iVOD / 155429

Field Value
IVOD_ID 155429
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/155429
日期 2024-10-14
會議資料.會議代碼 委員會-11-2-36-4
會議資料.會議代碼:str 第11屆第2會期司法及法制委員會第4次全體委員會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 4
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.委員會代碼:str[0] 司法及法制委員會
會議資料.標題 第11屆第2會期司法及法制委員會第4次全體委員會議
影片種類 Clip
開始時間 2024-10-14T11:27:14+08:00
結束時間 2024-10-14T11:39:48+08:00
影片長度 00:12:34
支援功能[0] ai-transcript
委員名稱 傅崐萁
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d4cdf32868ad364be441465247c0b1ee768d2097a9b873f6ce23de861f6e8a4219d60a91c10e9f3c5ea18f28b6918d91.mp4/playlist.m3u8
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.28409375
transcript.pyannote[0].end 0.53721875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 8.29971875
transcript.pyannote[1].end 15.84284375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 16.38284375
transcript.pyannote[2].end 17.36159375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 17.66534375
transcript.pyannote[3].end 17.93534375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 18.59346875
transcript.pyannote[4].end 19.43721875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 20.23034375
transcript.pyannote[5].end 21.64784375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 22.71096875
transcript.pyannote[6].end 24.76971875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 27.16596875
transcript.pyannote[7].end 29.76471875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 30.57471875
transcript.pyannote[8].end 34.74284375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 35.41784375
transcript.pyannote[9].end 38.52284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 39.26534375
transcript.pyannote[10].end 47.14596875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 47.70284375
transcript.pyannote[11].end 61.35471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 61.48971875
transcript.pyannote[12].end 62.21534375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 62.73846875
transcript.pyannote[13].end 71.74971875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 72.18846875
transcript.pyannote[14].end 72.76221875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 73.18409375
transcript.pyannote[15].end 79.88346875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 80.30534375
transcript.pyannote[16].end 116.02971875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 113.71784375
transcript.pyannote[17].end 115.33784375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 115.75971875
transcript.pyannote[18].end 115.92846875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 116.02971875
transcript.pyannote[19].end 139.78971875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 140.92034375
transcript.pyannote[20].end 143.02971875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 144.12659375
transcript.pyannote[21].end 159.28034375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 159.04409375
transcript.pyannote[22].end 159.11159375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 159.28034375
transcript.pyannote[23].end 159.38159375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 159.38159375
transcript.pyannote[24].end 159.41534375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 159.41534375
transcript.pyannote[25].end 159.46596875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 159.46596875
transcript.pyannote[26].end 160.02284375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 160.02284375
transcript.pyannote[27].end 185.20034375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 185.50409375
transcript.pyannote[28].end 187.61346875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 188.99721875
transcript.pyannote[29].end 190.83659375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 191.83221875
transcript.pyannote[30].end 193.21596875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 193.45221875
transcript.pyannote[31].end 193.80659375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 194.22846875
transcript.pyannote[32].end 198.37971875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 199.02096875
transcript.pyannote[33].end 201.36659375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 201.88971875
transcript.pyannote[34].end 202.69971875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 203.03721875
transcript.pyannote[35].end 204.89346875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 205.77096875
transcript.pyannote[36].end 207.47534375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 208.47096875
transcript.pyannote[37].end 209.80409375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 210.47909375
transcript.pyannote[38].end 212.03159375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 212.63909375
