iVOD / 155426

Field Value
影片長度 379
委員名稱 賴士葆
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d4cdf32868ad364b79ac8eab226f3bb8768d2097a9b873f6ce23de861f6e8a4273de26ceb07beb505ea18f28b6918d91.mp4/playlist.m3u8
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 1.14471875
transcript.pyannote[0].end 5.61659375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 5.80221875
transcript.pyannote[1].end 9.02534375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 9.17721875
transcript.pyannote[2].end 12.31596875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 12.51846875
transcript.pyannote[3].end 14.02034375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 14.25659375
transcript.pyannote[4].end 15.85971875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 16.14659375
transcript.pyannote[5].end 17.10846875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 17.22659375
transcript.pyannote[6].end 20.14596875
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 19.13346875
transcript.pyannote[7].end 19.89284375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 20.71971875
transcript.pyannote[8].end 24.97221875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 25.47846875
transcript.pyannote[9].end 30.27096875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 31.46909375
transcript.pyannote[10].end 33.49409375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 33.61221875
transcript.pyannote[11].end 34.65846875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 35.35034375
transcript.pyannote[12].end 35.73846875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 35.90721875
transcript.pyannote[13].end 38.80971875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 39.90659375
transcript.pyannote[14].end 41.07096875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 41.98221875
transcript.pyannote[15].end 43.24784375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 46.94346875
transcript.pyannote[16].end 48.12471875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 48.93471875
transcript.pyannote[17].end 49.79534375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 51.01034375
transcript.pyannote[18].end 52.30971875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 51.80346875
transcript.pyannote[19].end 54.21659375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 54.48659375
transcript.pyannote[20].end 54.94221875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 55.29659375
transcript.pyannote[21].end 56.07284375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 56.07284375
transcript.pyannote[22].end 56.08971875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 61.10159375
transcript.pyannote[23].end 72.66096875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 61.20284375
transcript.pyannote[24].end 61.47284375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 70.24784375
transcript.pyannote[25].end 70.85534375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 73.28534375
transcript.pyannote[26].end 74.61846875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 75.41159375
transcript.pyannote[27].end 76.03596875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 76.03596875
transcript.pyannote[28].end 77.03159375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 77.58846875
transcript.pyannote[29].end 78.34784375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 79.32659375
transcript.pyannote[30].end 83.37659375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 80.98034375
transcript.pyannote[31].end 81.01409375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 81.01409375
transcript.pyannote[32].end 81.03096875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 81.03096875
transcript.pyannote[33].end 82.22909375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 82.22909375
transcript.pyannote[34].end 82.24596875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 84.11909375
transcript.pyannote[35].end 85.03034375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 84.30471875
transcript.pyannote[36].end 84.86159375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 85.03034375
transcript.pyannote[37].end 85.14846875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 85.14846875
transcript.pyannote[38].end 85.60409375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 85.60409375
transcript.pyannote[39].end 85.65471875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 85.65471875
transcript.pyannote[40].end 85.67159375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 85.82346875
transcript.pyannote[41].end 86.61659375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 87.69659375
transcript.pyannote[42].end 92.23596875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 92.97846875
transcript.pyannote[43].end 97.12971875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 99.00284375
transcript.pyannote[44].end 100.01534375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 100.23471875
transcript.pyannote[45].end 102.86721875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 102.96846875
transcript.pyannote[46].end 108.58784375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 109.95471875
transcript.pyannote[47].end 112.04721875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 112.65471875
transcript.pyannote[48].end 115.89471875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 117.64971875
transcript.pyannote[49].end 118.98284375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 119.75909375
transcript.pyannote[50].end 120.75471875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 121.32846875
transcript.pyannote[51].end 126.39096875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 126.88034375
transcript.pyannote[52].end 138.16971875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 129.09096875
transcript.pyannote[53].end 129.49596875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 138.89534375
