iVOD / 157194

Field Value
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/be8492a9d81d8eab2ec09d80356e6eb91ff0707298ac1983d632f63170caf1df9258d6461fda9c085ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王鴻薇
委員發言時間 13:03:14 - 13:09:25
影片長度 371
會議時間 2024-11-20T09:00:00+08:00
會議名稱 立法院第11屆第2會期財政、內政、經濟、教育及文化、交通、社會福利及衛生環境委員會第1次聯席會議(事由:一、邀請相關部會首長就「中央政府前瞻基礎建設計畫第4期特別預算執行情形及成效」進行專題報告,並備質詢。 二、審查行政院函請審議「中央政府前瞻基礎建設計畫第5期特別預算案(114年度)」(僅詢答)。 【預算提案截止時間:11月27日(三)中午12時】 【11月20日及21日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 1.14471875
transcript.pyannote[0].end 1.95471875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 3.15284375
transcript.pyannote[1].end 5.14409375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 5.29596875
transcript.pyannote[2].end 5.49846875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 5.63346875
transcript.pyannote[3].end 10.12221875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 6.61221875
transcript.pyannote[4].end 6.64596875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 6.66284375
transcript.pyannote[5].end 7.70909375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 7.89471875
transcript.pyannote[6].end 8.19846875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 10.15596875
transcript.pyannote[7].end 11.06721875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 10.17284375
transcript.pyannote[8].end 10.88159375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 12.58596875
transcript.pyannote[9].end 14.39159375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 14.66159375
transcript.pyannote[10].end 14.94846875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 17.59784375
transcript.pyannote[11].end 18.03659375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 18.47534375
transcript.pyannote[12].end 19.09971875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 19.72409375
transcript.pyannote[13].end 24.95534375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 25.42784375
transcript.pyannote[14].end 26.38971875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 26.91284375
transcript.pyannote[15].end 43.04534375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 43.60221875
transcript.pyannote[16].end 46.35284375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 46.60596875
transcript.pyannote[17].end 54.21659375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 54.62159375
transcript.pyannote[18].end 57.50721875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 57.67596875
transcript.pyannote[19].end 59.29596875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 59.83596875
transcript.pyannote[20].end 65.87721875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 66.02909375
transcript.pyannote[21].end 68.02034375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 68.10471875
transcript.pyannote[22].end 73.90971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 74.55096875
transcript.pyannote[23].end 77.45346875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 78.14534375
transcript.pyannote[24].end 88.55721875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 88.81034375
transcript.pyannote[25].end 90.75096875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 92.18534375
transcript.pyannote[26].end 95.39159375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 95.56034375
transcript.pyannote[27].end 100.13346875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 100.50471875
transcript.pyannote[28].end 101.38221875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 102.05721875
transcript.pyannote[29].end 103.94721875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 104.85846875
transcript.pyannote[30].end 105.70221875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 106.17471875
transcript.pyannote[31].end 107.52471875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 108.14909375
transcript.pyannote[32].end 111.30471875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 112.14846875
transcript.pyannote[33].end 115.16909375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 115.72596875
transcript.pyannote[34].end 126.47534375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 127.01534375
transcript.pyannote[35].end 140.22846875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 140.32971875
transcript.pyannote[36].end 146.52284375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 146.52284375
transcript.pyannote[37].end 146.94471875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 146.94471875
