iVOD / 155422

Field Value
影片長度 867
委員名稱 吳思瑤
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d4cdf32868ad364b60adb5530e8bde05768d2097a9b873f6ce23de861f6e8a42ddeb7cde19618cf75ea18f28b6918d91.mp4/playlist.m3u8
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 3.15284375
transcript.pyannote[0].end 10.74659375
transcript.pyannote[1].speaker SPEAKER_04
transcript.pyannote[1].start 10.79721875
transcript.pyannote[1].end 14.45909375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 12.82221875
transcript.pyannote[2].end 13.54784375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 16.55159375
transcript.pyannote[3].end 17.93534375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 17.96909375
transcript.pyannote[4].end 29.68034375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 29.88284375
transcript.pyannote[5].end 37.54409375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 38.21909375
transcript.pyannote[6].end 47.19659375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 48.91784375
transcript.pyannote[7].end 96.94409375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 97.43346875
transcript.pyannote[8].end 107.45721875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 107.72721875
transcript.pyannote[9].end 109.58346875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 110.14034375
transcript.pyannote[10].end 115.18596875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 115.42221875
transcript.pyannote[11].end 125.54721875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 125.74971875
transcript.pyannote[12].end 126.66096875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 127.69034375
transcript.pyannote[13].end 128.98971875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 134.54159375
transcript.pyannote[14].end 147.16409375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 147.63659375
transcript.pyannote[15].end 149.89784375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 150.69096875
transcript.pyannote[16].end 153.47534375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 153.72846875
transcript.pyannote[17].end 159.12846875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 159.24659375
transcript.pyannote[18].end 180.98159375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 181.38659375
transcript.pyannote[19].end 182.60159375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 182.83784375
transcript.pyannote[20].end 192.55784375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 193.53659375
transcript.pyannote[21].end 199.05471875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 199.42596875
transcript.pyannote[22].end 203.50971875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 204.04971875
transcript.pyannote[23].end 205.23096875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 205.70346875
transcript.pyannote[24].end 226.03784375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 226.44284375
transcript.pyannote[25].end 243.46971875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 243.90846875
transcript.pyannote[26].end 246.25409375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 247.63784375
transcript.pyannote[27].end 254.75909375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 256.41284375
transcript.pyannote[28].end 257.62784375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 258.38721875
transcript.pyannote[29].end 267.53346875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 268.52909375
transcript.pyannote[30].end 270.94221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 271.66784375
transcript.pyannote[31].end 291.74909375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 292.33971875
transcript.pyannote[32].end 294.09471875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 294.73596875
transcript.pyannote[33].end 297.18284375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 298.16159375
transcript.pyannote[34].end 305.62034375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 306.26159375
transcript.pyannote[35].end 319.01909375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 320.16659375
transcript.pyannote[36].end 320.94284375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 321.41534375
transcript.pyannote[37].end 337.31159375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 337.98659375
transcript.pyannote[38].end 364.34534375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 365.02034375
transcript.pyannote[39].end 368.02409375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 367.80471875
transcript.pyannote[40].end 369.52596875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 370.42034375
