iVOD / 157316

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/fc78d56ce4a6375237834bb4711a257b5f16e2c62e3913b464aaf8aafe3010ccbfc666046cd716335ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林淑芬
委員發言時間 10:58:28 - 11:22:53
影片長度 1465
會議時間 2024-11-21T09:00:00+08:00
會議名稱 立法院第11屆第2會期社會福利及衛生環境委員會第10次全體委員會議(事由:審查中華民國114年度中央政府總預算案關於衛生福利部主管預算(公務預算及基金)。(僅詢答,113年12月6日下午5時截止收案))
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 6.49409375
transcript.pyannote[0].end 7.20284375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 7.84409375
transcript.pyannote[1].end 8.14784375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 8.23221875
transcript.pyannote[2].end 9.02534375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 9.88596875
transcript.pyannote[3].end 10.51034375
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 11.03346875
transcript.pyannote[4].end 14.57721875
transcript.pyannote[5].speaker SPEAKER_05
transcript.pyannote[5].start 20.02784375
transcript.pyannote[5].end 20.53409375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 21.09096875
transcript.pyannote[6].end 27.85784375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 27.85784375
transcript.pyannote[7].end 28.12784375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 28.12784375
transcript.pyannote[8].end 50.18346875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 50.57159375
transcript.pyannote[9].end 62.92409375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 63.22784375
transcript.pyannote[10].end 73.40346875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 73.80846875
transcript.pyannote[11].end 83.52846875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 83.52846875
transcript.pyannote[12].end 83.86596875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 84.50721875
transcript.pyannote[13].end 86.48159375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 86.78534375
transcript.pyannote[14].end 87.79784375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 88.25346875
transcript.pyannote[15].end 106.52909375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 106.79909375
transcript.pyannote[16].end 108.30096875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 108.36846875
transcript.pyannote[17].end 111.25409375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 111.70971875
transcript.pyannote[18].end 113.85284375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 114.71346875
transcript.pyannote[19].end 118.72971875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 119.10096875
transcript.pyannote[20].end 120.61971875
transcript.pyannote[21].speaker SPEAKER_05
transcript.pyannote[21].start 122.07096875
transcript.pyannote[21].end 126.61034375
transcript.pyannote[22].speaker SPEAKER_05
transcript.pyannote[22].start 126.84659375
transcript.pyannote[22].end 132.01034375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 131.89221875
transcript.pyannote[23].end 132.36471875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 133.14096875
transcript.pyannote[24].end 136.61721875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 136.75221875
transcript.pyannote[25].end 142.05096875
transcript.pyannote[26].speaker SPEAKER_05
transcript.pyannote[26].start 143.85659375
transcript.pyannote[26].end 143.94096875
transcript.pyannote[27].speaker SPEAKER_04
transcript.pyannote[27].start 143.94096875
transcript.pyannote[27].end 144.00846875
transcript.pyannote[28].speaker SPEAKER_05
transcript.pyannote[28].start 144.00846875
transcript.pyannote[28].end 144.02534375
transcript.pyannote[29].speaker SPEAKER_04
transcript.pyannote[29].start 144.02534375
transcript.pyannote[29].end 145.84784375
transcript.pyannote[30].speaker SPEAKER_05
transcript.pyannote[30].start 145.84784375
transcript.pyannote[30].end 146.52284375
transcript.pyannote[31].speaker SPEAKER_04
transcript.pyannote[31].start 146.52284375
transcript.pyannote[31].end 146.82659375
transcript.pyannote[32].speaker SPEAKER_05
transcript.pyannote[32].start 146.82659375
transcript.pyannote[32].end 148.10909375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 148.10909375
transcript.pyannote[33].end 153.49221875
transcript.pyannote[34].speaker SPEAKER_05
transcript.pyannote[34].start 153.49221875
transcript.pyannote[34].end 154.01534375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 154.01534375
transcript.pyannote[35].end 159.39846875
transcript.pyannote[36].speaker SPEAKER_05
transcript.pyannote[36].start 154.03221875
transcript.pyannote[36].end 154.18409375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 156.02346875
transcript.pyannote[37].end 157.03596875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 159.04409375
transcript.pyannote[38].end 160.68096875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 159.87096875
transcript.pyannote[39].end 165.52409375
transcript.pyannote[40].speaker SPEAKER_05
transcript.pyannote[40].start 160.68096875
transcript.pyannote[40].end 160.79909375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 160.79909375
transcript.pyannote[41].end 160.81596875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 165.91221875
transcript.pyannote[42].end 166.90784375
transcript.pyannote[43].speaker SPEAKER_05
transcript.pyannote[43].start 169.33784375
transcript.pyannote[43].end 171.17721875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 170.58659375
transcript.pyannote[44].end 171.71721875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 172.42596875
transcript.pyannote[45].end 176.74596875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 177.25221875
transcript.pyannote[46].end 183.10784375
transcript.pyannote[47].speaker SPEAKER_05
transcript.pyannote[47].start 183.10784375
transcript.pyannote[47].end 183.39471875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 183.42846875
