[1970].start 11867.94846875
transcript.pyannote[1970].end 11870.05784375
transcript.pyannote[1971].speaker SPEAKER_03
transcript.pyannote[1971].start 11870.74971875
transcript.pyannote[1971].end 11872.45409375
transcript.pyannote[1972].speaker SPEAKER_03
transcript.pyannote[1972].start 11872.55534375
transcript.pyannote[1972].end 11875.62659375
transcript.pyannote[1973].speaker SPEAKER_03
transcript.pyannote[1973].start 11875.98096875
transcript.pyannote[1973].end 11877.24659375
transcript.pyannote[1974].speaker SPEAKER_04
transcript.pyannote[1974].start 11877.24659375
transcript.pyannote[1974].end 11877.26346875
transcript.pyannote[1975].speaker SPEAKER_04
transcript.pyannote[1975].start 11877.48284375
transcript.pyannote[1975].end 11877.49971875
transcript.pyannote[1976].speaker SPEAKER_03
transcript.pyannote[1976].start 11877.49971875
transcript.pyannote[1976].end 11879.03534375
transcript.pyannote[1977].speaker SPEAKER_04
transcript.pyannote[1977].start 11879.03534375
transcript.pyannote[1977].end 11888.06346875
transcript.pyannote[1978].speaker SPEAKER_04
transcript.pyannote[1978].start 11888.08034375
transcript.pyannote[1978].end 11892.67034375
transcript.pyannote[1979].speaker SPEAKER_04
transcript.pyannote[1979].start 11893.34534375
transcript.pyannote[1979].end 11893.36221875
transcript.pyannote[1980].speaker SPEAKER_03
transcript.pyannote[1980].start 11893.36221875
transcript.pyannote[1980].end 11897.17596875
transcript.pyannote[1981].speaker SPEAKER_03
transcript.pyannote[1981].start 11897.41221875
transcript.pyannote[1981].end 11898.61034375
transcript.pyannote[1982].speaker SPEAKER_03
transcript.pyannote[1982].start 11899.40346875
transcript.pyannote[1982].end 11899.90971875
transcript.pyannote[1983].speaker SPEAKER_03
transcript.pyannote[1983].start 11900.71971875
transcript.pyannote[1983].end 11902.05284375
transcript.pyannote[1984].speaker SPEAKER_03
transcript.pyannote[1984].start 11902.82909375
transcript.pyannote[1984].end 11903.75721875
transcript.pyannote[1985].speaker SPEAKER_03
transcript.pyannote[1985].start 11905.05659375
transcript.pyannote[1985].end 11906.47409375
transcript.pyannote[1986].speaker SPEAKER_03
transcript.pyannote[1986].start 11907.40221875
transcript.pyannote[1986].end 11908.63409375
transcript.pyannote[1987].speaker SPEAKER_03
transcript.pyannote[1987].start 11909.35971875
transcript.pyannote[1987].end 11910.10221875
transcript.pyannote[1988].speaker SPEAKER_03
transcript.pyannote[1988].start 11910.86159375
transcript.pyannote[1988].end 11912.00909375
transcript.pyannote[1989].speaker SPEAKER_03
transcript.pyannote[1989].start 11912.46471875
transcript.pyannote[1989].end 11913.89909375
transcript.pyannote[1990].speaker SPEAKER_03
transcript.pyannote[1990].start 11914.21971875
transcript.pyannote[1990].end 11916.59909375
transcript.pyannote[1991].speaker SPEAKER_03
transcript.pyannote[1991].start 11917.51034375
transcript.pyannote[1991].end 11918.53971875
transcript.pyannote[1992].speaker SPEAKER_03
transcript.pyannote[1992].start 11919.11346875
transcript.pyannote[1992].end 11920.24409375
transcript.pyannote[1993].speaker SPEAKER_03
transcript.pyannote[1993].start 11921.18909375
transcript.pyannote[1993].end 11922.31971875
transcript.pyannote[1994].speaker SPEAKER_03
transcript.pyannote[1994].start 11922.85971875
transcript.pyannote[1994].end 11924.42909375
transcript.pyannote[1995].speaker SPEAKER_03
transcript.pyannote[1995].start 11925.39096875
transcript.pyannote[1995].end 11927.19659375
transcript.pyannote[1996].speaker SPEAKER_03
transcript.pyannote[1996].start 11927.68596875
transcript.pyannote[1996].end 11929.23846875
transcript.pyannote[1997].speaker SPEAKER_03
transcript.pyannote[1997].start 11929.40721875
transcript.pyannote[1997].end 11931.17909375
transcript.pyannote[1998].speaker SPEAKER_03
transcript.pyannote[1998].start 11931.39846875
transcript.pyannote[1998].end 11933.30534375
transcript.pyannote[1999].speaker SPEAKER_03
transcript.pyannote[1999].start 11934.25034375
transcript.pyannote[1999].end 11935.06034375
transcript.pyannote[2000].speaker SPEAKER_03
transcript.pyannote[2000].start 11935.09409375
transcript.pyannote[2000].end 11936.19096875
transcript.pyannote[2001].speaker SPEAKER_03
transcript.pyannote[2001].start 11936.93346875
transcript.pyannote[2001].end 11938.31721875
transcript.pyannote[2002].speaker SPEAKER_03
transcript.pyannote[2002].start 11939.41409375
transcript.pyannote[2002].end 11940.73034375
transcript.pyannote[2003].speaker SPEAKER_03
transcript.pyannote[2003].start 11942.46846875
transcript.pyannote[2003].end 11944.52721875
transcript.pyannote[2004].speaker SPEAKER_03
transcript.pyannote[2004].start 11945.06721875
transcript.pyannote[2004].end 11947.95284375
transcript.pyannote[2005].speaker SPEAKER_03
transcript.pyannote[2005].start 11948.52659375
transcript.pyannote[2005].end 11951.19284375
transcript.pyannote[2006].speaker SPEAKER_03
transcript.pyannote[2006].start 11952.44159375
transcript.pyannote[2006].end 11956.44096875
transcript.pyannote[2007].speaker SPEAKER_03
transcript.pyannote[2007].start 11956.84596875
transcript.pyannote[2007].end 11958.44909375
transcript.pyannote[2008].speaker SPEAKER_03
transcript.pyannote[2008].start 11958.65159375
transcript.pyannote[2008].end 11961.19971875
transcript.pyannote[2009].speaker SPEAKER_03
transcript.pyannote[2009].start 11961.67221875
transcript.pyannote[2009].end 11962.92096875
transcript.pyannote[2010].speaker SPEAKER_03
transcript.pyannote[2010].start 11963.89971875
transcript.pyannote[2010].end 11964.60846875
transcript.pyannote[2011].speaker SPEAKER_03
transcript.pyannote[2011].start 11964.79409375
transcript.pyannote[2011].end 11967.83159375
transcript.pyannote[2012].speaker SPEAKER_03
transcript.pyannote[2012].start 11968.43909375
transcript.pyannote[2012].end 11970.49784375
transcript.pyannote[2013].speaker SPEAKER_03
transcript.pyannote[2013].start 11971.10534375
transcript.pyannote[2013].end 11972.96159375
transcript.pyannote[2014].speaker SPEAKER_03
transcript.pyannote[2014].start 11973.60284375
transcript.pyannote[2014].end 11974.93596875
transcript.pyannote[2015].speaker SPEAKER_04
transcript.pyannote[2015].start 11975.30721875
transcript.pyannote[2015].end 11999.79284375
transcript.pyannote[2016].speaker SPEAKER_03
transcript.pyannote[2016].start 11999.60721875
transcript.pyannote[2016].end 12000.70409375
transcript.pyannote[2017].speaker SPEAKER_03
transcript.pyannote[2017].start 12001.37909375
transcript.pyannote[2017].end 12003.45471875
transcript.pyannote[2018].speaker SPEAKER_03
transcript.pyannote[2018].start 12004.12971875
transcript.pyannote[2018].end 12005.53034375
transcript.pyannote[2019].speaker SPEAKER_03
transcript.pyannote[2019].start 12006.54284375
transcript.pyannote[2019].end 12010.27221875
transcript.pyannote[2020].speaker SPEAKER_03
transcript.pyannote[2020].start 12010.84596875
transcript.pyannote[2020].end 12013.52909375
transcript.pyannote[2021].speaker SPEAKER_03
transcript.pyannote[2021].start 12013.78221875
transcript.pyannote[2021].end 12017.89971875
transcript.pyannote[2022].speaker SPEAKER_03
transcript.pyannote[2022].start 12019.41846875
transcript.pyannote[2022].end 12019.90784375
transcript.pyannote[2023].speaker SPEAKER_03
transcript.pyannote[2023].start 12022.54034375
transcript.pyannote[2023].end 12022.81034375
transcript.pyannote[2024].speaker SPEAKER_03
transcript.pyannote[2024].start 12023.53596875
transcript.pyannote[2024].end 12023.62034375
transcript.pyannote[2025].speaker SPEAKER_03
transcript.pyannote[2025].start 12024.68346875
transcript.pyannote[2025].end 12026.33721875
transcript.pyannote[2026].speaker SPEAKER_03
transcript.pyannote[2026].start 12026.99534375
transcript.pyannote[2026].end 12027.02909375
transcript.pyannote[2027].speaker SPEAKER_03
transcript.pyannote[2027].start 12027.09659375
transcript.pyannote[2027].end 12028.68284375
transcript.pyannote[2028].speaker SPEAKER_03
transcript.pyannote[2028].start 12029.39159375
transcript.pyannote[2028].end 12032.53034375
transcript.pyannote[2029].speaker SPEAKER_03
transcript.pyannote[2029].start 12033.12096875
transcript.pyannote[2029].end 12034.18409375
transcript.pyannote[2030].speaker SPEAKER_03
transcript.pyannote[2030].start 12034.62284375
transcript.pyannote[2030].end 12037.60971875
transcript.pyannote[2031].speaker SPEAKER_03
transcript.pyannote[2031].start 12038.28471875
transcript.pyannote[2031].end 12044.44409375
transcript.pyannote[2032].speaker SPEAKER_03
transcript.pyannote[2032].start 12045.16971875
transcript.pyannote[2032].end 12048.24096875
transcript.pyannote[2033].speaker SPEAKER_03
transcript.pyannote[2033].start 12048.96659375
transcript.pyannote[2033].end 12051.76784375
transcript.pyannote[2034].speaker SPEAKER_04
transcript.pyannote[2034].start 12056.81346875
transcript.pyannote[2034].end 12058.19721875
transcript.pyannote[2035].speaker SPEAKER_04
transcript.pyannote[2035].start 12058.48409375
transcript.pyannote[2035].end 12070.02659375
transcript.pyannote[2036].speaker SPEAKER_04
transcript.pyannote[2036].start 12071.32596875
transcript.pyannote[2036].end 12071.34284375
transcript.pyannote[2037].speaker SPEAKER_03
transcript.pyannote[2037].start 12071.34284375
transcript.pyannote[2037].end 12073.21596875
transcript.pyannote[2038].speaker SPEAKER_03
transcript.pyannote[2038].start 12073.63784375
transcript.pyannote[2038].end 12075.24096875
transcript.pyannote[2039].speaker SPEAKER_03
transcript.pyannote[2039].start 12075.61221875
transcript.pyannote[2039].end 12077.28284375
transcript.pyannote[2040].speaker SPEAKER_03
transcript.pyannote[2040].start 12078.05909375
transcript.pyannote[2040].end 12078.88596875
transcript.pyannote[2041].speaker SPEAKER_03
transcript.pyannote[2041].start 12079.25721875
transcript.pyannote[2041].end 12084.26909375
transcript.pyannote[2042].speaker SPEAKER_03
transcript.pyannote[2042].start 12084.58971875
transcript.pyannote[2042].end 12088.20096875
transcript.pyannote[2043].speaker SPEAKER_03
transcript.pyannote[2043].start 12088.99409375
transcript.pyannote[2043].end 12098.20784375
transcript.pyannote[2044].speaker SPEAKER_04
transcript.pyannote[2044].start 12093.43221875
transcript.pyannote[2044].end 12093.44909375
transcript.pyannote[2045].speaker SPEAKER_20
transcript.pyannote[2045].start 12093.44909375
transcript.pyannote[2045].end 12093.97221875
transcript.pyannote[2046].speaker SPEAKER_20
transcript.pyannote[2046].start 12095.38971875
transcript.pyannote[2046].end 12095.67659375
transcript.pyannote[2047].speaker SPEAKER_20
transcript.pyannote[2047].start 12097.24596875
transcript.pyannote[2047].end 12097.63409375
transcript.pyannote[2048].speaker SPEAKER_20
transcript.pyannote[2048].start 12098.52846875
transcript.pyannote[2048].end 12101.56596875
transcript.pyannote[2049].speaker SPEAKER_20
transcript.pyannote[2049].start 12101.95409375
transcript.pyannote[2049].end 12103.10159375
transcript.pyannote[2050].speaker SPEAKER_20
transcript.pyannote[2050].start 12103.89471875
transcript.pyannote[2050].end 12105.09284375
transcript.pyannote[2051].speaker SPEAKER_20
transcript.pyannote[2051].start 12107.37096875
transcript.pyannote[2051].end 12110.32409375
transcript.pyannote[2052].speaker SPEAKER_20
transcript.pyannote[2052].start 12110.71221875
transcript.pyannote[2052].end 12112.23096875
transcript.pyannote[2053].speaker SPEAKER_20
transcript.pyannote[2053].start 12112.75409375
transcript.pyannote[2053].end 12114.10409375
transcript.pyannote[2054].speaker SPEAKER_20
transcript.pyannote[2054].start 12115.03221875
transcript.pyannote[2054].end 12116.51721875
transcript.pyannote[2055].speaker SPEAKER_20
transcript.pyannote[2055].start 12116.95596875
transcript.pyannote[2055].end 12118.39034375
transcript.pyannote[2056].speaker SPEAKER_20
transcript.pyannote[2056].start 12119.21721875
transcript.pyannote[2056].end 12120.58409375
transcript.pyannote[2057].speaker SPEAKER_20
transcript.pyannote[2057].start 12121.34346875
transcript.pyannote[2057].end 12122.82846875
transcript.pyannote[2058].speaker SPEAKER_20
transcript.pyannote[2058].start 12123.40221875
transcript.pyannote[2058].end 12124.95471875
transcript.pyannote[2059].speaker SPEAKER_20
transcript.pyannote[2059].start 12125.39346875
transcript.pyannote[2059].end 12126.92909375
transcript.pyannote[2060].speaker SPEAKER_20
transcript.pyannote[2060].start 12127.82346875
transcript.pyannote[2060].end 12133.61159375
transcript.pyannote[2061].speaker SPEAKER_20
transcript.pyannote[2061].start 12134.67471875
transcript.pyannote[2061].end 12136.83471875
transcript.pyannote[2062].speaker SPEAKER_20
transcript.pyannote[2062].start 12137.25659375
transcript.pyannote[2062].end 12143.11221875
transcript.pyannote[2063].speaker SPEAKER_20
transcript.pyannote[2063].start 12143.66909375
transcript.pyannote[2063].end 12149.28846875
transcript.pyannote[2064].speaker SPEAKER_20
transcript.pyannote[2064].start 12149.47409375
transcript.pyannote[2064].end 12151.11096875
transcript.pyannote[2065].speaker SPEAKER_20
transcript.pyannote[2065].start 12151.54971875
transcript.pyannote[2065].end 12155.26221875
transcript.pyannote[2066].speaker SPEAKER_20
transcript.pyannote[2066].start 12155.68409375
transcript.pyannote[2066].end 12161.18534375
transcript.pyannote[2067].speaker SPEAKER_08
transcript.pyannote[2067].start 12322.10534375
transcript.pyannote[2067].end 12326.57721875
transcript.pyannote[2068].speaker SPEAKER_08
transcript.pyannote[2068].start 12355.50096875
transcript.pyannote[2068].end 12356.20971875
transcript.pyannote[2069].speaker SPEAKER_08
transcript.pyannote[2069].start 12357.32346875
transcript.pyannote[2069].end 12358.25159375
transcript.pyannote[2070].speaker SPEAKER_08
transcript.pyannote[2070].start 12358.72409375
transcript.pyannote[2070].end 12370.48596875
transcript.pyannote[2071].speaker SPEAKER_08
transcript.pyannote[2071].start 12371.32971875
transcript.pyannote[2071].end 12372.35909375
transcript.pyannote[2072].speaker SPEAKER_08
transcript.pyannote[2072].start 12372.61221875
transcript.pyannote[2072].end 12378.61971875
transcript.pyannote[2073].speaker SPEAKER_00
transcript.pyannote[2073].start 12378.72096875
transcript.pyannote[2073].end 12378.90659375
transcript.pyannote[2074].speaker SPEAKER_00
transcript.pyannote[2074].start 12380.12159375
transcript.pyannote[2074].end 12382.80471875
transcript.pyannote[2075].speaker SPEAKER_00
transcript.pyannote[2075].start 12383.05784375
transcript.pyannote[2075].end 12409.61909375
transcript.pyannote[2076].speaker SPEAKER_00
transcript.pyannote[2076].start 12409.93971875
transcript.pyannote[2076].end 12412.85909375
transcript.pyannote[2077].speaker SPEAKER_00
transcript.pyannote[2077].start 12413.07846875
transcript.pyannote[2077].end 12423.30471875
transcript.pyannote[2078].speaker SPEAKER_00
transcript.pyannote[2078].start 12423.37221875
transcript.pyannote[2078].end 12429.02534375
transcript.pyannote[2079].speaker SPEAKER_00
transcript.pyannote[2079].start 12429.43034375
transcript.pyannote[2079].end 12435.20159375
transcript.pyannote[2080].speaker SPEAKER_00
transcript.pyannote[2080].start 12435.55596875
transcript.pyannote[2080].end 12437.05784375
transcript.pyannote[2081].speaker SPEAKER_00
transcript.pyannote[2081].start 12437.22659375
transcript.pyannote[2081].end 12440.33159375
transcript.pyannote[2082].speaker SPEAKER_00
transcript.pyannote[2082].start 12440.46659375
transcript.pyannote[2082].end 12444.95534375
transcript.pyannote[2083].speaker SPEAKER_08
transcript.pyannote[2083].start 12447.53721875
transcript.pyannote[2083].end 12457.12221875
transcript.pyannote[2084].speaker SPEAKER_08
transcript.pyannote[2084].start 12457.44284375
transcript.pyannote[2084].end 12461.39159375
transcript.pyannote[2085].speaker SPEAKER_08
transcript.pyannote[2085].start 12461.72909375
transcript.pyannote[2085].end 12467.21346875
transcript.pyannote[2086].speaker SPEAKER_08
transcript.pyannote[2086].start 12467.73659375
transcript.pyannote[2086].end 12473.15346875
transcript.pyannote[2087].speaker SPEAKER_08
transcript.pyannote[2087].start 12473.86221875
transcript.pyannote[2087].end 12474.68909375
transcript.pyannote[2088].speaker SPEAKER_08
transcript.pyannote[2088].start 12474.73971875
transcript.pyannote[2088].end 12477.03471875
transcript.pyannote[2089].speaker SPEAKER_08
transcript.pyannote[2089].start 12477.25409375
transcript.pyannote[2089].end 12478.62096875
transcript.pyannote[2090].speaker SPEAKER_08
transcript.pyannote[2090].start 12479.07659375
transcript.pyannote[2090].end 12479.32971875
transcript.pyannote[2091].speaker SPEAKER_08
transcript.pyannote[2091].start 12480.02159375
transcript.pyannote[2091].end 12481.28721875
transcript.pyannote[2092].speaker SPEAKER_08
transcript.pyannote[2092].start 12482.01284375
transcript.pyannote[2092].end 12483.10971875
transcript.pyannote[2093].speaker SPEAKER_16
transcript.pyannote[2093].start 12482.21534375
transcript.pyannote[2093].end 12482.72159375
transcript.pyannote[2094].speaker SPEAKER_08
transcript.pyannote[2094].start 12483.39659375
transcript.pyannote[2094].end 12484.22346875
transcript.pyannote[2095].speaker SPEAKER_08
transcript.pyannote[2095].start 12484.59471875
transcript.pyannote[2095].end 12485.91096875
transcript.pyannote[2096].speaker SPEAKER_08
transcript.pyannote[2096].start 12486.40034375
transcript.pyannote[2096].end 12486.60284375
transcript.pyannote[2097].speaker SPEAKER_08
transcript.pyannote[2097].start 12487.66596875
transcript.pyannote[2097].end 12488.47596875
transcript.pyannote[2098].speaker SPEAKER_08
transcript.pyannote[2098].start 12490.39971875
transcript.pyannote[2098].end 12491.88471875
transcript.pyannote[2099].speaker SPEAKER_08
transcript.pyannote[2099].start 12492.22221875
transcript.pyannote[2099].end 12493.58909375
transcript.pyannote[2100].speaker SPEAKER_08
transcript.pyannote[2100].start 12494.60159375
transcript.pyannote[2100].end 12495.47909375
transcript.pyannote[2101].speaker SPEAKER_08
transcript.pyannote[2101].start 12495.61409375
transcript.pyannote[2101].end 12496.23846875
transcript.pyannote[2102].speaker SPEAKER_15
transcript.pyannote[2102].start 12497.60534375
transcript.pyannote[2102].end 12505.67159375
transcript.pyannote[2103].speaker SPEAKER_15
transcript.pyannote[2103].start 12506.31284375
transcript.pyannote[2103].end 12516.13409375
transcript.pyannote[2104].speaker SPEAKER_04
transcript.pyannote[2104].start 12514.05846875
transcript.pyannote[2104].end 12516.64034375
transcript.pyannote[2105].speaker SPEAKER_04
transcript.pyannote[2105].start 12516.94409375
transcript.pyannote[2105].end 12520.26846875
transcript.pyannote[2106].speaker SPEAKER_15
transcript.pyannote[2106].start 12519.74534375
transcript.pyannote[2106].end 12525.83721875
transcript.pyannote[2107].speaker SPEAKER_15
transcript.pyannote[2107].start 12526.19159375
transcript.pyannote[2107].end 12526.46159375
transcript.pyannote[2108].speaker SPEAKER_15
transcript.pyannote[2108].start 12526.98471875
transcript.pyannote[2108].end 12527.45721875
transcript.pyannote[2109].speaker SPEAKER_15
transcript.pyannote[2109].start 12534.78096875
transcript.pyannote[2109].end 12535.28721875
transcript.pyannote[2110].speaker SPEAKER_15
transcript.pyannote[2110].start 12536.36721875
transcript.pyannote[2110].end 12538.13909375
transcript.pyannote[2111].speaker SPEAKER_15
transcript.pyannote[2111].start 12539.65784375
transcript.pyannote[2111].end 12540.73784375
transcript.pyannote[2112].speaker SPEAKER_15
transcript.pyannote[2112].start 12541.14284375
transcript.pyannote[2112].end 12544.51784375
transcript.pyannote[2113].speaker SPEAKER_04
transcript.pyannote[2113].start 12544.26471875
transcript.pyannote[2113].end 12544.46721875
transcript.pyannote[2114].speaker SPEAKER_04
transcript.pyannote[2114].start 12544.51784375
transcript.pyannote[2114].end 12546.88034375
transcript.pyannote[2115].speaker SPEAKER_15
transcript.pyannote[2115].start 12547.23471875
transcript.pyannote[2115].end 12548.87159375
transcript.pyannote[2116].speaker SPEAKER_04
transcript.pyannote[2116].start 12547.38659375
transcript.pyannote[2116].end 12548.14596875
transcript.pyannote[2117].speaker SPEAKER_04
transcript.pyannote[2117].start 12548.44971875
transcript.pyannote[2117].end 12552.09471875
transcript.pyannote[2118].speaker SPEAKER_15
transcript.pyannote[2118].start 12553.24221875
transcript.pyannote[2118].end 12558.35534375
transcript.pyannote[2119].speaker SPEAKER_15
transcript.pyannote[2119].start 12559.14846875
transcript.pyannote[2119].end 12559.78971875
transcript.pyannote[2120].speaker SPEAKER_15