transcript.pyannote[41].end 375.55034375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 370.48784375
transcript.pyannote[42].end 371.60159375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 371.71971875
transcript.pyannote[43].end 371.73659375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 376.09034375
transcript.pyannote[44].end 380.96721875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 380.96721875
transcript.pyannote[45].end 394.60221875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 391.05846875
transcript.pyannote[46].end 395.59784375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 395.59784375
transcript.pyannote[47].end 396.30659375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 396.22221875
transcript.pyannote[48].end 397.75784375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 398.09534375
transcript.pyannote[49].end 405.25034375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 405.53721875
transcript.pyannote[50].end 418.48034375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 419.42534375
transcript.pyannote[51].end 423.77909375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 424.33596875
transcript.pyannote[52].end 455.03159375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 455.74034375
transcript.pyannote[53].end 459.40221875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 460.31346875
transcript.pyannote[54].end 464.88659375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 464.00909375
transcript.pyannote[55].end 472.68284375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 464.90346875
transcript.pyannote[56].end 465.76409375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 472.96971875
transcript.pyannote[57].end 475.68659375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 475.95659375
transcript.pyannote[58].end 483.29721875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 483.71909375
transcript.pyannote[59].end 496.32471875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 497.59034375
transcript.pyannote[60].end 498.34971875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 498.68721875
transcript.pyannote[61].end 499.42971875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 499.95284375
transcript.pyannote[62].end 521.23221875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 522.58221875
transcript.pyannote[63].end 540.58784375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 541.14471875
transcript.pyannote[64].end 542.86596875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 542.86596875
transcript.pyannote[65].end 554.13846875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 553.83471875
transcript.pyannote[66].end 555.80909375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 555.80909375
transcript.pyannote[67].end 563.63909375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 563.36909375
transcript.pyannote[68].end 580.54784375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 564.87096875
transcript.pyannote[69].end 565.44471875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 581.15534375
transcript.pyannote[70].end 582.69096875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 583.38284375
transcript.pyannote[71].end 599.32971875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 600.56159375
transcript.pyannote[72].end 601.23659375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 601.89471875
transcript.pyannote[73].end 604.25721875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 605.25284375
transcript.pyannote[74].end 626.95409375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 627.78096875
transcript.pyannote[75].end 628.38846875
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 629.80596875
transcript.pyannote[76].end 630.29534375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 630.17721875
transcript.pyannote[77].end 636.74159375
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 637.73721875
transcript.pyannote[78].end 641.51721875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 641.12909375
transcript.pyannote[79].end 642.98534375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 642.98534375
transcript.pyannote[80].end 643.35659375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 643.57596875
transcript.pyannote[81].end 645.58409375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 645.02721875
transcript.pyannote[82].end 650.34284375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 650.05596875
transcript.pyannote[83].end 669.69846875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 670.01909375
transcript.pyannote[84].end 670.74471875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 671.72346875
