影片長度 |
794 |
委員名稱 |
林思銘 |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d4cdf32868ad364b21dadc29da59a8be768d2097a9b873f67579206f6b095827bfcdbd1d32fe68635ea18f28b6918d91.mp4/playlist.m3u8 |
transcript.pyannote[0].speaker |
SPEAKER_03 |
transcript.pyannote[0].start |
3.74346875 |
transcript.pyannote[0].end |
6.94971875 |
transcript.pyannote[1].speaker |
SPEAKER_03 |
transcript.pyannote[1].start |
9.49784375 |
transcript.pyannote[1].end |
10.25721875 |
transcript.pyannote[2].speaker |
SPEAKER_03 |
transcript.pyannote[2].start |
10.69596875 |
transcript.pyannote[2].end |
13.81784375 |
transcript.pyannote[3].speaker |
SPEAKER_03 |
transcript.pyannote[3].start |
14.54346875 |
transcript.pyannote[3].end |
28.73534375 |
transcript.pyannote[4].speaker |
SPEAKER_03 |
transcript.pyannote[4].start |
29.10659375 |
transcript.pyannote[4].end |
44.83409375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
45.77909375 |
transcript.pyannote[5].end |
54.75659375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
54.85784375 |
transcript.pyannote[6].end |
58.62096875 |
transcript.pyannote[7].speaker |
SPEAKER_03 |
transcript.pyannote[7].start |
57.99659375 |
transcript.pyannote[7].end |
65.60721875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
60.24096875 |
transcript.pyannote[8].end |
61.18596875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
62.13096875 |
transcript.pyannote[9].end |
62.82284375 |
transcript.pyannote[10].speaker |
SPEAKER_03 |
transcript.pyannote[10].start |
65.77596875 |
transcript.pyannote[10].end |
66.97409375 |
transcript.pyannote[11].speaker |
SPEAKER_03 |
transcript.pyannote[11].start |
67.48034375 |
transcript.pyannote[11].end |
67.49721875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
67.49721875 |
transcript.pyannote[12].end |
96.67409375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
86.43096875 |
transcript.pyannote[13].end |
86.97096875 |
transcript.pyannote[14].speaker |
SPEAKER_03 |
transcript.pyannote[14].start |
94.24409375 |
transcript.pyannote[14].end |
95.23971875 |
transcript.pyannote[15].speaker |
SPEAKER_03 |
transcript.pyannote[15].start |
96.43784375 |
transcript.pyannote[15].end |
102.96846875 |
transcript.pyannote[16].speaker |
SPEAKER_03 |
transcript.pyannote[16].start |
103.06971875 |
transcript.pyannote[16].end |
106.44471875 |
transcript.pyannote[17].speaker |
SPEAKER_03 |
transcript.pyannote[17].start |
107.17034375 |
transcript.pyannote[17].end |
109.75221875 |
transcript.pyannote[18].speaker |
SPEAKER_03 |
transcript.pyannote[18].start |
111.59159375 |
transcript.pyannote[18].end |
116.89034375 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
111.65909375 |
transcript.pyannote[19].end |
113.83596875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
116.89034375 |
transcript.pyannote[20].end |
161.71034375 |
transcript.pyannote[21].speaker |
SPEAKER_03 |
transcript.pyannote[21].start |
160.91721875 |
transcript.pyannote[21].end |
181.97721875 |
transcript.pyannote[22].speaker |
SPEAKER_03 |
transcript.pyannote[22].start |
182.95596875 |
transcript.pyannote[22].end |
195.02159375 |
transcript.pyannote[23].speaker |
SPEAKER_03 |
transcript.pyannote[23].start |
195.54471875 |
transcript.pyannote[23].end |
197.72159375 |
transcript.pyannote[24].speaker |
SPEAKER_03 |
transcript.pyannote[24].start |
198.22784375 |
transcript.pyannote[24].end |
202.22721875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
203.17221875 |
transcript.pyannote[25].end |
209.61846875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
210.22596875 |
transcript.pyannote[26].end |
242.99721875 |
transcript.pyannote[27].speaker |
SPEAKER_03 |
transcript.pyannote[27].start |
241.78221875 |
transcript.pyannote[27].end |