transcript.pyannote[2120].start 12560.85284375
transcript.pyannote[2120].end 12561.52784375
transcript.pyannote[2121].speaker SPEAKER_15
transcript.pyannote[2121].start 12562.03409375
transcript.pyannote[2121].end 12566.80971875
transcript.pyannote[2122].speaker SPEAKER_22
transcript.pyannote[2122].start 12569.96534375
transcript.pyannote[2122].end 12569.98221875
transcript.pyannote[2123].speaker SPEAKER_16
transcript.pyannote[2123].start 12569.98221875
transcript.pyannote[2123].end 12570.03284375
transcript.pyannote[2124].speaker SPEAKER_15
transcript.pyannote[2124].start 12570.99471875
transcript.pyannote[2124].end 12572.36159375
transcript.pyannote[2125].speaker SPEAKER_22
transcript.pyannote[2125].start 12572.53034375
transcript.pyannote[2125].end 12572.68221875
transcript.pyannote[2126].speaker SPEAKER_22
transcript.pyannote[2126].start 12572.96909375
transcript.pyannote[2126].end 12578.38596875
transcript.pyannote[2127].speaker SPEAKER_22
transcript.pyannote[2127].start 12578.53784375
transcript.pyannote[2127].end 12579.02721875
transcript.pyannote[2128].speaker SPEAKER_22
transcript.pyannote[2128].start 12579.29721875
transcript.pyannote[2128].end 12579.31409375
transcript.pyannote[2129].speaker SPEAKER_15
transcript.pyannote[2129].start 12579.31409375
transcript.pyannote[2129].end 12582.57096875
transcript.pyannote[2130].speaker SPEAKER_22
transcript.pyannote[2130].start 12582.90846875
transcript.pyannote[2130].end 12583.19534375
transcript.pyannote[2131].speaker SPEAKER_15
transcript.pyannote[2131].start 12583.31346875
transcript.pyannote[2131].end 12585.79409375
transcript.pyannote[2132].speaker SPEAKER_22
transcript.pyannote[2132].start 12587.19471875
transcript.pyannote[2132].end 12594.02909375
transcript.pyannote[2133].speaker SPEAKER_22
transcript.pyannote[2133].start 12594.07971875
transcript.pyannote[2133].end 12595.02471875
transcript.pyannote[2134].speaker SPEAKER_15
transcript.pyannote[2134].start 12595.83471875
transcript.pyannote[2134].end 12598.83846875
transcript.pyannote[2135].speaker SPEAKER_15
transcript.pyannote[2135].start 12599.00721875
transcript.pyannote[2135].end 12605.85846875
transcript.pyannote[2136].speaker SPEAKER_15
transcript.pyannote[2136].start 12606.46596875
transcript.pyannote[2136].end 12609.28409375
transcript.pyannote[2137].speaker SPEAKER_15
transcript.pyannote[2137].start 12609.82409375
transcript.pyannote[2137].end 12612.33846875
transcript.pyannote[2138].speaker SPEAKER_15
transcript.pyannote[2138].start 12613.19909375
transcript.pyannote[2138].end 12626.14221875
transcript.pyannote[2139].speaker SPEAKER_04
transcript.pyannote[2139].start 12624.31971875
transcript.pyannote[2139].end 12624.79221875
transcript.pyannote[2140].speaker SPEAKER_04
transcript.pyannote[2140].start 12625.72034375
transcript.pyannote[2140].end 12651.50534375
transcript.pyannote[2141].speaker SPEAKER_15
transcript.pyannote[2141].start 12628.58909375
transcript.pyannote[2141].end 12629.09534375
transcript.pyannote[2142].speaker SPEAKER_15
transcript.pyannote[2142].start 12650.66159375
transcript.pyannote[2142].end 12652.85534375
transcript.pyannote[2143].speaker SPEAKER_04
transcript.pyannote[2143].start 12651.84284375
transcript.pyannote[2143].end 12655.70721875
transcript.pyannote[2144].speaker SPEAKER_15
transcript.pyannote[2144].start 12657.04034375
transcript.pyannote[2144].end 12658.89659375
transcript.pyannote[2145].speaker SPEAKER_15
transcript.pyannote[2145].start 12659.89221875
transcript.pyannote[2145].end 12661.64721875
transcript.pyannote[2146].speaker SPEAKER_04
transcript.pyannote[2146].start 12662.79471875
transcript.pyannote[2146].end 12681.47534375
transcript.pyannote[2147].speaker SPEAKER_15
transcript.pyannote[2147].start 12682.26846875
transcript.pyannote[2147].end 12682.31909375
transcript.pyannote[2148].speaker SPEAKER_15
transcript.pyannote[2148].start 12682.38659375
transcript.pyannote[2148].end 12693.33846875
transcript.pyannote[2149].speaker SPEAKER_15
transcript.pyannote[2149].start 12693.77721875
transcript.pyannote[2149].end 12694.40159375
transcript.pyannote[2150].speaker SPEAKER_04
transcript.pyannote[2150].start 12695.09346875
transcript.pyannote[2150].end 12697.03409375
transcript.pyannote[2151].speaker SPEAKER_15
transcript.pyannote[2151].start 12695.29596875
transcript.pyannote[2151].end 12695.32971875
transcript.pyannote[2152].speaker SPEAKER_15
transcript.pyannote[2152].start 12695.41409375
transcript.pyannote[2152].end 12695.46471875
transcript.pyannote[2153].speaker SPEAKER_15
transcript.pyannote[2153].start 12696.98346875
transcript.pyannote[2153].end 12697.01721875
transcript.pyannote[2154].speaker SPEAKER_15
transcript.pyannote[2154].start 12697.03409375
transcript.pyannote[2154].end 12697.33784375
transcript.pyannote[2155].speaker SPEAKER_04
transcript.pyannote[2155].start 12697.33784375
transcript.pyannote[2155].end 12702.11346875
transcript.pyannote[2156].speaker SPEAKER_15
transcript.pyannote[2156].start 12702.19784375
transcript.pyannote[2156].end 12709.97721875
transcript.pyannote[2157].speaker SPEAKER_11
transcript.pyannote[2157].start 12710.53409375
transcript.pyannote[2157].end 12711.17534375
transcript.pyannote[2158].speaker SPEAKER_15
transcript.pyannote[2158].start 12710.82096875
transcript.pyannote[2158].end 12712.87971875
transcript.pyannote[2159].speaker SPEAKER_15
transcript.pyannote[2159].start 12713.48721875
transcript.pyannote[2159].end 12713.99346875
transcript.pyannote[2160].speaker SPEAKER_15
transcript.pyannote[2160].start 12715.76534375
transcript.pyannote[2160].end 12718.38096875
transcript.pyannote[2161].speaker SPEAKER_04
transcript.pyannote[2161].start 12718.36409375
transcript.pyannote[2161].end 12727.93221875
transcript.pyannote[2162].speaker SPEAKER_15
transcript.pyannote[2162].start 12718.73534375
transcript.pyannote[2162].end 12719.08971875
transcript.pyannote[2163].speaker SPEAKER_15
transcript.pyannote[2163].start 12726.76784375
transcript.pyannote[2163].end 12732.01596875
transcript.pyannote[2164].speaker SPEAKER_04
transcript.pyannote[2164].start 12730.37909375
transcript.pyannote[2164].end 12735.18846875
transcript.pyannote[2165].speaker SPEAKER_04
transcript.pyannote[2165].start 12740.50409375
transcript.pyannote[2165].end 12742.96784375
transcript.pyannote[2166].speaker SPEAKER_15
transcript.pyannote[2166].start 12745.63409375
transcript.pyannote[2166].end 12755.96159375
transcript.pyannote[2167].speaker SPEAKER_00
transcript.pyannote[2167].start 12748.23284375
transcript.pyannote[2167].end 12748.24971875
transcript.pyannote[2168].speaker SPEAKER_04
transcript.pyannote[2168].start 12748.24971875
transcript.pyannote[2168].end 12749.05971875
transcript.pyannote[2169].speaker SPEAKER_00
transcript.pyannote[2169].start 12749.05971875
transcript.pyannote[2169].end 12749.07659375
transcript.pyannote[2170].speaker SPEAKER_00
transcript.pyannote[2170].start 12750.00471875
transcript.pyannote[2170].end 12750.15659375
transcript.pyannote[2171].speaker SPEAKER_04
transcript.pyannote[2171].start 12750.15659375
transcript.pyannote[2171].end 12751.69221875
transcript.pyannote[2172].speaker SPEAKER_15
transcript.pyannote[2172].start 12756.29909375
transcript.pyannote[2172].end 12760.07909375
transcript.pyannote[2173].speaker SPEAKER_15
transcript.pyannote[2173].start 12760.18034375
transcript.pyannote[2173].end 12762.27284375
transcript.pyannote[2174].speaker SPEAKER_15
transcript.pyannote[2174].start 12762.91409375
transcript.pyannote[2174].end 12764.77034375
transcript.pyannote[2175].speaker SPEAKER_00
transcript.pyannote[2175].start 12765.46221875
transcript.pyannote[2175].end 12765.64784375
transcript.pyannote[2176].speaker SPEAKER_15
transcript.pyannote[2176].start 12765.54659375
transcript.pyannote[2176].end 12771.18284375
transcript.pyannote[2177].speaker SPEAKER_15
transcript.pyannote[2177].start 12771.70596875
transcript.pyannote[2177].end 12778.43909375
transcript.pyannote[2178].speaker SPEAKER_15
transcript.pyannote[2178].start 12778.70909375
transcript.pyannote[2178].end 12782.30346875
transcript.pyannote[2179].speaker SPEAKER_15
transcript.pyannote[2179].start 12783.02909375
transcript.pyannote[2179].end 12784.12596875
transcript.pyannote[2180].speaker SPEAKER_04
transcript.pyannote[2180].start 12783.04596875
transcript.pyannote[2180].end 12784.05846875
transcript.pyannote[2181].speaker SPEAKER_04
transcript.pyannote[2181].start 12784.12596875
transcript.pyannote[2181].end 12790.87596875
transcript.pyannote[2182].speaker SPEAKER_15
transcript.pyannote[2182].start 12790.30221875
transcript.pyannote[2182].end 12793.62659375
transcript.pyannote[2183].speaker SPEAKER_04
transcript.pyannote[2183].start 12794.35221875
transcript.pyannote[2183].end 12795.36471875
transcript.pyannote[2184].speaker SPEAKER_15
transcript.pyannote[2184].start 12794.63909375
transcript.pyannote[2184].end 12795.70221875
transcript.pyannote[2185].speaker SPEAKER_04
transcript.pyannote[2185].start 12795.70221875
transcript.pyannote[2185].end 12801.08534375
transcript.pyannote[2186].speaker SPEAKER_15
transcript.pyannote[2186].start 12797.55846875
transcript.pyannote[2186].end 12808.12221875
transcript.pyannote[2187].speaker SPEAKER_04
transcript.pyannote[2187].start 12807.66659375
transcript.pyannote[2187].end 12819.52971875
transcript.pyannote[2188].speaker SPEAKER_15
transcript.pyannote[2188].start 12808.39221875
transcript.pyannote[2188].end 12809.50596875
transcript.pyannote[2189].speaker SPEAKER_15
transcript.pyannote[2189].start 12819.32721875
transcript.pyannote[2189].end 12822.11159375
transcript.pyannote[2190].speaker SPEAKER_04
transcript.pyannote[2190].start 12822.93846875
transcript.pyannote[2190].end 12836.77596875
transcript.pyannote[2191].speaker SPEAKER_15
transcript.pyannote[2191].start 12837.11346875
transcript.pyannote[2191].end 12843.71159375
transcript.pyannote[2192].speaker SPEAKER_04
transcript.pyannote[2192].start 12838.66596875
transcript.pyannote[2192].end 12840.57284375
transcript.pyannote[2193].speaker SPEAKER_04
transcript.pyannote[2193].start 12841.93971875
transcript.pyannote[2193].end 12842.46284375
transcript.pyannote[2194].speaker SPEAKER_04
transcript.pyannote[2194].start 12842.80034375
transcript.pyannote[2194].end 12854.89971875
transcript.pyannote[2195].speaker SPEAKER_15
transcript.pyannote[2195].start 12854.25846875
transcript.pyannote[2195].end 12856.04721875
transcript.pyannote[2196].speaker SPEAKER_04
transcript.pyannote[2196].start 12855.82784375
transcript.pyannote[2196].end 12857.58284375
transcript.pyannote[2197].speaker SPEAKER_15
transcript.pyannote[2197].start 12857.90346875
transcript.pyannote[2197].end 12859.40534375
transcript.pyannote[2198].speaker SPEAKER_04
transcript.pyannote[2198].start 12859.89471875
transcript.pyannote[2198].end 12868.83846875
transcript.pyannote[2199].speaker SPEAKER_15
transcript.pyannote[2199].start 12869.24346875
transcript.pyannote[2199].end 12874.84596875
transcript.pyannote[2200].speaker SPEAKER_04
transcript.pyannote[2200].start 12871.74096875
transcript.pyannote[2200].end 12873.96846875
transcript.pyannote[2201].speaker SPEAKER_15
transcript.pyannote[2201].start 12875.01471875
transcript.pyannote[2201].end 12881.22471875
transcript.pyannote[2202].speaker SPEAKER_15
transcript.pyannote[2202].start 12881.34284375
transcript.pyannote[2202].end 12882.79409375
transcript.pyannote[2203].speaker SPEAKER_15
transcript.pyannote[2203].start 12883.67159375
transcript.pyannote[2203].end 12889.94909375
transcript.pyannote[2204].speaker SPEAKER_04
transcript.pyannote[2204].start 12888.59909375
transcript.pyannote[2204].end 12889.96596875
transcript.pyannote[2205].speaker SPEAKER_08
transcript.pyannote[2205].start 12889.94909375
transcript.pyannote[2205].end 12890.94471875
transcript.pyannote[2206].speaker SPEAKER_15
transcript.pyannote[2206].start 12889.96596875
transcript.pyannote[2206].end 12889.98284375
transcript.pyannote[2207].speaker SPEAKER_04
transcript.pyannote[2207].start 12889.98284375
transcript.pyannote[2207].end 12890.03346875
transcript.pyannote[2208].speaker SPEAKER_04
transcript.pyannote[2208].start 12890.18534375
transcript.pyannote[2208].end 12890.28659375
transcript.pyannote[2209].speaker SPEAKER_15
transcript.pyannote[2209].start 12890.28659375
transcript.pyannote[2209].end 12892.02471875
transcript.pyannote[2210].speaker SPEAKER_16
transcript.pyannote[2210].start 12892.02471875
transcript.pyannote[2210].end 12893.05409375
transcript.pyannote[2211].speaker SPEAKER_08
transcript.pyannote[2211].start 12893.03721875
transcript.pyannote[2211].end 12911.21159375
transcript.pyannote[2212].speaker SPEAKER_16
transcript.pyannote[2212].start 12898.60596875
transcript.pyannote[2212].end 12898.97721875
transcript.pyannote[2213].speaker SPEAKER_04
transcript.pyannote[2213].start 12909.54096875
transcript.pyannote[2213].end 12909.60846875
transcript.pyannote[2214].speaker SPEAKER_16
transcript.pyannote[2214].start 12909.60846875
transcript.pyannote[2214].end 12909.70971875
transcript.pyannote[2215].speaker SPEAKER_16
transcript.pyannote[2215].start 12909.86159375
transcript.pyannote[2215].end 12910.13159375
transcript.pyannote[2216].speaker SPEAKER_04
transcript.pyannote[2216].start 12910.13159375
transcript.pyannote[2216].end 12910.33409375
transcript.pyannote[2217].speaker SPEAKER_08
transcript.pyannote[2217].start 12912.54471875
transcript.pyannote[2217].end 12913.54034375
transcript.pyannote[2218].speaker SPEAKER_08
transcript.pyannote[2218].start 12914.06346875
transcript.pyannote[2218].end 12918.28221875
transcript.pyannote[2219].speaker SPEAKER_08
transcript.pyannote[2219].start 12919.46346875
transcript.pyannote[2219].end 12920.50971875
transcript.pyannote[2220].speaker SPEAKER_08
transcript.pyannote[2220].start 12921.79221875
transcript.pyannote[2220].end 12924.54284375
transcript.pyannote[2221].speaker SPEAKER_08
transcript.pyannote[2221].start 12924.76221875
transcript.pyannote[2221].end 12926.06159375
transcript.pyannote[2222].speaker SPEAKER_08
transcript.pyannote[2222].start 12926.53409375
transcript.pyannote[2222].end 12933.01409375
transcript.pyannote[2223].speaker SPEAKER_08
transcript.pyannote[2223].start 12934.73534375
transcript.pyannote[2223].end 12939.40971875
transcript.pyannote[2224].speaker SPEAKER_08
transcript.pyannote[2224].start 12941.85659375
transcript.pyannote[2224].end 12946.32846875
transcript.pyannote[2225].speaker SPEAKER_08
transcript.pyannote[2225].start 12948.58971875
transcript.pyannote[2225].end 12948.97784375
transcript.pyannote[2226].speaker SPEAKER_08
transcript.pyannote[2226].start 12949.01159375
transcript.pyannote[2226].end 12949.02846875
transcript.pyannote[2227].speaker SPEAKER_16
transcript.pyannote[2227].start 12949.02846875
transcript.pyannote[2227].end 12949.39971875
transcript.whisperx[0].start 1720.806
transcript.whisperx[0].end 1735.962
transcript.whisperx[0].text 報告委員會出席委員11人已足法定人數請主席宣布開會好現在開會進行報告事項宣讀上次會議意思錄立法院第11屆第一會期司法及法制委員會第8次全體委員會議意思錄實現中華民國113年3月21日星期四上午9時至12時59分
transcript.whisperx[1].start 1741.528
transcript.whisperx[1].end 1755.269
transcript.whisperx[1].text 地點本月紅樓302會議室出席為黃委員國昌等13人列席為謝委員依奉等11人列席官員立法院秘書長周萬來等人主席吳昭吉委員鐘憲報告事項依宣讀上次會議事錄決定確定
transcript.whisperx[2].start 1756.531
transcript.whisperx[2].end 1780.308
transcript.whisperx[2].text 二、邀請立法院秘書長列席就中華民國總統至立法院進行國情報告及詢答模式之建議.進行專題報告.並備質詢本次會委員黃國昌等17人提出質詢委員陳俊宇等2人提出書面質詢決定一報告及詢答完畢二、委員質詢時要求提供相關資料或以書面答覆者請相關機關請訴送交個別委員及本會通過臨時提案二項宣讀完畢
transcript.whisperx[3].start 1784.346
transcript.whisperx[3].end 1808.734
transcript.whisperx[3].text 好那因為現場人數我們稍後再確認議事錄接下來介紹道場委員及應邀列席官員先介紹在場委員黃總昭國昌歡迎您接下來介紹應邀列席官員首先介紹行政院人事行政總處蘇俊榮人事長歡迎您懷旭副人事長歡迎您
transcript.whisperx[4].start 1810.731
transcript.whisperx[4].end 1834.391
transcript.whisperx[4].text 公務人力發展學院陳明忠院長歡迎您綜合規劃處周威庭處長歡迎您主編人力處張翠娟處長歡迎您培訓考用處陳月春處長歡迎您給予福利處林錦惠處長歡迎您
transcript.whisperx[5].start 1837.495
transcript.whisperx[5].end 1866.291
transcript.whisperx[5].text 人事資訊處莊素怡處長歡迎您主計是陳立惠主任歡迎您人事是裘明娟科長歡迎您接下來介紹行政院主計總處公務預算處陳理培元檢證視察歡迎您接下來介紹法務部矯正署周輝煌署長歡迎您
transcript.whisperx[6].start 1867.694
transcript.whisperx[6].end 1880.722
transcript.whisperx[6].text 接下來介紹內政部移民署陳建成副組長歡迎您接下來介紹國營臺灣鐵路股份有限公司馮輝燊總經理歡迎您好那
transcript.whisperx[7].start 1887.611
transcript.whisperx[7].end 1912.446
transcript.whisperx[7].text 本次議程呢.除邀請行政院人事行政總處人事長及行政院相關機關.含事業單位.列席就政府機關推動人事服務數位轉型進行專題報告.並備質詢外另有報告事項及討論事項所列之113年度行政院人事行政總處預算解凍案.因報告事項第4案
transcript.whisperx[8].start 1913.922
transcript.whisperx[8].end 1924.399
transcript.whisperx[8].text 之預算解凍案經昨日院會附議該案原依開會通知單所載不予處理特別先向委員會提出說明那稍後我們先請
transcript.whisperx[9].start 1927.254
transcript.whisperx[9].end 1947.213
transcript.whisperx[9].text 機關代表就專題報告及預算解凍案一併報告那尋答時則採用綜合尋答尋答完畢再按照議程報告事項及討論事項依序進行處理好現在進行報告請行政院人事總處書務人事長報告請就專題報告及預算解凍案一併報告發言時間6分鐘請
transcript.whisperx[10].start 1956.189
transcript.whisperx[10].end 1963.921
transcript.whisperx[10].text 主席、各位委員、各位女士、各位先生、大家早人事總處緊就推動人事服務數位轉型進行檢要報告
transcript.whisperx[11].start 1964.912
transcript.whisperx[11].end 1986.332
transcript.whisperx[11].text 因應整合數位科技的發展以及全球對ESG永續議題的重視人事總處藉由推動業務數位轉型導入整合資訊化的管理提升人事服務效能並透過與考試院的合作引領行政院所屬個人事機構提供數位化的整合式優質人事服務
transcript.whisperx[12].start 1989.162
transcript.whisperx[12].end 2008.871
transcript.whisperx[12].text 請問能夠在提升效率的同時也能夠逐漸實現聯合國永續發展SDGs的目標人事總處在推動人事數位轉型有三大執行策略第一在數位服務上我們積極辦理應用知通信科技醫化服務提升效率
transcript.whisperx[13].start 2009.591
transcript.whisperx[13].end 2032.957
transcript.whisperx[13].text 例如推動獎勵令跟人事派免令的無紙化電子化 112年我們已經達到146萬件的無紙化推動電子化採請管理到112年為止我們全國已經有3200個機關學校導入建置智慧客服提供考試入企人員分配作業停班停課辦公日曆表等20項的即時諮詢服務
transcript.whisperx[14].start 2035.578
transcript.whisperx[14].end 2063.594
transcript.whisperx[14].text 此外我們在整個推動跨機關人事資料查核善用公務人力資料庫協助機關在前者範圍內進行公務人員身分驗證作業例如我們政府部門資訊及治安人才的資料庫那整個資訊服務的範圍擴及了前國55萬的公教人力以及前國8100多個機關透過數位化的推動從人事作業減值化開始促進公部門的減值
transcript.whisperx[15].start 2065.095
transcript.whisperx[15].end 2074.601
transcript.whisperx[15].text 截止檢探第二在數位治理上我們積極推動資料治理提升施政決策精準度應用公務人力資料倉儲等資料庫進行數據分析除了規劃
transcript.whisperx[16].start 2079.434
transcript.whisperx[16].end 2108.593
transcript.whisperx[16].text 政府公務人力的選用、預留等各面向業務的資料統計及選研達500件每年也自行辦理了10多項的統計分析並且以學術界進行人事資料的研究互惠合作的機制透過氣勢配合人事資料進行跨領域資料分析強化人事行政化的一個管理第三在確保自通安全的前提下我們強化自通安全打造可信賴的人事服務
transcript.whisperx[17].start 2109.534
transcript.whisperx[17].end 2124.556
transcript.whisperx[17].text 未來,我們也將持續致力於人事業務電子化、跨機關系統及資料的整合、AI輔助人事業務、優化大數據分析技術、提升內部資訊安全管控及防務等各項工作
transcript.whisperx[18].start 2125.457
transcript.whisperx[18].end 2139.507
transcript.whisperx[18].text 並持續透過人事數據分析協助政府機關.評估並推動數位轉型.善用科技技術簡化政府作業流程.減輕人工作業的負擔.提升用能效率呼應2050進行
transcript.whisperx[19].start 2141.808
transcript.whisperx[19].end 2156.286
transcript.whisperx[19].text 排放及永續發展,邁向共好接下來我們人事總處113年預算解凍案共有7案以下做簡要的說明有關報告事項3基本行政工作維持凍結200萬提出書面報告一份
transcript.whisperx[20].start 2159.168
transcript.whisperx[20].end 2185.563
transcript.whisperx[20].text 報告四項五公教人員分上生意及子女教育補助凍結兩百萬提出書面報告三份報告四項六七人事行政政策規劃及發展凍結三十萬及二十萬各提出書面報告一份報告四項八基於福利制度的規劃凍結七萬五千元提出書面報告一份報告四項九人力學院訓練輔導及研究凍結三百萬提出書面報告一份
transcript.whisperx[21].start 2187.003
transcript.whisperx[21].end 2204.293
transcript.whisperx[21].text 討論事項人事行政制政策規劃及發展凍結30萬提出書面報告一份以上即提出9份書面報告。懇請各位委員支持同意解凍。謝謝。好,謝謝所有人事長。接下來請移民署陳副總報告時間5分鐘。
transcript.whisperx[22].start 2221.283
transcript.whisperx[22].end 2241.277
transcript.whisperx[22].text 主席、各位委員、先進、大家好、大家早安首先感謝各位委員就政府數位型轉型計畫對移民署、國境政策查驗及各縣市服務站櫃台第一線的工作人員工作量是否減量的重視接下來進行專題報告、敬請各位委員會執導
transcript.whisperx[23].start 2243.118
transcript.whisperx[23].end 2268.623
transcript.whisperx[23].text 一、現況的說明為完善旅客自動化通關的作業移民署規劃分3年建置61座第4代自動查驗通關系統並以構置新的查驗工作站來提升查驗作業效率其能舒緩國境證照查驗人員的勤務量及壓力本署建置航選旅客資訊
transcript.whisperx[24].start 2270.283
transcript.whisperx[24].end 2297.642
transcript.whisperx[24].text 審查、定位等篩略作業系統.成效如下.去年有效的事先阻絕256名旅客搭機來台.國境線上查獲106件偽變照護照來台案.自動查核比對11081名疑似涉嫌的對象.有效的減少查處.
transcript.whisperx[25].start 2299.031
transcript.whisperx[25].end 2326.561
transcript.whisperx[25].text 及在遣返、照護等人力本屬已建置智慧人流預估分析儀表板協助入境查驗作業、評估人力需求或將持續改善經濟二、因應推動業務數位資訊化的配套措施本屬規劃建置旅客風險綜合評估系統及AI旅客
transcript.whisperx[26].start 2327.501
transcript.whisperx[26].end 2347.15
transcript.whisperx[26].text 政見自動歸附系統結合大數據的分析針對違法違規資料所獲得高風險旅客的資料以AI來進行比對降低高風險的旅客入境我國的風險並有效減少人力的負荷
transcript.whisperx[27].start 2347.85
transcript.whisperx[27].end 2375.387
transcript.whisperx[27].text 另外,我們已請數位發展部協助本署導入先進的生物特徵辨識技術及研議精進,徵召查驗通關的流程.並實際就該部所提建議來做滾動的一個檢討.以提供旅客更精準、優質的服務並確保國境安全。三、策進作為為加速推動數位化及設備的更新本署
transcript.whisperx[28].start 2376.127
transcript.whisperx[28].end 2403.626
transcript.whisperx[28].text 本屬實施擴大自動通關旅客的試用範圍其能擴大系統使用的效能降低國境查驗人力的一個工作壓力此外規劃簡化外來人口申辦居停留作業的流程並實施精進線上的申辦作業減少各縣市服務站臨櫃作業人力令定期收集新興科技的需求
transcript.whisperx[29].start 2404.386
transcript.whisperx[29].end 2421.666
transcript.whisperx[29].text 延伸本署未來AI規劃與應用的方向.並延提計劃來爭取預算.以精進本署勤業務的一個發展.並創造正面的一個效益是決語本署時序推動國境安全管理.