transcript.pyannote[48].end 183.44534375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 183.46221875
transcript.pyannote[49].end 216.48659375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 192.49034375
transcript.pyannote[50].end 192.84471875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 192.84471875
transcript.pyannote[51].end 192.91221875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 192.91221875
transcript.pyannote[52].end 193.06409375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 217.26284375
transcript.pyannote[53].end 231.84284375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 232.48409375
transcript.pyannote[54].end 234.10409375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 234.52596875
transcript.pyannote[55].end 246.32159375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 246.76034375
transcript.pyannote[56].end 263.23034375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 263.73659375
transcript.pyannote[57].end 264.25971875
transcript.pyannote[58].speaker SPEAKER_05
transcript.pyannote[58].start 264.58034375
transcript.pyannote[58].end 265.72784375
transcript.pyannote[59].speaker SPEAKER_05
transcript.pyannote[59].start 265.87971875
transcript.pyannote[59].end 267.17909375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 265.91346875
transcript.pyannote[60].end 266.45346875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 267.16221875
transcript.pyannote[61].end 269.33909375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 271.17846875
transcript.pyannote[62].end 273.54096875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 274.41846875
transcript.pyannote[63].end 283.61534375
transcript.pyannote[64].speaker SPEAKER_05
transcript.pyannote[64].start 284.32409375
transcript.pyannote[64].end 286.53471875
transcript.pyannote[65].speaker SPEAKER_04
transcript.pyannote[65].start 286.60221875
transcript.pyannote[65].end 286.77096875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 287.29409375
transcript.pyannote[66].end 290.92221875
transcript.pyannote[67].speaker SPEAKER_04
transcript.pyannote[67].start 291.39471875
transcript.pyannote[67].end 293.33534375
transcript.pyannote[68].speaker SPEAKER_04
transcript.pyannote[68].start 293.62221875
transcript.pyannote[68].end 302.53221875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 302.56596875
transcript.pyannote[69].end 306.53159375
transcript.pyannote[70].speaker SPEAKER_04
transcript.pyannote[70].start 306.93659375
transcript.pyannote[70].end 311.91471875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 311.88096875
transcript.pyannote[71].end 317.95596875
transcript.pyannote[72].speaker SPEAKER_04
transcript.pyannote[72].start 317.58471875
transcript.pyannote[72].end 319.74471875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 318.47909375
transcript.pyannote[73].end 322.49534375
transcript.pyannote[74].speaker SPEAKER_04
transcript.pyannote[74].start 322.20846875
transcript.pyannote[74].end 326.35971875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 325.49909375
transcript.pyannote[75].end 327.52409375
transcript.pyannote[76].speaker SPEAKER_04
transcript.pyannote[76].start 327.55784375
transcript.pyannote[76].end 332.11409375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 331.86096875
transcript.pyannote[77].end 333.97034375
transcript.pyannote[78].speaker SPEAKER_04
transcript.pyannote[78].start 333.88596875
transcript.pyannote[78].end 339.89346875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 334.59471875
transcript.pyannote[79].end 336.46784375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 339.58971875
transcript.pyannote[80].end 342.98159375
transcript.pyannote[81].speaker SPEAKER_04
transcript.pyannote[81].start 341.47971875
transcript.pyannote[81].end 344.46659375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 344.02784375
transcript.pyannote[82].end 351.95909375
transcript.pyannote[83].speaker SPEAKER_04
transcript.pyannote[83].start 349.83284375
transcript.pyannote[83].end 350.10284375
transcript.pyannote[84].speaker SPEAKER_04
transcript.pyannote[84].start 351.46971875
transcript.pyannote[84].end 360.51471875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 352.38096875
transcript.pyannote[85].end 355.01346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 357.61221875
transcript.pyannote[86].end 364.39596875
transcript.pyannote[87].speaker SPEAKER_04
transcript.pyannote[87].start 361.07159375
transcript.pyannote[87].end 361.13909375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 364.76721875
transcript.pyannote[88].end 366.55596875
transcript.pyannote[89].speaker SPEAKER_04
transcript.pyannote[89].start 366.55596875
transcript.pyannote[89].end 367.21409375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 367.21409375
transcript.pyannote[90].end 370.26846875
transcript.pyannote[91].speaker SPEAKER_04
transcript.pyannote[91].start 370.45409375
transcript.pyannote[91].end 375.76971875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 375.53346875
transcript.pyannote[92].end 376.91721875
transcript.pyannote[93].speaker SPEAKER_04
transcript.pyannote[93].start 375.78659375
transcript.pyannote[93].end 375.80346875
transcript.pyannote[94].speaker SPEAKER_04
transcript.pyannote[94].start 376.91721875
transcript.pyannote[94].end 379.21221875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 378.03096875
transcript.pyannote[95].end 378.95909375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 379.21221875
transcript.pyannote[96].end 391.05846875
transcript.pyannote[97].speaker SPEAKER_04
transcript.pyannote[97].start 381.47346875
transcript.pyannote[97].end 382.41846875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 391.61534375
transcript.pyannote[98].end 394.48409375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 395.14221875
