IVOD_ID |
155429 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/155429 |
日期 |
2024-10-14 |
會議資料.會議代碼 |
委員會-11-2-36-4 |
會議資料.會議代碼:str |
第11屆第2會期司法及法制委員會第4次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
2 |
會議資料.會次 |
4 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
36 |
會議資料.委員會代碼:str[0] |
司法及法制委員會 |
會議資料.標題 |
第11屆第2會期司法及法制委員會第4次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-10-14T11:27:14+08:00 |
結束時間 |
2024-10-14T11:39:48+08:00 |
影片長度 |
00:12:34 |
支援功能[0] |
ai-transcript |
委員名稱 |
傅崐萁 |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d4cdf32868ad364be441465247c0b1ee768d2097a9b873f6ce23de861f6e8a4219d60a91c10e9f3c5ea18f28b6918d91.mp4/playlist.m3u8 |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.28409375 |
transcript.pyannote[0].end |
0.53721875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
8.29971875 |
transcript.pyannote[1].end |
15.84284375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
16.38284375 |
transcript.pyannote[2].end |
17.36159375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
17.66534375 |
transcript.pyannote[3].end |
17.93534375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
18.59346875 |
transcript.pyannote[4].end |
19.43721875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
20.23034375 |
transcript.pyannote[5].end |
21.64784375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
22.71096875 |
transcript.pyannote[6].end |
24.76971875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
27.16596875 |
transcript.pyannote[7].end |
29.76471875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
30.57471875 |
transcript.pyannote[8].end |
34.74284375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
35.41784375 |
transcript.pyannote[9].end |
38.52284375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
39.26534375 |
transcript.pyannote[10].end |
47.14596875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
47.70284375 |
transcript.pyannote[11].end |
61.35471875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
61.48971875 |
transcript.pyannote[12].end |
62.21534375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
62.73846875 |
transcript.pyannote[13].end |
71.74971875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
72.18846875 |
transcript.pyannote[14].end |
72.76221875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
73.18409375 |
transcript.pyannote[15].end |
79.88346875 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
80.30534375 |
transcript.pyannote[16].end |
116.02971875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
113.71784375 |
transcript.pyannote[17].end |
115.33784375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
115.75971875 |
transcript.pyannote[18].end |
115.92846875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
116.02971875 |
transcript.pyannote[19].end |
139.78971875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
140.92034375 |
transcript.pyannote[20].end |
143.02971875 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
144.12659375 |
transcript.pyannote[21].end |
159.28034375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
159.04409375 |
transcript.pyannote[22].end |
159.11159375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
159.28034375 |
transcript.pyannote[23].end |
159.38159375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
159.38159375 |
transcript.pyannote[24].end |
159.41534375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
159.41534375 |
transcript.pyannote[25].end |
159.46596875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
159.46596875 |
transcript.pyannote[26].end |
160.02284375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
160.02284375 |
transcript.pyannote[27].end |
185.20034375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
185.50409375 |
transcript.pyannote[28].end |
187.61346875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
188.99721875 |
transcript.pyannote[29].end |
190.83659375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
191.83221875 |
transcript.pyannote[30].end |
193.21596875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
193.45221875 |