transcript.pyannote[38].end 146.97846875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 146.97846875
transcript.pyannote[39].end 152.27721875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 152.44596875
transcript.pyannote[40].end 155.16284375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 155.68596875
transcript.pyannote[41].end 156.31034375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 157.01909375
transcript.pyannote[42].end 163.39784375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 162.38534375
transcript.pyannote[43].end 162.60471875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 163.46534375
transcript.pyannote[44].end 172.89846875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 173.25284375
transcript.pyannote[45].end 178.82159375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 179.29409375
transcript.pyannote[46].end 181.52159375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 181.97721875
transcript.pyannote[47].end 184.10346875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 184.50846875
transcript.pyannote[48].end 193.14846875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 193.53659375
transcript.pyannote[49].end 203.29034375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 203.54346875
transcript.pyannote[50].end 205.12971875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 205.73721875
transcript.pyannote[51].end 208.31909375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 208.69034375
transcript.pyannote[52].end 210.79971875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 211.86284375
transcript.pyannote[53].end 212.28471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 212.55471875
transcript.pyannote[54].end 213.83721875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 215.06909375
transcript.pyannote[55].end 223.16909375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 224.09721875
transcript.pyannote[56].end 227.92784375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 229.15971875
transcript.pyannote[57].end 232.31534375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 232.72034375
transcript.pyannote[58].end 235.31909375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 236.11221875
transcript.pyannote[59].end 238.69409375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 239.13284375
transcript.pyannote[60].end 241.29284375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 241.69784375
transcript.pyannote[61].end 243.14909375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 243.28409375
transcript.pyannote[62].end 244.63409375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 244.93784375
transcript.pyannote[63].end 247.26659375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 247.60409375
transcript.pyannote[64].end 249.05534375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 250.10159375
transcript.pyannote[65].end 251.90721875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 252.64971875
transcript.pyannote[66].end 254.13471875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 254.43846875
transcript.pyannote[67].end 262.70721875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 263.58471875
transcript.pyannote[68].end 264.54659375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 265.12034375
transcript.pyannote[69].end 268.83284375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 269.37284375
transcript.pyannote[70].end 272.12346875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 272.79846875
transcript.pyannote[71].end 274.55346875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 275.02596875
transcript.pyannote[72].end 278.45159375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 278.95784375
transcript.pyannote[73].end 281.16846875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 281.47221875
transcript.pyannote[74].end 284.61096875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 285.23534375
transcript.pyannote[75].end 289.87596875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 290.38221875
transcript.pyannote[76].end 294.82034375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 294.88784375
transcript.pyannote[77].end 298.53284375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 299.03909375
transcript.pyannote[78].end 304.43909375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 305.01284375