transcript.pyannote[99].end 401.63909375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 401.80784375
transcript.pyannote[100].end 407.41034375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 407.46096875
transcript.pyannote[101].end 407.66346875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 407.66346875
transcript.pyannote[102].end 417.73784375
transcript.pyannote[103].speaker SPEAKER_04
transcript.pyannote[103].start 418.49721875
transcript.pyannote[103].end 427.44096875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 427.44096875
transcript.pyannote[104].end 435.52409375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 435.92909375
transcript.pyannote[105].end 446.32409375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 446.45909375
transcript.pyannote[106].end 448.87221875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 450.12096875
transcript.pyannote[107].end 454.99784375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 456.24659375
transcript.pyannote[108].end 478.13346875
transcript.pyannote[109].speaker SPEAKER_04
transcript.pyannote[109].start 469.71284375
transcript.pyannote[109].end 471.16409375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 478.48784375
transcript.pyannote[110].end 484.54596875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 483.75284375
transcript.pyannote[111].end 484.05659375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 484.57971875
transcript.pyannote[112].end 485.92971875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 486.19971875
transcript.pyannote[113].end 536.79096875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 537.26346875
transcript.pyannote[114].end 561.32721875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 561.73221875
transcript.pyannote[115].end 576.68346875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 577.24034375
transcript.pyannote[116].end 584.54721875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 584.74971875
transcript.pyannote[117].end 590.72346875
transcript.pyannote[118].speaker SPEAKER_05
transcript.pyannote[118].start 590.72346875
transcript.pyannote[118].end 591.04409375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 591.48284375
transcript.pyannote[119].end 591.71909375
transcript.pyannote[120].speaker SPEAKER_05
transcript.pyannote[120].start 591.71909375
transcript.pyannote[120].end 592.51221875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 593.06909375
transcript.pyannote[121].end 594.55409375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 594.63846875
transcript.pyannote[122].end 597.40596875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 596.30909375
transcript.pyannote[123].end 597.57471875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 598.50284375
transcript.pyannote[124].end 602.33346875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 602.43471875
transcript.pyannote[125].end 604.76346875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 604.89846875
transcript.pyannote[126].end 612.69471875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 613.36971875
transcript.pyannote[127].end 614.83784375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 614.97284375
transcript.pyannote[128].end 625.06409375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 626.07659375
transcript.pyannote[129].end 642.39471875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 642.90096875
transcript.pyannote[130].end 646.05659375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 646.30971875
transcript.pyannote[131].end 656.82284375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 656.92409375
transcript.pyannote[132].end 662.61096875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 663.01596875
transcript.pyannote[133].end 671.70659375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 672.14534375
transcript.pyannote[134].end 679.75596875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 680.65034375
transcript.pyannote[135].end 686.25284375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 687.68721875
transcript.pyannote[136].end 710.04659375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 710.62034375
transcript.pyannote[137].end 718.04534375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 718.87221875
transcript.pyannote[138].end 737.95784375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 738.27846875
transcript.pyannote[139].end 739.54409375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 740.03346875
transcript.pyannote[140].end 762.69659375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 762.91596875
transcript.pyannote[141].end 764.51909375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 765.16034375
transcript.pyannote[142].end 767.74221875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 767.77596875
transcript.pyannote[143].end 768.29909375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 768.87284375
transcript.pyannote[144].end 778.54221875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 778.60971875
transcript.pyannote[145].end 779.77409375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 780.34784375
transcript.pyannote[146].end 780.80346875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 781.37721875
transcript.pyannote[147].end 783.03096875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 783.30096875
transcript.pyannote[148].end 786.91221875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 788.11034375
transcript.pyannote[149].end 790.03409375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 791.13096875
transcript.pyannote[150].end 792.26159375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 794.62409375
transcript.pyannote[151].end 800.37846875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 801.44159375
transcript.pyannote[152].end 805.10346875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 805.54221875