transcript.pyannote[31].end |
193.80659375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
194.22846875 |
transcript.pyannote[32].end |
198.37971875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
199.02096875 |
transcript.pyannote[33].end |
201.36659375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
201.88971875 |
transcript.pyannote[34].end |
202.69971875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
203.03721875 |
transcript.pyannote[35].end |
204.89346875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
205.77096875 |
transcript.pyannote[36].end |
207.47534375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
208.47096875 |
transcript.pyannote[37].end |
209.80409375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
210.47909375 |
transcript.pyannote[38].end |
212.03159375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
212.63909375 |
transcript.pyannote[39].end |
215.87909375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
217.14471875 |
transcript.pyannote[40].end |
218.34284375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
218.81534375 |
transcript.pyannote[41].end |
222.05534375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
222.10596875 |
transcript.pyannote[42].end |
224.16471875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
224.99159375 |
transcript.pyannote[43].end |
228.70409375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
229.00784375 |
transcript.pyannote[44].end |
235.42034375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
235.94346875 |
transcript.pyannote[45].end |
239.58846875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
240.48284375 |
transcript.pyannote[46].end |
240.95534375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
255.36659375 |
transcript.pyannote[47].end |
255.40034375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
255.43409375 |
transcript.pyannote[48].end |
262.03221875 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
264.24284375 |
transcript.pyannote[49].end |
264.52971875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
266.80784375 |
transcript.pyannote[50].end |
295.63034375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
296.13659375 |
transcript.pyannote[51].end |
297.77346875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
297.80721875 |
transcript.pyannote[52].end |
303.24096875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
303.56159375 |
transcript.pyannote[53].end |
317.58471875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
317.88846875 |
transcript.pyannote[54].end |
325.02659375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
326.05596875 |
transcript.pyannote[55].end |
331.47284375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
330.84846875 |
transcript.pyannote[56].end |
334.96596875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
334.39221875 |
transcript.pyannote[57].end |
340.73721875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
337.32846875 |
transcript.pyannote[58].end |
337.61534375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
339.21846875 |
transcript.pyannote[59].end |
344.85471875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
344.97284375 |
transcript.pyannote[60].end |
345.00659375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
345.05721875 |
transcript.pyannote[61].end |
350.03534375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
350.57534375 |
transcript.pyannote[62].end |
353.83221875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
353.91659375 |
transcript.pyannote[63].end |
360.26159375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
360.61596875 |
transcript.pyannote[64].end |
363.87284375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
364.36221875 |
transcript.pyannote[65].end |
367.21409375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
367.46721875 |
transcript.pyannote[66].end |
374.99346875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
376.17471875 |
transcript.pyannote[67].end |
381.60846875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
381.84471875 |
transcript.pyannote[68].end |
384.15659375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