transcript.pyannote[39].end 215.87909375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 217.14471875
transcript.pyannote[40].end 218.34284375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 218.81534375
transcript.pyannote[41].end 222.05534375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 222.10596875
transcript.pyannote[42].end 224.16471875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 224.99159375
transcript.pyannote[43].end 228.70409375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 229.00784375
transcript.pyannote[44].end 235.42034375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 235.94346875
transcript.pyannote[45].end 239.58846875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 240.48284375
transcript.pyannote[46].end 240.95534375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 255.36659375
transcript.pyannote[47].end 255.40034375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 255.43409375
transcript.pyannote[48].end 262.03221875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 264.24284375
transcript.pyannote[49].end 264.52971875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 266.80784375
transcript.pyannote[50].end 295.63034375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 296.13659375
transcript.pyannote[51].end 297.77346875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 297.80721875
transcript.pyannote[52].end 303.24096875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 303.56159375
transcript.pyannote[53].end 317.58471875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 317.88846875
transcript.pyannote[54].end 325.02659375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 326.05596875
transcript.pyannote[55].end 331.47284375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 330.84846875
transcript.pyannote[56].end 334.96596875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 334.39221875
transcript.pyannote[57].end 340.73721875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 337.32846875
transcript.pyannote[58].end 337.61534375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 339.21846875
transcript.pyannote[59].end 344.85471875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 344.97284375
transcript.pyannote[60].end 345.00659375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 345.05721875
transcript.pyannote[61].end 350.03534375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 350.57534375
transcript.pyannote[62].end 353.83221875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 353.91659375
transcript.pyannote[63].end 360.26159375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 360.61596875
transcript.pyannote[64].end 363.87284375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 364.36221875
transcript.pyannote[65].end 367.21409375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 367.46721875
transcript.pyannote[66].end 374.99346875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 376.17471875
transcript.pyannote[67].end 381.60846875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 381.84471875
transcript.pyannote[68].end 384.15659375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 384.94971875
transcript.pyannote[69].end 385.64159375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 386.11409375
transcript.pyannote[70].end 388.27409375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 388.96596875
transcript.pyannote[71].end 390.87284375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 392.08784375
transcript.pyannote[72].end 400.54221875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 401.55471875
transcript.pyannote[73].end 403.32659375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 403.61346875
transcript.pyannote[74].end 413.50221875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 414.29534375
transcript.pyannote[75].end 416.03346875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 416.38784375
transcript.pyannote[76].end 416.70846875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 417.33284375
transcript.pyannote[77].end 417.83909375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 418.75034375
transcript.pyannote[78].end 422.09159375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 422.36159375
transcript.pyannote[79].end 425.82096875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 426.36096875
transcript.pyannote[80].end 429.16221875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 429.51659375
transcript.pyannote[81].end 435.96284375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 437.11034375
transcript.pyannote[82].end 438.83159375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 438.89909375