transcript.pyannote[153].end 808.47846875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 809.15346875
transcript.pyannote[154].end 815.71784375
transcript.pyannote[155].speaker SPEAKER_05
transcript.pyannote[155].start 816.59534375
transcript.pyannote[155].end 816.62909375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 816.62909375
transcript.pyannote[156].end 816.73034375
transcript.pyannote[157].speaker SPEAKER_05
transcript.pyannote[157].start 816.73034375
transcript.pyannote[157].end 816.76409375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 816.76409375
transcript.pyannote[158].end 816.84846875
transcript.pyannote[159].speaker SPEAKER_05
transcript.pyannote[159].start 816.84846875
transcript.pyannote[159].end 816.93284375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 816.93284375
transcript.pyannote[160].end 816.94971875
transcript.pyannote[161].speaker SPEAKER_05
transcript.pyannote[161].start 817.18596875
transcript.pyannote[161].end 821.75909375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 821.59034375
transcript.pyannote[162].end 860.50409375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 860.70659375
transcript.pyannote[163].end 865.48221875
transcript.pyannote[164].speaker SPEAKER_05
transcript.pyannote[164].start 864.28409375
transcript.pyannote[164].end 864.50346875
transcript.pyannote[165].speaker SPEAKER_05
transcript.pyannote[165].start 865.14471875
transcript.pyannote[165].end 868.58721875
transcript.pyannote[166].speaker SPEAKER_05
transcript.pyannote[166].start 869.19471875
transcript.pyannote[166].end 873.64971875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 873.58221875
transcript.pyannote[167].end 937.11659375
transcript.pyannote[168].speaker SPEAKER_05
transcript.pyannote[168].start 874.00409375
transcript.pyannote[168].end 874.93221875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 937.25159375
transcript.pyannote[169].end 962.04096875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 962.12534375
transcript.pyannote[170].end 993.54659375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 994.84596875
transcript.pyannote[171].end 1021.94721875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 1023.33096875
transcript.pyannote[172].end 1023.70221875
transcript.pyannote[173].speaker SPEAKER_05
transcript.pyannote[173].start 1025.06909375
transcript.pyannote[173].end 1036.37534375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 1025.11971875
transcript.pyannote[174].end 1026.23346875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 1028.46096875
transcript.pyannote[175].end 1030.97534375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 1030.97534375
transcript.pyannote[176].end 1033.18596875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 1036.22346875
transcript.pyannote[177].end 1040.32409375
transcript.pyannote[178].speaker SPEAKER_05
transcript.pyannote[178].start 1037.99534375
transcript.pyannote[178].end 1038.99096875
transcript.pyannote[179].speaker SPEAKER_05
transcript.pyannote[179].start 1042.92284375
transcript.pyannote[179].end 1045.38659375
transcript.pyannote[180].speaker SPEAKER_05
transcript.pyannote[180].start 1045.70721875
transcript.pyannote[180].end 1046.46659375
transcript.pyannote[181].speaker SPEAKER_05
transcript.pyannote[181].start 1046.87159375
transcript.pyannote[181].end 1047.47909375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 1046.93909375
transcript.pyannote[182].end 1052.79471875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 1053.35159375
transcript.pyannote[183].end 1066.02471875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 1061.04659375
transcript.pyannote[184].end 1061.89034375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 1066.21034375
transcript.pyannote[185].end 1090.39221875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 1090.47659375
transcript.pyannote[186].end 1094.03721875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 1094.32409375
transcript.pyannote[187].end 1108.07721875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 1108.95471875
transcript.pyannote[188].end 1117.94909375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 1118.50596875
transcript.pyannote[189].end 1120.41284375
transcript.pyannote[190].speaker SPEAKER_05
transcript.pyannote[190].start 1121.20596875
transcript.pyannote[190].end 1124.27721875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 1124.00721875
transcript.pyannote[191].end 1125.35721875
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 1125.59346875
transcript.pyannote[192].end 1129.62659375
transcript.pyannote[193].speaker SPEAKER_05
transcript.pyannote[193].start 1129.13721875
transcript.pyannote[193].end 1131.02721875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 1131.06096875
transcript.pyannote[194].end 1157.79096875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 1157.92596875
transcript.pyannote[195].end 1165.16534375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 1166.31284375
transcript.pyannote[196].end 1172.59034375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 1174.19346875
transcript.pyannote[197].end 1190.57909375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 1190.98409375
transcript.pyannote[198].end 1192.97534375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 1193.93721875
transcript.pyannote[199].end 1197.32909375
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 1197.97034375
transcript.pyannote[200].end 1228.00784375
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 1198.49346875
transcript.pyannote[201].end 1198.66221875
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 1227.34971875
transcript.pyannote[202].end 1227.78846875
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 1227.78846875
transcript.pyannote[203].end 1227.80534375