384.94971875 |
transcript.pyannote[69].end |
385.64159375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
386.11409375 |
transcript.pyannote[70].end |
388.27409375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
388.96596875 |
transcript.pyannote[71].end |
390.87284375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
392.08784375 |
transcript.pyannote[72].end |
400.54221875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
401.55471875 |
transcript.pyannote[73].end |
403.32659375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
403.61346875 |
transcript.pyannote[74].end |
413.50221875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
414.29534375 |
transcript.pyannote[75].end |
416.03346875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
416.38784375 |
transcript.pyannote[76].end |
416.70846875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
417.33284375 |
transcript.pyannote[77].end |
417.83909375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
418.75034375 |
transcript.pyannote[78].end |
422.09159375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
422.36159375 |
transcript.pyannote[79].end |
425.82096875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
426.36096875 |
transcript.pyannote[80].end |
429.16221875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
429.51659375 |
transcript.pyannote[81].end |
435.96284375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
437.11034375 |
transcript.pyannote[82].end |
438.83159375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
438.89909375 |
transcript.pyannote[83].end |
443.23596875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
444.36659375 |
transcript.pyannote[84].end |
444.72096875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
444.97409375 |
transcript.pyannote[85].end |
456.95534375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
457.59659375 |
transcript.pyannote[86].end |
458.49096875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
459.60471875 |
transcript.pyannote[87].end |
467.38409375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
468.21096875 |
transcript.pyannote[88].end |
470.80971875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
471.33284375 |
transcript.pyannote[89].end |
478.11659375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
478.85909375 |
transcript.pyannote[90].end |
487.22909375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
487.90409375 |
transcript.pyannote[91].end |
495.26159375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
496.03784375 |
transcript.pyannote[92].end |
496.39221875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
496.81409375 |
transcript.pyannote[93].end |
498.75471875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
498.97409375 |
transcript.pyannote[94].end |
500.89784375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
501.37034375 |
transcript.pyannote[95].end |
501.70784375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
502.33221875 |
transcript.pyannote[96].end |
507.61409375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
508.13721875 |
transcript.pyannote[97].end |
513.80721875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
514.78596875 |
transcript.pyannote[98].end |
515.34284375 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
516.03471875 |
transcript.pyannote[99].end |
516.84471875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
517.72221875 |
transcript.pyannote[100].end |
519.47721875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
520.20284375 |
transcript.pyannote[101].end |
524.16846875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
524.72534375 |
transcript.pyannote[102].end |
525.95721875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
526.44659375 |
transcript.pyannote[103].end |
530.42909375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
531.12096875 |
transcript.pyannote[104].end |
536.70659375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
537.34784375 |
transcript.pyannote[105].end |
539.96346875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
540.53721875 |