transcript.pyannote[85].end 683.41784375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 684.32909375
transcript.pyannote[86].end 685.22346875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 686.33721875
transcript.pyannote[87].end 694.13346875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 696.96846875
transcript.pyannote[88].end 697.30596875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 698.52096875
transcript.pyannote[89].end 698.53784375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 698.53784375
transcript.pyannote[90].end 699.76971875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 700.00596875
transcript.pyannote[91].end 701.27159375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 702.46971875
transcript.pyannote[92].end 704.02221875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 704.02221875
transcript.pyannote[93].end 707.19471875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 707.36346875
transcript.pyannote[94].end 710.67096875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 707.56596875
transcript.pyannote[95].end 708.13971875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 708.13971875
transcript.pyannote[96].end 708.86534375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 708.86534375
transcript.pyannote[97].end 708.88221875
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 710.82284375
transcript.pyannote[98].end 715.46346875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 715.46346875
transcript.pyannote[99].end 723.24284375
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 715.66596875
transcript.pyannote[100].end 716.88096875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 723.79971875
transcript.pyannote[101].end 729.90846875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 730.76909375
transcript.pyannote[102].end 731.39346875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 732.49034375
transcript.pyannote[103].end 747.30659375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 747.77909375
transcript.pyannote[104].end 757.41471875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 758.25846875
transcript.pyannote[105].end 776.50034375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 776.56784375
transcript.pyannote[106].end 780.22971875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 780.51659375
transcript.pyannote[107].end 783.72284375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 784.39784375
transcript.pyannote[108].end 785.81534375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 786.03471875
transcript.pyannote[109].end 792.04221875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 788.22846875
transcript.pyannote[110].end 789.76409375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 791.50221875
transcript.pyannote[111].end 804.59721875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 796.44659375
transcript.pyannote[112].end 797.27346875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 804.78284375
transcript.pyannote[113].end 811.95471875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 811.98846875
transcript.pyannote[114].end 812.03909375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 812.12346875
transcript.pyannote[115].end 812.91659375
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 813.10221875
transcript.pyannote[116].end 816.44346875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 815.70096875
transcript.pyannote[117].end 816.03846875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 816.88221875
transcript.pyannote[118].end 836.57534375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 836.96346875
transcript.pyannote[119].end 859.03596875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 859.59284375
transcript.pyannote[120].end 860.85846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 861.31409375
transcript.pyannote[121].end 864.70596875
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 864.35159375
transcript.pyannote[122].end 866.39346875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 865.68471875
transcript.pyannote[123].end 865.73534375
transcript.pyannote[124].speaker SPEAKER_04
transcript.pyannote[124].start 865.73534375
transcript.pyannote[124].end 865.81971875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 865.81971875
transcript.pyannote[125].end 865.93784375
transcript.pyannote[126].speaker SPEAKER_04
transcript.pyannote[126].start 865.93784375
transcript.pyannote[126].end 865.97159375
transcript.whisperx[0].start 3.712
transcript.whisperx[0].end 13.52
transcript.whisperx[0].text 謝謝主席:有請人事長:速發部的薛次長:還有國科會陳副主委好 請蘇人事長 薛次長 還有陳副主委
transcript.whisperx[1].start 16.901
transcript.whisperx[1].end 37.339