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 1227.80534375
transcript.pyannote[204].end 1227.82221875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 1228.04159375
transcript.pyannote[205].end 1231.72034375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 1232.88471875
transcript.pyannote[206].end 1234.18409375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 1234.63971875
transcript.pyannote[207].end 1240.07346875
transcript.pyannote[208].speaker SPEAKER_05
transcript.pyannote[208].start 1240.29284375
transcript.pyannote[208].end 1242.30096875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 1242.48659375
transcript.pyannote[209].end 1244.03909375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 1244.03909375
transcript.pyannote[210].end 1244.15721875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 1244.15721875
transcript.pyannote[211].end 1244.96721875
transcript.pyannote[212].speaker SPEAKER_05
transcript.pyannote[212].start 1244.96721875
transcript.pyannote[212].end 1246.21596875
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 1244.98409375
transcript.pyannote[213].end 1245.00096875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 1245.00096875
transcript.pyannote[214].end 1245.03471875
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 1246.21596875
transcript.pyannote[215].end 1259.32784375
transcript.pyannote[216].speaker SPEAKER_05
transcript.pyannote[216].start 1246.30034375
transcript.pyannote[216].end 1246.60409375
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 1259.54721875
transcript.pyannote[217].end 1267.39409375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 1268.01846875
transcript.pyannote[218].end 1270.49909375
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 1270.26284375
transcript.pyannote[219].end 1278.05909375
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 1278.85221875
transcript.pyannote[220].end 1279.03784375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 1279.10534375
transcript.pyannote[221].end 1287.17159375
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 1287.52596875
transcript.pyannote[222].end 1287.54284375
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 1287.54284375
transcript.pyannote[223].end 1290.34409375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 1290.34409375
transcript.pyannote[224].end 1290.71534375
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 1290.71534375
transcript.pyannote[225].end 1290.96846875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 1290.96846875
transcript.pyannote[226].end 1318.42409375
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 1319.90909375
transcript.pyannote[227].end 1333.86471875
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 1333.56096875
transcript.pyannote[228].end 1337.17221875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 1336.49721875
transcript.pyannote[229].end 1336.98659375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 1337.17221875
transcript.pyannote[230].end 1341.40784375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 1341.64409375
transcript.pyannote[231].end 1346.13284375
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 1346.40284375
transcript.pyannote[232].end 1350.90846875
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 1352.05596875
transcript.pyannote[233].end 1359.16034375
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 1359.76784375
transcript.pyannote[234].end 1361.03346875
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 1361.67471875
transcript.pyannote[235].end 1365.10034375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 1365.48846875
transcript.pyannote[236].end 1369.26846875
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 1370.58471875
transcript.pyannote[237].end 1373.63909375
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 1374.28034375
transcript.pyannote[238].end 1385.99159375
transcript.pyannote[239].speaker SPEAKER_00
transcript.pyannote[239].start 1385.90721875
transcript.pyannote[239].end 1386.24471875
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 1386.21096875
transcript.pyannote[240].end 1388.18534375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 1388.82659375
transcript.pyannote[241].end 1417.75034375
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 1389.09659375
transcript.pyannote[242].end 1389.11346875
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 1389.11346875
transcript.pyannote[243].end 1389.73784375
transcript.pyannote[244].speaker SPEAKER_01
transcript.pyannote[244].start 1389.73784375
transcript.pyannote[244].end 1389.77159375
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 1418.25659375
transcript.pyannote[245].end 1423.94346875
transcript.pyannote[246].speaker SPEAKER_05
transcript.pyannote[246].start 1424.19659375
transcript.pyannote[246].end 1425.31034375
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 1424.77034375
transcript.pyannote[247].end 1427.40284375
transcript.pyannote[248].speaker SPEAKER_05
transcript.pyannote[248].start 1426.72784375
transcript.pyannote[248].end 1436.65034375
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 1436.46471875
transcript.pyannote[249].end 1443.21471875
transcript.pyannote[250].speaker SPEAKER_02
transcript.pyannote[250].start 1443.73784375
transcript.pyannote[250].end 1445.44221875
transcript.pyannote[251].speaker SPEAKER_05
transcript.pyannote[251].start 1445.86409375
transcript.pyannote[251].end 1446.92721875
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 1447.93971875
transcript.pyannote[252].end 1448.58096875
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 1448.69909375
transcript.pyannote[253].end 1452.37784375
transcript.pyannote[254].speaker SPEAKER_05
transcript.pyannote[254].start 1452.31034375
transcript.pyannote[254].end 1453.01909375