transcript.pyannote[106].end |
543.38909375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
543.52409375 |
transcript.pyannote[107].end |
545.11034375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
545.71784375 |
transcript.pyannote[108].end |
547.43909375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
547.72596875 |
transcript.pyannote[109].end |
553.26096875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
553.49721875 |
transcript.pyannote[110].end |
573.30846875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
573.79784375 |
transcript.pyannote[111].end |
575.70471875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
575.90721875 |
transcript.pyannote[112].end |
577.76346875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
577.89846875 |
transcript.pyannote[113].end |
579.99096875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
581.05409375 |
transcript.pyannote[114].end |
583.97346875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
585.45846875 |
transcript.pyannote[115].end |
587.58471875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
587.93909375 |
transcript.pyannote[116].end |
591.80346875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
592.07346875 |
transcript.pyannote[117].end |
596.24159375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
596.64659375 |
transcript.pyannote[118].end |
612.17159375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
612.59346875 |
transcript.pyannote[119].end |
615.46221875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
616.06971875 |
transcript.pyannote[120].end |
617.08221875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
617.52096875 |
transcript.pyannote[121].end |
618.88784375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
619.74846875 |
transcript.pyannote[122].end |
621.46971875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
622.02659375 |
transcript.pyannote[123].end |
626.44784375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
626.78534375 |
transcript.pyannote[124].end |
629.28284375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
630.37971875 |
transcript.pyannote[125].end |
632.72534375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
633.70409375 |
transcript.pyannote[126].end |
634.76721875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
635.61096875 |
transcript.pyannote[127].end |
638.34471875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
638.56409375 |
transcript.pyannote[128].end |
643.93034375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
644.85846875 |
transcript.pyannote[129].end |
645.29721875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
646.02284375 |
transcript.pyannote[130].end |
647.57534375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
648.13221875 |
transcript.pyannote[131].end |
649.70159375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
650.93346875 |
transcript.pyannote[132].end |
653.24534375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
653.66721875 |
transcript.pyannote[133].end |
659.62409375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
660.21471875 |
transcript.pyannote[134].end |
661.80096875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
662.15534375 |
transcript.pyannote[135].end |
663.84284375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
665.04096875 |
transcript.pyannote[136].end |
665.76659375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
666.20534375 |
transcript.pyannote[137].end |
666.98159375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
667.57221875 |
transcript.pyannote[138].end |
668.41596875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
668.56784375 |
transcript.pyannote[139].end |
669.83346875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
670.62659375 |
transcript.pyannote[140].end |
674.50784375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
676.09409375 |
transcript.pyannote[141].end |
677.59596875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
677.95034375 |
transcript.pyannote[142].end |
680.02596875 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
680.97096875 |
transcript.pyannote[143].end |