transcript.pyannote[83].end 443.23596875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 444.36659375
transcript.pyannote[84].end 444.72096875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 444.97409375
transcript.pyannote[85].end 456.95534375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 457.59659375
transcript.pyannote[86].end 458.49096875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 459.60471875
transcript.pyannote[87].end 467.38409375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 468.21096875
transcript.pyannote[88].end 470.80971875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 471.33284375
transcript.pyannote[89].end 478.11659375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 478.85909375
transcript.pyannote[90].end 487.22909375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 487.90409375
transcript.pyannote[91].end 495.26159375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 496.03784375
transcript.pyannote[92].end 496.39221875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 496.81409375
transcript.pyannote[93].end 498.75471875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 498.97409375
transcript.pyannote[94].end 500.89784375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 501.37034375
transcript.pyannote[95].end 501.70784375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 502.33221875
transcript.pyannote[96].end 507.61409375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 508.13721875
transcript.pyannote[97].end 513.80721875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 514.78596875
transcript.pyannote[98].end 515.34284375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 516.03471875
transcript.pyannote[99].end 516.84471875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 517.72221875
transcript.pyannote[100].end 519.47721875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 520.20284375
transcript.pyannote[101].end 524.16846875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 524.72534375
transcript.pyannote[102].end 525.95721875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 526.44659375
transcript.pyannote[103].end 530.42909375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 531.12096875
transcript.pyannote[104].end 536.70659375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 537.34784375
transcript.pyannote[105].end 539.96346875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 540.53721875
transcript.pyannote[106].end 543.38909375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 543.52409375
transcript.pyannote[107].end 545.11034375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 545.71784375
transcript.pyannote[108].end 547.43909375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 547.72596875
transcript.pyannote[109].end 553.26096875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 553.49721875
transcript.pyannote[110].end 573.30846875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 573.79784375
transcript.pyannote[111].end 575.70471875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 575.90721875
transcript.pyannote[112].end 577.76346875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 577.89846875
transcript.pyannote[113].end 579.99096875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 581.05409375
transcript.pyannote[114].end 583.97346875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 585.45846875
transcript.pyannote[115].end 587.58471875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 587.93909375
transcript.pyannote[116].end 591.80346875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 592.07346875
transcript.pyannote[117].end 596.24159375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 596.64659375
transcript.pyannote[118].end 612.17159375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 612.59346875
transcript.pyannote[119].end 615.46221875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 616.06971875
transcript.pyannote[120].end 617.08221875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 617.52096875
transcript.pyannote[121].end 618.88784375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 619.74846875
transcript.pyannote[122].end 621.46971875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 622.02659375
transcript.pyannote[123].end 626.44784375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 626.78534375
transcript.pyannote[124].end 629.28284375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 630.37971875
transcript.pyannote[125].end 632.72534375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 633.70409375
transcript.pyannote[126].end 634.76721875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 635.61096875
transcript.pyannote[127].end 638.34471875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 638.56409375