transcript.whisperx[1].text 大家早安今天周圍安排了這一個AI為主題的專案報告然後呢部會來列席的好多部會等等這樣一卦所以代表我們要打造確實是一個AI的國家對在公務體系裡頭no one is outsider
transcript.whisperx[2].start 38.936
transcript.whisperx[2].end 45.39
transcript.whisperx[2].text 沒有人是局外人各個部會都有承擔責任不管是培育或是參與
transcript.whisperx[3].start 48.973
transcript.whisperx[3].end 69.814
transcript.whisperx[3].text 那AI列入我們五大信賴產業當中跟AI相關的就是我們的國家雄心壯志是打造台灣為全球AI影響力中心推動目標裡頭呢當然希望有產值但是在人才的部分
transcript.whisperx[4].start 70.555
transcript.whisperx[4].end 94.765
transcript.whisperx[4].text 全國公司協力4年內培育20萬名AI數位人才然後提升數位經濟產業導入AI的應用普及率是50%對於製造業來導入AI的普及率要到3成今天的主題是我們公務部門其實也是順著剛剛我們趙薇所問的
transcript.whisperx[5].start 97.486
transcript.whisperx[5].end 126.395
transcript.whisperx[5].text 到底這麼多部會是國家隊每一個部會的職﹑你的職長都跟AI的應用相關到底誰管好我現在要問這個問題啦我們對於數位經濟導入要4年5成對於製造業導入AI技術要4年3成那我問這個問題我們的公務體系導入AI的應用4年內的目標是多少
transcript.whisperx[6].start 127.935
transcript.whisperx[6].end 149.789
transcript.whisperx[6].text 誰可以回答這個問題?如果以剛剛鍾釗緯所問的、垂詢的誰在整合、誰在管考,你們沒有辦法回答所以我的問題你當然也沒有辦法回答這就是一個key point
transcript.whisperx[7].start 150.925
transcript.whisperx[7].end 165.925
transcript.whisperx[7].text 國家隊 大家都有責任在自己的專善執掌裡頭想方設法去應用但是我們對於民間的產業有清楚的戰略目標對於公務體系我覺得不能夠
transcript.whisperx[8].start 167.286
transcript.whisperx[8].end 192.083
transcript.whisperx[8].text 這樣子毫無清晰的目標值這個問題好好帶回去這就是我們要面對的問題在公務體系今天人事長處理的是公務體系的培訓嘛來下一頁總統說了我們AI時代來臨希望我們公務體系每一位首長每一位公務同仁都要有相關的AI知能
transcript.whisperx[9].start 193.581
transcript.whisperx[9].end 216.4
transcript.whisperx[9].text 但是今天的主題我看到的如果是以因為法制委員會監督的是人事長我們可能會把他放在公務人力的人才培育但是我要說我們不只是培育公務體系的同仁有AI的知能更重要的是在國家的AI政策跟相關的應用上
transcript.whisperx[10].start 216.94
transcript.whisperx[10].end 245.633
transcript.whisperx[10].text 其實是各部會是參與的角色包括我對人事長你的期待我們不是只辦訓練營讓大家知道AI是什麼剛剛鍾釗緯講得非常好啊對於山岸的協助對於矯正署法制委員會我們的法務部AI的應用何其之廣啊所以不是只有末端的人才培訓來告訴大家現在技術有哪些大家要懂重點是公務體系的應用
transcript.whisperx[11].start 248.017
transcript.whisperx[11].end 266.633
transcript.whisperx[11].text 這個是前後非常重要的一個思維的翻轉,我在這裡一定要提出來喔,下一頁這個big data,新時代喔,資訊就是新的石油,因為我過去在教育文化委員會喔,我長期跟國科會來做這方面的討論,下一頁
transcript.whisperx[12].start 268.587
transcript.whisperx[12].end 288.557
transcript.whisperx[12].text 所以在CHAP GPT引爆了AI的這個資訊資料庫的浪潮之後我過去質詢了國科會那時候的吳政中他是主委也兼政委所以提出了要在2024年是今年的預算已經在執行有40億國家投入AI的發展這是今年度的預算但是呢我們還是落後了
transcript.whisperx[13].start 298.183
transcript.whisperx[13].end 299.745
transcript.whisperx[13].text 我今天就就這個資料庫來就教於三位
transcript.whisperx[14].start 320.439
transcript.whisperx[14].end 337.012
transcript.whisperx[14].text 這個TED我們要推動可信任生成式的AI發展就在中研院去年發生了台灣的資訊資料庫不夠以至於我們中研院的研究員去引用了
transcript.whisperx[15].start 338.072
transcript.whisperx[15].end 363.994
transcript.whisperx[15].text 中國建制的資料庫鬧出了笑話大家記得這件事所以在這個事件之後國科會述發部跟中研院就投入了3億要進行臺版的CHAP GPT也就是臺灣自治大型語言模型目前這個進度應當是進行來是要陳副主委回答還是要我們學次長
transcript.whisperx[16].start 365.3
transcript.whisperx[16].end 388.108
transcript.whisperx[16].text 報告委員這應該是目前是國科會負責的那目前呢建制我們要創造台灣的資料數據建構台灣繁中系統的語言資料庫掌握data就是掌握了石油目前建制如何報告委員目前我們應該已經release了應該在今年的4月份有release一個版本出來
transcript.whisperx[17].start 391.049
transcript.whisperx[17].end 418.208
transcript.whisperx[17].text 我看您今天沒有辦法回答細節你可以提供相關資料給本席我要提這個是我們的預算當初要建這個台版的CHAP GDP是3億左右的預算那我剛剛講的即便3億之外要40億投入國家隊的AI發展我們還是落後先進國家非常多沒有預算就沒有辦法做事啦下一頁
transcript.whisperx[18].start 419.489
transcript.whisperx[18].end 423.272
transcript.whisperx[18].text 我掌握到的國科會針對這個TED資料庫的新年度就是明年2025年的國家預算至少是1.37億這是新增預算新增計畫如果總預算繼續被擋下去的話這一個台灣的繁中語言資料庫的建制就成了受災戶我們就沒有辦法打我們的
transcript.whisperx[19].start 446.567
transcript.whisperx[19].end 475.186
transcript.whisperx[19].text 這個AI跟世界各國一起比拼的這個資訊大戰你們有去跟在野黨委員爭取預算說明預算了嗎?這裡面有國客會預算大概1.37億速發部應該也有吧?速發部的預算是那個評測中心的預算一年8千億一年8千億所以總預算八檔就不一定不可以嘛我們今天在這裡爭取我們AI向前大步走預算沒過怎麼推啊?
transcript.whisperx[20].start 476.067
transcript.whisperx[20].end 496.078
transcript.whisperx[20].text 我相信很多在野黨的委員也會在這裡要求你們我們要做多好做多多做多快預算沒過怎麼做呢我用的還只是這個TED資料庫繁中語言資料庫台版CHAP GDP的一個案例而已下一頁那另外就是
transcript.whisperx[21].start 500.074
transcript.whisperx[21].end 520.951
transcript.whisperx[21].text 是為了AI基本法嗎?你們現在公告完成了10月底要送行政院其實面對資安、面對假訊息、面對侵權行為的頻傳台灣能不能夠快速地來去制定出台灣的AI基本法我去年在教育文化委員會我是質疑的
transcript.whisperx[22].start 522.622
transcript.whisperx[22].end 542.607
transcript.whisperx[22].text 在世界各國還沒有他也許是指引歐美國家還沒有完成立法的台灣有信心做得到做得好嗎你們現在完成公告了收集社會的意見如何跟你們原始的法案的草擬的想像是如何來副主委
transcript.whisperx[23].start 543.808
transcript.whisperx[23].end 563.104
transcript.whisperx[23].text 報告委員我們已經完成了公告那其實也收集了蠻多的建議的那我們也在這個收集完之後有納入方向跟原本的設定方向跟原本設定大同小異我們還是會這個鼓勵創新跟兼顧人權這兩個方向會同時
transcript.whisperx[24].start 563.464
transcript.whisperx[24].end 582.422
transcript.whisperx[24].text 我沒有反對制定但是我是以國際經驗國外的AI每年投入這麼多預算的先進大國他們還是用指引的方式台灣能夠這麼快速的用一個立法的方式嗎我今天在這裡我還是質疑不需要為快而快
transcript.whisperx[25].start 583.447
transcript.whisperx[25].end 603.983
transcript.whisperx[25].text 我們要做就要做對方向繼續對話好AI基本法涉及7大基本原則4大推動重點都是跨部會的所以我們成立了行政院數位法制協調專案會議下一頁人事長我們人事總處是outside
transcript.whisperx[26].start 605.247
transcript.whisperx[26].end 628.592
transcript.whisperx[26].text 這樣對嗎?