261.17159375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
259.07909375 |
transcript.pyannote[28].end |
259.61909375 |
transcript.pyannote[29].speaker |
SPEAKER_03 |
transcript.pyannote[29].start |
261.54284375 |
transcript.pyannote[29].end |
264.52971875 |
transcript.pyannote[30].speaker |
SPEAKER_03 |
transcript.pyannote[30].start |
264.88409375 |
transcript.pyannote[30].end |
269.45721875 |
transcript.pyannote[31].speaker |
SPEAKER_03 |
transcript.pyannote[31].start |
270.21659375 |
transcript.pyannote[31].end |
278.56971875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
279.48096875 |
transcript.pyannote[32].end |
346.20471875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
289.92659375 |
transcript.pyannote[33].end |
290.53409375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
345.31034375 |
transcript.pyannote[34].end |
345.34409375 |
transcript.pyannote[35].speaker |
SPEAKER_03 |
transcript.pyannote[35].start |
345.34409375 |
transcript.pyannote[35].end |
346.03596875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
346.03596875 |
transcript.pyannote[36].end |
346.77846875 |
transcript.pyannote[37].speaker |
SPEAKER_03 |
transcript.pyannote[37].start |
346.20471875 |
transcript.pyannote[37].end |
346.67721875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
346.67721875 |
transcript.pyannote[38].end |
346.89659375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
346.89659375 |
transcript.pyannote[39].end |
348.48284375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
347.30159375 |
transcript.pyannote[40].end |
347.35221875 |
transcript.pyannote[41].speaker |
SPEAKER_03 |
transcript.pyannote[41].start |
347.35221875 |
transcript.pyannote[41].end |
355.01346875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
355.01346875 |
transcript.pyannote[42].end |
355.08096875 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
355.57034375 |
transcript.pyannote[43].end |
364.34534375 |
transcript.pyannote[44].speaker |
SPEAKER_03 |
transcript.pyannote[44].start |
363.45096875 |
transcript.pyannote[44].end |
373.52534375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
367.68659375 |
transcript.pyannote[45].end |
369.84659375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
371.14596875 |
transcript.pyannote[46].end |
371.53409375 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
374.80784375 |
transcript.pyannote[47].end |
380.69721875 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
380.96721875 |
transcript.pyannote[48].end |
402.56721875 |
transcript.pyannote[49].speaker |
SPEAKER_03 |
transcript.pyannote[49].start |
399.54659375 |
transcript.pyannote[49].end |
400.05284375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
400.05284375 |
transcript.pyannote[50].end |
400.10346875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
400.49159375 |
transcript.pyannote[51].end |
400.52534375 |
transcript.pyannote[52].speaker |
SPEAKER_03 |
transcript.pyannote[52].start |
400.52534375 |
transcript.pyannote[52].end |
400.86284375 |
transcript.pyannote[53].speaker |
SPEAKER_02 |
transcript.pyannote[53].start |
403.09034375 |
transcript.pyannote[53].end |
405.65534375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
406.60034375 |
transcript.pyannote[54].end |
410.14409375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
410.41409375 |
transcript.pyannote[55].end |
411.56159375 |
transcript.pyannote[56].speaker |
SPEAKER_03 |
transcript.pyannote[56].start |
411.56159375 |
transcript.pyannote[56].end |
411.59534375 |
transcript.pyannote[57].speaker |
SPEAKER_03 |
transcript.pyannote[57].start |
411.86534375 |
transcript.pyannote[57].end |
425.23034375 |
transcript.pyannote[58].speaker |
SPEAKER_02 |
transcript.pyannote[58].start |
425.53409375 |
transcript.pyannote[58].end |