transcript.pyannote[54].end 156.54659375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 157.60971875
transcript.pyannote[55].end 165.08534375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 166.06409375
transcript.pyannote[56].end 169.89471875
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 167.22846875
transcript.pyannote[57].end 168.78096875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 169.97909375
transcript.pyannote[58].end 184.54221875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 184.84596875
transcript.pyannote[59].end 199.05471875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 198.10971875
transcript.pyannote[60].end 211.55909375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 211.49159375
transcript.pyannote[61].end 218.66346875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 219.52409375
transcript.pyannote[62].end 228.09659375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 228.53534375
transcript.pyannote[63].end 228.92346875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 231.80909375
transcript.pyannote[64].end 233.37846875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 233.96909375
transcript.pyannote[65].end 241.05659375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 241.54596875
transcript.pyannote[66].end 245.22471875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 246.16971875
transcript.pyannote[67].end 247.30034375
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 251.51909375
transcript.pyannote[68].end 260.26034375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 259.63596875
transcript.pyannote[69].end 262.67346875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 260.31096875
transcript.pyannote[70].end 260.32784375
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 260.37846875
transcript.pyannote[71].end 261.28971875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 263.01096875
transcript.pyannote[72].end 265.22159375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 266.03159375
transcript.pyannote[73].end 276.03846875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 276.03846875
transcript.pyannote[74].end 282.02909375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 282.58596875
transcript.pyannote[75].end 294.09471875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 294.61784375
transcript.pyannote[76].end 297.75659375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 298.07721875
transcript.pyannote[77].end 300.05159375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 300.13596875
transcript.pyannote[78].end 303.24096875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 302.81909375
transcript.pyannote[79].end 306.59909375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 306.75096875
transcript.pyannote[80].end 312.97784375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 311.99909375
transcript.pyannote[81].end 313.02846875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 313.02846875
transcript.pyannote[82].end 313.65284375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 313.97346875
transcript.pyannote[83].end 315.20534375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 314.71596875
transcript.pyannote[84].end 314.90159375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 315.59346875
transcript.pyannote[85].end 316.28534375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 316.47096875
transcript.pyannote[86].end 319.55909375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 319.96409375
transcript.pyannote[87].end 320.80784375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 321.38159375
transcript.pyannote[88].end 323.47409375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 323.64284375
transcript.pyannote[89].end 323.77784375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 324.04784375
transcript.pyannote[90].end 326.54534375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 326.54534375
transcript.pyannote[91].end 327.86159375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 327.86159375
transcript.pyannote[92].end 334.35846875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 328.08096875
transcript.pyannote[93].end 328.48596875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 334.51034375
transcript.pyannote[94].end 339.96096875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 340.16346875
transcript.pyannote[95].end 344.48346875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 344.48346875
transcript.pyannote[96].end 344.60159375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 344.60159375
transcript.pyannote[97].end 348.87096875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 349.41096875
transcript.pyannote[98].end 351.99284375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 352.24596875
transcript.pyannote[99].end 356.24534375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 356.53221875
transcript.pyannote[100].end 368.02409375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 368.39534375
transcript.pyannote[101].end 371.12909375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 371.21346875
transcript.pyannote[102].end 372.95159375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 373.08659375
transcript.pyannote[103].end 374.43659375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 375.16221875
transcript.pyannote[104].end 376.00596875
transcript.whisperx[0].start 1.472
transcript.whisperx[0].end 29.975
transcript.whisperx[0].text 謝謝主席謝謝副總召那麼各位先進大家早安大家好有請人事長以及書發部的薛次長以及國科會的陳副主委有請人事長薛次長還有陳副主委各位長官因為我時間很短我就問幾個簡單的問題請問你們知不知道或者就請問幾位長官包括各單位的
transcript.whisperx[1].start 31.533
transcript.whisperx[1].end 55.584
transcript.whisperx[1].text 有跟CHAT的GPT付錢去用CHAT的GPT問他事情的舉手好不好 有沒有都有嗎 後面都有嗎請問你們付幾塊錢的付幾塊錢的啊這裡有行情 20塊美金以下的舉手 免費的
transcript.whisperx[2].start 61.697
transcript.whisperx[2].end 84.229
transcript.whisperx[2].text 你付多少?我們是買token的概念,我們是用團體的,萬二十五萬,一年三十萬一年三十萬?一天可以用三百的還有還有,其他人會長官呢?蘇巴部的?蘇巴部沒有買,我自己沒有使用你們沒有使用?國共會勒?