transcript.whisperx[27].start 630.23
transcript.whisperx[27].end 653.855
transcript.whisperx[27].text 這就回到我剛說的你只是負責培訓喔而不是參與喔你只是培育而不是參與喔我是假如他們有邀請我我一定去參加你覺得你需不需要在裡面啊你覺得你需不需要在裡面我是樂於積極參與對國家發展有幫助的我認為AI新時代公務體系的
transcript.whisperx[28].start 654.255
transcript.whisperx[28].end 683.057
transcript.whisperx[28].text 瞭解AI的知能進一步的能夠更去應用它我們人事總處應當是insider否則你會留於後端一個知識性傳授的角色而已下一頁你看看這是我們開過三次會的會議結錄都提到各機關的座談會工作坊論壇去培育公務人員的AI知能
transcript.whisperx[29].start 684.403
transcript.whisperx[29].end 692.21
transcript.whisperx[29].text 我認為這個你們在場三位來這個國科會跟速發部應該速發部這個應當把人事總處納進去吧這麼簡單的問題因為這個是
transcript.whisperx[30].start 704.093
transcript.whisperx[30].end 729.623
transcript.whisperx[30].text 人事長公他願意勇於認識嗎 對不對一起參與嘛 我不說你主導嘛 你要加入嘛幕僚應該是國發會啦好 那請國發會 那請今天與會的國發會的代表把這個訊息帶回去好嗎 下一頁因為我們現在都是做培訓課程 我說他是很末端的 人事長下一頁
transcript.whisperx[31].start 732.54
transcript.whisperx[31].end 757.17
transcript.whisperx[31].text 就以國科會定定的使用生成式AI的指引.裡頭每一項從國安資安人權隱私倫理保密各自保護著作權.完全都跟公務體系的user使用端有關.所以我們人事總處當然要盡可能多參與.而不是只顧政策訂出來我來培育就好下一頁
transcript.whisperx[32].start 758.308
transcript.whisperx[32].end 783.108
transcript.whisperx[32].text 好 說到你自己的這個提供我時間到了AI基礎的訓練課程120小時不管是高考或普考在整個 對不起所有公務體系的120小時的訓練裡頭AI甚至是資安不是只有AI都只有加起來都各只有8小時比例只有6.66這個部分就是我們培訓端就完全是人事總處
transcript.whisperx[33].start 784.648
transcript.whisperx[33].end 812.535
transcript.whisperx[33].text 這個人事長您的我各位這是保訓會的我們在跟保訓會溝通這不是AI課程喔這是資安plus裡面一小部分的AI如果我剛剛說的培訓你只做培訓不做前端政策應用的參與的話那培訓也要做得充足目前高考跟普考要新進公務體系的人員他的這方面的課程是非常的少的也不夠啦
transcript.whisperx[34].start 813.157
transcript.whisperx[34].end 836.076
transcript.whisperx[34].text 我來蔡主委拜託所以我覺得我們今天拋出來的議題從嘉賓召委到思瑤我們連成一氣的觀點就是公務體系對於AI相關的發展他是要多參與而不是只有培育而參與的部分no one is outsider我認為人事長人才是重中之重
transcript.whisperx[35].start 837.057
transcript.whisperx[35].end 852.601
transcript.whisperx[35].text 我也很期待對於立法院也能夠有相關的課程包括立委或是立委的助理幕僚們我們都要共同來理解AI的新時代好嗎?今天的問題很高興這張委說未來還會有專案報告對於我們的幾個核心命題我們的AI運用在公務體系有沒有什麼樣的目標誰來觀考好好思考這個問題好嗎?好一起加油謝謝
會議時間 2024-10-14T09:00:00+08:00
委員發言時間 10:49:01 - 11:03:28
會議名稱 立法院第11屆第2會期司法及法制委員會第4次全體委員會議(事由:邀請行政院人事行政總處人事長暨相關部會列席就「政府機關導入AI提升效能」進行專題報告,並備質詢。)
IVOD_ID 155422
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/155422
日期 2024-10-14
會議資料.會議代碼 委員會-11-2-36-4
會議資料.屆 11
會議資料.會期 2
會議資料.會次 4
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.標題 第11屆第2會期司法及法制委員會第4次全體委員會議
影片種類 Clip
開始時間 2024-10-14T10:49:01+08:00
結束時間 2024-10-14T11:03:28+08:00
支援功能[0] ai-transcript