transcript.pyannote[79].end 307.37534375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 307.47659375
transcript.pyannote[80].end 309.40034375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 309.92346875
transcript.pyannote[81].end 312.03284375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 312.53909375
transcript.pyannote[82].end 314.10846875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 314.20971875
transcript.pyannote[83].end 315.71159375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 316.18409375
transcript.pyannote[84].end 321.97221875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 322.49534375
transcript.pyannote[85].end 337.58159375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 338.35784375
transcript.pyannote[86].end 340.14659375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 340.83846875
transcript.pyannote[87].end 342.15471875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 342.72846875
transcript.pyannote[88].end 343.87596875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 343.97721875
transcript.pyannote[89].end 347.57159375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 347.95971875
transcript.pyannote[90].end 360.41346875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 361.93221875
transcript.pyannote[91].end 363.23159375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 364.27784375
transcript.pyannote[92].end 365.76284375
transcript.whisperx[0].start 1.067
transcript.whisperx[0].end 1.347
transcript.whisperx[0].text 法定人數不足
transcript.whisperx[1].start 18.62
transcript.whisperx[1].end 41.652
transcript.whisperx[1].text 市長,剛才我們柯志恩委員所講的這個新達海基64億,他這樣封店嘛,對不對,投資封店昨天呢,在我們的追加預算的諮詢裡面,我們特別來諮詢包含院長跟部長在內也就是在上週金週刊有做一個綠店蟑螂
transcript.whisperx[2].start 43.643
transcript.whisperx[2].end 59.735
transcript.whisperx[2].text 議員議員議員
transcript.whisperx[3].start 59.875
transcript.whisperx[3].end 76.525
transcript.whisperx[3].text 因為今天不管是我們追加預算也好或者是我們的前瞻預算也好我們以為我們以為我們是要去發展綠能我們以為我們要去發展再生能源但是是不是我們只是在餵蟑螂
transcript.whisperx[4].start 78.626
transcript.whisperx[4].end 103.761
transcript.whisperx[4].text 為這些綠能蟑螂所以在這個部分請經濟部在我們所有的國營事業相關在投資相關的綠能裡面不要弊病重生啊新打海極現在看起來是大幅的虧損但是我們還不知道裡面會不會有藏著其他的貓膩如同台鹽一樣台鹽的前董事長都跑路了
transcript.whisperx[5].start 104.906
transcript.whisperx[5].end 123.883
transcript.whisperx[5].text 到現在已經快一個月了到底在海外還是在台灣內部都不知道前國營事業董事長太難看了這個拜託經濟部在我們整個執行國營事業的轉投資相關的綠能產業的時候不要變成綠能蟑螂的幫兇可不可以
transcript.whisperx[6].start 127.048
transcript.whisperx[6].end 127.448
transcript.whisperx[6].text 主席主席長
transcript.whisperx[7].start 157.12
transcript.whisperx[7].end 185.06
transcript.whisperx[7].text 前瞻預算計畫執行到現在明年是最後一期嘛對不對但是呢這幾年下來前瞻製造了非常非常多的蚊子管比如說前一陣子就出現在屏東西市場它本來呢號稱所謂的五星級市場當時也是風光開幕啊但是呢最近呢發現七一層的攤商抱怨啊沒有辦法賺錢
transcript.whisperx[8].start 186.641
transcript.whisperx[8].end 210.632
transcript.whisperx[8].text 所以這個屏東西市場大概很難避免最後又變成一個文字市場之前包含屏東市的6個停車場我也曾經說包含我們的審計部也有報告也是一樣啊也是文字館還有谷山的漁市場所以主計長我最後要請教你我們前瞻預算一到四期的資金來源是什麼
transcript.whisperx[9].start 215.254
transcript.whisperx[9].end 221.896
transcript.whisperx[9].text 主要是舉債舉債明年700億的第5期的預算請問資金來源是什麼也是舉債還是舉債大家聽到了8400億的前瞻預算特別預算每億毛錢都是來自舉債
transcript.whisperx[10].start 236.198
transcript.whisperx[10].end 248.849
transcript.whisperx[10].text 每億毛錢都是來自舉債當我們在這邊常常在那邊高聲疾呼說財政紀律結果8400億都是舉債我幫你算了一下啦
transcript.whisperx[11].start 250.114
transcript.whisperx[11].end 267.48
transcript.whisperx[11].text 八千四百億全部舉債最後留下文字館而且是債留子孫舉債就債留子孫啊我們不可能在短時間內這一兩年內把八千四百億還掉 對不對臺灣人一人平均光是養錢專一個人負擔3.65萬
transcript.whisperx[12].start 272.862
transcript.whisperx[12].end 296.463
transcript.whisperx[12].text 光是養前瞻,我們可以回顧一下前瞻到底做了什麼樣的事情。治水,常講治水預算,可是呢,淹水越來越多不是嗎?然後說,地方的建設,但是文字館不是越來越多嗎?我們去回顧花了8400億人民有感的在哪裡?結果一人花了3.65萬是在養前瞻。
transcript.whisperx[13].start 299.147
transcript.whisperx[13].end 321.498
transcript.whisperx[13].text 所以我們今天是要再去看明年剩下700億然後繼續是舉債的支出嘛舉債來支應前瞻所以我們必須說啊編好編滿借好借滿完全欸完全都是用舉債的方式我們到底要留給我們子孫是什麼
transcript.whisperx[14].start 322.594
transcript.whisperx[14].end 335.868
transcript.whisperx[14].text 再留子孫嗎?還是再留曾孫嗎?8400億這也就是我們長期以來認為特別預算長期編列腐爛而造成了我們的財政紀律之敗壞財政赤字
transcript.whisperx[15].start 338.391
transcript.whisperx[15].end 341.132
transcript.whisperx[15].text 謝謝王宏偉委員接著請陳昌明委員
IVOD_ID 157194
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/157194
日期 2024-11-20
會議資料.會議代碼 聯席會議-11-2-20,15,19,22,23,26-1
會議資料.屆 11
會議資料.會期 2
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 20
會議資料.委員會代碼[1] 15
會議資料.委員會代碼[2] 19
會議資料.委員會代碼[3] 22
會議資料.委員會代碼[4] 23
會議資料.委員會代碼[5] 26
會議資料.標題 第11屆第2會期財政、內政、經濟、教育及文化、交通、社會福利及衛生環境委員會第1次聯席會議
影片種類 Clip
開始時間 2024-11-20T13:03:14+08:00
結束時間 2024-11-20T13:09:25+08:00
支援功能[0] ai-transcript