transcript.whisperx[30].start 2422.226
transcript.whisperx[30].end 2447.728
transcript.whisperx[30].text 及與各縣市服務站第一線同仁的智慧化作業並擴大自動通關旅客適用範圍提升生物特徵辨識成功率等措施積極爭取經費推動數位轉型令滾動調整人力配置其人力支援達到最大化的一個效益以上報告進行委員會議指教謝謝
transcript.whisperx[31].start 2449.429
transcript.whisperx[31].end 2473.187
transcript.whisperx[31].text 好謝謝陳副署長陳副署長報告的內容就是本期這次安排有關於透過資訊科技來提升我們請回我想非常的切重本次會議的那麼接下來呢我們機關代表報告完畢相關書面報告內容請各位參閱並列入公報記錄另外先做會議程序之宣告上午會議時間與詢答結束後繼續進行至議程所列
transcript.whisperx[32].start 2477.95
transcript.whisperx[32].end 2488.6
transcript.whisperx[32].text 解凍案均處理完畢為止。那麼由於議事錄呢期之前已經宣讀完畢尚未確定現在我們先確認議事錄請問各位上次會議事錄有無錯過遺漏
transcript.whisperx[33].start 2490.575
transcript.whisperx[33].end 2508.827
transcript.whisperx[33].text 沒有?好,那麼我們一事如確定現在進行詢答本會委員詢答時間8分鐘必要時得延長2分鐘非本會委員詢答時間5分鐘並不再延長上午10點30分截止發言登記請登記第一位黃總召國昌委員請
transcript.whisperx[34].start 2531.658
transcript.whisperx[34].end 2555.572
transcript.whisperx[34].text 謝謝主席,麻煩有請人事長。好,請人事長。人事長早,在今天的解讀報告當中,去年有立委提案,凍結你們的預算是希望有關於軍公教條性的機制,待於審議委員會裡面必須要有基層員工的代表。
transcript.whisperx[35].start 2557.289
transcript.whisperx[35].end 2578.095
transcript.whisperx[35].text 當初在凍結的時候講得很具體請你們提出改革的規劃跟改革的啟程重點是改革的規劃跟改革的啟程但是我拜讀完你們整份提供給本委員會的書面報告我們直接講結論你們的結論是不是認為沒有改革的必要
transcript.whisperx[36].start 2579.4
transcript.whisperx[36].end 2608.588
transcript.whisperx[36].text 報告委員我們事實上內部已經我們提了兩個一個方向的一個評估那一定會在上次會議我先提一下我們就是論事先從解凍報告來講在解凍報告方面要提基層員工代表你們的結論我看到的是維持現行規定辦理就好所以我才問你說你們今天報告的結論是不是沒有改革的必要
transcript.whisperx[37].start 2610.107
transcript.whisperx[37].end 2632.626
transcript.whisperx[37].text 絕對不是好那如果不是的話那你今天這個報告顯然有內容不齊全的問題啊因為你們改革的規劃的期程跟內容在凍結案的時候所要求的內容我在這份書面報告裡面完全沒有看到還是我哪裡有該看到我沒有看到的嗎改革的期程跟內容在哪裡
transcript.whisperx[38].start 2633.887
transcript.whisperx[38].end 2655.733
transcript.whisperx[38].text 我這裡跟委員報告這個資料是在1月18提的解凍然後3月份的時候我們在質詢的時候我們有答應今年一定會提出來那現在我跟委員補充報告一下我這樣講好了啦今天委員會台城你的解凍報告如果是1月寫的到今天為止如果內容不齊全的你是不是應該要補你是不是應該要補
transcript.whisperx[39].start 2660.768
transcript.whisperx[39].end 2675.589
transcript.whisperx[39].text 我我相信我我承認是按照委員的意見不過我必須要跟委員報告一點因為現在是要由制度化變法制化的過程我們是內部在研議到底是要研議多久就是這個
transcript.whisperx[40].start 2677.765
transcript.whisperx[40].end 2699.884
transcript.whisperx[40].text 今年一定會把法制化這件事情我今天為什麼請教人事長說還要研議多久從今天的整個要解凍的書面報告該寫的東西沒有寫剛我已經講得很清楚人事長你也同意了但我們來看一下就是教師公會
transcript.whisperx[41].start 2701.618
transcript.whisperx[41].end 2717.314
transcript.whisperx[41].text 他們所提出的訴求然後你們說你們未來會朝向法制化規劃進行我的理解沒有錯嗎沒有錯好但為什麼這些基層的公務人員大家對於政府的承諾沒有信心
transcript.whisperx[42].start 2718.291
transcript.whisperx[42].end 2738.07
transcript.whisperx[42].text 因為這句話從2016年講到現在2024年8年了8年了如果今天是第一次講沒有履行承諾大家會覺得有期待有想像有信心但8年過去原地踏步
transcript.whisperx[43].start 2739.211
transcript.whisperx[43].end 2767.682
transcript.whisperx[43].text 為什麼大家今天會對於人總今天所提出來的說我們未來會朝向這個方向我們會深入的研議繼續的研議不斷的研議這件事情沒有信心我想我代表很多基層員工的心聲反映給人總知道而且他們所提的不是沒有依據喔從2016年在立法院這邊做出的報告
transcript.whisperx[44].start 2768.971
transcript.whisperx[44].end 2787.049
transcript.whisperx[44].text 到立法院法治局從2017年的報告說從法律保留的原則最好是要由法律來加以規範這個條性機制到2021年又再做報告連監察院都看不下去監察院說啊拖太久了啦
transcript.whisperx[45].start 2788.123
transcript.whisperx[45].end 2803.035
transcript.whisperx[45].text 拖延過久有欠積極這8個字這不是我說的這監察院說的大家都在等等了8年了原地踏步我相信人事長應該可以體會大家的心情這個事情
transcript.whisperx[46].start 2804.396
transcript.whisperx[46].end 2829.927
transcript.whisperx[46].text 我已經不知道該怎麼說了8年過去的原地踏步大家沒有辦法接受我相信將心比心你應該可以理解第二個重點就是目前我們公務人員的考機制度我自己長期的觀察有兩個最大的問題一個是勞役不均一個是考機失靈
transcript.whisperx[47].start 2831.868
transcript.whisperx[47].end 2841.314
transcript.whisperx[47].text 聯繫長你看一下我PPT上面做的新聞從我們基層的公務員到中央的公務員有過勞的猝死的腦溢血的這些例子非常的多
transcript.whisperx[48].start 2851.377
transcript.whisperx[48].end 2878.948
transcript.whisperx[48].text 但是從一般民眾的角度上面來講是為什麼有一些公務員他們在他們的工作職位上會超到連寶貴的生命都消失另外一些公務員可能大家在看他們工作上面的負擔相對而言就很輕鬆所以勞役不均的問題非常嚴重第二個嚴重的問題是什麼?烤雞的失靈
transcript.whisperx[49].start 2880.543
transcript.whisperx[49].end 2883.985
transcript.whisperx[49].text 人事長你知不知道我們上次考積法修正是什麼時候?應該是...現行的考積法嗎?只是他...當然啊他不是廢紙的也不是未來的是現行的考積法沒有錯106年有檢討過啦106年有檢討過那檢討過以後呢?
transcript.whisperx[50].start 2906.317
transcript.whisperx[50].end 2914.22
transcript.whisperx[50].text 那今年...來我直接跟您說啦上次修...上次修考機法的時候是2007年啊沒有啦,106年是2017年啦
transcript.whisperx[51].start 2920.865
transcript.whisperx[51].end 2936.773
transcript.whisperx[51].text 上次說的是2007年那我為什麼會關注這樣子的一個問題是雖然法律沒有明確的規定但是現在考機評價等比例的上限考試院告訴我說是人種定的沒有錯吧
transcript.whisperx[52].start 2937.947
transcript.whisperx[52].end 2955.088
transcript.whisperx[52].text 不是不是是考試院自己定的沒有沒有五院秘書長五院秘書長是府院秘書長五院五院的秘書長他們共同定考甲等的比例上限就是大家協商那大家協商考甲等上限的法律授權基礎在哪裡
transcript.whisperx[53].start 2957.048
transcript.whisperx[53].end 2972.008
transcript.whisperx[53].text 事實上他是備受考計法然後大家去協商一個沒有在考計法裡面明確寫這個就是我的問題嘛吼現在您告訴全體國人我們考計法假等的比例啊是由五院秘書長大家協商來定嗎
transcript.whisperx[54].start 2974.795
transcript.whisperx[54].end 2974.955
transcript.whisperx[54].text 所以...欸...
transcript.whisperx[55].start 2994.187
transcript.whisperx[55].end 3019.083
transcript.whisperx[55].text 事實上齁在我們的了解是每一個國家都沒有一個法定比例只是說大家去協商出一個非常好齁沒有一個固定的法定比例嘛是結果大家用協商的方式來決定攸關於公務人員重大權利的事項我剛請教你的問題是說你認為在現代的法治國家這樣子做是合時宜的嗎這是我的問題
transcript.whisperx[56].start 3023.562
transcript.whisperx[56].end 3049.407
transcript.whisperx[56].text 我想要跟委員報告這個是一個管理工具的部分這是一個管理工具的部分那事實上我們跟前序部也在今年我再提一下公務人員在他們從事公務的過程當中其實他們每年最在意的是什麼他們工作的表現要反映在哪裡考積在考積嘛那考積會不會影響到他們每一年年終領的數額
transcript.whisperx[57].start 3051.167
transcript.whisperx[57].end 3066.341
transcript.whisperx[57].text 還有他的升遷對嘛這麼重大的事情恐怕不是說考機是一個管理的工具一句話就帶過囉您是人事長全國的公務員員都在看著您這只是一個管理的工具嗎
transcript.whisperx[58].start 3067.489
transcript.whisperx[58].end 3081.261
transcript.whisperx[58].text 考積的結果沒有關射到公務人員重要的權利義務嗎?顯然是有嗎?那你還是認為說這只是個管理的工具沒有法律授權的依據五月秘書長這樣幹沒有問題嗎?
transcript.whisperx[59].start 3084.133
transcript.whisperx[59].end 3105.347
transcript.whisperx[59].text 事實上這幾年運作下來我們當然有配合整個COVID我們整個烤雞的夾等比例有在往上調升我現在跟你在問A你又移到B了嘛COVID的部分你們還是五位秘書長去喬嘛我現在核心的關鍵是說在法治國家這樣子做是適宜的嗎
transcript.whisperx[60].start 3106.047
transcript.whisperx[60].end 3128.243
transcript.whisperx[60].text 沒關係我問題點出來了啦恐怕你今天站在你的位置上也很難回答但有另外一個奇怪的現象就是我從以前觀察到現在為什麼關等越高的加等的比例越高檢認、建認、委任我從中央公務人員來請人事長看一下如果是檢認的
transcript.whisperx[61].start 3129.946
transcript.whisperx[61].end 3157.218
transcript.whisperx[61].text 沒有被考假的就假以下的不到5%到兼任的升到17.49%到委任的25.25%我再往下地方公務員一模一樣檢認沒有考到假的2.24%結果到委任的時候26.76%為什麼我們的考機制度運作出來的結果是關越大考機越好這是我的問題
transcript.whisperx[62].start 3159.454
transcript.whisperx[62].end 3179.595
transcript.whisperx[62].text 不過我這裡要跟委員報告基本上我們在中央機關的運作上面有些新的任務交下來基本上我們會從上面篩下去所以你的理論是說因為檢任他們接比較多新的任務所以他們夾點的比例比較高您的意思是這樣嗎?
transcript.whisperx[63].start 3180.56
transcript.whisperx[63].end 3202.817
transcript.whisperx[63].text 它基本上它的loading會相對會比較高可是它是一個相對不是一個絕對的概念它是一個相對絕對的概念然後鑑認的話這個部分當然就是你有時候每一個不同Level它的Loading的工作的出力出力包含你的勞力還有勞力的部分事實上是不一樣的啦
transcript.whisperx[64].start 3203.873
transcript.whisperx[64].end 3228.928
transcript.whisperx[64].text 時間到了齁我最後只有一個請求一般的民眾看到這樣的結果很多公務員看到這樣的結果心裡面會打一個問號是不是關等越高假等就越高是不是關等越高假等就越高在進行考積的時候怎麼樣做到除了公平性以外可以發揮考積制度的功能這件事情是很重要的
transcript.whisperx[65].start 3229.828
transcript.whisperx[65].end 3230.489
transcript.whisperx[65].text 接下來有請省委員發會質詢。
transcript.whisperx[66].start 3260.289
transcript.whisperx[66].end 3283.446
transcript.whisperx[66].text 主席我們先請蘇人事長有請蘇人事長委員長人事長早我想我們今天我們是本委員會特別安排有關這個行政機關推動人事服務的數位轉型的部分的做專題報告那我也很仔細的看了你們的這個這個專題報告的書面內容
transcript.whisperx[67].start 3287.208
transcript.whisperx[67].end 3307.496
transcript.whisperx[67].text 裡面一個有一個點引起我的特別的關注跟興趣這個你在這個書面報告的第二頁裡面有提到一個這個我們現在目前各機關日常人力資源管理作業資訊的資訊化提到建置一個網路網際網路版的一個人力資源
transcript.whisperx[68].start 3309.316
transcript.whisperx[68].end 3333.745
transcript.whisperx[68].text 這個管理資訊系統這個WebHR大概是Human Resource的意思這個WebHR的系統那我就去了解你們這個系統你們目前的運用我發現你們這個系統不只是你所提的這個有關這些什麼公務員的個資、考積、權序、任免、獎章、獎懲除了這個以外
transcript.whisperx[69].start 3334.665
transcript.whisperx[69].end 3352.633
transcript.whisperx[69].text 我看我們有關於這個中央行政機關的這個原額評鑑法的原額評鑑每兩年一次的原額評鑑我看你們也要也用這個書面審查你們也是填寫在這個H這個WebHR上面來做書面審查是不是這樣
transcript.whisperx[70].start 3353.655
transcript.whisperx[70].end 3379.89
transcript.whisperx[70].text 是,事實上這一點我利用這個機會跟委員說明一下因為兩年一次的懸額評鑑我們不希望大家花費太多時間去填所以很多東西就填完以後他直接在資料庫裡面可以馬上做進一步的分析那我現在就是針對從這裡就針對這個中央行政機關懸額評鑑的這件事情我有一些不了解的地方來就教於這個我們人事長
transcript.whisperx[71].start 3381.189
transcript.whisperx[71].end 3406.399
transcript.whisperx[71].text 第一個就是我們這個目前這個這個行政機關中央行政機關的原額評鑑我們的法規依據是什麼是中央政府機關總原額法對不對總原額法大概第8條第3項我們有在第8條第3項我們提到說一機關每兩年應該評鑑所屬的二級機關的這個原額總數的合理性對不對就是這應該就是這一條
transcript.whisperx[72].start 3408.427
transcript.whisperx[72].end 3437.467
transcript.whisperx[72].text 那我們目前的這個每兩年進行一次我知道好像今年要再進行這一次對不對到3月底之前他們必須在這個這個WebHR上面把它填表完成對不對對對好3月底以前那是是我想請教這個人事長齁我們現在目前我們現在填完表之後我們大概整個進行的這個這個程序簡單的講一下我們所進行評鑑的這個程序好不好
transcript.whisperx[73].start 3446.555
transcript.whisperx[73].end 3465.099
transcript.whisperx[73].text 就是你們填完之後進行書面審查嘛對不對那書面審查完以後會召開一些綜合座談對不對綜合座談再來有一些機關你們要實地訪查會有會有會挑一些實地訪查這個我們按照這個行政院行政院我們行政院自己有一個這個今年度113年度辦理所屬二級機關所屬二級主管機關的原額評鑑計畫有一個評鑑計畫按照你們的評鑑計畫裡面
transcript.whisperx[74].start 3474.221
transcript.whisperx[74].end 3486.475
transcript.whisperx[74].text 你們有提到這個說這個本這個未了解當前政府重要政策業務區塊人力運用納入部分所屬三級四級機關辦理實地房市對不對
transcript.whisperx[75].start 3489.759
transcript.whisperx[75].end 3512.417
transcript.whisperx[75].text 我們兩年前上一次的評鑑由哪一些由哪幾個三級機關四級機關我們做了實例訪視上一次因為這次還沒決定嘛今年還沒有還沒有開始上一次都是以二級機關為主這一次上所以上一次的三級機關四級機關是零就對了對對對這一次特別加入三級這一次特別加入嘛這是有法規依據的啦齁我知道這個這個你們訪視三級機關四級機關這個是有法規依據對不對有沒有這
transcript.whisperx[76].start 3520.616
transcript.whisperx[76].end 3536.055
transcript.whisperx[76].text 我們之前有一些個案我們就進行這些個案我這裡剛好利用這個機會跟委員說明一下像原來的05局改成林業局管理署或者水利署或者你們今年預計要做的三級機關、四級機關房市有哪一些?
transcript.whisperx[77].start 3537.807
transcript.whisperx[77].end 3540.128
transcript.whisperx[77].text 法務部的部分,矯正新設的部分,然後還有我們那個
transcript.whisperx[78].start 3558.497
transcript.whisperx[78].end 3581.208
transcript.whisperx[78].text 還有會移民署移民署的這一塊我們也會有做一些那個部分的保持你請他們先整理那6個機關等一下用念的念給我聽光你這樣念的時間就好這個我要了解說實地訪視現在目前以3級機關4級機關為主我們上一次上這個上一次應該是111年度上一次111年度我們2級機關有沒有去做實地訪視
transcript.whisperx[79].start 3584.793
transcript.whisperx[79].end 3598.849
transcript.whisperx[79].text 二級機關也有111年度有哪幾個機關進行實地訪視111年度的我們那時候是剛好遇到COVID所以我們那時候是用書面的所以沒有進所以111年度二級機關沒有進行實地訪視我們都做書審對做書面審查所以這個
transcript.whisperx[80].start 3605.897
transcript.whisperx[80].end 3618.608
transcript.whisperx[80].text 市長講的讓我以為我的資料錯了我記得應該是沒有吧111年度對不起剛好是COVID所以二級也沒有三級四級也沒有全部都輸審那這一次有沒有二級機關有沒有要進行實地訪視
transcript.whisperx[81].start 3624.453
transcript.whisperx[81].end 3645.625
transcript.whisperx[81].text 這一次113年度這一次實際訪試的就是剛才委員執行的就是三級機關就移民署、領務局、臺北地檢署、華國部矯正署、臺北建議、華國部矯正署、桃園建議跟海委會的海保署這六個機關所以你們二級機關這一次已經沒有COVID了但你們二級機關你們這次沒有計畫要進行實地訪試嗎?
transcript.whisperx[82].start 3653.22
transcript.whisperx[82].end 3653.36
transcript.whisperx[82].text 為什麼?為什麼?
transcript.whisperx[83].start 3665.174
transcript.whisperx[83].end 3693.442
transcript.whisperx[83].text 主要的考量是二級機關因為是兩年一次的都是兩年一次兩年一次的一個言語評鑑都是兩年一次依法都是兩年一次嗎?對,兩年一次所以那不是理由啊為什麼今年度不進行二級機關的實地訪查呢?事實上整個實地訪查坦白講需要比較多的資源投入那我們就是隨便就柿子挑軟的吃也不是挑最需要協助的機關
transcript.whisperx[84].start 3695.47
transcript.whisperx[84].end 3706.385
transcript.whisperx[84].text 這個有關吼我們事實上你們自己有有這個按照中央政府機關辦理原額評鑑作業你們有一個注意事項第5點你們有規有自己有有規定了吼這個
transcript.whisperx[85].start 3708.513
transcript.whisperx[85].end 3731.55
transcript.whisperx[85].text 有關配合行政院組織調整、重大政策等職務執掌人員.調移較複雜者應辦理實地訪視有好幾個總共10種他一樣應該辦理實地訪視那這次113年我看目前就有幾個機關符合你們這些條件二級機關就有幾個符合你們這些條件但是你們今天還是不進行
transcript.whisperx[86].start 3732.588
transcript.whisperx[86].end 3751.713
transcript.whisperx[86].text 不進行這個這個實例的訪視這部分是我今天在跟要要來跟人事長來討論的包括我們這個這個我們交通部事實上做了許許多的這個這個組織的調整這些調整應該是符合我們剛剛所講的這個遠和平健辦法注意事項裡面的要件
transcript.whisperx[87].start 3752.313
transcript.whisperx[87].end 3781.942
transcript.whisperx[87].text 包括數位發展部啦齁這些我認為都你們都是不是能夠評估齁就是說在二級機關的部分齁這些符合你們自己的注意要點的裡面去做一些實地的的調查好不好實地的仿視我我這裡跟委員報告為什麼這些主改的機關我們沒有去實地沒有安排實地仿視的主要原因就是因為他上一年主改他現在剛好在整個業務運作operation loading會比較重
transcript.whisperx[88].start 3782.422
transcript.whisperx[88].end 3797.836
transcript.whisperx[88].text 那不過剛才委員提示的也非常好那我們內部會再評估再增加再評估再評估啦我們會增加兩三個這個注意事項是你們自己訂定的啦我這10條這個10個項目齁我在一個一個念說配合業務需要於原額總量範圍內
transcript.whisperx[89].start 3799.177
transcript.whisperx[89].end 3823.642
transcript.whisperx[89].text 條整各類人員需求這個你新調整的就是符合你這個第5項的這一條規定嗎?你們就應該要做就不是讓他們上去填一填上網去填一填表格這個就就就就就尊審應該不是這樣子吧?是我我想非常謝謝委員的一個提醒我們今年會增加會從那個主改的幾個部會這幾個部會裡面我們挑幾個二級機關來做實地訪查對那包括這個
transcript.whisperx[90].start 3829.424
transcript.whisperx[90].end 3845.6
transcript.whisperx[90].text 這個齁我們這個目前成立的這個各支會籌備處齁各個籌備處是算三級機關嘛對不對目前規劃的方向是朝獨立三級機關的方向來的籌備處各支會本身籌備處是三級機關各支會如果未來成立了他是
transcript.whisperx[91].start 3851.824
transcript.whisperx[91].end 3878.6
transcript.whisperx[91].text 現在行政院內部還在政策討論因為會有兩種聲音一個是獨立二級一個獨立三級的部分還沒有確定就對了還沒有確定還沒有確定齁那這個這個有關這個個人資料保護這些也算是這個新的重大政策所以他有相關的這些新機關他的遠和編制我想也應該要要在在這個你們這個遠和需求編制裡面應該要考量好不好有有好謝謝委員那這個
transcript.whisperx[92].start 3880.072
transcript.whisperx[92].end 3881.584
transcript.whisperx[92].text 最後吼有關這個
transcript.whisperx[93].start 3883.871
transcript.whisperx[93].end 3884.892
transcript.whisperx[93].text 總共緣合幾名?