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 1452.98534375
transcript.pyannote[255].end 1455.26346875
transcript.pyannote[256].speaker SPEAKER_05
transcript.pyannote[256].start 1454.72346875
transcript.pyannote[256].end 1457.03534375
transcript.pyannote[257].speaker SPEAKER_02
transcript.pyannote[257].start 1456.09034375
transcript.pyannote[257].end 1459.56659375
transcript.pyannote[258].speaker SPEAKER_05
transcript.pyannote[258].start 1457.62596875
transcript.pyannote[258].end 1458.67221875
transcript.pyannote[259].speaker SPEAKER_05
transcript.pyannote[259].start 1460.05596875
transcript.pyannote[259].end 1464.86534375
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 1460.59596875
transcript.pyannote[260].end 1461.22034375
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 1461.65909375
transcript.pyannote[261].end 1462.94159375
transcript.pyannote[262].speaker SPEAKER_05
transcript.pyannote[262].start 1464.96659375
transcript.pyannote[262].end 1465.48971875
transcript.whisperx[0].start 6.53
transcript.whisperx[0].end 6.81
transcript.whisperx[0].text 主席
transcript.whisperx[1].start 21.607
transcript.whisperx[1].end 26.93
transcript.whisperx[1].text 部長好這個職場霸凌的這個案件鬧得沸沸揚揚的那因為我們集團署也被爆料那我首先要先在這裡跟大家講根據111人力銀行的這個調查報告職場霸凌裡面的產業別除了傳統製造業的18%最高以外
transcript.whisperx[2].start 47.501
transcript.whisperx[2].end 49.603
transcript.whisperx[2].text 公務部門的職場霸凌比例,雖然排名第4,但第3是12%,第2名是13%,第4名是12%,相差無幾
transcript.whisperx[3].start 63.334
transcript.whisperx[3].end 67.555
transcript.whisperx[3].text 意思就是說公務體系、公家機關、教育部門這些公部門裡面的職場霸凌的問題這個是僅次於製造業這樣子是非常嚴重的這是人力銀行的調查報告職場霸凌在公務體系很嚴重
transcript.whisperx[4].start 84.534
transcript.whisperx[4].end 113.087
transcript.whisperx[4].text 那我再來講第二個問題是說這種事情我們不是有正規的管道嗎當受到不法侵害不是有正規管道嗎為什麼這些議題都是透過爆料然後報導出來然後機關才去重視甚至出人命了只包不住火了才要去面對通常都是因為內部的正常的管道被冷處理被壓建
transcript.whisperx[5].start 114.881
transcript.whisperx[5].end 120.445
transcript.whisperx[5].text 這是基本上整個事件的本質一定是這樣子這樣你知道我在說什麼嗎我們對於相關的事件一定讓他絕對要預防跟不允許他有這樣的發生那今天署的整備組組長的事件兩年內你知道你們署內離職的人員高達幾成嗎
transcript.whisperx[6].start 146.899
transcript.whisperx[6].end 154.445
transcript.whisperx[6].text 集管署12%12%人家外面講說高達三四成那你講12%也可以整備組我講是署內整備組呢37%這是正常人員的流動正常的嗎37%
transcript.whisperx[7].start 172.469
transcript.whisperx[7].end 176.512
transcript.whisperx[7].text 現在離職後的空缺多數也補不到人補不到人以後其他的業務其他的公務人員要分擔更多所以這種狀況裡面顯然因為這個組長的作為讓人家待不住然後呢很多人離職了那沒有離職的人還要做更多所以這個單位是高壓狀態高壓狀態所以難怪有人在講說真的不要再逼死人了
transcript.whisperx[8].start 202.572
transcript.whisperx[8].end 210.398
transcript.whisperx[8].text 那這個組長被人家投這個被人家爆料缺乏耐性每天緊逼進度更新要創新要亮點卻不顧本業務本業的業務無法運作
transcript.whisperx[9].start 218.139
transcript.whisperx[9].end 218.619
transcript.whisperx[9].text 一分鐘的錄音聽起來還好可是
transcript.whisperx[10].start 246.858
transcript.whisperx[10].end 256.762
transcript.whisperx[10].text 如果這個組長在對他們組裡面的工作同仁是天天這樣說天天這樣子罵這裡面的人天天都要聽到組長這樣霸凌和羞辱情緒會好嗎?士氣會好嗎?一定會影響你看我的公文當時發給你的我的公文一星期
transcript.whisperx[11].start 274.728
transcript.whisperx[11].end 290.669
transcript.whisperx[11].text 這個是我發的公文11月15號這個事情我就講你們內部有沒有人檢舉有沒有人爆料有沒有人陳情過我們今天中午機關會送我現在在問你們啊你就在這裡回答我就好了啊
transcript.whisperx[12].start 292.761
transcript.whisperx[12].end 306.279
transcript.whisperx[12].text 跟委員報告那這位組長他是應該說都沒有被事先有被申訴過完全都沒有沒有那為什麼我會知道為什麼會出這張公文
transcript.whisperx[13].start 307.16
transcript.whisperx[13].end 322.288
transcript.whisperx[13].text 那個應該是說在15號12月上面是有人爆料啦翠上面爆料你有沒有聽過網路當時你有沒有聽過網路上的錄音檔當時翠上面爆料說今天署長你本人知不知道15號當時你知不知道
transcript.whisperx[14].start 323.529
transcript.whisperx[14].end 333.319
transcript.whisperx[14].text 15號當時所以PO出來我就知道了你就知道以後你怎麼處理那當時我們大概就召開了應變的會議那也應變會議幾月幾日開15號15號當天就開當天也針對這個案因為他沒有一個主要的一個申請
transcript.whisperx[15].start 339.906
transcript.whisperx[15].end 340.607
transcript.whisperx[15].text 原本職場霸凌的作業辦公室
transcript.whisperx[16].start 365.287
transcript.whisperx[16].end 389.335
transcript.whisperx[16].text 機關首長就是你嘛是你要負責處理我負責都沒有人提出之前其實有另外一件其實我們有按照那個程序去處理了投訴的是組長嗎不是不是另外一件那現在我15號就跟你們講了但是呢我們希望就是說你們本來是說兩個月之後要提供調查報告啦你們私底下這樣回答我們要兩個月喔
transcript.whisperx[17].start 391.836
transcript.whisperx[17].end 412.528
transcript.whisperx[17].text 結果現在我也是雖然你們院長現在已經下令了要一個禮拜內調查好但我也不會苛責你多久時間因為調查報告要呈現真實客觀不包庇才是最重要而不是只是求急那我再請教你你這一份未來的行政調查報告會不會包括去問已經離職的前職員
transcript.whisperx[18].start 419.188
transcript.whisperx[18].end 435.241
transcript.whisperx[18].text 報告委員那這個我們今天已經開始針對這個離職的部分個別致電了那瞭解他們是不是願意受訪你知道這個問題是什麼嗎因為昨天我也詢問過勞動部的那個勞法署的
transcript.whisperx[19].start 436.723
transcript.whisperx[19].end 437.724
transcript.whisperx[19].text 委員會主席林淑芬
transcript.whisperx[20].start 456.691
transcript.whisperx[20].end 459.433
transcript.whisperx[20].text 這件事情我們就等你因為這個不法侵害對於整個同仁士氣大吉很大好來那保定我請教你正規正辦的事情
transcript.whisperx[21].start 484.905
transcript.whisperx[21].end 488.768
transcript.whisperx[21].text 今年年初這個看守臺灣臺灣的環保團體看守臺灣公布了全球的調查報告指出全球性的環保組織國際污染物消除網絡就是IPEN它在2022年有一個跨國的調查計畫總共檢測17個國家119種食品包材樣本有64個品項驗出PFAS
transcript.whisperx[22].start 510.625
transcript.whisperx[22].end 526.714
transcript.whisperx[22].text 測出率高達54%(而直掀餐盒.我們覺得說植物纖維餐盒好像很棒.但是偏偏.直掀餐盒檢出PFAS的濃度最高.所以我們台灣.看守台灣團體.就把台灣的採樣.送到iPen去檢驗.他送了17個.最後只有8個被檢驗.他們有篩選.
transcript.whisperx[23].start 537.959
transcript.whisperx[23].end 559.123
transcript.whisperx[23].text 8個品項受驗有7個品項測出含有PFAS5件的TOF超出用來判斷是否刻意添加PFAS的丹麥標準6件超出比丹麥標準更寬鬆的歐盟草案標準就是50ppm超過
transcript.whisperx[24].start 562.164
transcript.whisperx[24].end 586.636
transcript.whisperx[24].text 8件裡面就有6件超過比較寬鬆的標準就歐盟草案的標準PFAS的測出率和超標狀況都比國際調查計劃他們去監測其他17個國家的平均檢測值還要更嚴重那結果計劃包裁我現在要公佈了計劃包裁分類說明檢測如下他們有公佈在他們網頁你的書店有沒有看過我看書店你有去看過嗎看守台灣的公佈品項你有沒有看過
transcript.whisperx[25].start 592.028
transcript.whisperx[25].end 597.253
transcript.whisperx[25].text 莊市長市長沒有看過喔報告委員我還沒有去看你沒有看過我跟你報告
transcript.whisperx[26].start 598.527
transcript.whisperx[26].end 612.517
transcript.whisperx[26].text 但是那個批法這個說我們會跟環境部合作那個進行源頭的金融品項的來我跟你講我給你報告你沒看過我給你報告防油紙袋不要忘了台灣人的第一餐從早餐開始蔥油餅蔥抓餅餡餅還有什麼早餐袋三明治都從防油紙袋開始的摩斯漢堡的紅豆派紙袋
transcript.whisperx[27].start 626.209
transcript.whisperx[27].end 628.05
transcript.whisperx[27].text .審查中華民國114年度中央政府總預算.審查中華民國114年度中央政府總預算.審查中華民國114年度中央政府總預算.