682.60784375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
683.40096875 |
transcript.pyannote[144].end |
684.24471875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
684.71721875 |
transcript.pyannote[145].end |
689.29034375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
689.64471875 |
transcript.pyannote[146].end |
691.21409375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
691.60221875 |
transcript.pyannote[147].end |
696.44534375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
696.74909375 |
transcript.pyannote[148].end |
698.55471875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
698.84159375 |
transcript.pyannote[149].end |
700.32659375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
701.32221875 |
transcript.pyannote[150].end |
702.30096875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
703.16159375 |
transcript.pyannote[151].end |
704.25846875 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
705.89534375 |
transcript.pyannote[152].end |
706.35096875 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
708.20721875 |
transcript.pyannote[153].end |
721.35284375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
715.93596875 |
transcript.pyannote[154].end |
716.39159375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
721.35284375 |
transcript.pyannote[155].end |
721.48784375 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
721.48784375 |
transcript.pyannote[156].end |
722.02784375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
722.02784375 |
transcript.pyannote[157].end |
723.36096875 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
723.66471875 |
transcript.pyannote[158].end |
726.83721875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
727.46159375 |
transcript.pyannote[159].end |
730.07721875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
731.15721875 |
transcript.pyannote[160].end |
734.02596875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
734.85284375 |
transcript.pyannote[161].end |
749.21346875 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
749.75346875 |
transcript.pyannote[162].end |
751.96409375 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
752.38596875 |
transcript.pyannote[163].end |
753.97221875 |
transcript.whisperx[0].start |
10.13 |
transcript.whisperx[0].end |
23.616 |
transcript.whisperx[0].text |
主席阿清委員市長有請蘇委員市長還有我們速發部速發部缺次長總統早早 委員市長早速發部是次長是嗎 |
transcript.whisperx[1].start |
27.436 |
transcript.whisperx[1].end |
46.873 |
transcript.whisperx[1].text |
現在人工智慧已經是所有全世界各國都在強力的發展尤其臺灣我們在晉元代工其他很多的這個IT產業在臺灣臺灣在世界都是站在一個非常領先的一個國家的地位 |
transcript.whisperx[2].start |
47.936 |
transcript.whisperx[2].end |
70.706 |
transcript.whisperx[2].text |
接下來AI未來也會在臺灣成為一個非常重要的發展項目甚至可是一個非常重要的發展基地我們政府也更應該要同步來跟上這樣的一個腳步所以如何提升公務員的效率已經是普遍人民的期待 |
transcript.whisperx[3].start |
74.472 |
transcript.whisperx[3].end |
97.885 |
transcript.whisperx[3].text |
簡單淺淺的回答一下本期問題要怎麼樣把AI帶進我們所有的行政體系請人事長我們現在推動的就是普遜的是透過數位學習讓全國21萬的公務人員可以到網站上寫數位學習不管你在花蓮台東任何地方都可以 |
transcript.whisperx[4].start |
98.625 |
transcript.whisperx[4].end |
110.569 |
transcript.whisperx[4].text |
第2個我們有辦那個實體班就針對科長以上的總職人員我們今年辦了一班然後明年五班然後甚至數化部他們也有辦我們是針對業務單位的人員訓練他們是針對資訊這樣可以快速擴散 |
transcript.whisperx[5].start |
117.011 |
transcript.whisperx[5].end |
142.548 |
transcript.whisperx[5].text |
那要怎麼樣提升整體的這樣的所有的公務人員整體這個素質對AI的認識了解素質的提升是不是未來也可能也辦一些相關的這樣的一個晉級的考試成為未來可能比較重要這關等升任一個非常重要的指標有沒有可能這要跟上世界的腳步 |
transcript.whisperx[6].start |
144.178 |
transcript.whisperx[6].end |
169.251 |
transcript.whisperx[6].text |
大概我們目前在規劃就是明年可能我再升遷你有拿到人工智慧相關的證照會有加分你可以升遷速度會比較快有一個誘因這個部分我們目前正在規劃當中你是不是建議一下不要老是靠光靠一些年資的堆積作為主要的參考的依據這個加分的幅度是不是可以把它適度的放寬 |
transcript.whisperx[7].start |
171.052 |
transcript.whisperx[7].end |
197.8 |
transcript.whisperx[7].text |
讓願意跟上世界腳步的這些我們的公職人員能夠更快的提升他的格局這樣子大家才會帶動整體的學籍的氛圍我現在這裡跟你分享如果我們的公職人員如果能夠善用AI的話善用AI的話不只可以提升效率我們現在一直在講 |
transcript.whisperx[8].start |
199.13 |
transcript.whisperx[8].end |
223.933 |
transcript.whisperx[8].text |
在公務機關 人民依法提出相關的申請案到了政府機關以後 如果以推薦或是要求補薦往往是補了又補 退了又退 退了又補 補了又退如果我們導入完整的一個人工智慧 就告訴他 你退薦的話只能退一次 |
transcript.whisperx[9].start |
225.049 |
transcript.whisperx[9].end |
240.695 |
transcript.whisperx[9].text |