transcript.whisperx[94].start 3913.808
transcript.whisperx[94].end 3932.893
transcript.whisperx[94].text 今年因為提需求的機關只有6個,包含移民署1位、公務署2位、財稅資料中心1位。總共6位。總共6位。是。我們最後我們整個國家我們這樣子盤點出來,我們國家一年只需要6個資通安全的人才。新增這個類別我們只招考6個人。
transcript.whisperx[95].start 3938.178
transcript.whisperx[95].end 3955.32
transcript.whisperx[95].text 我跟委員報告一下過去我們在補治安的人力的部分因為還沒有治安內科所以都是用資訊人力在補那今年 是啊就是因為需要你們去年8月就是因為說需要所以今年才增加這個內科嘛不是嗎 是是結果增加這個內科之後增加6個人
transcript.whisperx[96].start 3957.8
transcript.whisperx[96].end 3982.39
transcript.whisperx[96].text 這個基本上是由用人機關他提出的全國出來就是故宮博物院需要一個新竹縣政府需要一個內政部移民署需要一個最後提出說最需要的數位發展部提出的緣額是一個一個是為了數位發展部他一個所以你們辦了新的內科招考是這樣嗎這是由西用機關他提言我們報請考選部我跟你講不是啦齁最後我最後做結論啦齁你們齁
transcript.whisperx[97].start 3985.446
transcript.whisperx[97].end 4006.23
transcript.whisperx[97].text 這個資安這個部分在大家共事都是有人才需求啦各個機關都有人才需求對現在資通安全當然是最重要了但是人才需求之後你們就有人才需求所以我就擴大招稿擴大的結果為什麼6個因為你們這個緣額框架嘛你們都被這個緣額所框架住了大家我需要資通人才但是我的總緣額只有這樣子我沒有要開缺出來
transcript.whisperx[98].start 4010.413
transcript.whisperx[98].end 4020.577
transcript.whisperx[98].text 這個部分我希望能夠檢討,現在你們最後會用約聘顧的方式來解決啦,但約聘顧還有約聘顧的問題好不好,我改天再跟你,再跟這個人事總長討論好,謝謝委員,謝謝好,謝謝陳委員,謝謝任市長接下來有請陳委員、俊宇諮詢
transcript.whisperx[99].start 4050.609
transcript.whisperx[99].end 4075.411
transcript.whisperx[99].text 好,謝謝主席那主席可以請我們人事長有請所有人事長委員早安好,人事長還有我們所有今天列席的各位首長我們今天與會的所有委員大家早首先我想請教我們人事長就最近我們公務人員這個出走潮的問題出走潮問題
transcript.whisperx[100].start 4076.192
transcript.whisperx[100].end 4098.423
transcript.whisperx[100].text 因為過去的民眾一般普遍都認為說這個公務人員是一個鐵飯碗那工作非常的穩定而且考試能夠考得上這個成本也花費非常的多非常的不容易那所以會非常珍惜這個工作的機會所以在最近有許多公務人員離開的這個新聞我們從這個數據上可以去看到
transcript.whisperx[101].start 4102.985
transcript.whisperx[101].end 4124.058
transcript.whisperx[101].text 此指的人數從109年到111年每年都有成長10%以上其中此指的原因有高達88%都寫著說是因為個人因素但是我們知道個人因素就像這個生涯規劃一樣是沒有辦法掌握到此指的真正原因
transcript.whisperx[102].start 4125.253
transcript.whisperx[102].end 4146.502
transcript.whisperx[102].text 然而我們面對不斷辭職的這些同仁我想請教就是說人事機關是不是有需要確實去掌握這個主要的原因才能夠對症下藥所以我請教我們人事長有沒有辦法掌握到我們這些公務人員他們真正辭職的原因是什麼
transcript.whisperx[103].start 4148.52
transcript.whisperx[103].end 4167.734
transcript.whisperx[103].text 謝謝委員我想辭職的原因主要因為會有所謂的辭職跟離職兩個定義那現在委員指教的就是辭職事實上平均的辭職率大概0.75%大概我們公共人力的0.75%這0.75%裡面大概接近45%是因為有
transcript.whisperx[104].start 4174.139
transcript.whisperx[104].end 4190.592
transcript.whisperx[104].text 百分之45是屬於他本來是屬於普考的他考上高考所以他會辭職他會去就那個高考因為整個大一個畫面的條件會不一樣這個主要是第一個區塊在這裡第二個也有也有些公務通人他會
transcript.whisperx[105].start 4191.893
transcript.whisperx[105].end 4192.293
transcript.whisperx[105].text 其中8案。
transcript.whisperx[106].start 4218.226
transcript.whisperx[106].end 4218.366
transcript.whisperx[106].text 好,謝謝人事長。
transcript.whisperx[107].start 4237.27
transcript.whisperx[107].end 4260.409
transcript.whisperx[107].text 如果說像陳儒剛剛人事長講的我們這些同仁他可能是因為有比較好的工作或是因為在一樣是公務體系裡面他想要去轉換另外一個職場那當然那個都無所謂可是看起來有一些並非是這個像剛剛人事長講的這麼樂觀可能那個數據就是可能是後面講的這些數據的這些同仁
transcript.whisperx[108].start 4262.611
transcript.whisperx[108].end 4276.316
transcript.whisperx[108].text 他可能是因為在工作上是不是有什麼原因導致他願意放棄這麼好的工作都甘願要離開所以我希望說我們應該是要對人事總處應該是要對這個部分要去加強了解
transcript.whisperx[109].start 4277.557
transcript.whisperx[109].end 4292.208
transcript.whisperx[109].text 好這個部分我也坦白承認在某些機關他因為那個管理的風格會不一樣所以同仁在那裡工作接著他壓力會特別大所以
transcript.whisperx[110].start 4292.868
transcript.whisperx[110].end 4319.502
transcript.whisperx[110].text 過去這兩年來我們花很多時間去宣導嚴禁職場霸凌因為有些同仁他事實上是默默在做可是每一個機關所長的管理風格也不大一樣所以我們也特別透過我們人事體系去宣導職場霸凌就是這個情況必須要去禁止因為我自己也聽過幾個case是屬於職場霸凌所以員工他承受不了所以他就選擇辭職
transcript.whisperx[111].start 4320.563
transcript.whisperx[111].end 4342.274
transcript.whisperx[111].text 啊這個就是在委員裡面的就管理因素的部分那當然代議福利的部分也是會有因為他他每一個人的本來到公務機關是希望請尋求一個比較安定的嘛可是當他家裡的財務需求改變的時候有時候他會選擇到民間或許他的報酬會比較高一點好那
transcript.whisperx[112].start 4348.496
transcript.whisperx[112].end 4366.768
transcript.whisperx[112].text 我還是就是請我們人事總署這邊因為我們要把好的人才留住一定要對症下藥你要去找到問題所在才有辦法去解決不然你更好的人才撈不住你說政府有外交我看都憂憨所以我請我們人事總署這邊對這個問題要持續去關心
transcript.whisperx[113].start 4371.13
transcript.whisperx[113].end 4398.905
transcript.whisperx[113].text 對於在這個有一些是不是可能我們這些同仁是因為所謂的不適任或是因為這個烤雞被打丁等或是被記兩隻大過之後有這種被動離開的情況這個部分我還是請人事總處對於這個部分也要去深入去了解避免這種好像也是職場的另外一種霸凌的現象
transcript.whisperx[114].start 4401.492
transcript.whisperx[114].end 4427.243
transcript.whisperx[114].text 我這裡跟委員報告一下啦這一種因為烤雞丁等或者兩大過離開的每一年大概就是大概最多大概5位左右那這一些事實上經過每一個機關的內部的烤雞委員會他們很嚴格的去review因為這牽涉到當事人的潛意太大所以他們機關在執行這件事情的時候也非常慎重
transcript.whisperx[115].start 4428.303
transcript.whisperx[115].end 4456.342
transcript.whisperx[115].text 同時我們也在保訊會有提供了一個他可以救濟的一個途徑所以這一方面我想一方面我會答應委員我們特別去了解這一些兩大過的或者丁等的這一些事由我們會去做一些進一步的一個分析我覺得這些資訊也是非常有意義的然後我們也去在人事的先導裡面去加強個人權益保障的先導
transcript.whisperx[116].start 4457.403
transcript.whisperx[116].end 4486.949
transcript.whisperx[116].text 好,這部分請我們人事總處持續關心那接下來我想請教就是我們針對這個彈性工作的部分在我們目前我們我想請教就是說目前我們機關對於辦理這個彈性工作的這個時間方面是否符合我們公務人員的需求需不需要再擴大那如果要再擴大我們機關辦理的配套措施是否完善
transcript.whisperx[117].start 4488.328
transcript.whisperx[117].end 4505.715
transcript.whisperx[117].text 我這裡跟委員報告一下因為我們為了要照顧這個養育家裡有未足三足歲的這個都可以請義嬰假留子停薪去照顧那這個是屬於一個長期間的他可以請一天一直到
transcript.whisperx[118].start 4506.195
transcript.whisperx[118].end 4533.171
transcript.whisperx[118].text 那小孩子3歲以前他可以分次可以請這個對當事人來講他的一個按照他的需求他可以很彈性那常態型的常態型的我們所了解的各個機關他的彈性上班每一天上班的時間他有些是彈性半個小時以下有些半小時到一小時也有一些一小時到兩小時到一小時到一小時半還有一小時半到兩小時那有少數機關
transcript.whisperx[119].start 4534.151
transcript.whisperx[119].end 4556.437
transcript.whisperx[119].text 他是彈性可以超過兩個小時就是每一個機關他因地制宜讓他自己去調他的那種彈性上班的一個的一個需求好因為看起來我們目前好像有九成以上的這個公務機關都有在實施那我還是希望說對於彈性放假時的部分我們能夠確確的給予我們工人員比較
transcript.whisperx[120].start 4556.937
transcript.whisperx[120].end 4573.148
transcript.whisperx[120].text 議員議員議員議員
transcript.whisperx[121].start 4573.228
transcript.whisperx[121].end 4593.396
transcript.whisperx[121].text 特別去問在離島某些地區他們就是在半個小時以內所以我我一直我就是我會提出來啊你沒辦法彈性1點鐘啊2點鐘啊他們都有特殊的考慮啦因為那是內部管理事項所以基本上我們還是會尊重這些每一個機關他的一些考量好
transcript.whisperx[122].start 4594.776
transcript.whisperx[122].end 4621.221
transcript.whisperx[122].text 那另外我想請教我們人事長就是針對我們這個居家辦公的部分居家辦公因為我們因應之前COVID-19的那一段期間那因為這個疫情非常嚴峻那導致我們許多不管是機關或是這個私人的公司都一樣有啟動這個居家辦公那目前我們對於居家辦公的部分我們有沒有進一步的這個安排的方式
transcript.whisperx[123].start 4621.98
transcript.whisperx[123].end 4639.041
transcript.whisperx[123].text 我這裡跟委員報告一下我們現在有提出一個示範計畫一直到明年年底就是based on之前COVID-19的這個我們在持續在明年年底這段期間可以允許居家上班
transcript.whisperx[124].start 4640.482
transcript.whisperx[124].end 4667.01
transcript.whisperx[124].text 服務和居家上班的這個要件的準和錢還是在各個機關所長那基本上我們有做一件事情就是鼓勵家庭就是你家庭有人需要照顧可能連長的父母親或者家裡有一些需要就身體情況的反而就是他可以提出來經過機關所長同意的話他可以居家上班那至於居家上班一次是以一個月或兩個月或者
transcript.whisperx[125].start 4669.271
transcript.whisperx[125].end 4692.61
transcript.whisperx[125].text 兩個禮拜再加兩個禮拜再這個是尊重每一個機關的規劃我們很care這件事情因為我覺得完成做好一件事情不見得一定要到辦公室可是有幾個情況例外就是說他如果他擔任的是第一線服務的就比較沒有辦法如果他擔任的工作是比較機敏性的他當然也比較沒有辦法把一些工作帶回家
transcript.whisperx[126].start 4693.11
transcript.whisperx[126].end 4704.145
transcript.whisperx[126].text 當然會有一些他的工作的場域的問題會有一些差異性再請教一個那個人事長一個問題就是居家辦公的部分會不會影響到他的年終考期
transcript.whisperx[127].start 4706.299
transcript.whisperx[127].end 4726.596
transcript.whisperx[127].text 我希望說對於居家辦公的部分我們也可以有一套比較完整的一個規劃讓有需要的在我們相關部會他可能在他的工作性質上不影響的情況之下可以讓他來申請這種居家辦公的方式
transcript.whisperx[128].start 4726.916
transcript.whisperx[128].end 4755.675
transcript.whisperx[128].text 其實我要再補充一下因為其實過去這幾年來我們有些公務同仁他可能會有一些Cancer的部分有做化療他比較不方便來上班像這一些我了解的幾個部位都有允許他們在家裡上班尤其他們又剛好去擔任一些研究型的工作這個部分我想很多機關首長都有做這樣的一個統一讓他們在機家上班的情況
transcript.whisperx[129].start 4756.676
transcript.whisperx[129].end 4770.204
transcript.whisperx[129].text 好以上謝謝人事長好謝謝陳委員謝謝蘇人事長接下來有請林委員思明質詢謝謝主席主席我們請這個人事長有請蘇人事長謝謝
transcript.whisperx[130].start 4781.892
transcript.whisperx[130].end 4792.422
transcript.whisperx[130].text 委員長首先跟你請教的是人事服務的核心是什麼?您認為什麼業務是最需要數位服務的?
transcript.whisperx[131].start 4794.468
transcript.whisperx[131].end 4794.668
transcript.whisperx[131].text 那你認為這個現在
transcript.whisperx[132].start 4815.01
transcript.whisperx[132].end 4830.895
transcript.whisperx[132].text 是什麼業務是最需要數位服務的?我說真的,因為我本身念資訊的,每一個行業都需要數位。包山包海都需要啦。都要啦。都要啦。都要啦。我看的業務報告,這個報告也寫了非常多的項目啦。
transcript.whisperx[133].start 4832.148
transcript.whisperx[133].end 4859.031
transcript.whisperx[133].text 那我想我從行政院人事總處的公開資料上面看到就是人事總處在民國110年開始就有推動我們數位轉型相關的施政計畫從我們猜情數位化到資訊輔助人力資源管理的決策以及資訊化的歷程我們看來我們政府人力資源管理的數位化似乎已經趨於成熟了
transcript.whisperx[134].start 4860.285
transcript.whisperx[134].end 4879.195
transcript.whisperx[134].text 吳保,成熟了沒有?我覺得到某一個階段還有在努力的空間比如像最近這兩年人工智慧的部分我們也期待未來能夠花多一點的這一些嘗試把人工智慧導入我們公務機關很好,我覺得很好
transcript.whisperx[135].start 4880.296
transcript.whisperx[135].end 4904.161
transcript.whisperx[135].text 那我想這個我想也請你從兩個面向來說明一下就是說因為我們人事服務數位化之後我們取代人力作業系統的這個部分以及後來我們用以及我們用大數據的統計分析作為我們決策支援這部分是否有所提升
transcript.whisperx[136].start 4905.569
transcript.whisperx[136].end 4916.314
transcript.whisperx[136].text 我先從我們整個人力作業系統的數位化有沒有造成我們人力的可以這個減少或者人力可以用我們數位化的服務來取代
transcript.whisperx[137].start 4917.706
transcript.whisperx[137].end 4917.726
transcript.whisperx[137].text 議員議員報告
transcript.whisperx[138].start 4947.566
transcript.whisperx[138].end 4949.808
transcript.whisperx[138].text 二、審查及處理113年度中央政府總預算關於行政院人事服務數位轉型.
transcript.whisperx[139].start 4969.804
transcript.whisperx[139].end 4990.422
transcript.whisperx[139].text 所以我才問你說那如果是這樣的你進行的已經將近成熟了嘛所以在這種情況之下我們整個這個就是依據大數據的統計分析作為你決策的依據精準度提升沒有啦,這樣問你有啦,在早上有啊
transcript.whisperx[140].start 4991.443
transcript.whisperx[140].end 5001.695
transcript.whisperx[140].text 所以這個是對整個數位化的服務人事服務是對整個我們整個政策的執行是有這個精進的有很大的幫助
transcript.whisperx[141].start 5004.741
transcript.whisperx[141].end 5028.92
transcript.whisperx[141].text 但是我剛才回到剛才人力資源的部分剛才你聽到說這個數位化之後並不會說代表說我們的人力的配置就要減少嘛你這樣說嘛但是我現在看到說這是你的那個對於我們凍結報告裡面的報告你說一句你的說法您提到
transcript.whisperx[142].start 5036.707
transcript.whisperx[142].end 5046.518
transcript.whisperx[142].text 就是說誒我們的額誒我剛開一下你這在哪裡對等一會我找一下他凍結案講的齁
transcript.whisperx[143].start 5060.919
transcript.whisperx[143].end 5077.28
transcript.whisperx[143].text 我大概講一下啦就是說人事長你的意思就是說你這個人力資源的配置你現在就因為透過那個我們的一個數位化的一個服務之後呢未來我們是否我們的人力會不足的問題呢你的考量的點
transcript.whisperx[144].start 5078.041
transcript.whisperx[144].end 5091.711
transcript.whisperx[144].text 就說因為透過數位化服務我們一直希望你說人力不足你要去加強要去補足比如說我們的警消我們的警察我們的消防人員現在普遍的就是人力不足嘛依據你的凍結報告你是說這個部分各機關可要去
transcript.whisperx[145].start 5095.313
transcript.whisperx[145].end 5123.48
transcript.whisperx[145].text 考量的就是說去精簡你的這個人力就是透過數位化的服務你似乎可以把人力去減少而不是一味的去指責說這個人力不足這個問題一直要去補足你可以透過這個數位化的服務人事服務讓我們的人力呢就是由這些這個可能數位化的這個經過數位化之後呢就可以取代這些人力的工作
transcript.whisperx[146].start 5125.157
transcript.whisperx[146].end 5127.32
transcript.whisperx[146].text 為什麼有些機關他能力沒有節省原因因為他是有新的業務進來
transcript.whisperx[147].start 5140.279
transcript.whisperx[147].end 5163.385
transcript.whisperx[147].text 你像我們人事單位自從3月8號姓名三碗通過以後我們要有這些同仁又要花比較多的時間去做事實上我們是把既有的事情把入店的事情透過數位化節省他們的作業時間然後剩下的這個時間我們去去處理新興的業務那當然有另外一個層次的問題就是說透過自動化機械設備
transcript.whisperx[148].start 5164.645
transcript.whisperx[148].end 5192.877
transcript.whisperx[148].text 我們事實上是可以節省能力我想等一下移民署他們也會分享說他們透過他的E-GATEE-GATE本來就是說人工櫃台可能是24台可能在夜間尤其在半夜這期間因為齁說真的一般同仁比較不喜歡去輪大夜班所以像這樣的一個情況底下他夜間的排班的人數可以降低可以把他移到人力需求也不要那麼重啦
transcript.whisperx[149].start 5194.018
transcript.whisperx[149].end 5213.15
transcript.whisperx[149].text 市長其實我要跟你討論的也就是我們警消人員的人力的一個問題我想各個機關我們現在各縣市政府普遍我們的警力不足因為現在打詐的問題造成我們警察人力嚴重不足詐騙案件太多了那我們的消防人員也是一樣
transcript.whisperx[150].start 5214.031
transcript.whisperx[150].end 5232.418
transcript.whisperx[150].text 我想我在上一次就有詢問過你說我們這一次的消防人員的一個這個招考那很就是招考不足啊造成我們各縣市的消防局現在普遍消防人員就不足警消不足這部分我們要如何來補足人力給他
transcript.whisperx[151].start 5234.917
transcript.whisperx[151].end 5260.569
transcript.whisperx[151].text 謝謝委員剛好給我這個機會說明一下警政署的部分我們從108年109年我們總共給了他4,093位在這幾年裡面事實上他的這種人力需求投入了我們是給他非常大的空間那在消防的部分就如同上次我跟委員報告了當年因為客人入企的人數少
transcript.whisperx[152].start 5261.269
transcript.whisperx[152].end 5280.581
transcript.whisperx[152].text 那這個部分我們也有跟考選部來反映那現在除了錄取的錄取比例要維持到一個量體事實上消防署他這幾年有提了一個長程的一個計劃每年再增補600個消防人員因為一個消防人員從考試到
transcript.whisperx[153].start 5282.023
transcript.whisperx[153].end 5289.809
transcript.whisperx[153].text 欸到可以直接到現場執勤最少要有兩年的時間因為他要去訓練中心接受長達兩年的一個訓練所以他從進來到實際服務會有時間差啦是啦
transcript.whisperx[154].start 5297.276
transcript.whisperx[154].end 5315.895
transcript.whisperx[154].text 那人長我跟妳講就是說你在這個啊業務報的時候呢我想我關心消防員缺額的問題但是現在新竹縣消防局跟我反映一個問題就您現在本來說去年招考的人數你要這個配置多少給他那因為這個招考不足那這次你就
transcript.whisperx[155].start 5316.676
transcript.whisperx[155].end 5337.632
transcript.whisperx[155].text 比如原本要40位的現在只能給他22位又少了11位那一直往後一個來這個往後一直一直無限期的拖延造成因為人我們比如說我們新竹的竹北竹北那個新興城市嘛那我們又新成立一個消防分局但竟然沒有人可以用啊
transcript.whisperx[156].start 5339.577
transcript.whisperx[156].end 5363.806
transcript.whisperx[156].text 竟然沒有人可以用那這部分我請教你一個問題可不可以從中央中央我們消防署我們有比如說比較不需要這些人力的來盤點然後來補充人力來先調配給我們地方來用我委員報告啦消防署也是做政策其實第一線在執行是地方政府啦但是我覺得要解決這個問題齁就是我們
transcript.whisperx[157].start 5366.067
transcript.whisperx[157].end 5392.398
transcript.whisperx[157].text 議員議員
transcript.whisperx[158].start 5392.418
transcript.whisperx[158].end 5396.961
transcript.whisperx[158].text 警察的話如果說警察有能力不足從保一保四保五先調去支援之後再返還給我們中央
transcript.whisperx[159].start 5420.469
transcript.whisperx[159].end 5442.09
transcript.whisperx[159].text 議員議員議員議員議員議員議員議員議員
transcript.whisperx[160].start 5442.67
transcript.whisperx[160].end 5458.524
transcript.whisperx[160].text 的訓練訓練場所有場域也在擴大那趕快把這個人力補助上來的藝術性的藥藥藥農訓量一定要增加嗎農第一個就是客流來人車馬龍心那種情歌啊所以可以縮短從
transcript.whisperx[161].start 5459.804
transcript.whisperx[161].end 5461.426
transcript.whisperx[161].text 從考試、訓練然後到用的受短時程。
transcript.whisperx[162].start 5489.945
transcript.whisperx[162].end 5505.995
transcript.whisperx[162].text 現在你有沒有研究未來用智慧化的人工用AI智慧機器人來取代我們的警察取代我們的警消我有報告我有想過但是沒有研究我可以說我有想過我有想過這個問題啦但是我沒有研究啦是啊齁
transcript.whisperx[163].start 5512.999
transcript.whisperx[163].end 5513.78
transcript.whisperx[163].text 主席有請人事長委員長
transcript.whisperx[164].start 5537.277
transcript.whisperx[164].end 5549.814
transcript.whisperx[164].text 委員長請教一下吳亦郎凍結是不是可以全國一致性的放假那陳建元院長昨天說在兩個禮拜宣布結果請問目前這個案子研議的情況如何
transcript.whisperx[165].start 5552.746
transcript.whisperx[165].end 5575.355
transcript.whisperx[165].text 我跟委員報告因為這個案子的主責是在內政部那現在行政院我就是昨天院長也提了嘛大概兩個禮拜以內會announce今年的5月1號是我放假我想請教一下上次本席在委員會質詢人事長的時候有要求說軍公教條新能夠法制化對不對
transcript.whisperx[166].start 5576.135
transcript.whisperx[166].end 5601.38
transcript.whisperx[166].text 那人事長你的回答是說朝年底完成法制化來努力嘛對不對就有期限了嘛對不對失誠了嘛那裡面法制化有一項很重要的議題就是說長久以來軍公教團體都希望軍公教員工待遇審議委員會能夠比照勞工基本工資審議委員會納入基層員工代表那我想請教一下那個人事長你怎麼看
transcript.whisperx[167].start 5602.797
transcript.whisperx[167].end 5621.759
transcript.whisperx[167].text 我非常認同委員的建議啦。事實上這一次在法制化的過程中我納入基層的這些公教同仁代表我們也是並同言議。有納入並同言議。非常好。那為什麼我看到資料說之前人事總處對外表示反對審議委員納入基層員工代表呢?
transcript.whisperx[168].start 5622.339
transcript.whisperx[168].end 5640.794
transcript.whisperx[168].text 這可能在表達的方式有一點我們會改進那請人事我們人事長都處一下那現在我也謝謝人事長已經是表達因為我個人看法很簡單啦就現在審議委員會都是機關首長跟12職等以上的主官嘛對不對主管嘛
transcript.whisperx[169].start 5642.059
transcript.whisperx[169].end 5660.562
transcript.whisperx[169].text 他有學者、專家以外啦對,我看到就是人事長、權序部、然後副處長、兼任副召集人、委員14到16人、私人專家、學者其他是各部會、地方政府檢任12職等以上嘛,對不對
transcript.whisperx[170].start 5662.088
transcript.whisperx[170].end 5684.29
transcript.whisperx[170].text 事實上剛才委員只叫了12職等以上事實上他是所謂的機關代表的概念對啊那我只是想說高層主管是人基層公務員就不是人的概念嗎這一句話我一定要澄清我跟你講你實際的結果就沒有把基層的那個公務員新生放進去嘛這很容易造成慣老闆現象你知道吧我
transcript.whisperx[171].start 5689.158
transcript.whisperx[171].end 5700.928
transcript.whisperx[171].text 沒有關係,剛剛人事長你自己都知道這個方法不對嘛,不是嗎?所以你才剛剛主張要基層員工要放進去啊。不然如果你這個做法是對的,你為什麼剛剛又主張基層員工要放進去呢?
transcript.whisperx[172].start 5702.945
transcript.whisperx[172].end 5721.856
transcript.whisperx[172].text 我這裡必須要跟委員說明一下原來的審議委員會他是一個代表性的那事實上為了去處理這個事情我們前兩年事實上在審議委員會之前沒有關係我跟你講歷史的東西就過去啦我還是肯定你願意改啦可以吧我肯定你總沒意見了吧
transcript.whisperx[173].start 5724.059
transcript.whisperx[173].end 5753.143
transcript.whisperx[173].text 接下來我們軍公教的團體教育團體也講出軍公教的待遇調整那麼跟最低工資都是國家政策一部分應該具有相同的公開透明跟民主的性質那現在同為受僱者基本工資審議委員會有納入來勞工代表那現在也應該要把我們基層員工的薪生放進去但是我想請教你一個下一個問題就是
transcript.whisperx[174].start 5754.825
transcript.whisperx[174].end 5768.395
transcript.whisperx[174].text 之前的前人事總處的人事長施能傑他有研究一個數據分析年金改革實施之後我們公務員總退休率是呈現下降的趨勢對不對是那為什麼
transcript.whisperx[175].start 5771.806
transcript.whisperx[175].end 5798.348
transcript.whisperx[175].text 我看一下數字是2017年之前公務人員總退休率都大於2.5%2015年甚至高達3.26%但是政黨輪替2017年總退休率一直往下到2021年之前都沒有超過2個百分點平均退休率來看年改前2011年到2016年的總退休率是平均是2.84年改後總退休率降為1.82
transcript.whisperx[176].start 5800.33
transcript.whisperx[176].end 5815.176
transcript.whisperx[176].text 那麼這個部分它造成的一個現象是什麼為什麼會有這種現象我這裡我必須要跟委員提一下就是因為整個在掃紙化的過程裡面這不純粹是掃紙化因為它的議題也是蠻多元的只是說我們希望有一些有經驗的當然委員你care就是說
transcript.whisperx[177].start 5825.24
transcript.whisperx[177].end 5827.522
transcript.whisperx[177].text 我知道你就講說這個我們現在高齡化社會工作也是高齡化社會一種生活型態對不對
transcript.whisperx[178].start 5847.571
transcript.whisperx[178].end 5856.626
transcript.whisperx[178].text 可是我跟你講有你想得這麼夢幻嗎?不是吧?原因是什麼?因為年金改革退休金大幅縮水啊,不是嗎?