transcript.whisperx[28].start 646.374
transcript.whisperx[28].end 648.637
transcript.whisperx[28].text 對食品安全的最大的疏忽和最大的縱放就是沒有任何標準沒有標準就不違規都不用受罰這反有指代接下來我講
transcript.whisperx[29].start 663.463
transcript.whisperx[29].end 665.686
transcript.whisperx[29].text 維波爐爆米花的內裝紙袋7-11賣的啾哩啾哩
transcript.whisperx[30].start 688.946
transcript.whisperx[30].end 707.298
transcript.whisperx[30].text 朱莉·泰姆 微波爆米花(好市多賣的.克蘭的.微波爆米花兩件都檢測出PFAS全部超出丹麥的TOF標準就20ppm有一件超出較寬鬆的歐盟TOF標準
transcript.whisperx[31].start 710.62
transcript.whisperx[31].end 714.482
transcript.whisperx[31].text 直掀參核﹐台灣某容器生產商的參核檢測出PFAS﹐它的含量是歐盟草案標準﹐已經是最寬鬆的﹐57倍PFAS﹐
transcript.whisperx[32].start 741.015
transcript.whisperx[32].end 758.428
transcript.whisperx[32].text 再生紙包材 臺灣終於有一個法規還可以臺灣的再生紙包材是不能夠跟食品直接接觸的也不能使用再生紙的所以這類能收集到的不跟食品直接接觸的但是有風險的就是裝彈的彈盒其中有兩個品項進行檢測 一個是
transcript.whisperx[33].start 763.123
transcript.whisperx[33].end 786.221
transcript.whisperx[33].text 全聯賣的勤益是好雞能蛋勤益是好雞能蛋它的蛋核檢測出PFAS同樣的主婦聯盟的快樂主婦雞蛋的蛋核沒有沒有檢出這樣 部長你知道PFAS它的風險在哪裡嗎部長 你要聽過PFAS嗎阿姨的風險在哪裡
transcript.whisperx[34].start 794.656
transcript.whisperx[34].end 799.601
transcript.whisperx[34].text 這很誤會,這已經大家沸沸揚揚說很久了,這幾年都在說PFAS部長,不知道沒關係,保證沒關係雖然你是醫生的,但是你可能不知道雖然這個議題很夯啊,大家討論的,不管從環境或是食品安全來講討論得沸沸揚揚
transcript.whisperx[35].start 817.39
transcript.whisperx[35].end 834.003
transcript.whisperx[35].text 我是知道這個最近大家都有在談這個啦因為PFAS是工業和消費產品當中應用最廣泛的化學物質包括防油防水抗汙所以他很廣泛的在利用連包括衣服上都也有連那個鍋具都有連那個
transcript.whisperx[36].start 835.404
transcript.whisperx[36].end 860.167
transcript.whisperx[36].text 化學消防泡沫都有連防水醫療食品包材一次性的悲劇在台灣人吃那個紅茶啦中島吃的便當空啊裝披薩的披薩盒啦速食店的包裝啊這個小吃攤路邊攤所有的包材都有PFAS農藥相片染劑化妝品保養品我們的主本的鍋具塗層通通都有
transcript.whisperx[37].start 860.848
transcript.whisperx[37].end 863.212
transcript.whisperx[37].text 所以你做衛福部部長..若不了解..其實是..可不應該一組阿巴委員齁 我想那個
transcript.whisperx[38].start 870.082
transcript.whisperx[38].end 891.524
transcript.whisperx[38].text 雖然明年食藥署有一個計畫 我覺得我會請他們喔 現在你為了這次叫明年有一個計畫來 我跟你講 它是永久性的化學物質 不易被分解 生物環境的蓄積累積性的毒物它遠距離的環境傳輸 而且它持久性而且因為累積 不但累積再累積 所以它有生物的放大性
transcript.whisperx[39].start 892.145
transcript.whisperx[39].end 892.205
transcript.whisperx[39].text 李慧琼議員
transcript.whisperx[40].start 916.476
transcript.whisperx[40].end 916.576
transcript.whisperx[40].text 北極熊市長
transcript.whisperx[41].start 937.429
transcript.whisperx[41].end 942.053
transcript.whisperx[41].text 對人體的危害有肝臟受損、心血管疾病、甲狀腺、透過母體傳輸給胎兒的慢性腎臟病、睪丸癌等等在這種狀況裡面PFAS經由食品、飲用水、日常用品、空氣中的粉塵、食品包裝這個是很嚴重的它對於免疫系統、肝臟系統和甲狀腺性的功能影響很大
transcript.whisperx[42].start 962.33
transcript.whisperx[42].end 972.659
transcript.whisperx[42].text 他在安全性的數據上面大部分都可以通過腸胃道吸收進入人體人體中的濃度與血液肝臟腎臟較高短鏈的PFAS容易經由尿液排除
transcript.whisperx[43].start 979.244
transcript.whisperx[43].end 991.656
transcript.whisperx[43].text 常戀的PFAS由糞便排除但是對人類短戀的估計半衰期從幾天到一個月不等但是對常戀的PFAS要需要好幾年好來
transcript.whisperx[44].start 994.875
transcript.whisperx[44].end 999.256
transcript.whisperx[44].text 以確保飲用水水質安全和品質(而且今年年底就要完成公告你們做了哪些事關於PFAS的
transcript.whisperx[45].start 1025.12
transcript.whisperx[45].end 1032.844
transcript.whisperx[45].text 國際監視商會定有批發值的一個...你清晒講講不要亂講喔你講得比較清楚的喔還沒有定出限量食品容器的現在只說食品容器我講國際喔我念你聽你說國際到現在都沒有人有聽我講給你聽喔
transcript.whisperx[46].start 1054.071
transcript.whisperx[46].end 1068.181
transcript.whisperx[46].text 對斯德哥爾摩公約他在2009年起禁止生產和使用PFOS及其顏類因為PFOS是很多類很多類的總和的名稱PFOS包含很多東西
transcript.whisperx[47].start 1069.022
transcript.whisperx[47].end 1078.329
transcript.whisperx[47].text 那其中PFOS包含了很多東西.PFOS的裏面的PFOS.他2009年就禁止了.2020年禁止使用PFOA.2022年起計劃要將PFHXS及其顏類納入條約.而且在2023年要生效.