我現在推薦給你你現在缺什麼資料缺什麼資料要一次補足甚至根本不用送到政府來在家裡上網就可以證券齊備了內容完整了我就給你可以嗎 |
transcript.whisperx[10].start |
243.474 |
transcript.whisperx[10].end |
252.437 |
transcript.whisperx[10].text |
政府本身就要給民眾的這些權益保障還有福利的話不用等民眾再申請政府本身就提供 |
transcript.whisperx[11].start |
267.677 |
transcript.whisperx[11].end |
295.227 |
transcript.whisperx[11].text |
因為要政府核准的相關的申請案是非常的繁瑣非常複雜也非常項目眾多還是有很多必須要政府來核准的不是光給還是要經過相關的申請所以這個部分要拜託這個人事長過去你就投入了在這個領域但是現在還看不出有什麼明顯的績效往往在 |
transcript.whisperx[12].start |
298.521 |
transcript.whisperx[12].end |
324.773 |
transcript.whisperx[12].text |
這個案子啊 這個送了又審 審完又要補 補完又退這個會讓人家有遐想這個到底是不是要送其他的東西才能夠加快速度如果我們用標準的格式人工智慧在家裡就可以把所有東西都齊備不需要再經過刻意的人為判斷我想這個標準是大家都可以接受的 可以嗎 |
transcript.whisperx[13].start |
326.424 |
transcript.whisperx[13].end |
349.257 |
transcript.whisperx[13].text |
這個部分我再跟樹化部來談因為樹化部底下有一個所有公共旅遊部來的我就請他站在那裡就好了沒關係來繼續我覺得這件事很有意義我們再拜託樹化部我們加速來推動很重要的就是人事長我要特別拜託你再跟所有的這相關的部會還有各級政府千萬記得 |
transcript.whisperx[14].start |
350.658 |
transcript.whisperx[14].end |
374.534 |
transcript.whisperx[14].text |
人工智能就你未給他什麼資料他就吃了什麼資料他完全是根據這些資料去做運算去做蒐集然後整合最後給答案所以AI他的長處是什麼他可以最短的時間給你答案而且他不會怠惰不會罷工不會朝九晚五最重要他不會有情緒 |
transcript.whisperx[15].start |
376.823 |
transcript.whisperx[15].end |
400.296 |
transcript.whisperx[15].text |
最短的時間之內能夠給你很重要的AI他不會說謊所以呢會說謊的是人不是AI所以你給他不正確的資料他就有不正確的答案所以未來在未資料的部分要千千萬萬注意未資料是最重要的事情你給他不正確的資料 |
transcript.whisperx[16].start |
401.561 |
transcript.whisperx[16].end |
401.741 |
transcript.whisperx[16].text |
針對現在我們在審總預算 |
transcript.whisperx[17].start |
419.019 |
transcript.whisperx[17].end |
443.042 |
transcript.whisperx[17].text |
一堆的網軍謠言綠媒就在講說這個國民黨民眾黨已經全數通過退回2024年的所謂這個老人津貼跟育兒津貼結果台灣事實查核中心再一次打臉完全沒有這樣的事情完全沒有這樣的事情事實不符 |
transcript.whisperx[18].start |
445.268 |
transcript.whisperx[18].end |
446.569 |
transcript.whisperx[18].text |
所謂花東山法叫兩兆錢坑 |
transcript.whisperx[19].start |
468.414 |
transcript.whisperx[19].end |
495.051 |
transcript.whisperx[19].text |
事實查核中心就很清楚講這完全胡說八道而且他寫得很清楚這個是執政黨自己講民進黨講的這都不是事實各種網路國會發言不斷的造假造假造假因為已經習慣了說謊說久了就變成真的所以未來在整個未資料的時候真真假假假假真真萬一都丟了一些假訊息出去 |
transcript.whisperx[20].start |
496.907 |
transcript.whisperx[20].end |
525.415 |
transcript.whisperx[20].text |
給AI的data裡面都是假的他就很難做出真的事情所以這個部分希望希望這個人事長在跟各部會各級機關要特別做這方面的這個宣導好不好還有一個事情很重要人事長本席知道啊您的生活非常的健康常常會這個因為畢竟台灣就這麼美寶島四周環海 |
transcript.whisperx[21].start |
526.833 |
transcript.whisperx[21].end |
539.304 |
transcript.whisperx[21].text |
有很大的這個海洋資源三分之二是高山所以呢這人事長常常會去這個踏青上山下海那是對的你為所有全國的這些公務員 |
transcript.whisperx[22].start |
540.612 |
transcript.whisperx[22].end |
540.692 |
transcript.whisperx[22].text |
人事長. |
transcript.whisperx[23].start |
557.125 |
transcript.whisperx[23].end |
558.865 |
transcript.whisperx[23].text |
臺灣有三分之二的山地高山有這麼多的區域裡面但我們的內政部我可以看一下 |
transcript.whisperx[24].start |
586.183 |
transcript.whisperx[24].end |
611.629 |
transcript.whisperx[24].text |
這個消防署有特種特收隊需要緊急救難的時候這個特收隊會出動然後對於我們消防署在各港基隆港、台中港、高雄港、花蓮港也都有這些消防大隊做緊急救難使用但是請問一下人事長 |
transcript.whisperx[25].start |
612.997 |
transcript.whisperx[25].end |
634.582 |
transcript.whisperx[25].text |
現在對於國家公園人事長國家公園是內政部管的對不對為什麼在國家公園裡面發生任何事情卻管轄權在中央但是救人的時候要地方政府去救為什麼沒有為什麼沒有為什麼沒有 |
transcript.whisperx[26].start |
635.643 |
transcript.whisperx[26].end |
663.572 |
transcript.whisperx[26].text |
一個國家公園的特首隊由內政部統一事權本來就是內政部消防署也在內政部為什麼不由內政部來做對不對我本席給你舉個例子這樣子發生一個事情在國家公園雖然雖然那個轄區是在花蓮縣但是在國家公園屬於內政部管的那結果要救人救人是不是如救火 對不對 |
transcript.whisperx[27].start |
665.143 |
transcript.whisperx[27].end |
665.403 |
transcript.whisperx[27].text |
主席 |
transcript.whisperx[28].start |
681.267 |
transcript.whisperx[28].end |
704.259 |
transcript.whisperx[28].text |
這個合乎經濟效益嗎?這合乎對這些苦救難的需要幫助的人是不是有事實的效應?但是現在聽到 消防署內政部不斷表達說人事總處這裡不給援俄這個是救命的援俄啊!這是救命的事情啊!救命的事情救人是不是如救火?是不是? |
transcript.whisperx[29].start |
708.42 |
transcript.whisperx[29].end |
730.164 |
transcript.whisperx[29].text |
我們之前有找國家公園還有林保署還有消防署一起去討論過這個問題應該會有一些解決的一個比較好的一個方向好 那個人事長既然是國家公園是內政部管轄怎麼會叫地方政府繞半個台灣去救援呢這個計不可乎現在21世紀 |
transcript.whisperx[30].start |
734.915 |
transcript.whisperx[30].end |
751.775 |
transcript.whisperx[30].text |
阿救人一命阿 甚兆其極糊塗阿糊塗阿所以阿 要拜託人事長阿這個阿 我們要進入AI時代了不要還是用這個清朝還是明朝的方式來救人好不好好不好 謝謝好 謝謝總召好 謝謝副總召 |
會議時間 |
2024-10-14T09:00:00+08:00 |
委員發言時間 |
11:27:14 - 11:39:48 |
會議名稱 |
立法院第11屆第2會期司法及法制委員會第4次全體委員會議(事由:邀請行政院人事行政總處人事長暨相關部會列席就「政府機關導入AI提升效能」進行專題報告,並備質詢。) |