transcript.whisperx[179].start 5857.748
transcript.whisperx[179].end 5882.997
transcript.whisperx[179].text 所以公務員要延後退休累積年資增加縫點才能夠提高退休金所以根本還是在於說我們今天的所謂的年金的退休金大幅縮水那另外這個你剛剛已經講了一個就是你會造成說今天我們這個公務機關也高齡化高齡化的原因第一個就是退休的狀況減少嘛對不對延後嘛沒錯吧
transcript.whisperx[180].start 5884.281
transcript.whisperx[180].end 5897.468
transcript.whisperx[180].text 有部分人會延後啦部分人就整個整體數字2.84下降1.82這整體數字不純粹是個人了啦已經是現象好不好已經是現象這還是講說這個我們講現在的公務機關的高齡結構的一個趨向另外剛剛你自己也主動講啦請問現在的我們的公務人員報考人數數十年減幅高達56%欸對不對
transcript.whisperx[181].start 5912.797
transcript.whisperx[181].end 5940.945
transcript.whisperx[181].text 將近減掉大幅下減所以因此造成我們今天優秀的人才也開始你要知道今天過去你如果說報告人數多嘛 對不對那現在你在人才增補的話你的空間比較大嘛但報告人數少你增補的空間就比較小嘛所以這個部分當然對公務機關我們的整個運作也產生影響可是我看上次這個我們的人事長你就把它說成是這個少子化的問題嘛 對不對
transcript.whisperx[182].start 5944.626
transcript.whisperx[182].end 5952.71
transcript.whisperx[182].text 我利用這個機會澄清一下事實上報告人數降低並不是在年金改革之後就降低我講的是兩個議題啦慢慢的就來阿因為現在來報告的
transcript.whisperx[183].start 5958.137
transcript.whisperx[183].end 5976.253
transcript.whisperx[183].text 一個是報考率 一個是錄取率 事實上我們現在每一年都維持到之前這個通能我之前拿到數字也給你看過了嘛 對不對 比照之前的話大概幾十年前的數字 現在報考人數確實大幅下降了沒錯吧
transcript.whisperx[184].start 5977.654
transcript.whisperx[184].end 5995.061
transcript.whisperx[184].text 對阿事實阿所以因此不純粹是你剛剛講的少子化因為我們少子化有沒有少子到這種程度阿少子化浪潮還沒淹到這種程度阿不是嗎所以就少子化以外的因素嘛那我接下來跟各位講就是說當然跟公務員待遇有關係阿不是嗎
transcript.whisperx[185].start 5996.121
transcript.whisperx[185].end 6014.203
transcript.whisperx[185].text 公務員的待遇也好退休金也好在下降的過程當中當然對我覺得總是我們人事長公家機關的同仁我剛剛看也會笑欸我要講也會笑什麼我幫大家講話今天如果待遇減少你當然人願意留下來的那個動力就會下降嘛這點這點應該沒錯吧
transcript.whisperx[186].start 6017.476
transcript.whisperx[186].end 6042.128
transcript.whisperx[186].text 這代議一定會影響每一個公務通人留下來的意願這是正相關年金改革從2018年7月上路退休公教人員資領月退金18%的優存兩年半就把它歸零嘛 對不對然後所得地貸率10年過渡期嘛那改革首年降到本縫的兩倍的75%再連續10年每年降1.5
transcript.whisperx[187].start 6043.809
transcript.whisperx[187].end 6061.47
transcript.whisperx[187].text 二、九年要降到60%嘛,對不對?是。好。那我想請教您齁,就是說現在其實已經有委員修正提案公務員退休這個資遣的撫恤法齁以及公教職員退休資權撫恤條例我想請問一下人事長你的看法是什麼?
transcript.whisperx[188].start 6063.39
transcript.whisperx[188].end 6067.454
transcript.whisperx[188].text 因為物價變動跟通貨膨脹那今年軍公教的月退金調高百分之四
transcript.whisperx[189].start 6087.506
transcript.whisperx[189].end 6115.743
transcript.whisperx[189].text 那如果不贊成停止遞減年金所得地貸率對於公教團體的另外訴求比照勞工保險條例的規定當消費者物價指數累計成長率達50%就要按照這個成長率來調整變成是一個法制化的做法您同意嗎這個我覺得要由主管機關就是前續部跟國防部跟教育部這些主管機關你人事總處你總能幫軍公教代言一下新生吧
transcript.whisperx[190].start 6117.026
transcript.whisperx[190].end 6133.599
transcript.whisperx[190].text 我會把委員的意見轉達你放心這些單位在我們本委員會我也會質詢啦但我是問你人事總處人事長你的意見啦我是支持比照啦因為現在我們會把委員的意見轉達給這些機關啦最後我想針對我們這個預算凍結的一些問題我想請教一下因為我看到幾個問題比方說舉個例子
transcript.whisperx[191].start 6142.639
transcript.whisperx[191].end 6170.021
transcript.whisperx[191].text 我看到預算凍結比如說我們第一個案子它裡面有一個緣由就是說這個人事行政總處要求各主管機關建立主動抽查所屬機關的機制列入人事業務績效考核以立政府機關落實公實新制對不對這報告第三頁可是我整個沒有看到你的抽查的情形如何跟抽查的績效
transcript.whisperx[192].start 6171.158
transcript.whisperx[192].end 6191.868
transcript.whisperx[192].text 我查情形如何我想我們會用我們提供給委員這個凍結你的時候就是要你做這件事情結果你現在要解凍你跟我講你還要再補報告那是不是今天就不用審解凍案啦其實我有一個報告啦今年的績效考我們就已經列入了啦我跟你講你上面的報告沒寫啊
transcript.whisperx[193].start 6193.087
transcript.whisperx[193].end 6215.332
transcript.whisperx[193].text 這才是問題當他已經白紙黑字就指你的抽查制度你抽查績效你也不寫進去很多啦我剛剛因為時間到我剛剛主席就站起來了當我們審凍結報告的時候我可能也要講一下很多凍結你的原因你在報告裡也不去應答那請問你那解凍結什麼啊也就是說原來凍結你的理由狀態全部存在啊
transcript.whisperx[194].start 6216.332
transcript.whisperx[194].end 6216.472
transcript.whisperx[194].text 眾嘉賓委員
transcript.whisperx[195].start 6240.493
transcript.whisperx[195].end 6256.317
transcript.whisperx[195].text 主席、在堂的委員先進、列席的政府機關市長、官員、會長、工作夥伴、媒體記者、女士先生,有請書人市長,還有我們移民署的陳副署長、小鎮署的周副署長,以及台鐵公司的馮總經理。
transcript.whisperx[196].start 6269.304
transcript.whisperx[196].end 6279.572
transcript.whisperx[196].text 人事長好、署長、副署長、總經理早。來,請問一下人事長,人總是管理各機關的人事人員還是管理政府的人力資源?都有啦,都有。那你覺得哪一個比較能夠發揮人總在這個政府部門當中,身為二級機關的一個價值?
transcript.whisperx[197].start 6292.167
transcript.whisperx[197].end 6320.748
transcript.whisperx[197].text 我覺得那個是在你為什麼認為你是應該企業的人資長對啊就是本來就企業的人資長要做什麼事情就是人力支援策略規劃嘛沒有錯但是今天很遺憾的給你們這個題目除了預算解凍報告之外本來上次主席在我本席在說政府業務用AI提升人力效能有沒有可能你說有可能對不對有可能而且你是資訊專業是不是結果你們今天的報告當中啊
transcript.whisperx[198].start 6321.548
transcript.whisperx[198].end 6326.431
transcript.whisperx[198].text 完全沒有提到怎麼樣人總來協助各機關利用資訊科技來提升他們的人力效能你只有在說你們人總的人事人員你怎麼樣協助人總在各機關的人事人員提升他們服務各機關公務員的效能你有沒有覺得有點偏差啦
transcript.whisperx[199].start 6341.133
transcript.whisperx[199].end 6351.836
transcript.whisperx[199].text 我覺得我利用這個機會跟委員說明一下你是要談人種的數位轉型還是你也希望能夠透過這個數位協助政府各機關提升他們的人力資源效能
transcript.whisperx[200].start 6353.063
transcript.whisperx[200].end 6356.426
transcript.whisperx[200].text 二、審查及處理113年度中央政府總預算關於行政院人事服務數位轉型.列席
transcript.whisperx[201].start 6379.062
transcript.whisperx[201].end 6383.624
transcript.whisperx[201].text 很好,過去是這樣,我希望你未來繼續,我現在要問一個來我請教一下人事長,你看得到這個照片嗎?你覺得這個是誰?是我是不是?長頭髮,像女生這是現在的數位科技啦我看到副署長在笑了你覺得像我這樣的,如果我打扮成這樣能不能通得過檢查?在機場副署長你覺得可以通過來嗎?
transcript.whisperx[202].start 6409.512
transcript.whisperx[202].end 6426.898
transcript.whisperx[202].text 這個如果看委員當時拿的是什麼護照很好本人的護照如果用人工驗證用身為未照過的護照有沒有可能騙過你們的移民署的官員有可能那如果是用人自動通關呢自動通關他的辨識力比人力還強更精準是
transcript.whisperx[203].start 6427.745
transcript.whisperx[203].end 6437.45
transcript.whisperx[203].text 人事長聽到沒有好我們來看一下來我先來問一下我現在講移民署移民署從96年到現在112年成立的元額不到2400人到現在已經到了快2900人了足足成長了538人超過總元額的兩成人事長在你的任中任內你有沒有看過哪個機關人總這麼大方行政院給他這麼多人力的
transcript.whisperx[204].start 6453.317
transcript.whisperx[204].end 6477.324
transcript.whisperx[204].text 有沒有?有沒有其他人?你講一下你心肝大細心喔你對他們移民署特別好喔?啊...啊...就...他們一直...一直拖一直拖你就從後移動後移不過我這裡要跟委員...呃...說明...你有沒有對移民署特別好?我跟他關係很差啊?很差?我跟他關係很差啊?為什麼給他這麼多冤枉?我跟他關係很差他要人基本上我都不大願意給可是今天還是給啦他們今年喔2月5號再報30個你們全部都給他給
transcript.whisperx[205].start 6483.018
transcript.whisperx[205].end 6509.586
transcript.whisperx[205].text 事實上我們給他的主要原因是希望他加快EGATE建構很好來副組長來我看一下給了你這麼多人副組長請教一下下一頁我們入村的人數在疫情前有高達快6000萬人次到了疫情盪下來不到800甚至掉到100慢慢回升到450去年大概回升到3600副組長你覺得今年2024年有沒有可能超過超過可能4000或5000
transcript.whisperx[206].start 6511.616
transcript.whisperx[206].end 6515.941
transcript.whisperx[206].text 應該會應該會嘛 對不對但你們20195000多人的時候你們國進大隊資源移植率都超過8%20207%疫情期間掉下來4%欸疫情後呢又升上去了快8%去年12%啊副署長奇怪了勒給你們那麼多人為什麼你流動率這麼高
transcript.whisperx[207].start 6532.588
transcript.whisperx[207].end 6553.201
transcript.whisperx[207].text 報告委員其實這個是我們人力結構的問題人力結構什麼問題因為在疫情期間我們講白了就是在2019年疫情開始以後我們所有旅客量從5000多萬降到709萬當時因為我們在國境它的流動率是
transcript.whisperx[208].start 6554.358
transcript.whisperx[208].end 6565.109
transcript.whisperx[208].text 本來流動率很高啊8%啊現在當下來啦當下來因為後來那時候旅客少所以嘛齁不只是你們正職人員連你們約聘顧的人員也是一樣剛剛那個表呢告訴我約聘顧的人員的離職率也是8%現在也都快到12%了基本上來說因為我們航班是24小時的
transcript.whisperx[209].start 6572.816
transcript.whisperx[209].end 6592.673
transcript.whisperx[209].text 對不對?你們的儘管的人員要不要輪班?要嘛。我遇到很多次我半夜從東南亞回來他們在那邊看疫情期間入職的因為疫情後突然量增加了疫情今天來很輕鬆的現在受不了了跑掉了疫情前勉強撐住的疫情後撐不住了跑掉了是不是這樣?是人事長那你覺得他們這樣子有什麼辦法改善?
transcript.whisperx[210].start 6596.83
transcript.whisperx[210].end 6597.17
transcript.whisperx[210].text 很好,來,人長
transcript.whisperx[211].start 6617.725
transcript.whisperx[211].end 6640.598
transcript.whisperx[211].text 那副組長,市長聽到了齁?人事長他雖然跟你關係不是很和睦,你們的人他也不給,但是因為你們有需要,還是有了。但是這些人呢,你們留不住。如果把這些人用自動通關來取代,你覺得會不會人員比較穩定?讓人員去做那些機器比較辛苦的事情,讓機器做。人是要休息的,不用休息的事情給機器做,你同意嗎?
transcript.whisperx[212].start 6641.258
transcript.whisperx[212].end 6668.128
transcript.whisperx[212].text 是那你們有沒有要加強這個EGATE?跟委員報告其實我們移民署在做自動通關系統的建設早在民國99年那你們未來要不要繼續加強?我們現在都有規劃實施好那我現在請你跟人長配合當你們未來自動通關越來越多人使用的時候你們的人力就空出來了是這些人好好的用在其他需要人力智慧的地方好不好?是好謝謝副署長來謝謝下一個來我們現在請教我們的周署長齁
transcript.whisperx[213].start 6670.267
transcript.whisperx[213].end 6678.95
transcript.whisperx[213].text 你們目前有智慧監獄推動3所,缺額逐年增加。你們在108年有24個名額根本照不到。到了112年變成128個。剛剛講移民署是人照得進來但留不住。你們是連人來都不來啊。署長怎麼辦?缺這麼多人怎麼辦?
transcript.whisperx[214].start 6690.798
transcript.whisperx[214].end 6701.866
transcript.whisperx[214].text 呃,跟委員報告,我們沿著上有統計過我們的離職率大概百分之五左右我不是問你離職率啊,你們根本沒有料去啊離職率根本找不到人啊人事長怎麼辦
transcript.whisperx[215].start 6704.89
transcript.whisperx[215].end 6721.918
transcript.whisperx[215].text 其實齁你給他名字他找不到人啊沒有人要找那個監獄管理員啊我事實上我也蠻急迫的6、7年前我就跟法務部去監獄去大量去推智慧型監獄我舉一個例子啦就是他們受薪人有時候要去借外就醫嘛對
transcript.whisperx[216].start 6722.478
transcript.whisperx[216].end 6743.535
transcript.whisperx[216].text 借外就醫基本上一定要有兩個接觸人力一出去就是報令所以我那時候就跟他們建議就是說盡量去找一兩家大型的院所去處理所謂的遠距醫療遠距醫療不管是你在立法 減少人力
transcript.whisperx[217].start 6744.315
transcript.whisperx[217].end 6752.886
transcript.whisperx[217].text 借戶就醫的這個手套。因為借戶就醫兩個人出去了,剩下留在監獄的人辛苦了,對不對?署長,你覺得人事長的建議有沒有道理?
transcript.whisperx[218].start 6758.546
transcript.whisperx[218].end 6758.566
transcript.whisperx[218].text 來 總經理
transcript.whisperx[219].start 6787.628
transcript.whisperx[219].end 6790.13
transcript.whisperx[219].text 之前我聽到一個消息說國營事業台鐵有312個桶邊總經理你們台鐵這家公司怎麼有312個桶邊?什麼原因?報告委員因為我們派出單位分支單位沒有錯
transcript.whisperx[220].start 6802.639
transcript.whisperx[220].end 6827.88
transcript.whisperx[220].text 你們派專案很多高鐵就相對少了因為高鐵的站比較少我去查了一下國營事業台堂有176個桶邊燕酒公司有71個桶邊因為燕酒公司的配銷手比較少可是相對的桶邊越多財塊的人力需有越多可是你們只用了100個人相較於台堂他桶邊比你少用的人比你多燕酒公司才71個用無數人看起來你們的財塊的效能很高喔你們是不是國營事業當中你們財塊人員效率最高的
transcript.whisperx[221].start 6830.242
transcript.whisperx[221].end 6831.142
transcript.whisperx[221].text 總經理,你覺得ATM跟銀行行員哪一個可以全天候上班?
transcript.whisperx[222].start 6854.248
transcript.whisperx[222].end 6855.589
transcript.whisperx[222].text 人事長有否常常搭台鐵?
transcript.whisperx[223].start 6873.137
transcript.whisperx[223].end 6892.022
transcript.whisperx[223].text 我常常搭台鐵,你有沒有常常搭?我曾經我南北跑,我常常搭8點半的高鐵回到新左營11點05分我要轉什麼?我要轉台鐵回屏東我去的時候每次怎樣?我都習慣去自動購票機可是每次我要轉的時候晚上去
transcript.whisperx[224].start 6893.243
transcript.whisperx[224].end 6893.263
transcript.whisperx[224].text 委員
transcript.whisperx[225].start 6913.577
transcript.whisperx[225].end 6925.428
transcript.whisperx[225].text 應該 他們是還要做結帳的工作是 所以說嘛 櫃檯 他們你們的櫃檯的人說我們還要輪班到半夜 因為還有人買票可是我們的自動貨票機 因為財快部門9點要結帳所以就通通下班了
transcript.whisperx[226].start 6930.558
transcript.whisperx[226].end 6943.524
transcript.whisperx[226].text 你們有沒有搞錯啊?你們的財寬人員少,因為他不想做太多事。所以你們的自動貨票機啊,9點就離線了。留下最辛苦的工作人員,在那邊人工售票。總經理,我先問人事長。如果你作為一個公司,總經理,你覺得這合理嗎?我是問人事長啊。我一定喔,可以自動化,我一定會自動化。
transcript.whisperx[227].start 6957.514
transcript.whisperx[227].end 6964.62
transcript.whisperx[227].text 來,總經理,你告訴人事長,你們有多少自動購票機?我們現在有432台。你們有多少的票口人員?說不出來。超過好幾千嘛。在台鐵啊,購票機比人工人員還輕鬆啊。9點就下班了。員工很辛苦,你知不知道?
transcript.whisperx[228].start 6979.524
transcript.whisperx[228].end 7003.741
transcript.whisperx[228].text 那你們要不要叫你們財快人員以後留兩個財快人員幫自動購票機結帳24小時營運可以嗎?報告委員我們現在已經在檢討我們的這個檢討多久了?我反映過4年了我這8年來我每次台北通勤每次超過9點我在台鐵的窗口我要去人工購票如果前面排了好多人咧?還好像有TPAS啊
transcript.whisperx[229].start 7004.693
transcript.whisperx[229].end 7014.522
transcript.whisperx[229].text 我以前可以用自動購票機買啊超過9點自動購票機下班8台通通下班窗口只留一個窗口後面排十幾個人我要是趕台鐵趕不上怎麼辦總經理要不要檢討一下要需要人事長結果結論請人事總處研析各政府機關的形態跟人力配置的效能請借重資訊科技減少各政府機關的人力的低效運用
transcript.whisperx[230].start 7030.339
transcript.whisperx[230].end 7052.741
transcript.whisperx[230].text 可以嗎?可不可以提個書面報告給本席,給委員會?多久?好,可以,謝謝。好,謝謝鍾嘉斌委員。鍾委員剛所提到的部分,就是他個人碰到的經驗,也就是一般民眾也會碰到的。這個確實我們要好好去做一個改善一下。
transcript.whisperx[231].start 7058.541
transcript.whisperx[231].end 7078.23
transcript.whisperx[231].text 好接下來有請莊瑞雄委員質詢謝謝謝謝主席有請我們蘇俊隆人事長有請人事長還有請我們公務人力發展學院我們的陳明忠陳院長委員長
transcript.whisperx[232].start 7081.892
transcript.whisperx[232].end 7102.099
transcript.whisperx[232].text 市長還有我們陳院長我想大家有去注意到這幾年來台灣確實是面臨到越來越少人願意報考公務人員這樣的一個狀況從考選部的統計資料其實也可以發現看這個資料就是說從民國98年高考報考人數6萬人
transcript.whisperx[233].start 7104.06
transcript.whisperx[233].end 7131.675
transcript.whisperx[233].text 還有6萬。101年報考人數巔峰到7萬多但是從此以後人數一直下降到112年剩下3萬多而已3萬多報考我這補考給你們看那普考也同樣一樣下滑的一個趨勢那你還碰到有雙報考的事情那101年報考人數9萬你如果有雙報考的人就更多之後年年下降到了去年3萬多人報考
transcript.whisperx[234].start 7132.555
transcript.whisperx[234].end 7136.565
transcript.whisperx[234].text 那你到初等考試的情況那更慘從民國98年9萬多到去年剩下1萬多人14當內的減70高趴
transcript.whisperx[235].start 7141.75
transcript.whisperx[235].end 7168.834
transcript.whisperx[235].text 人事長還有那個陳院長那你從考試院送到本院的報告裡面也可以發現2022年公務人員離職率一般三千個比2021年的一萬九百九十人增加了22.8%其中退休人數跟辭職人數都有明顯的一個漲幅其實人事長還有陳院長公務人員越來越少人報考這不是只有台灣
transcript.whisperx[236].start 7170.168
transcript.whisperx[236].end 7183.442
transcript.whisperx[236].text 你看看日本也一樣日本今年春天報告人數1.4萬這個也是日本史上第二低過去10年公務人報告他也減到30%所以日本的人事院
transcript.whisperx[237].start 7184.775
transcript.whisperx[237].end 7202.746
transcript.whisperx[237].text 他們計劃向政府提議,調整公務人員勤務的時候,除了彈性工資以外,無論什麼原因都可以選擇週休3天。日本現在也沒辦法,所以這件日本人現在這樣在做。日本選擇這麼做,他就是希望說,透過彈性的一個工資改善日本工資工時過長過老這樣的一個問題,那我們台灣公務人員會面臨到什麼樣的問題呢?