transcript.whisperx[48].start 1092.259
transcript.whisperx[48].end 1107.785
transcript.whisperx[48].text 2023年1月去年 荷蘭 德國 丹麥 瑞典 挪威已經向歐洲化學管理局提交了限制提案 而且這個生效也要將禁止在消費品當中使用PFAS 全禁
transcript.whisperx[49].start 1108.968
transcript.whisperx[49].end 1137.361
transcript.whisperx[49].text 他是全禁欸但是之前是禁了PFO是PFOPFHXS並不是沒有他是沒有全禁而已我們環境部的確也禁了PFOA啦PFOA 我在說你啦然後呢依照歐盟2023年3月資料歐盟諸委會我們當然就不能用了歐盟人家是禁他們歐洲不能用不是我們不能用啦我們都本地生產本地使用
transcript.whisperx[50].start 1137.921
transcript.whisperx[50].end 1161.64
transcript.whisperx[50].text 我們毫無標準我們連基礎調查都沒有你們來這裡還敢講說我們外國沒有所以我們沒有不要講美國在6月美國參議院通過防止食品容器受到PFAS危害法案從今年開始他們就禁止銷售任何含有PFAS的食品包裝你現在跟你說世界各國都沒有人金你是在裝瘋欸你這個書店跟你說的話我會理你就相信喔
transcript.whisperx[51].start 1166.345
transcript.whisperx[51].end 1192.445
transcript.whisperx[51].text 美國近年去的全部都不能有還有批發的食品包裝欸你不要講這麼多啦 我想問你 你有做過調查嗎尤其環境部已經在112年就委託人家去調查所有的營用水的水質和新興污染物的調查和管理計畫讓他們的調查所有有的水庫已經做了很久的這樣
transcript.whisperx[52].start 1194.151
transcript.whisperx[52].end 1196.974
transcript.whisperx[52].text 結果水庫也沒有每天使用的免洗的紙餐盒也沒有用咖啡杯也沒有用紙袋結果水庫裏面他們抽樣發現PFOA 37個樣品側值大於室內客的佔了74%
transcript.whisperx[53].start 1213.047
transcript.whisperx[53].end 1221.191
transcript.whisperx[53].text PFOS 13個樣品 測值大於4個耐克1公升的 佔抽樣%是26%這兩年測量水 因為水值就是高山 老外的就測不中啊 啊我們每天在吃的人要怎麼做
transcript.whisperx[54].start 1232.95
transcript.whisperx[54].end 1257.879
transcript.whisperx[54].text 我最好問你啦我們有沒有食品安全監測計畫這幾年來有做過嗎這個 莊市長回答一下當然也沒有 你什麼都不知道喔有 我們有做過相關的來相關的你給我聽報告委員 那個我們食品要務曾經在100年及112年辦過食品中PFOS的含量的調查那我們這次大概在114年還會再做一次
transcript.whisperx[55].start 1259.76
transcript.whisperx[55].end 1273.034
transcript.whisperx[55].text 來你把調查報告給我看我要講相較於水質調查台灣PFAS食品風險評估有沒有做過有112年有做過什麼你們調查報告叫什麼名字我講風險評估剛剛是講監測計畫調查報告這是兩件事欸
transcript.whisperx[56].start 1279.625
transcript.whisperx[56].end 1297.529
transcript.whisperx[56].text 報告委員這個是叫食品中持久性有機汙染物全服碗機化合物質調查及風險評估好調查報告送來調查完成了好那歐盟2022年發布了2022及1431規章建議成員國和食品業應該在2022到2025間監測食品中的這些PFAS家族監測期間如果發現人家是這樣講如果發現蔬果
transcript.whisperx[57].start 1308.851
transcript.whisperx[57].end 1315.874
transcript.whisperx[57].text 訓類、乳品及嬰兒食品含量高於指定濃度時要進一步的調查原因那請問你們這個計畫裡面有沒有同時跟上如果你發現蔬果、訓類、乳品、嬰兒食品含量高於指定濃度的時候你要進一步調查為什麼?污染的風險來源是什麼?原因在哪裡?你們有沒有這樣子做?我們會在114年這個計畫中做
transcript.whisperx[58].start 1337.341
transcript.whisperx[58].end 1350.449
transcript.whisperx[58].text 那你們還執行一個食品中污染物質及毒素暨包裝包裝容器器具的檢驗方法開發和精進研究你們剛剛講的是你們研究的是這些持久性的化學風品對人的影響
transcript.whisperx[59].start 1352.113
transcript.whisperx[59].end 1358.8
transcript.whisperx[59].text 那我現在講的是那台灣各種食品安全的監測的研究有沒有沒有那你們有一個食品中污染物質在包裝容器上的這個PFAS的風險評估有沒有沒有
transcript.whisperx[60].start 1370.629
transcript.whisperx[60].end 1387.809
transcript.whisperx[60].text 因為你們講的是檢驗方法開發和經濟研究結果2022年做的要2025年才公佈2023年2024年都有做結果你們要2025、2026、2027年才要公佈您的其中報告各送一份到我們辦公室來可以嗎其中報告不要到final
transcript.whisperx[61].start 1389.716
transcript.whisperx[61].end 1417.463
transcript.whisperx[61].text 所以我要要求食品安全監測計畫我不是講持久性PFAS的物質對人體的風險而已台灣各種食品台灣環境裡面或是各種包裝他的監測計畫要做長期全面性的監測你了解問題有多嚴重才知道要怎麼管制和解決你可以不做你不做的前提是全部都管制直接禁止使用你有辦法嗎保定
transcript.whisperx[62].start 1418.311
transcript.whisperx[62].end 1445.207
transcript.whisperx[62].text 你若沒有做監測計畫不了解問題多嚴重你比照美國全面禁用可以嗎有辦法全面禁用嗎PFAS我們這幾年來最重要的一個工作啦齁那如果一定要把它做到最好所以委員所提示的指教的我們馬上都來進行我在問你說阿拉伯戶阿部總部金融食品容器食品包裝全部禁用PFAS有辦法馬上全禁嗎我們馬上來研議
transcript.whisperx[63].start 1447.978
transcript.whisperx[63].end 1448.338
transcript.whisperx[63].text 主席主席
IVOD_ID 157316
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157316
日期 2024-11-21
會議資料.會議代碼 委員會-11-2-26-10
會議資料.屆 11
會議資料.會期 2
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.標題 第11屆第2會期社會福利及衛生環境委員會第10次全體委員會議
影片種類 Clip
開始時間 2024-11-21T10:58:28+08:00
結束時間 2024-11-21T11:22:53+08:00
支援功能[0] ai-transcript