transcript.whisperx[3].start 88.511
transcript.whisperx[3].end 115.726
transcript.whisperx[3].text 我們是用來做學術研究用途我現在是個人在用各位長官知道嗎當你來我請你看第一張我查了一下從8月22號到26號政府機關5天連線簽了GPD總共29萬餘次我要講什麼東西他講得非常清楚他就說如果你是20塊美金以下的
transcript.whisperx[4].start 117.691
transcript.whisperx[4].end 136.081
transcript.whisperx[4].text 你要把資料給他他要用你的資料就是我們不斷地用CHAT GPT就不斷地有政府的資料留在他手上他就會訓練在使用簡單來講就是政府相關的資料因為你們的使用CHAT GPT特別人事總署這裡還說整個是買團體的哇 這樣整個都去啊
transcript.whisperx[5].start 138.923
transcript.whisperx[5].end 164.682
transcript.whisperx[5].text 我們國家的資料國家的安全的問題資安的問題就呈現了我們國家的政府的機關的資料呼就送過去了然後他就訓練就用我們台灣政府的相關的單位的資料在裡面供他訓練所以這裡面就是無意當中我們因為你們的使用CHAT的GPT
transcript.whisperx[6].start 166.124
transcript.whisperx[6].end 184.17
transcript.whisperx[6].text 已經把我們已經有資安洩漏的問題出來了我們現在放在銀端的都是公開資料啦open data本來就是政府資訊公開來符合的資料本來就要放在上面所以跟那個我們比較confidential的這個部分就沒有關
transcript.whisperx[7].start 185.796
transcript.whisperx[7].end 198.371
transcript.whisperx[7].text 你只能講你個人的阿你團體使用你怎麼知道你們底下的人他把什麼資料去問他呢你怎麼知道他問什麼呢那是你阿你也許講說你本來知道的
transcript.whisperx[8].start 200.993
transcript.whisperx[8].end 227.859
transcript.whisperx[8].text 他上面的是屬於公開資料,另外我們有用地端的,有些資料是不能對外公開的,我們就放在地端,沒有放在雲端,我們有做這樣的差別嗎?吉同家講,我現在是講說,你自己可以這樣子做,可是你底下的人,他不知道啊!你底下的人怎麼用你知道嗎?他應該問一下,啊我現在這個放假的問題你給我回答一下,他就跟你回答,你們資料就出去了,怎麼沒有呢?對不對?
transcript.whisperx[9].start 231.957
transcript.whisperx[9].end 232.838
transcript.whisperx[9].text 你沒辦法保證啊
transcript.whisperx[10].start 252.277
transcript.whisperx[10].end 275.578
transcript.whisperx[10].text 這張喔 或是我剛才說的兩項啦 一個雲端的就是開放資料 阿如果在地端就是不可以我出去網購的來 你還是沒有回答問題的齁 時間快到了所以我不再問你了 來我們書畫部的齁AI資料的進出可以不可以管制 當我們政府機關去跟AI 比如說CHAT的GBT 裡面有互動的時候 我們有沒有辦法管制我們的職涵 有沒有辦法
transcript.whisperx[11].start 276.799
transcript.whisperx[11].end 306.04
transcript.whisperx[11].text 這個在目前的各部會的指引裡面因為行政院頒布的指引裡面就有規定機敏資料不能上去那所以現在是用指引的方法各部會訂指引的方法先做這樣的處理然後速發部這邊呢我們在做評測的時候會針對這個大型語言模型的資安跟他有沒有竊取你的資料去做評測那必須是評測過了以後我們才會放你沒有沒有評估了哪些AI可用哪些AI不能用
transcript.whisperx[12].start 307.282
transcript.whisperx[12].end 308.865
transcript.whisperx[12].text 目前這個評測中心已經評測了幾個幾個不可以有人跟我們講
transcript.whisperx[13].start 314.702
transcript.whisperx[13].end 339.8
transcript.whisperx[13].text 我看到資安比較好的應該是那個拉瑪拉瑪3.0的資安非常好那其他很多都沒有到達滿分CHECK的GPT不好?CHECK的GPT因為他剛剛就是委員講的他免費的版本他會收你的資料所以如果你用付費的版本像剛剛人事總處他用付費的版本他是不能收你的資料的
transcript.whisperx[14].start 340.171
transcript.whisperx[14].end 348.46
transcript.whisperx[14].text 沒有沒有我再強調一個20塊錢美金20塊錢以下的資安都很可能露出去了20塊錢以上的相對好一點
transcript.whisperx[15].start 349.465
transcript.whisperx[15].end 349.605
transcript.whisperx[15].text 好 謝謝委員
會議時間 2024-10-14T09:00:00+08:00
委員發言時間 11:20:46 - 11:27:05
會議名稱 立法院第11屆第2會期司法及法制委員會第4次全體委員會議(事由:邀請行政院人事行政總處人事長暨相關部會列席就「政府機關導入AI提升效能」進行專題報告,並備質詢。)
IVOD_ID 155426
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/155426
日期 2024-10-14
會議資料.會議代碼 委員會-11-2-36-4
會議資料.屆 11
會議資料.會期 2
會議資料.會次 4
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.標題 第11屆第2會期司法及法制委員會第4次全體委員會議
影片種類 Clip
開始時間 2024-10-14T11:20:46+08:00
結束時間 2024-10-14T11:27:05+08:00
支援功能[0] ai-transcript