transcript.whisperx[238].start 7208.709
transcript.whisperx[238].end 7228.705
transcript.whisperx[238].text 在十幾年前我看那個PPT那個論壇上公務人員考試版都是高度的熱門的一個版大家都會去互通有無但是只要提到現在說講公務人員大家會說不要去啦都會用勸退啦那綜合了對於考這個考公務人員的缺點以外最多人認為根本的原因是什麼事你知道嗎
transcript.whisperx[239].start 7230.821
transcript.whisperx[239].end 7259.218
transcript.whisperx[239].text 報考成本過高,選稅不夠高、福利不夠多當然有一部分你說年金改革的餘率已經多少多少一定有嘛那從報考成本來看的話我請兩位來仔細的看一下就是說多數的公務人員其實喔差不多都有保釋的經驗啦市場上也有各式各樣的補習班的任君挑選啦市面上的補習班看來不管是你說面授啊還是去寒授啊那最多的行政職都要試班啦
transcript.whisperx[240].start 7259.938
transcript.whisperx[240].end 7276.497
transcript.whisperx[240].text 高一點的話甚至要到8萬啦 這個還只是補習的一個金額喔如果說是一個全職的考生來看的話還有生活費的問題啊 還要多管啊所以同樣啊 你去根據我們整個考選部的一個統計啊以高考為例啊 平均要考幾次 人事長你知道嗎
transcript.whisperx[241].start 7278.131
transcript.whisperx[241].end 7279.351
transcript.whisperx[241].text 二、審查及處理113年度中央政府總預算關於行政院人事服務數位轉型
transcript.whisperx[242].start 7302.657
transcript.whisperx[242].end 7321.321
transcript.whisperx[242].text 但如果報名的人越來越少最後下一個世代是不是要面臨國家招不到優秀工人的一個危機啊所以這個問題我請教人事長你基本上你的看法是怎麼樣事實上因應少子化的這個部分事實上我們現在在做的就是說我沒想到這是少子化
transcript.whisperx[243].start 7323.135
transcript.whisperx[243].end 7344.415
transcript.whisperx[243].text 我覺得那些都很多的複合式因素在裡面啊。就像明太郎委員你說的那個台股的問題還是他要進到這個場域來投資成本的問題,這些都是原因。所以我們現在努力的就是如何去把公務人員的待遇拉上來,因為台股是很小的嘛。
transcript.whisperx[244].start 7344.855
transcript.whisperx[244].end 7346.855
transcript.whisperx[244].text 民進黨執政以後我們對臨近改革這樣的一個推動
transcript.whisperx[245].start 7373.2
transcript.whisperx[245].end 7395.265
transcript.whisperx[245].text 其實跟公務人員的一個保障你說他沒關係公務人員他也聽不下去但短期到認為那是兩件事我們一直在講說世世代代領得到長長久久可以領到老那個就是其實各個政黨在執政的時候都認為年金不改革他真的是會破產但是公務人員的一個保障我這個另外一件事
transcript.whisperx[246].start 7395.825
transcript.whisperx[246].end 7413
transcript.whisperx[246].text 公務人員本來他的福利他的身份你本來就是該去保障他那同樣對年金改革的一個履歷我本席也看到國民黨委員提案說要停止地檢所得替代率來停止調整公教的年金本席倒是認為說這個是不顧風險的一個大走回頭路
transcript.whisperx[247].start 7414.451
transcript.whisperx[247].end 7431.921
transcript.whisperx[247].text 改革本來就是不太容易的大家去看看希臘的一個國債那麼多國家的一個支持也提出了相關的年金的一個改革以現在來看的話以各國的一個退休年金的勤領年齡所跟所得替代率來看你台灣到2029年開始所得替代率我們還是62.5
transcript.whisperx[248].start 7433.562
transcript.whisperx[248].end 7452.854
transcript.whisperx[248].text 就世界潮流來看,台灣是從65歲、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、低高、
transcript.whisperx[249].start 7455.096
transcript.whisperx[249].end 7470.437
transcript.whisperx[249].text 我從數據資料來看,報考人數降低大概102年就開始往下降,不是107年年改。那是這個數字,那是一個數字的數字。第二就是我要委員報告,因為現在就到考率大概六七成,
transcript.whisperx[250].start 7471.318
transcript.whisperx[250].end 7493.134
transcript.whisperx[250].text 入企率都維持10%嘛。這一些是一個長期的,所以我們現在公務人力的需求的這一種,你有去倒考慮,剛好每一年大概四、五千人,需求大概四千嘛,客流大概五千,大概可以cover我們的政府整體的人力需求,目前的情況是這樣。
transcript.whisperx[251].start 7494.025
transcript.whisperx[251].end 7508.594
transcript.whisperx[251].text 我要請教我們公務人、人力發展學院的陳院長就是說,你們感冒都沒人給你們歡迎,談到公務人員的福利保障,我就舉我們的國民旅遊卡來講啦。你像比如說我們常常看到、聽到的抱怨就是說,國旅卡實在是不好用啦。
transcript.whisperx[252].start 7509.734
transcript.whisperx[252].end 7537.431
transcript.whisperx[252].text 你去PTV版我相信很多人也是罵聲連連那國民旅遊卡本質上大家也很清楚是一個不休假的一個加班費那你怎麼樣去運用公務人員原本本來就是按照日薪去請領不休假的加班費特休沒有休完那隔天政府又說日薪成癮未休完了幾天來給錢我們從2000年以後政府強制用一萬六定額補助取代加班費你藉此來鼓勵休假政策要去引導其實
transcript.whisperx[253].start 7539.093
transcript.whisperx[253].end 7561.409
transcript.whisperx[253].text 也不能說不對但問題就是說你要做到會公平2017年你開始硬性規定8000元你要消費在觀光旅遊業國內的團旅的部分這也可以只是說額度沒有用完你不能累積千五天收回來沒什麼通陳院長你都沒聽到有人這樣說嗎
transcript.whisperx[254].start 7564.135
transcript.whisperx[254].end 7564.555
transcript.whisperx[254].text 政經國內觀光
transcript.whisperx[255].start 7588.641
transcript.whisperx[255].end 7593.764
transcript.whisperx[255].text 而是說刺激內需鼓勵公務人員休假,這個都值得獎勵啦!但是你不要創那個相當標準的啦!我是覺得,你譬如說為什麼提振國內觀光、刺激內需消費,是因為公務人員本地的他的加班費,你來叫人來補助其他的產業,不然檢視庫也好事啦!但是這個怪怪的,你知道嗎?我認為這個就很奇怪!尤其你這個8000加8000這個部分齁!
transcript.whisperx[256].start 7619.962
transcript.whisperx[256].end 7647.457
transcript.whisperx[256].text 我來問您啦,您說這叫國民旅遊卡,我看這都叫共體時間卡。這沒道理啊,我這覺得沒道理啊。好,那一般你們就只能8000、8000對不對?那我要問啦,那為什麼法官的就全部數在一樣?你說法官是因為他案子很多,所以要鼓勵他趕快結案,我們就不要管他,讓他呢,我們不要強制他去消費,讓他把他贏得錢而已沒關係,其他的公務人員呢?
transcript.whisperx[257].start 7648.507
transcript.whisperx[257].end 7658.502
transcript.whisperx[257].text 就不對,因為事件的本質,就是你不修正。政府用一天保護人的,你強制司法官以外的,其他你就要設定這種實用的規則。這樣感動人事長?院長,這樣感動?
transcript.whisperx[258].start 7663.642
transcript.whisperx[258].end 7665.444
transcript.whisperx[258].text 陳副組長我最後要請教你難道你們的弟兄沒有很辛苦嗎?
transcript.whisperx[259].start 7686.813
transcript.whisperx[259].end 7695.772
transcript.whisperx[259].text 幹部警察局幹部很辛苦警察同仁幹部很辛苦那為什麼同樣都是公務人員啊這一筆錢你又給他不一樣的使用方式我們怎麼對外說理
transcript.whisperx[260].start 7703.176
transcript.whisperx[260].end 7722.97
transcript.whisperx[260].text 我們要尊重,其實一般來說我們現在的同仁也會利用這個國民旅遊卡,帶著家人去旅遊,這個事實上也都是這樣在消費我告訴你,我是在替你講話,這條叫做本地公務人員特殊的啦,那本地就公務人員的啦
transcript.whisperx[261].start 7723.57
transcript.whisperx[261].end 7725.351
transcript.whisperx[261].text 二、審查及處理113年度中央政府總預算關於行政院人事服務數位轉型.
transcript.whisperx[262].start 7748.956
transcript.whisperx[262].end 7764.58
transcript.whisperx[262].text 我再強調一次喔!年金改革是一件事喔!那個真的是要世世代代喔!但是為公務人員保障他的福利那又另外一件事喔!好不好?相同的東西我們不要做那種沒有正當合理的理由不要做這種差別待遇啦!好不好?好!謝謝!謝謝委員!好!謝謝專委員!謝謝人事長!謝謝院長和副署長!
transcript.whisperx[263].start 7772.438
transcript.whisperx[263].end 7796.185
transcript.whisperx[263].text 那麼在這裡呢先做程序的先告稍後在謝榮介、謝委員榮介詢答完畢後休息5分鐘現在接續請吳委員、施堯進行詢答請謝主席有請人事長那也請我們公務人力發展學院陳院長一起好人事長跟院長請
transcript.whisperx[264].start 7801.568
transcript.whisperx[264].end 7817.888
transcript.whisperx[264].text 人事總處的夥伴大家辛苦大家早安那我想先問一下那個人事長我上一次質詢您的時候有拋出希望能夠在我們的公務人員裡頭新增一個價別就是心理價那你們回去有開始進行研議嗎進度
transcript.whisperx[265].start 7823.566
transcript.whisperx[265].end 7840.301
transcript.whisperx[265].text 因為現在公務人員請假規則全序部現在有正在研擬修正草案所以我們這個薪禮價的問題我們會並同那個請假規則通盤來做一個規劃我這裡跟委員報告啦基本上 我覺得委員講的那個很重要
transcript.whisperx[266].start 7844.524
transcript.whisperx[266].end 7860.99
transcript.whisperx[266].text 對那所以就我會持續來watch持續來Follow那希望你們可以跟程序部可以強化也表達我們人事總處認為我們要共同促進我們公務同仁的心理健康那一個新設價別就彰顯了我們一個國家政策重要的方向
transcript.whisperx[267].start 7861.71
transcript.whisperx[267].end 7884.61
transcript.whisperx[267].text 那今天我要就教於您部部都是文化部人人都是文化人人事總處can do more那我們可以做什麼呢同樣一個主題我上週也對考試院也提出來了因為畢竟在國家的公務體系的人力規劃禁用考核待遇福利等等其實包括人事總處考試院都相關
transcript.whisperx[268].start 7887.013
transcript.whisperx[268].end 7891.311
transcript.whisperx[268].text 那我想問一下就是您本身有文化生活嗎?
transcript.whisperx[269].start 7893.374
transcript.whisperx[269].end 7918.669
transcript.whisperx[269].text 您最近有去什麼藝文活動或藝文場館嗎?有,去幾個好,很好,讓你運用江雄美術館、台南南美館、南美二館還有赤嬌赤嬌還有二手書籍我都去逛了所以聽起來人事長您個人的文化生活會是視覺藝術有閒您剛剛提了高美館像我們江賢二老師的大展才在高美館創下紀錄
transcript.whisperx[270].start 7920.05
transcript.whisperx[270].end 7947.831
transcript.whisperx[270].text 高美館、南美館、獨立書店等等您個人有文化生活非常好我們也希望我們公務同仁都能夠有文化生活當然我今天就教於您我先從文化生活來切入我非常開心您本身是有文化生活的那其實文化生活跟我剛剛說的心理健康有很大的關聯文化是最好的療癒那像思瑤我本人在立法院每天有很多政治的負能量
transcript.whisperx[271].start 7948.692
transcript.whisperx[271].end 7976.063
transcript.whisperx[271].text 我自己的文化生活是什麼我光3月啊我跟大家分享一下我到了歷史博物館歷史博物館是台灣就是遷台以後第一個成立的公立博物館今年已經快已經一甲子了所以是來到台灣一甲子第一次的全面修復然後再出發我去參加了他的大展而且是一個時尚跨界的走秀非常好
transcript.whisperx[272].start 7977.023
transcript.whisperx[272].end 8002.988
transcript.whisperx[272].text 那也提醒大家可以去給我們的國家博物館多多支持石博館就是剛重新開幕推薦大家可以去這是我3月8號去的我3月11號我到台博館剛剛是石博館我又去台博館因為我在做很多建築藝術的紀錄片那天是一個首映會我也推薦大家可以到台博館走一走這是3月11號再來下一頁
transcript.whisperx[273].start 8006.398
transcript.whisperx[273].end 8033.88
transcript.whisperx[273].text 3月19號我回到我的選區北投現在大學有一個USR的計劃就是大學也要有社會責任那把大學生帶到台灣的社區現場以我參加的這個共主節就是我媒合了實踐大學建築系的學生進到北投的中興新村這是一個非常大規模在修復的眷村所以走進文化資產的現場
transcript.whisperx[274].start 8035.942
transcript.whisperx[274].end 8056.765
transcript.whisperx[274].text 然後透過教育然後一起做一個共主節他有很多的多元的意義但這也告訴我們培育國家的文化人才文資人才每天都要做而我自己作為立法委員我一直在做北投共主節我催生了就是第三年好再來下一個
transcript.whisperx[275].start 8058.226
transcript.whisperx[275].end 8087.435
transcript.whisperx[275].text 那就在上週五我到北美館台灣一個非常好的大展台灣建築1949到1983一個系統性的去回顧台灣建築的發展脈絡這是一個非常棒的展覽我也要推薦給大家我分享了一個光三月我就去了四檔的大展我是一個立法委員我現在也在繼續深造就讀文化類的博士
transcript.whisperx[276].start 8088.993
transcript.whisperx[276].end 8111.243
transcript.whisperx[276].text 我個人告訴自己我要有文化生活陶冶我的心靈我要有文化思維可以協助我導入政策幫助國家更有文化高視野的文化相關的政策能夠推進而且要跟國際接軌這是我個人我也是廣義的公務體系的一份子所以我要來分享的是
transcript.whisperx[277].start 8113.444
transcript.whisperx[277].end 8119.23
transcript.whisperx[277].text 我請請教人事長來下頁文化基本法來回到文化基本法
transcript.whisperx[278].start 8120.506
transcript.whisperx[278].end 8146.894
transcript.whisperx[278].text 二零一九年六月五號是我剛擔任立委非常有成就感的一個立法因為這是文化的基本大法文化基本法裡頭對於部部都是文化部做了一個非常清楚的入法各部會都要來做文化資產的保存活化傳承維護及宣揚各部會都要有寬裂文化預算要有
transcript.whisperx[279].start 8147.994
transcript.whisperx[279].end 8166.281
transcript.whisperx[279].text 國內外人才的參與文化工作這是方方面面要做的所以文化政策要落實在各部會文化不再是outsider這是文化的憲法所以依據文化基本法我們成立了內閣的文化匯報下一頁
transcript.whisperx[280].start 8169.349
transcript.whisperx[280].end 8193.55
transcript.whisperx[280].text 人事長您也是文化會報的參與者有16個部會當中文化會報人事總處最近的一次是陳靜元院長親自召集的會議是2023年10月11號您也去出席了那我可能請教人事總處參與了文化會報那您扮演的角色是什麼
transcript.whisperx[281].start 8195.329
transcript.whisperx[281].end 8216.071
transcript.whisperx[281].text 我覺得文化的東西很重要就是如何讓它生活化的問題我們希望我們的生活跟文化是結合在一起那在人事總處的一個立場我們事實上最近光總處內部我們就安排到很多的博物館去參觀尤其還有一件事情
transcript.whisperx[282].start 8218.102
transcript.whisperx[282].end 8234.78
transcript.whisperx[282].text 這幾年我們剛好在推行政法人是所以我們希望好多新的行政法人都是文化管所對那事實上文化管所他走行政法人他在用人在整個營運因為要更有彈性很多場域他要有專業的策展人嘛嗯
transcript.whisperx[283].start 8235.06
transcript.whisperx[283].end 8259.646
transcript.whisperx[283].text 那你公務機關你如何去找策展人事實上是有困難所以我們要活化他可以讓整個文化的管所更加的活躍我非常的開心聽到我們人事長您還更深入的去談到對於行政法人很多是文化管所要為什麼文化管所要用行政法人的方式就是讓他的用人彈性可以引進民間的文化專業人才
transcript.whisperx[284].start 8260.686
transcript.whisperx[284].end 8282.552
transcript.whisperx[284].text 一般的公務人員的培育體系相比較欠缺您抓到一個很重要的重點我非常的感謝今天就教於您就是人事總處之所以成為行政院文化彙報的key person之一就是要從前端的國家人才的培育要can do more第二個我們平常業務會進行很多的訓練
transcript.whisperx[285].start 8284.292
transcript.whisperx[285].end 8304.686
transcript.whisperx[285].text 我們的相關訓練We can do more第三個就是我剛剛跟您分享的最起碼我們要能夠提供給大家在福利面創造一個文化生活的可能性所以它會落在三個面向文化人才的培育、文化思維的建立以及文化生活的創造人事總處真的can do more下一頁
transcript.whisperx[286].start 8308.749
transcript.whisperx[286].end 8310.731
transcript.whisperx[286].text 您知道我們現在有內閣一個新的好政策深受年輕世代歡迎這也是吳思瑤催生的2022年我質詢了蘇貞昌院長我希望能夠催生文化禮經現在已經上路而且擴大
transcript.whisperx[287].start 8325.782
transcript.whisperx[287].end 8353.499
transcript.whisperx[287].text 16到22歲的年輕人可以有每年1200點的文化幣然後鼓勵年輕人去做藝文的消費而且可以振興台灣的藝文產業的發展其實啦年輕時代現在有文化幣這是一個新的境界我也催生活非常感動可以上路事實上我們公務體系早就有文化幣了就是我們每年3000的文康活動費
transcript.whisperx[288].start 8355.321
transcript.whisperx[288].end 8357.466
transcript.whisperx[288].text 要不然我們中央各機關、學校、員工、文康活動實施要點在你頂的嘛對不對?人事總署管欸
transcript.whisperx[289].start 8362.443
transcript.whisperx[289].end 8389.821
transcript.whisperx[289].text 文康活動費是重康樂輕益文我們兩部分就是益文活動可以去做益文欣賞競賽康樂活動就可以辦社團體能競賽慶生聯誼服務休閒等等每年3000這比剛剛那個文化幣啊1200塊一年而且只有16到22歲我們進入公路體系的夥伴每年就有3000可是都在康樂就空秀下一頁
transcript.whisperx[290].start 8391.598
transcript.whisperx[290].end 8396.543
transcript.whisperx[290].text 各部會的文康活動是您這裡來訂定然後我不知道你們有沒有追蹤我就以人事總處自己的文康活動來看
transcript.whisperx[291].start 8401.266
transcript.whisperx[291].end 8422.885
transcript.whisperx[291].text 近10年都是在辦康樂活動作為生日禮金慶生會年終獎金年終餐會年終禮品聯誼員工旅遊都很好但是我們這個康樂的項目人事總處的文康活動項目不要忘了是有藝文欣賞那一項啊
transcript.whisperx[292].start 8423.786
transcript.whisperx[292].end 8448.951
transcript.whisperx[292].text 所以說我剛剛跟您分享了您自己有文化生活這可能是你的創意就你自己有這個文化調養要不然我們要給所有的公務同仁藝文類可不可以鼓勵更多我相信大家會支持讓大家就像文化幣年輕人拿到文化幣他會去買書他會去看表演藝術等等這個總可以做到吧
transcript.whisperx[293].start 8450.305
transcript.whisperx[293].end 8469.872
transcript.whisperx[293].text 不只人事總處先做也包括各部會一起來做可以嗎我們事實上很多藝文活動我們都是混搭在整個環境交引沒有混搭藝文活動就是被犧牲沒有混搭有啦有啦都在裡面都在裡面那可以做更多嗎沒問題我想這個沒有問題我後續再跟您討論主席我最後30秒來下面
transcript.whisperx[294].start 8477.981
transcript.whisperx[294].end 8496.091
transcript.whisperx[294].text 我們需要更多的文化人才我很快速的快轉提醒您好下一頁就是在高考的文化行政組就是死亡之組難考缺又少所以他的錄取人數跟錄取率都是最低的下一頁
transcript.whisperx[295].start 8497.111
transcript.whisperx[295].end 8517.931
transcript.whisperx[295].text 普考也是一樣文化行政缺少又難考所以這個提供給您因為各部會在成立很多相關的文化管所當然行政法人給了一個很大的人事彈性但是現在我沒有時間秀出後面的PVT我們有非常多的文化管所
transcript.whisperx[296].start 8518.712
transcript.whisperx[296].end 8526.971
transcript.whisperx[296].text 包括就在新北市要成立一個最大的叫兒童未來館160億的預算國家沒有這種文化人才
transcript.whisperx[297].start 8527.847
transcript.whisperx[297].end 8554.795
transcript.whisperx[297].text 包括各部會都要有文化思維的文化人才現在國營企業開始招考自己的文化人才非常好台電中油台水在做我就點到這裡前端的考選的部分對於文化類的人才的培育要更多好嗎我後面還有訓練面沒有時間講就這個部分您帶回去我後續還有時間就教於您是不是可以讓我們在文化人才的培育多一點空間
transcript.whisperx[298].start 8556.059
transcript.whisperx[298].end 8571.866
transcript.whisperx[298].text 我這裡事實上要補充一下,現在除了大概委員秀出來這個畫面以外,現在很多文化類的管所他用的當然不是教育人員,在這裡看不到啦,就是說教育人員進到那些場域的非常多。
transcript.whisperx[299].start 8572.366
transcript.whisperx[299].end 8588.233
transcript.whisperx[299].text 但是畢竟在訓練上還是不同啦沒關係這個議題您帶回去我後續會持續的跟您討論我希望能夠把文化面向的思維多帶到跟人事總處未來的政策討論上謝謝主席多給我時間抱歉耽擱了謝謝委員謝謝吳委員謝謝蘇貞昌謝謝院長接下來有請翁委員小林諮詢
transcript.whisperx[300].start 8602.974
transcript.whisperx[300].end 8608.315
transcript.whisperx[300].text 主席有請人事長請蘇人事長市長辛苦了從今天一早就開始接受委員們的提問跟這個準備很多的詢問那麼我看了您這裡所提出來的人事推動
transcript.whisperx[301].start 8629.738
transcript.whisperx[301].end 8643.73
transcript.whisperx[301].text 人事服務的數位轉型報告裡面有非常多的未來針對數位轉型的這個措施我自己非常佩服因為這也是人事長您過去也曾經在其他的機關裡面都有推動過關於數位轉型那就這個部分的話
transcript.whisperx[302].start 8647.586
transcript.whisperx[302].end 8667.354
transcript.whisperx[302].text 我非常敬佩提了非常好的一些措施希望能夠減緩、紓解未來我們公務體系人力的壓力當然我更敬佩人事長在百忙之中還可以常常去其他不同的
transcript.whisperx[303].start 8667.918
transcript.whisperx[303].end 8671.741
transcript.whisperx[303].text 美術館、博物館和去參訪,那就像吳思堯委員一樣有非常豐富的這個文化生活。我進立法院現在大概一個半月左右,我已經覺得忙得不可開交,直到這個上星期天,上星期六才有機會去看了一個牡丹亭的昆劇的表演。
transcript.whisperx[304].start 8687.553
transcript.whisperx[304].end 8698.903
transcript.whisperx[304].text 那麼我必須說其實以我個人的觀察公務機關裡面不管是軍公教其實大家的工作都非常的繁忙忙碌尤其是加班
transcript.whisperx[305].start 8699.889
transcript.whisperx[305].end 8699.969
transcript.whisperx[305].text 公務員現在的這個
transcript.whisperx[306].start 8718.471
transcript.whisperx[306].end 8732.759
transcript.whisperx[306].text 的公務、他的業務越來越復雜而且實際上就是大家的工作壓力非常大那這也涉及到就是剛剛前面幾位委員都有在談為什麼現在報考公務人員的
transcript.whisperx[307].start 8735.64
transcript.whisperx[307].end 8756.086
transcript.whisperx[307].text 這個人數越來越少我想這個基本上也跟我們的現在公務員的薪資軍公教的薪資普遍比民間企業要來的低因為低薪所以就不容易攬財我想這個是一個還蠻清楚的一個事情那我想請教就是人事長在
transcript.whisperx[308].start 8757.687
transcript.whisperx[308].end 8779.426
transcript.whisperx[308].text 這個最近這些年到底人事總處這裡有沒有曾經調查過我們國家的軍公教人員或是說我們就算是講的是公教人員的薪資與民間企業員工薪資的差距有沒有做過這樣的調查那麼甚至就是我國跟其他國家的公務員的薪資調查
transcript.whisperx[309].start 8781.367
transcript.whisperx[309].end 8805.781
transcript.whisperx[309].text 我跟委員報告大概每一年我們都會做一次調查因為就如同委員知道我們現在每一年大一審議委員會我們都會based on所謂的通膨還有經濟成長力民間薪資的問題還有國家財政相關的議題所以這一些跟民間薪資的部分所以也是因為我們有做這樣的一個調查
transcript.whisperx[310].start 8807.162
transcript.whisperx[310].end 8833.469
transcript.whisperx[310].text 所以我們最近針對某些科系像土木的建築的在公務機關人才比較不容易招募的部分我們最近密集在一些機關去做訪視我們希望說今年可以提出針對他們跟民間之間工作的內容還有待遇的部分我們做一個比較全盤性的一個瞭解因為我們不怕
transcript.whisperx[311].start 8839.03
transcript.whisperx[311].end 8861.596
transcript.whisperx[311].text 市長,您最近調查我們跟民間企業的差距是多少倍?有這個數據嗎?因為其實我也認真的去看了一下你們的這個人事總處的網友我沒有看到好像相關資訊的揭露那麼到底你們所講的我們跟民間企業的薪資差距是差多少倍?這個部分我希望就是
transcript.whisperx[312].start 8862.937
transcript.whisperx[312].end 8884.156
transcript.whisperx[312].text 這個之後可以請人事總處這裡提供給我們大家知道最好能夠在網路上面公開有嗎?有數據嗎?有有我這裡跟委員再報告一下現在高考三級的起薪大概53,520那普考大概41,000沒關係你說如果是以高考三級的話跟相當於民間的其他的哪個企業的什麼樣的比例
transcript.whisperx[313].start 8887.058
transcript.whisperx[313].end 8906.014
transcript.whisperx[313].text 因為我們reference是勞動部企業分民間受僱員工的好沒關係我想因為時間的關係好那就麻煩就是請你之後再提供書面資料給委員我在這裡我想要講的就是其實日本的公務最高人事機關人事院他們是每一年都會去針對
transcript.whisperx[314].start 8907.935
transcript.whisperx[314].end 8931.455
transcript.whisperx[314].text 這個全日本的這個1萬多家企業40、50萬的員工去做薪資調查那麼依照這個他們的所做的薪資調查再來回比我們目前的就是日本的公務員的薪資調查然後他們會每年都要定期的做檢討但是就這個部分來講的話我沒有看到人事總處是不是每年都有定期的做檢討那麼這個這個部分的話是
transcript.whisperx[315].start 8935.678
transcript.whisperx[315].end 8947.39
transcript.whisperx[315].text 也跟我們目前沒有法制化有關因為在我們的軍公教待遇審議委員會裡面看起來現在只是不定期的要去做調新的審議你們每一年都有做嗎?