transcript.pyannote[128].end 643.93034375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 644.85846875
transcript.pyannote[129].end 645.29721875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 646.02284375
transcript.pyannote[130].end 647.57534375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 648.13221875
transcript.pyannote[131].end 649.70159375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 650.93346875
transcript.pyannote[132].end 653.24534375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 653.66721875
transcript.pyannote[133].end 659.62409375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 660.21471875
transcript.pyannote[134].end 661.80096875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 662.15534375
transcript.pyannote[135].end 663.84284375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 665.04096875
transcript.pyannote[136].end 665.76659375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 666.20534375
transcript.pyannote[137].end 666.98159375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 667.57221875
transcript.pyannote[138].end 668.41596875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 668.56784375
transcript.pyannote[139].end 669.83346875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 670.62659375
transcript.pyannote[140].end 674.50784375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 676.09409375
transcript.pyannote[141].end 677.59596875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 677.95034375
transcript.pyannote[142].end 680.02596875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 680.97096875
transcript.pyannote[143].end 682.60784375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 683.40096875
transcript.pyannote[144].end 684.24471875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 684.71721875
transcript.pyannote[145].end 689.29034375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 689.64471875
transcript.pyannote[146].end 691.21409375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 691.60221875
transcript.pyannote[147].end 696.44534375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 696.74909375
transcript.pyannote[148].end 698.55471875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 698.84159375
transcript.pyannote[149].end 700.32659375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 701.32221875
transcript.pyannote[150].end 702.30096875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 703.16159375
transcript.pyannote[151].end 704.25846875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 705.89534375
transcript.pyannote[152].end 706.35096875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 708.20721875
transcript.pyannote[153].end 721.35284375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 715.93596875
transcript.pyannote[154].end 716.39159375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 721.35284375
transcript.pyannote[155].end 721.48784375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 721.48784375
transcript.pyannote[156].end 722.02784375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 722.02784375
transcript.pyannote[157].end 723.36096875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 723.66471875
transcript.pyannote[158].end 726.83721875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 727.46159375
transcript.pyannote[159].end 730.07721875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 731.15721875
transcript.pyannote[160].end 734.02596875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 734.85284375
transcript.pyannote[161].end 749.21346875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 749.75346875
transcript.pyannote[162].end 751.96409375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 752.38596875
transcript.pyannote[163].end 753.97221875
transcript.whisperx[0].start 10.13
transcript.whisperx[0].end 23.616
transcript.whisperx[0].text 主席阿清委員市長有請蘇委員市長還有我們速發部速發部缺次長總統早早 委員市長早速發部是次長是嗎
transcript.whisperx[1].start 27.436
transcript.whisperx[1].end 46.873
transcript.whisperx[1].text 現在人工智慧已經是所有全世界各國都在強力的發展尤其臺灣我們在晉元代工其他很多的這個IT產業在臺灣臺灣在世界都是站在一個非常領先的一個國家的地位
transcript.whisperx[2].start 47.936
transcript.whisperx[2].end 70.706
transcript.whisperx[2].text 接下來AI未來也會在臺灣成為一個非常重要的發展項目甚至可是一個非常重要的發展基地我們政府也更應該要同步來跟上這樣的一個腳步所以如何提升公務員的效率已經是普遍人民的期待
transcript.whisperx[3].start 74.472
transcript.whisperx[3].end 97.885
transcript.whisperx[3].text 簡單淺淺的回答一下本期問題要怎麼樣把AI帶進我們所有的行政體系請人事長我們現在推動的就是普遜的是透過數位學習讓全國21萬的公務人員可以到網站上寫數位學習不管你在花蓮台東任何地方都可以
transcript.whisperx[4].start 98.625
transcript.whisperx[4].end 110.569
transcript.whisperx[4].text 第2個我們有辦那個實體班就針對科長以上的總職人員我們今年辦了一班然後明年五班然後甚至數化部他們也有辦我們是針對業務單位的人員訓練他們是針對資訊這樣可以快速擴散
transcript.whisperx[5].start 117.011