transcript.whisperx[316].start 8948.593
transcript.whisperx[316].end 8970.488
transcript.whisperx[316].text 報告委員,事實上每一年在調薪的時候,它裡面的一個衡量指標就是政府部門跟民間代議的差距,這一部分我們都有做。是,可是因為這樣子的一個差距都沒有公開,所以至於讓大家也不知道就是說為什麼我們現在這個看到一般民間企業的薪水是不斷的調漲,主要是他們當然還有很多的
transcript.whisperx[317].start 8972.309
transcript.whisperx[317].end 8990.744
transcript.whisperx[317].text 這個額,年終獎金,等等。我們年終獎金,我們公務員、軍公教再怎麼努力,這個年終獎金,頂多也就是1.5個月。這個部分的話,就跟民間的企業員工,我覺得未來都要整體的、合併的一起來看。否則的話以現在這樣的情況下去,我們就算做再好的福利,其實也
transcript.whisperx[318].start 8991.465
transcript.whisperx[318].end 9018.259
transcript.whisperx[318].text 不為有年輕人想要來當公務員好那接下來我想請教人事長就是您認為軍公教三種職業工作內容的性質是一樣嗎完全都不一樣是的既然是完全不一樣而且我們也有這個不同的待遇條例那麼請問為什麼我們的軍公教待遇審議委員會卻要並在一起審議他明明就是不同性質的工作應該要分開來看
transcript.whisperx[319].start 9020.573
transcript.whisperx[319].end 9039.386
transcript.whisperx[319].text 事實上為什麼我們軍公教大議他會來自不同有國防部的代表然後也有教育部的代表是但是都只有一名好謝謝那我的意思是說依照現在法律裡面的規定的話他應該是行政院定之那麼行政院是不是應該成立不同的審議委員會來審議軍公教的待遇而不是合併在同一個審議委員會裡面來談
transcript.whisperx[320].start 9045.931
transcript.whisperx[320].end 9067.623
transcript.whisperx[320].text 好那接下來當然就今天委員其實還包含之前有委員有提到就是有關於軍公教待遇的條新審議一直沒有法制化那沒有法制化的問題我看你們在這次的預算解凍案裡面你們還是想說是未來要朝向法制化這明明就是一個簡單的事情我跟委員報告我們今年一定會法制化會完成法制化
transcript.whisperx[321].start 9069.284
transcript.whisperx[321].end 9084.234
transcript.whisperx[321].text 好,如果你們不完成的話我會幫你們提案。接下來還有一個問題就是有關於我們剛剛講的軍公教既然大家工作性質不一樣可是卻又適用同一套的奉典標準那麼請問有關於我們現在的這個奉表是由誰訂定的?
transcript.whisperx[322].start 9092.297
transcript.whisperx[322].end 9100.945
transcript.whisperx[322].text 奉表在就是我們那個就是那被送奉集法對奉集法我們這個奉表有多少年沒有調整過幾年上次我們現在的值等喔軍公教值等從1到14值等然後我們的奉點從160點到800點這個奉表有經過調整嗎
transcript.whisperx[323].start 9122.95
transcript.whisperx[323].end 9152.482
transcript.whisperx[323].text 我必須說因為這裡看起來是很久沒有調整那麼這個部分我也希望就是人事總處這裡回去可以研議接下來我們剛剛講的那個軍公教工作性質就不一樣所以不應該都適用同一套的文官的縫緊就是不應該適用單一的縫表它應該還是要有所區別還有就是說目前大家有討論現在的縫點結構到底合不合理
transcript.whisperx[324].start 9154.823
transcript.whisperx[324].end 9171.893
transcript.whisperx[324].text 從160點奉點到現在800點已經非常多年好像都是像這樣子的一個情況那還有就是奉點的折算額看起來這個部分是涉及到調薪的時候就會去檢討奉點折算額請問一下奉點折算額的部分是人事行政總處這裡會決定嗎?
transcript.whisperx[325].start 9175.239
transcript.whisperx[325].end 9181.421
transcript.whisperx[325].text 所以我認為說其實呢簡單來說如果我們今天希望能夠整體拉高軍公教的待遇
transcript.whisperx[326].start 9200.248
transcript.whisperx[326].end 9226.233
transcript.whisperx[326].text 一個非常簡單的做法也甚至不用這麼這個大幅的修法就是直接去調高奉典的折算額這個部分其實就可以解決這個問題那麼如果說我們還要回到就是說是要去討論各式各樣不同的家級還有給予獎勵等等的話這個其實又太複雜了好那最後呢我還想要請教一個問題是有關於育嬰價的問題育嬰那麼現在留職停薪
transcript.whisperx[327].start 9230.874
transcript.whisperx[327].end 9256.785
transcript.whisperx[327].text 預應留職停薪這個也是在你們這次計畫書裡面有講的你們也一直希望能夠提高預應留職停薪的這個發放的津貼然後來鼓勵這個公務員能夠多養育小孩可是我認為有一個嚴重的就是應該有一個結構性的問題就是因為你們的計算標準都是以本縫
transcript.whisperx[328].start 9259.149
transcript.whisperx[328].end 9275.059
transcript.whisperx[328].text 過去是本縫的6成然後前兩年因為配合行政院要落實0到6歲的這個子女國家養的這個政策所以有調高多2成現在是領本縫的8成但是本縫本身還是低壓
transcript.whisperx[329].start 9276.881
transcript.whisperx[329].end 9293.112
transcript.whisperx[329].text 的這個母數本身就是低那你再乘以八成他還是低所以我是建議就是說這個也是請人事長回去可以思考是不是未來有關於像育嬰留職停薪的今天應該要以他的全心
transcript.whisperx[330].start 9294.626
transcript.whisperx[330].end 9315.271
transcript.whisperx[330].text 來做考量以全新的7成或8成那這樣的話我覺得是真的可以幫助到養育子女的這個公務員同時我們現在的這個育嬰留庭是3歲子女3歲以下才可以請領既然行政院的政策是0到6歲國家養為什麼不提放寬
transcript.whisperx[331].start 9316.531
transcript.whisperx[331].end 9333.355
transcript.whisperx[331].text 可以申請的資格6歲以下只要家中有6歲以下的公務員都可以申請這個育嬰留職停薪的今天我跟委員簡單的說明一下就是公保法的限制啦公保法的規範就是本婚的以本婚為計算基準
transcript.whisperx[332].start 9335.676
transcript.whisperx[332].end 9354.582
transcript.whisperx[332].text 而且三足稅這些都在公保法如果委員剛才所指教的問題我們要去調整的話事實上沿途還是公保法你們要去做改所以要修法就是了對 公保法好 那就憲宜說你們可以往這方面去思考我們再把意見反映給情緒部好的 好的 謝謝謝謝翁委員 謝謝蘇委員事長接下來有請謝委員容屆諮詢
transcript.whisperx[333].start 9378.686
transcript.whisperx[333].end 9383.649
transcript.whisperx[333].text 主席我請林署長及李明樹的副署長請人事長跟陳副署長請委員老大老大
transcript.whisperx[334].start 9393.584
transcript.whisperx[334].end 9404.373
transcript.whisperx[334].text 您是說我在民國91年參政以來每一年從那年開始應該是差不多從那年開始國單位和這個立法機關有算 特有算就是依法你現在來數位法今天我們主席俄羅斯及伊蘊士報告有符合到19個標準
transcript.whisperx[335].start 9421.906
transcript.whisperx[335].end 9429.714
transcript.whisperx[335].text 若現在要AI化,經營越開越多,我相信這20多年,只有在全國所有的機關開在這裡,中間超過一百個新代表,包括要設備,硬貼、軟貼、硬貼,結果
transcript.whisperx[336].start 9446.437
transcript.whisperx[336].end 9454.101
transcript.whisperx[336].text 國安說那時候差不多把國機關報告就是說,可以選多少人就多少人。差不多地方也一樣、中央也一樣。不過現在看起來你人越來越多。林署長你看這是什麼原因?
transcript.whisperx[337].start 9469.202
transcript.whisperx[337].end 9491.437
transcript.whisperx[337].text 那有兩個部分啦因為說這個這二十幾天來我們新興的業務也蠻多的就是把既有的業務律動化把它自動化節省的時間移過去你講的那個不通啦對不對 業務多阿你如果要 如果要醫化 如果要數位化現在阿伯要AI化所有人都越來越多這就是一定在工族的過程中
transcript.whisperx[338].start 9496.567
transcript.whisperx[338].end 9505.851
transcript.whisperx[338].text 有出一個問題 你要去檢討啦 你不是跟我說我因為夾毛肚來錄製 所以我人沒辦法檢 錢要錄影錄製 你的那個數位法裡面有一個說 個資的涉牢啦 你一百塊錢 我覺得這是你的問題 還是做一個機關的問題 全國所有的公務人員的個資 我跟你講 拿錢去買買有捏 你知道這個事情嗎
transcript.whisperx[339].start 9524.919
transcript.whisperx[339].end 9530.507
transcript.whisperx[339].text 在民間啊,拿錢去買,可以買到公務員的個資啊,中華民國的公務人員,你知不知道有這個事情?
transcript.whisperx[340].start 9533.433
transcript.whisperx[340].end 9559.563
transcript.whisperx[340].text 之前媒體有報導過啦之前媒體有報導過這件事情一百萬八年啊那如果你現在又要搞這個那個立委員剛才講的那個是之前那個專屬部的資料用於委外的過程中有一些資料被流出去資安的問題大家都知道大家都怕人生我不要跟你講這個我現在要問你就是說我們的臨時領域這個你的我剛才跟你講那個你的帳戶一定要檢查
transcript.whisperx[341].start 9564.053
transcript.whisperx[341].end 9575.898
transcript.whisperx[341].text 那撈處理還有什麼什麼叫做主案你現在司法部你拿那麼多錢去你都沒在跟他合作誰人做誰人的對不對詐騙從源頭觀控還是一樣啊檢察官跟警察總要死結果抓你還要不要勤奮沒得緊檢察官說應該從源頭觀控你不知道那個補充說什麼
transcript.whisperx[342].start 9595.6
transcript.whisperx[342].end 9603.022
transcript.whisperx[342].text 他們有需要可以來找我說檢察官有需要可以來找他啦這不是動盲的不是什麼所以本市現在要說臨時臨員政府的臨時臨員及藥品的臨員就對了他們為什麼臨時的可以用到計劃為什麼藥品的不行
transcript.whisperx[343].start 9626.156
transcript.whisperx[343].end 9652.563
transcript.whisperx[343].text 訴用的法律是禁用的法律依據不一樣啦不是法律依據不一樣啦啊你若卡到事情的時候都是廣義公務人員貪污自罪條例要加重期刑的啊他若不遵守公務人員的保障委員機構的業聘人員他本身就是用公務人員服務法準用公務人員服務法的啊其實他就沒有公務人員的保障啊
transcript.whisperx[344].start 9654.625
transcript.whisperx[344].end 9665.548
transcript.whisperx[344].text 一代不分的保證都有啦當然不像正式的公務人員這樣啦他沒辦法做主管嘛我認為這個問題我領你我陪你討論啦包括那個競銷及公務人員為什麼不能做公費這個來我請那個署長一個來署長我拜日在陪議長探討討議外的這件事你知不知道
transcript.whisperx[345].start 9680.796
transcript.whisperx[345].end 9681.676
transcript.whisperx[345].text 你知道嗎?
transcript.whisperx[346].start 9681.676
transcript.whisperx[346].end 9683.437
transcript.whisperx[346].text 你知道嗎?
transcript.whisperx[347].start 9683.437
transcript.whisperx[347].end 9683.597
transcript.whisperx[347].text 你知道嗎?
transcript.whisperx[348].start 9683.597
transcript.whisperx[348].end 9685.217
transcript.whisperx[348].text 你知道嗎?
transcript.whisperx[349].start 9685.217
transcript.whisperx[349].end 9685.457
transcript.whisperx[349].text 你知道嗎?
transcript.whisperx[350].start 9685.457
transcript.whisperx[350].end 9685.937
transcript.whisperx[350].text 你知道嗎?
transcript.whisperx[351].start 9685.937
transcript.whisperx[351].end 9686.698
transcript.whisperx[351].text 你知道嗎?
transcript.whisperx[352].start 9686.698
transcript.whisperx[352].end 9689.318
transcript.whisperx[352].text 你知道嗎?
transcript.whisperx[353].start 9689.318
transcript.whisperx[353].end 9690.699
transcript.whisperx[353].text 你知道嗎?
transcript.whisperx[354].start 9690.699
transcript.whisperx[354].end 9690.959
transcript.whisperx[354].text 你知道嗎?
transcript.whisperx[355].start 9704.81
transcript.whisperx[355].end 9721.849
transcript.whisperx[355].text 你的進步只有這樣而已,難怪抓不住啊。八萬五、九萬、九萬五,難怪你抓不住啊。不應該你沒這麼進步捏。這所謂民意代表差不多,好多好少大家都有去接觸到,這種的進步啊。啊可能沒人提供給你?大黑宮嗎?
transcript.whisperx[356].start 9723.263
transcript.whisperx[356].end 9752.132
transcript.whisperx[356].text 還有啦,有多元項,比方說他就會到山區裡面,比方會去做一些砍伐山林珍貴木材的,還有也有一些是在那個...那是你們攜手抓到,我現在跟你講啦,我公開在這裡跟你拘捕啦,靠,那就抓不到了,你知不知道去工地,他不是來做黑工而已餒?
transcript.whisperx[357].start 9753.459
transcript.whisperx[357].end 9773.778
transcript.whisperx[357].text 他現在是當包工頭啊做老頭啦然後我們這些土木包的齁去跟營造廠報價比如說他今天要缺40個工我去報價一個人2800那你明天缺40個我給你帶過來你知不知道頭一我老的老頭
transcript.whisperx[358].start 9779.631
transcript.whisperx[358].end 9785.094
transcript.whisperx[358].text 二、審查及處理113年度中央政府總預算關於行政院人事服務數位轉型
transcript.whisperx[359].start 9798.825
transcript.whisperx[359].end 9810.907
transcript.whisperx[359].text 幾乎中大型工地、農莊屋、阿林、牡丹寮、寧哥、寧中澳、寧基地、門口、工地、工廠、大廠、各市、僱用、非法、
transcript.whisperx[360].start 9813.049
transcript.whisperx[360].end 9817.171
transcript.whisperx[360].text 你有耳紋嗎?有耳紋,不可以這樣,是你們人力不足
transcript.whisperx[361].start 9842.697
transcript.whisperx[361].end 9854.542
transcript.whisperx[361].text 有各種原因那我們還是再加強查詢主席你給我看這這麼明顯的東西你如果沒有解釋錯我是已經告訴你了是勞動補充說勞動補充說移民署的事情
transcript.whisperx[362].start 9859.381
transcript.whisperx[362].end 9884.327
transcript.whisperx[362].text 我們會積極來聯合警政署還有海巡各相關的機關來合力來把這個現象盡量的來查詢公共工程國家發包的公共工程裡面的工程也有這個現象
transcript.whisperx[363].start 9887.23
transcript.whisperx[363].end 9899.115
transcript.whisperx[363].text 逃逸外勞的帽套,穿一頓逃逸外勞去我們的公共工廠的工地裡面去保康貴。結果,我們在地的保障帽套拿不到因為怎樣?他比較兇,我們會比他貴。
transcript.whisperx[364].start 9907.008
transcript.whisperx[364].end 9917.435
transcript.whisperx[364].text 啊這會討厭我的老每天在你那裡講古典套都不扯扯說你抓到要發幾萬到幾萬啊我一半出四五十個三四十個來工地報到都抓不中副主長你看這樣會怎樣其實我們也積極在查緝啦像我們每年都至少我們有抓了兩三萬的這一些你們現在檢舉有沒有獎金檢舉還是有獎金獎金多少
transcript.whisperx[365].start 9936.032
transcript.whisperx[365].end 9945.455
transcript.whisperx[365].text 一般若借10個幾萬應該差不多2萬塊左右10個呢?一般若借10個借1個幾萬?1個1萬嗎?沒有沒有,沒有那麼多現在倒楣啊沒怪你借沒有?沒怪你借沒有?以前的借1個1萬呢?啊7個才5萬呢?一般的借7個5萬呢?啊現在呢?
transcript.whisperx[366].start 9967.272
transcript.whisperx[366].end 9967.572
transcript.whisperx[366].text 主席阿
transcript.whisperx[367].start 10000.233
transcript.whisperx[367].end 10023.149
transcript.whisperx[367].text 好啦,那我們就是請那個人事總跟副署長這邊就剛剛的質詢,可以私下再給我們回覆,謝謝。好,因為剛剛本來宣告要先休息,那目前呢,先讓副委員跟吳委員正的同意先對調,那我們先進行副總召的質詢後,再休息5分鐘。好,有請副總召。
transcript.whisperx[368].start 10032.117
transcript.whisperx[368].end 10043.189
transcript.whisperx[368].text 主席請人事長委員長人事長好請問一下現在我們這個全國
transcript.whisperx[369].start 10048.696
transcript.whisperx[369].end 10068.777
transcript.whisperx[369].text 教師工會聯合總會一直在對我們人事長條性的部分有表示很多的意見是不是撥個空啊這個人事長可以跟他們接見一下沒問題沒問題因為聽說他們找不到你
transcript.whisperx[370].start 10069.874
transcript.whisperx[370].end 10085.162
transcript.whisperx[370].text 我都在啊。委託本席是不是能夠請人事長打開扇門跟他們見個面。我想他們主要要跟人事長討論的問題,我先跟你卸題一下。
transcript.whisperx[371].start 10086.636
transcript.whisperx[371].end 10106.549
transcript.whisperx[371].text 就對於目前整體的調薪3個百分點可能對現在整體的物價上漲軍公交人員真的是有非常大的生活上的疑慮我們舉例來講現在我們
transcript.whisperx[372].start 10111.826
transcript.whisperx[372].end 10115.695
transcript.whisperx[372].text 整個這個物價指數來看整個物價指數來看我們
transcript.whisperx[373].start 10120.595
transcript.whisperx[373].end 10126.937
transcript.whisperx[373].text 110年4月份的時候指數是99.35然後到112年4月的時候兩年之間現在100到去年的4月是105.11那上漲了5.8百分之5.8但是呢我們現在調薪3%的話等於是變相讓我們的公務員生活得更加艱困
transcript.whisperx[374].start 10150.018
transcript.whisperx[374].end 10164.021
transcript.whisperx[374].text 少了2.8個百分點就是他加薪不是對他有獎勵還是對他能夠改善他的生活反而是追不上物價的上漲我想人事長這部分有什麼看法沒有
transcript.whisperx[375].start 10165.627
transcript.whisperx[375].end 10181.705
transcript.whisperx[375].text 我謝謝委員。事實上在上次的業務報告裡面也有提到請我們針對挑釁的部分去做法制化。事實上我們在法制化的研議的過程中,其中一種方式就是搭著那個CPI一起走。
transcript.whisperx[376].start 10182.225
transcript.whisperx[376].end 10206.5
transcript.whisperx[376].text 然後再加上整個政府財政的考量那事實上因為這個是我們幕僚單位初步擬了兩個方案到時候我們會邀請一些專家寫者還有一些民間的甚至委員所提的基層的公教人員大家一起來討論看看這樣的一個調整等於就是加CPI掛照會啦那個不只是這樣子
transcript.whisperx[377].start 10207.711
transcript.whisperx[377].end 10235.622
transcript.whisperx[377].text 我想這個人事長我們為什麼要來探討這個問題如果國家一流的人才這些大專院校的畢業生、碩博士生學校畢業以後他的選擇的方式未來就業的方式有非常多種士農工商嘛但是他如果考慮要優先到政府部門來服務的時候參加我們的高普考等等
transcript.whisperx[378].start 10236.923
transcript.whisperx[378].end 10258.734
transcript.whisperx[378].text 然後進入我們的政府如果優秀的這些大專院校的畢業生、碩博士生都願意來投考我們的政府單位一流的人才進入政府就會有一流的國家當大家都不願意進入政府的時候啊這個三流的政府三流人才進政府我們就是三流的國家所以要怎麼樣確保
transcript.whisperx[379].start 10261.411
transcript.whisperx[379].end 10284.934
transcript.whisperx[379].text 把最好的人才能夠為政府所網羅我想這是人事長啊你肩膀上責無旁貸的責任必須要這樣的誘因才會讓更多的優秀的這些青年學子這些人才願意走向政府我們看一下一些比較強大的國家他一流人才都比較願意進入政府
transcript.whisperx[380].start 10286.693
transcript.whisperx[380].end 10305.732
transcript.whisperx[380].text 所以是不是我們看一下蔡總統過去對於基層勞工的部分他不是說要照顧基層勞工不只要民生物價的指數還要參考這個我們的GDP的漲幅的二分之一
transcript.whisperx[381].start 10306.638
transcript.whisperx[381].end 10329.066
transcript.whisperx[381].text 那如果這樣子算起來的話真的是差很多就是說蔡總統確實有照顧他的方向是要對我們繼承的勞工能夠有所多所幫助但是我們回想緩頭過來思考那對我們的軍公教反而是次要的甚至是不必要關注的
transcript.whisperx[382].start 10330.885
transcript.whisperx[382].end 10357.126
transcript.whisperx[382].text 人事長有什麼想法?事實上我們過去這幾年事實上我們很在乎到公部門來服務第一個除了待遇要好然後福利也要不差另外還有一個事實上很多人選擇到公部門服務就是因為他要去有一些成就感的問題因為在公部門服務事實上可以幫整個國家社會做更多的事情
transcript.whisperx[383].start 10357.566
transcript.whisperx[383].end 10386.465
transcript.whisperx[383].text 那剛才委員指教的就是說除了CPI以外事實上我們之前我們憑良的也有考慮到整個經濟成長力還有那個GDP相關的指標那我覺得這些事實上這個我們現在是朝兩個方式去找一個公式把它算進來因為整個國家的經濟成長力好事實上公務人員他的貢獻度也是有的我覺得委員的一個建議事實上非常的棒謝謝人事長
transcript.whisperx[384].start 10388.007
transcript.whisperx[384].end 10388.207
transcript.whisperx[384].text 議員主席
transcript.whisperx[385].start 10409.192
transcript.whisperx[385].end 10428.046
transcript.whisperx[385].text 本席已經提到了,物價指數是5.8個百分點,兩年當中上升了5.8個百分點,但是我們調薪3%等於我們變相的可扣他們,1.8個百分點。那我們再過來再看,如果是用這個民生物價指數來看的話
transcript.whisperx[386].start 10429.571
transcript.whisperx[386].end 10431.292
transcript.whisperx[386].text 總共上漲12個百分點。如果我們只調4%,他們真的很難生活,差了8個百分點。
transcript.whisperx[387].start 10448.539
transcript.whisperx[387].end 10473.453
transcript.whisperx[387].text 所以如果我們的計算公式已經失真失靈沒有辦法確實反映到現在的生活物價水平還有民生的必需品這些生活水平真的以後我們公交人員真的不是鐵飯碗是拿一個破飯碗要出去要飯那請問這樣子還有什麼樣的優秀的人才願意進入政府部門
transcript.whisperx[388].start 10474.983
transcript.whisperx[388].end 10496.339
transcript.whisperx[388].text 所以本席今天提出以後我謝謝我謝謝這個人事長竟然有正面來回應希望你們新的試算的公式要盡快提出來不然哪全國軍公教有太多的團體會一一到這個人事總處這裡來拜訪因為他們沒有辦法再過生活尤其去年政府超收了3860億超收了這麼多錢
transcript.whisperx[389].start 10501.089
transcript.whisperx[389].end 10528.749
transcript.whisperx[389].text 但是我們軍公教育人員一樣要過窮苦人的生活這個對他們是不公平的所以人事長本席就禁扣您看有什麼樣的什麼樣的這個新的辦法能夠提供出來讓我們大家一起來討論那另外就是不要急後面還有兩分鐘不要急那個我們眾嘉賓
transcript.whisperx[390].start 10529.744
transcript.whisperx[390].end 10557.458
transcript.whisperx[390].text 主席真的是人才,我聽他諮詢過很多次,真的是人才。可現在這裡我要特別要跟這個人事長來分析一下,現在這個公務員這個異化的課程啊,怎麼會把轉型正義也納進去。我覺得這個已經確實很不必要做這樣的一個事情。這個尤其你們這個科目啊,
transcript.whisperx[391].start 10559.135
transcript.whisperx[391].end 10588.047
transcript.whisperx[391].text 這個科目啊你們這個20小時裡面啊10個小時要在網路上來看其實基層的公務員大家都知道嘛要掛線10個小時還在做其他的事情也沒有人在看螢幕啦這個已經現在是一個通亂了你要我連上網10個小時確實我就上網了然後我再辦其他的公務也沒有人在看那20個小時還要其他上其他的課程
transcript.whisperx[392].start 10588.88
transcript.whisperx[392].end 10615.192
transcript.whisperx[392].text 是不是這個已經過分的僵化沒有實質的意義是不是自由報名參加會更加的會更加的適合您思考因為這樣得為基層的這些公務員又聽證他們的困擾聽證他們的困擾而且大家也知道嘛在這個過程當中我們今年我們政府有這麼多各自的外線包括
transcript.whisperx[393].start 10616.863
transcript.whisperx[393].end 10625.925
transcript.whisperx[393].text 2018年4月臺北市政府298萬筆的個資洩漏全區部2019年6月59萬筆的個資洩漏內政部2020年的10月21號、10月25號總共不得了5000多萬筆的資料外寫所以我們現在還要再搞這個議案然後叫公務員已經這麼多的工作的情況之下他們還要搞這個另外拜託
transcript.whisperx[394].start 10645.729
transcript.whisperx[394].end 10666.435
transcript.whisperx[394].text 轉型正義不要再鬧了好不好這個課程是誰逼你一定要排的你告訴本席本席來幫你平反也沒有關係好不好什麼找楊翠這些真的沒有必要嘛好不好公務員怎麼提升他的工作效率不是比較重要不要又把意識形態搞到公務體系來嘛
transcript.whisperx[395].start 10668.256
transcript.whisperx[395].end 10683.753
transcript.whisperx[395].text 對嗎?本身來覺得這個人事長你比較沒有這個正式色彩。怎麼搞得這麼有爭議的課程?對不對?又找了這些,哇這不得了,這個講話都很血腥的齁。哇這個不得了,叫做什麼?
transcript.whisperx[396].start 10685.235
transcript.whisperx[396].end 10713.025
transcript.whisperx[396].text 這個哇這個楊翠啊哇這個講的話哇都是說啊什麼沾滿血腥的這個國民黨怎麼樣怎麼樣怎麼樣還可以發言什麼欸不要把這些仇恨值啊帶給我們的公務員讓他們有一個真正行政中立的空間好不好好這課程是不是考慮就把他減免了好不好呃呃謝謝委員只叫我們會跟行政院人選及轉型正義處來反映這樣的事情不是啊
transcript.whisperx[397].start 10713.888
transcript.whisperx[397].end 10736.868
transcript.whisperx[397].text 我們不反對出轉會要做什麼事情愛聽他的課了到出轉會自己去聽但是人事總處不要強制性做這個工作好,我們來處理愛聽的人去沒有關係但不要強制好不好好,謝謝好,謝謝副總召謝謝蘇人事長我們1000天前宣告休息5分鐘
transcript.whisperx[398].start 10742.79
transcript.whisperx[398].end 10771.527
transcript.whisperx[398].text 議員議員議員議員議員
transcript.whisperx[399].start 10783.234
transcript.whisperx[399].end 10795.452
transcript.whisperx[399].text 議員議員議員
transcript.whisperx[400].start 10805.111
transcript.whisperx[400].end 10823.968
transcript.whisperx[400].text 議員議員議員議員議員
transcript.whisperx[401].start 10825.213
transcript.whisperx[401].end 10844.684
transcript.whisperx[401].text 議員議員議員議員議員
transcript.whisperx[402].start 10844.684
transcript.whisperx[402].end 10858.285
transcript.whisperx[402].text 議員議員議員議員
transcript.whisperx[403].start 11044.389
transcript.whisperx[403].end 11066.758
transcript.whisperx[403].text 現在繼續開會請吳委員中信進行詢答麻煩請人事長有請人事長吳委員早早安我想請教一下就是因為最近那個勞動部他有一個小規模以日來計算這個育嬰假五日那個開放申請
transcript.whisperx[404].start 11068.035
transcript.whisperx[404].end 11073.497
transcript.whisperx[404].text 公務員男女比例以及高階公務員男女比例目前還是有一個差距在男女上面
transcript.whisperx[405].start 11094.024
transcript.whisperx[405].end 11113.916
transcript.whisperx[405].text 包括到這個部分我覺得性平是我們努力的方向所以將來性平這一塊他可能會反映到公務員的男女比例上面是不是將來會越拉越近另外還有一個可能跟公務員有關男女比例的部分就是我今天想要談的就是育嬰價的申請
transcript.whisperx[406].start 11116.121
transcript.whisperx[406].end 11134.497
transcript.whisperx[406].text 好那我想請問一下齁人事長你可不可以簡單的說明一下目前育嬰留職停薪這個制度現在辦理的狀況怎麼樣我我我這裡跟委員報告一下就公務員他如果有養育三足歲以下的子女都可以以日
transcript.whisperx[407].start 11136.092
transcript.whisperx[407].end 11151.186
transcript.whisperx[407].text 業、年、為、單位沒有次數的限制。過去這段時間來大概有一次申請三個月以上大概八成多啦。有大概兩成左右是未達三個月因為大家的輸給沒夠嘛。
transcript.whisperx[408].start 11153.809
transcript.whisperx[408].end 11168.328
transcript.whisperx[408].text 大概3個月以上大概有8層到8層5那剩下大概15%到20是屬於一次申請3個月以下可是他可以選擇以日為單位、月或年就是3回以下都可以都可以這樣請
transcript.whisperx[409].start 11169.769
transcript.whisperx[409].end 11195.317
transcript.whisperx[409].text 另外,剛才有說男女異嬰流子停薪的問題齁。蓋大生前幾年坦白講,男性請異嬰流停的比較少。最近他成長的幅度非常非常的快。他現在已經大概男性請異嬰流停,他的比率已經差不多18%。女性大概82%。他本來大概5%左右,他的成長速度非常的快。
transcript.whisperx[410].start 11196.057
transcript.whisperx[410].end 11206.43
transcript.whisperx[410].text 這幾年男性請議員留庭的還蠻多的而且我們這幾年有做一個制度夫妻可以同時請議員留庭的女兒都可以做主委請有做這個條件
transcript.whisperx[411].start 11210.201
transcript.whisperx[411].end 11238.9
transcript.whisperx[411].text 這個是已經通過的嗎?已經通過了目前就是這樣實施的好那謝謝那我們看一下就是現在的比例從107年到112年當然我們看到就是107年男女申請留庭的這個比例他的差距本來是從72.8然後到現在剩下56.8也就是說這個比例確實就如同剛剛任市長說的他的這個差距確實在縮小中
transcript.whisperx[412].start 11239.941
transcript.whisperx[412].end 11268.851
transcript.whisperx[412].text 那我覺得這是一個好現象那我也覺得說請教一下你們有沒有去研究一下為什麼這男女比會差這麼多我傳統的因為孩子還有親戚的問題女性去照顧可能會比較方便當然他們也有透過其他的方式大概每一個人他考慮的一個情況不一樣
transcript.whisperx[413].start 11269.991
transcript.whisperx[413].end 11296.22
transcript.whisperx[413].text 最近我們在觀察就男性事實上他覺得在夫妻之間他們有一個協調就是有可能他們兩個工作場合不一樣工作場合有可能是公家一個可能是私人機關有可能兩個都是公家機關他的樣態也是還蠻多元的不過假如有希望我們再試著去做進一步的分析我們再進一步去調查一下
transcript.whisperx[414].start 11298.081
transcript.whisperx[414].end 11316.502
transcript.whisperx[414].text 因為這有一個可能性啦就是說因為我上次跟人事長有請教過這高階公務員他的男女比例有差距那一樣在申請留庭的時候我想每一個家庭除了考量到剛剛那個人事長說的那個餵養的問題之外當然有一個可能性就是也許是薪資嘛
transcript.whisperx[415].start 11317.603
transcript.whisperx[415].end 11341.875
transcript.whisperx[415].text 高階公務員男性的比例就是比較高當然他們在考量薪資的時候當然會選擇薪資比較低的那個去申請留職聽薪我想請問一下包含到上一次我跟您請教的問題到這一次有關留職聽薪你有沒有想過這個差距有沒有去做過相關的關聯性分析
transcript.whisperx[416].start 11343.939
transcript.whisperx[416].end 11372.061
transcript.whisperx[416].text 相關關聯性齁其實討論委員講的就是我的待遇可能比較高所以我就留著工作待遇比較低的因為另外有一種現象我可能跟委員稍微說明一下因為每一個你信的目前在行政指的會比較多他的配基本上會比較低你如果是屬於工程直系的或其他直系的他的配會比較高基本上他夫妻同時
transcript.whisperx[417].start 11372.822
transcript.whisperx[417].end 11394.297
transcript.whisperx[417].text 有,這一種情況會有兩種選擇一種是夫妻同時就請一因留庭就處理,這就會夠嘛吼,這樣負擔還不會那麼重另外一個就是說,為了,雖然我們有本奉的八成的一個補助,但是說這個一個家庭的位置,他們的算帳的,覺得比較晚,就有可能什麼人的債券比較貴,那些會流開
transcript.whisperx[418].start 11399.895
transcript.whisperx[418].end 11419.208
transcript.whisperx[418].text 也不見得都是男性的待遇會比較高因為我們最近發現有些女性同仁的待遇事實上也不見得比男性差所以這部分我就說是不是可以去做一個關聯性分析到底問題出在哪裡當然我們直覺就覺得有一個像您剛說的餵養問題那我剛說的
transcript.whisperx[419].start 11421.429
transcript.whisperx[419].end 11421.649
transcript.whisperx[419].text 高階的一般
transcript.whisperx[420].start 11449.063
transcript.whisperx[420].end 11449.083
transcript.whisperx[420].text 對啦
transcript.whisperx[421].start 11471.756
transcript.whisperx[421].end 11499.869
transcript.whisperx[421].text 沒有啦,有機會我再告訴你我我會回去做那個關聯性分析啦我覺得這個議題也非常棒啊這個議題非常棒對就是我想說我們就是做一個對國家有幫助的這個調查一下好那我後面再跟你請教一個問題就是這個AI到時候這個接下來我們可以預期到AI可能會一個爆炸性的成長那這個AI將來爆炸性成長之後我們公務員對於人力上面
transcript.whisperx[422].start 11500.709
transcript.whisperx[422].end 11513.66
transcript.whisperx[422].text 你們有沒有去預想將來這能力上面的這個衝擊你們會怎麼做?這沒分 其實齁我們就是人工智慧事實上就是看你怎麼用
transcript.whisperx[423].start 11514.69
transcript.whisperx[423].end 11536.645
transcript.whisperx[423].text 主要就看你贏當然他會有很多的一個負面的一個impact他會有衝擊嘛我舉人種為例啦就上一年上一年二月的時候就前年年底CHIP GPT剛出來我們上一年年底上一年二月份我們就啟動一個CHIP GPT的一個實驗型的計畫
transcript.whisperx[424].start 11537.586
transcript.whisperx[424].end 11566.882
transcript.whisperx[424].text 我們就是跟前續部保訓會考選部他們有一些法規還有一些事例我們把這些人事法規的部分把它等於透過CHAP GPT因為我們進步到的問題很多新進的人事人員進來他人事法規他也不曉得要如何去查如何去查到對的法規所以我們有去做這樣的一個實驗大概從準確率大概六成慢慢拉到大概八成左右
transcript.whisperx[425].start 11567.262
transcript.whisperx[425].end 11573.507
transcript.whisperx[425].text 因為人工智慧本來一直要對話不過這裡我必須要跟委員報告一件事情
transcript.whisperx[426].start 11574.853
transcript.whisperx[426].end 11599.33
transcript.whisperx[426].text 我們不是在雲端的一個處理模式,我們是在地端。我們是把那個資料download到地端,因為我們也擔心在雲端的話,CFGPD有時候他去抓的資料,他的正確性往後會降低,因為他是一個cost domain的概念,所以我們是用地端。就上一年12月底,我們也有對外發表了一個使用的心得。
transcript.whisperx[427].start 11599.77
transcript.whisperx[427].end 11614.679
transcript.whisperx[427].text 那我想我們會持續在其他領域像今年我們會啟動一個計劃就是來試做那個會議記錄當我開完會了以後我透過CHAPGPD可以在最短的時間把那個會議記錄把它產生出來那我為什麼提到這個AI
transcript.whisperx[428].start 11616.34
transcript.whisperx[428].end 11634.994
transcript.whisperx[428].text 那個風行之後可能對這個人事有很大影響就是我們公務員不管負擔過重或負擔過輕都不是人民能夠接受的好那我就有個例子就是美國那個新墨西哥州政府他有一個嬰兒機器人的自動程序他把以前需要一個月的
transcript.whisperx[429].start 11635.973
transcript.whisperx[429].end 11635.993
transcript.whisperx[429].text 公務員復單
transcript.whisperx[430].start 11660.249
transcript.whisperx[430].end 11672.031
transcript.whisperx[430].text 過重或過輕人民都沒有辦法接受我們一個最適當的那個人力運用是最好的好好謝謝謝謝謝謝謝謝吳昭偉謝謝蘇仁次長接下來有請政委員天才資訊好我們請政委員天才
transcript.whisperx[431].start 11693.767
transcript.whisperx[431].end 11714.376
transcript.whisperx[431].text 主席,各位委員,有請人事長。委員長,人事長好,辛苦了。看這個,我已經不只一次提了這個蔡總統的一個原住民族就業的政策,現在已經這個快8年了。
transcript.whisperx[432].start 11715.458
transcript.whisperx[432].end 11733.822
transcript.whisperx[432].text 要保障上萬新的工作機會開創永續的原住民族經濟發展政府要負擔保障原住民就業之責人事行政總處就是其中之一公務令特種考試很久很久了已經幾十年了
transcript.whisperx[433].start 11742.844
transcript.whisperx[433].end 11764.177
transcript.whisperx[433].text 我們看這個嚴明特考這幾年了逐年減少這個入企人數更是逐年減少如果我們去相較於這個107年107年這是一個當時的一個考試規則好尤其是民國95年民國95年的
transcript.whisperx[434].start 11774.023
transcript.whisperx[434].end 11801.155
transcript.whisperx[434].text 公務人員民特考的副表10這個副表現在已經沒有了當時為什麼要特別要把這個列出來的你看看當時有列在這個表裡面的有司法院他會禁用員住民特考內政部、教育部、交通部、法務部、財政部、經濟部、外交部、衛生福利部
transcript.whisperx[435].start 11803.097
transcript.whisperx[435].end 11821.608
transcript.whisperx[435].text 農委會、勞動部、僑委會、人事行政總處、主計總處、海巡署、退府會、文化部、各縣市政府。所以當時中央各部會都會禁用
transcript.whisperx[436].start 11823.247
transcript.whisperx[436].end 11852.01
transcript.whisperx[436].text 這個之前我質詢過人事行政總處有一年有禁用後來又沒有禁用這幾年有禁用嗎?有有我們現在有有從燕民會挖了一個非常優秀的原住民同仁過來不是我講的是特考不是不是沒有對啊之前有喔有列喔所以這個部落是這樣
transcript.whisperx[437].start 11853.806
transcript.whisperx[437].end 11862.894
transcript.whisperx[437].text 由我們就以這個園民會的人事室來講啊過去人事室主任是原住民哦而且是
transcript.whisperx[438].start 11864.002
transcript.whisperx[438].end 11892.221
transcript.whisperx[438].text 超原住民族里面人口最少的少族去擔任主任喔那個都是在神府時代啊所培養的透過原住民行政特考所培養出來的現在他退休很多年了我跟委員補充一下齁人總今年沒有提原住民的特考可是我們整個人事體系的總共提了3位3位有提3位這個一條邊3位是太少了齁
transcript.whisperx[439].start 11893.61
transcript.whisperx[439].end 11920.007
transcript.whisperx[439].text 所以這個部會再加獎啦會再加獎對不只是要這樣因為所有各部會要提報有兩個管道嘛以中央部會來講一個你要都是人事單位啊人事室人事處在負責的嘛都是你一條邊的他要提報到高考補考
transcript.whisperx[440].start 11921.383
transcript.whisperx[440].end 11940.402
transcript.whisperx[440].text 還是要提報到原住民族行政特考就是人事單位在負責所以這個部分要去協調為什麼要特別列這個就是這幾年各部會都不提當時你們想想看連外交部都提喲僑委會都提喲
transcript.whisperx[441].start 11942.466
transcript.whisperx[441].end 11963.234
transcript.whisperx[441].text 議員議員議員議員議員
transcript.whisperx[442].start 11963.916
transcript.whisperx[442].end 11975.128
transcript.whisperx[442].text 議員議員議員議員
transcript.whisperx[443].start 11975.362
transcript.whisperx[443].end 11977.903
transcript.whisperx[443].text 接下來這個博物館
transcript.whisperx[444].start 12004.184
transcript.whisperx[444].end 12017.475
transcript.whisperx[444].text 原住民族博物館原住民族已經等待超過8年以上了那因為時間的關係我就不不繼續一個一個來談我就看最後一個部分這個
transcript.whisperx[445].start 12024.757
transcript.whisperx[445].end 12050.543
transcript.whisperx[445].text 有一個文號就是說這個顏名會顏名會有含報給這個國發會就是有關原住民族博物館的一個籌備處籌備處的這個你們到現在還沒有寫同意是不是可以請人事行政總處這邊來支持就是原住民族博物館的籌備處
transcript.whisperx[446].start 12058.942
transcript.whisperx[446].end 12076.442
transcript.whisperx[446].text 我們在今年的2月2號的時候監察院有約詢那我們有請園民會提供一些相關的資料我們會盡力來支持因為111年的時候園民會有答覆就是說他們有提報這個
transcript.whisperx[447].start 12080.064
transcript.whisperx[447].end 12104.516
transcript.whisperx[447].text 這個國立原住民族博物館籌備處的暫行組織規程報給行政院,行政院交給人事行政總處這個部分要積極的來處理好,謝謝委員主動請那個顏明輝再提報一次好不好,好,謝謝好,謝謝,那我們接下來請油耗委員油耗委員油耗委員
transcript.whisperx[448].start 12107.441
transcript.whisperx[448].end 12109.763
transcript.whisperx[448].text 蘇清泉委員楊瓊英委員鄭振淺委員林德福委員
transcript.whisperx[449].start 12137.827
transcript.whisperx[449].end 12158.345
transcript.whisperx[449].text 現在目前所有登記發言的委員都已經發言完畢那詢答結束委員詢問的時候如果諮詢的時候如果有要求提供相關資料或以書面答覆的請相關資料緊速交給各個委員或本會那現在休息後我們再繼續處理預算解凍案
transcript.whisperx[450].start 12322.291
transcript.whisperx[450].end 12326.102
transcript.whisperx[450].text 因為我們在等候人數那與預算解凍案無關的機關代表可先行離席
transcript.whisperx[451].start 12359.608
transcript.whisperx[451].end 12377.915
transcript.whisperx[451].text 繼續開會進行議程所列預算解凍案再次說明因報告事項第4案之預算解凍案經昨日院會覆議所以該案不予處理處理前先請議事人員宣讀報告事項除第4案以外的個案及討論事項之預算解凍案請一併宣讀
transcript.whisperx[452].start 12380.345
transcript.whisperx[452].end 12397.419
transcript.whisperx[452].text 報告事項第3案、第5案至第9案。行政院人事行政總處含為113年度中央政府總預算決議、檢送決議一基本行政工作維持預算凍結200萬元書面報告、檢送決議三公教人員婚喪生育及子女教育補助預算凍結200萬元書面報告、
transcript.whisperx[453].start 12399.241
transcript.whisperx[453].end 12406.464
transcript.whisperx[453].text 檢送決議51人事行政制政策規劃執行及發展預算凍結30萬元書面報告檢送決議53人事行政制政策規劃執行及發展預算凍結20萬元書面報告檢送決議54給予福利制度規劃預算凍結75000元書面報告檢送公務人力發展學院決議1
transcript.whisperx[454].start 12424.591
transcript.whisperx[454].end 12433.982
transcript.whisperx[454].text 訓練、輔導及研究預算凍結300萬元書面報告請查招案等6案.討論事項.行政院人事行政總處含為113年度中央政府總預算決議減送決議52人事行政制政策規劃執行及發展預算凍結30萬元書面報告請查招案。宣讀完畢。
transcript.whisperx[455].start 12447.571
transcript.whisperx[455].end 12472.751
transcript.whisperx[455].text 好現在進行報告事項先處理報告事項中第4案以外之個案那有關人事行政院人事行政總處及所屬113年度預算解凍書面報告案既以列入議程報告並經宣讀那我們做如下決定報告事項第3案第5至9案經准予備查提報院會
transcript.whisperx[456].start 12473.902
transcript.whisperx[456].end 12495.084
transcript.whisperx[456].text OK好那麼如意那我們就通過那接下來呢我們啊?你是報告事項嗎?我也想報告事項不是不是報告事項好是報告事項嗎?我沒有報告事項第三案第5至第9案好來請來翁委員
transcript.whisperx[457].start 12497.677
transcript.whisperx[457].end 12524.002
transcript.whisperx[457].text 因為我剛剛有提到就是希望人事總處這邊可以檢討有關於育嬰留職停薪的這個縫額的部分然後是不是可以從本縫然後提高到就是以全薪那麼相關的法制延期希望我們會洽主管機關我們會洽主管機關來好然後還有剛剛講的那個第三案就是軍公教條軍公教的抱歉
transcript.whisperx[458].start 12536.465
transcript.whisperx[458].end 12557.336
transcript.whisperx[458].text 就是軍公教待遇審議法制化因為你們都一直沒有提所以也希望你們我們已經有答應會提出來你到底又會提出來了對對對我們也有答應今天會提還有就是也請你們是不是應該要
transcript.whisperx[459].start 12560.902
transcript.whisperx[459].end 12581.469
transcript.whisperx[459].text 提供跟民間企業員工的薪資研究報告要調查所以你們每一年都有做但是你們自己也要做啊你們為什麼從勞動部做因為勞動部是勞動部的角度
transcript.whisperx[460].start 12596.086
transcript.whisperx[460].end 12612.076
transcript.whisperx[460].text 可是我認為比較基礎還是不太一樣所以我希望說以後你們自己也要去做study因為像日本的話他們就是自己的這個日本的人事院他們自己會去做一份
transcript.whisperx[461].start 12613.297
transcript.whisperx[461].end 12640.169
transcript.whisperx[461].text 然後而且他的我們現在這個勞工的薪資他的range很廣我覺得你們還是要去參考就符合我們現在軍公教的一些職等還有他的職務的性質到相近的委員你現在提的後段的這個部分就是本身我們就在做可是以我們跟勞動部的分工整個民間薪資的是以勞動部的調查為主然後再Reference到公務機關
transcript.whisperx[462].start 12641.69
transcript.whisperx[462].end 12653.681
transcript.whisperx[462].text 事實上這個是部會之間合作因為像主計總處他會去做他的相關的那一種統計每一種就是物價的這些是每一個部會之間的一個分工的問題好那你們可以你們大概是每年什麼時候會做呢
transcript.whisperx[463].start 12662.867
transcript.whisperx[463].end 12681.27
transcript.whisperx[463].text 基本上會在5月到7月之間我們在調代的時候這些資料都要完成因為沒有這個資料我們就調代的一些參考資料就沒有嘛所以我們在基本上會在5月左右就會把這些資料收集好
transcript.whisperx[464].start 12683.198
transcript.whisperx[464].end 12693.889
transcript.whisperx[464].text 總之就是說希望你們在最近的這一個月可以把你們過去所做的所有的跟民間企業的薪資的調整比較
transcript.whisperx[465].start 12695.151
transcript.whisperx[465].end 12712.467
transcript.whisperx[465].text 民間薪資的部分我想過去這3年的資料我們會後再送給委員參考重要的是說你們自己那個薪資條審議委員會裡面你們怎麼去看待這個事情你們總是有個study嗎沒有嗎或是你們參考了之後的結論這些
transcript.whisperx[466].start 12716.096
transcript.whisperx[466].end 12742.8
transcript.whisperx[466].text 說明都必須要這些會議的我跟委員報告就是我們現在的是被從這五個五大因素加去衡量的可是你現在這些衡量是很抽象的所以我是想因為我們是幕僚去做一個建議然後final決定還是在行政院我們是事實上是做幕僚分析而已
transcript.whisperx[467].start 12745.677
transcript.whisperx[467].end 12770.944
transcript.whisperx[467].text 好那你們也把你們的目標分析的報告你們會議的結果這些都要提送而且這個部分都是要趕快去研擬相關的這個規範要看它提升法律慰藉因為現在只是要點至少要拉伸到行政要訂定法規命令對必要的時候我都認為說應該要比照像是這個基本工資法現在叫最低工資法
transcript.whisperx[468].start 12771.744
transcript.whisperx[468].end 12783.132
transcript.whisperx[468].text 我跟委員報告這個就是我們答應年底要法制化這裏面都會把它include進來年底法制化的意思是說是年底之前才提出草案嗎?
transcript.whisperx[469].start 12794.68
transcript.whisperx[469].end 12802.825
transcript.whisperx[469].text 太慢了吧不會啦,不會到年底啦我們最近會密集召開一些會議對,那我們這樣的話你們的案子等到6月之後我跟委員報告因為還要會商組總相關單位還有前序部因為這個還要牽涉到跨院的一些協調的問題過去這麼多年來你們都沒有協調嗎?
transcript.whisperx[470].start 12822.967
transcript.whisperx[470].end 12836.472
transcript.whisperx[470].text 每一次的改變都要重新協調一次因為有一些條件值都不一樣以前是否制度化我們現在是要法制化考慮的文字的用詞各方面大家的共識度要更高
transcript.whisperx[471].start 12837.145
transcript.whisperx[471].end 12840.466
transcript.whisperx[471].text 我們會盡快,我們會盡快三個月應該沒辦法因為我們之前有盤了因為還要召開相關利益團體也要進來大家一起討論也不是我們公部門就基層公教人員啊
transcript.whisperx[472].start 12860.412
transcript.whisperx[472].end 12882.383
transcript.whisperx[472].text 欸就是要納進來因為我覺得他們的意見也非常重要啊所以要納進來所以我們必須要有比較長的一個溝通時間其實我認為三個月的時間差不多應該是夠的啦實務上我們事實上有困難三個月之後我們來看然後你們所提的因為這個部分之前已經累積了很多的草案的
transcript.whisperx[473].start 12883.755
transcript.whisperx[473].end 12910.602
transcript.whisperx[473].text 的已經累積了很多不同的草案,你們稍微再修正一下就可以提了啊。這是修正的弧度會很...現在的環境也沒有太多的改變。這樣好不好,我們人總這邊,因為你們今天是這個書面報告的一個提出,那翁委員對這個書面報告的內容希望你們能夠提出更進一步的說明,那三個月內我想是你們再給一個書面補充給翁委員的,針對翁委員所要的內容給他,好不好?好,謝謝翁委員。
transcript.whisperx[474].start 12912.571
transcript.whisperx[474].end 12939.011
transcript.whisperx[474].text 好,那麼報告事項各案是否就依先前宣告准予被查提報院會好,謝謝好,那麼接下來我們進行討論事項那討論事項一案行政院人事行政總處113年度預算解凍案前以一併宣讀請問各位委員有沒有異議好,如果沒有異議我們就做如下決議那准予動之提報院會
transcript.whisperx[475].start 12941.889
transcript.whisperx[475].end 12946.119
transcript.whisperx[475].text 好,議程所列事項均已處理完畢,會議到此結束,現在散會,謝謝大家。