transcript.whisperx[5].end 142.548
transcript.whisperx[5].text 那要怎麼樣提升整體的這樣的所有的公務人員整體這個素質對AI的認識了解素質的提升是不是未來也可能也辦一些相關的這樣的一個晉級的考試成為未來可能比較重要這關等升任一個非常重要的指標有沒有可能這要跟上世界的腳步
transcript.whisperx[6].start 144.178
transcript.whisperx[6].end 169.251
transcript.whisperx[6].text 大概我們目前在規劃就是明年可能我再升遷你有拿到人工智慧相關的證照會有加分你可以升遷速度會比較快有一個誘因這個部分我們目前正在規劃當中你是不是建議一下不要老是靠光靠一些年資的堆積作為主要的參考的依據這個加分的幅度是不是可以把它適度的放寬
transcript.whisperx[7].start 171.052
transcript.whisperx[7].end 197.8
transcript.whisperx[7].text 讓願意跟上世界腳步的這些我們的公職人員能夠更快的提升他的格局這樣子大家才會帶動整體的學籍的氛圍我現在這裡跟你分享如果我們的公職人員如果能夠善用AI的話善用AI的話不只可以提升效率我們現在一直在講
transcript.whisperx[8].start 199.13
transcript.whisperx[8].end 223.933
transcript.whisperx[8].text 在公務機關 人民依法提出相關的申請案到了政府機關以後 如果以推薦或是要求補薦往往是補了又補 退了又退 退了又補 補了又退如果我們導入完整的一個人工智慧 就告訴他 你退薦的話只能退一次
transcript.whisperx[9].start 225.049
transcript.whisperx[9].end 240.695
transcript.whisperx[9].text 我現在推薦給你你現在缺什麼資料缺什麼資料要一次補足甚至根本不用送到政府來在家裡上網就可以證券齊備了內容完整了我就給你可以嗎
transcript.whisperx[10].start 243.474
transcript.whisperx[10].end 252.437
transcript.whisperx[10].text 政府本身就要給民眾的這些權益保障還有福利的話不用等民眾再申請政府本身就提供
transcript.whisperx[11].start 267.677
transcript.whisperx[11].end 295.227
transcript.whisperx[11].text 因為要政府核准的相關的申請案是非常的繁瑣非常複雜也非常項目眾多還是有很多必須要政府來核准的不是光給還是要經過相關的申請所以這個部分要拜託這個人事長過去你就投入了在這個領域但是現在還看不出有什麼明顯的績效往往在
transcript.whisperx[12].start 298.521
transcript.whisperx[12].end 324.773
transcript.whisperx[12].text 這個案子啊 這個送了又審 審完又要補 補完又退這個會讓人家有遐想這個到底是不是要送其他的東西才能夠加快速度如果我們用標準的格式人工智慧在家裡就可以把所有東西都齊備不需要再經過刻意的人為判斷我想這個標準是大家都可以接受的 可以嗎
transcript.whisperx[13].start 326.424
transcript.whisperx[13].end 349.257
transcript.whisperx[13].text 這個部分我再跟樹化部來談因為樹化部底下有一個所有公共旅遊部來的我就請他站在那裡就好了沒關係來繼續我覺得這件事很有意義我們再拜託樹化部我們加速來推動很重要的就是人事長我要特別拜託你再跟所有的這相關的部會還有各級政府千萬記得
transcript.whisperx[14].start 350.658
transcript.whisperx[14].end 374.534
transcript.whisperx[14].text 人工智能就你未給他什麼資料他就吃了什麼資料他完全是根據這些資料去做運算去做蒐集然後整合最後給答案所以AI他的長處是什麼他可以最短的時間給你答案而且他不會怠惰不會罷工不會朝九晚五最重要他不會有情緒
transcript.whisperx[15].start 376.823
transcript.whisperx[15].end 400.296
transcript.whisperx[15].text 最短的時間之內能夠給你很重要的AI他不會說謊所以呢會說謊的是人不是AI所以你給他不正確的資料他就有不正確的答案所以未來在未資料的部分要千千萬萬注意未資料是最重要的事情你給他不正確的資料
transcript.whisperx[16].start 401.561
transcript.whisperx[16].end 401.741
transcript.whisperx[16].text 針對現在我們在審總預算
transcript.whisperx[17].start 419.019
transcript.whisperx[17].end 443.042
transcript.whisperx[17].text 一堆的網軍謠言綠媒就在講說這個國民黨民眾黨已經全數通過退回2024年的所謂這個老人津貼跟育兒津貼結果台灣事實查核中心再一次打臉完全沒有這樣的事情完全沒有這樣的事情事實不符
transcript.whisperx[18].start 445.268
transcript.whisperx[18].end 446.569
transcript.whisperx[18].text 所謂花東山法叫兩兆錢坑
transcript.whisperx[19].start 468.414
transcript.whisperx[19].end 495.051
transcript.whisperx[19].text 事實查核中心就很清楚講這完全胡說八道而且他寫得很清楚這個是執政黨自己講民進黨講的這都不是事實各種網路國會發言不斷的造假造假造假因為已經習慣了說謊說久了就變成真的所以未來在整個未資料的時候真真假假假假真真萬一都丟了一些假訊息出去
transcript.whisperx[20].start 496.907
transcript.whisperx[20].end 525.415
transcript.whisperx[20].text 給AI的data裡面都是假的他就很難做出真的事情所以這個部分希望希望這個人事長在跟各部會各級機關要特別做這方面的這個宣導好不好還有一個事情很重要人事長本席知道啊您的生活非常的健康常常會這個因為畢竟台灣就這麼美寶島四周環海
transcript.whisperx[21].start 526.833
transcript.whisperx[21].end 539.304
transcript.whisperx[21].text 有很大的這個海洋資源三分之二是高山所以呢這人事長常常會去這個踏青上山下海那是對的你為所有全國的這些公務員
transcript.whisperx[22].start 540.612
transcript.whisperx[22].end 540.692
transcript.whisperx[22].text 人事長.
transcript.whisperx[23].start 557.125
transcript.whisperx[23].end 558.865
transcript.whisperx[23].text 臺灣有三分之二的山地高山有這麼多的區域裡面但我們的內政部我可以看一下
transcript.whisperx[24].start 586.183
transcript.whisperx[24].end 611.629
transcript.whisperx[24].text 這個消防署有特種特收隊需要緊急救難的時候這個特收隊會出動然後對於我們消防署在各港基隆港、台中港、高雄港、花蓮港也都有這些消防大隊做緊急救難使用但是請問一下人事長
transcript.whisperx[25].start 612.997
transcript.whisperx[25].end 634.582
transcript.whisperx[25].text 現在對於國家公園人事長國家公園是內政部管的對不對為什麼在國家公園裡面發生任何事情卻管轄權在中央但是救人的時候要地方政府去救為什麼沒有為什麼沒有為什麼沒有
transcript.whisperx[26].start 635.643
transcript.whisperx[26].end 663.572
transcript.whisperx[26].text 一個國家公園的特首隊由內政部統一事權本來就是內政部消防署也在內政部為什麼不由內政部來做對不對我本席給你舉個例子這樣子發生一個事情在國家公園雖然雖然那個轄區是在花蓮縣但是在國家公園屬於內政部管的那結果要救人救人是不是如救火 對不對
transcript.whisperx[27].start 665.143
transcript.whisperx[27].end 665.403
transcript.whisperx[27].text 主席
transcript.whisperx[28].start 681.267
transcript.whisperx[28].end 704.259
transcript.whisperx[28].text 這個合乎經濟效益嗎?這合乎對這些苦救難的需要幫助的人是不是有事實的效應?但是現在聽到 消防署內政部不斷表達說人事總處這裡不給援俄這個是救命的援俄啊!這是救命的事情啊!救命的事情救人是不是如救火?是不是?
transcript.whisperx[29].start 708.42
transcript.whisperx[29].end 730.164
transcript.whisperx[29].text 我們之前有找國家公園還有林保署還有消防署一起去討論過這個問題應該會有一些解決的一個比較好的一個方向好 那個人事長既然是國家公園是內政部管轄怎麼會叫地方政府繞半個台灣去救援呢這個計不可乎現在21世紀
transcript.whisperx[30].start 734.915
transcript.whisperx[30].end 751.775
transcript.whisperx[30].text 阿救人一命阿 甚兆其極糊塗阿糊塗阿所以阿 要拜託人事長阿這個阿 我們要進入AI時代了不要還是用這個清朝還是明朝的方式來救人好不好好不好 謝謝好 謝謝總召好 謝謝副總召
會議時間 2024-10-14T09:00:00+08:00
委員發言時間 11:27:14 - 11:39:48
會議名稱 立法院第11屆第2會期司法及法制委員會第4次全體委員會議(事由:邀請行政院人事行政總處人事長暨相關部會列席就「政府機關導入AI提升效能」進行專題報告,並備質詢。)