425.71971875 |
transcript.pyannote[59].speaker |
SPEAKER_03 |
transcript.pyannote[59].start |
425.71971875 |
transcript.pyannote[59].end |
428.57159375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
425.73659375 |
transcript.pyannote[60].end |
426.07409375 |
transcript.pyannote[61].speaker |
SPEAKER_03 |
transcript.pyannote[61].start |
428.92596875 |
transcript.pyannote[61].end |
430.76534375 |
transcript.pyannote[62].speaker |
SPEAKER_02 |
transcript.pyannote[62].start |
430.51221875 |
transcript.pyannote[62].end |
433.09409375 |
transcript.pyannote[63].speaker |
SPEAKER_03 |
transcript.pyannote[63].start |
431.64284375 |
transcript.pyannote[63].end |
437.41409375 |
transcript.pyannote[64].speaker |
SPEAKER_03 |
transcript.pyannote[64].start |
437.93721875 |
transcript.pyannote[64].end |
454.45784375 |
transcript.pyannote[65].speaker |
SPEAKER_03 |
transcript.pyannote[65].start |
454.94721875 |
transcript.pyannote[65].end |
458.60909375 |
transcript.pyannote[66].speaker |
SPEAKER_02 |
transcript.pyannote[66].start |
459.11534375 |
transcript.pyannote[66].end |
473.37471875 |
transcript.pyannote[67].speaker |
SPEAKER_03 |
transcript.pyannote[67].start |
473.56034375 |
transcript.pyannote[67].end |
478.25159375 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
478.25159375 |
transcript.pyannote[68].end |
485.89596875 |
transcript.pyannote[69].speaker |
SPEAKER_02 |
transcript.pyannote[69].start |
486.11534375 |
transcript.pyannote[69].end |
490.18221875 |
transcript.pyannote[70].speaker |
SPEAKER_03 |
transcript.pyannote[70].start |
490.18221875 |
transcript.pyannote[70].end |
502.11284375 |
transcript.pyannote[71].speaker |
SPEAKER_03 |
transcript.pyannote[71].start |
502.26471875 |
transcript.pyannote[71].end |
520.13534375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
521.89034375 |
transcript.pyannote[72].end |
552.26534375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
551.52284375 |
transcript.pyannote[73].end |
553.02471875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
553.12596875 |
transcript.pyannote[74].end |
558.94784375 |
transcript.pyannote[75].speaker |
SPEAKER_03 |
transcript.pyannote[75].start |
553.17659375 |
transcript.pyannote[75].end |
553.19346875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
553.19346875 |
transcript.pyannote[76].end |
553.54784375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
555.50534375 |
transcript.pyannote[77].end |
555.67409375 |
transcript.pyannote[78].speaker |
SPEAKER_03 |
transcript.pyannote[78].start |
555.67409375 |
transcript.pyannote[78].end |
555.97784375 |
transcript.pyannote[79].speaker |
SPEAKER_03 |
transcript.pyannote[79].start |
557.83409375 |
transcript.pyannote[79].end |
565.34346875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
563.50409375 |
transcript.pyannote[80].end |
573.57846875 |
transcript.pyannote[81].speaker |
SPEAKER_03 |
transcript.pyannote[81].start |
573.57846875 |
transcript.pyannote[81].end |
591.33096875 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
592.03971875 |
transcript.pyannote[82].end |
592.42784375 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
593.03534375 |
transcript.pyannote[83].end |
594.43596875 |
transcript.pyannote[84].speaker |
SPEAKER_03 |
transcript.pyannote[84].start |
593.74409375 |
transcript.pyannote[84].end |
595.90409375 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
596.68034375 |
transcript.pyannote[85].end |
596.95034375 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
597.72659375 |
transcript.pyannote[86].end |
599.76846875 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
599.97096875 |
transcript.pyannote[87].end |
601.55721875 |
transcript.pyannote[88].speaker |
SPEAKER_03 |
transcript.pyannote[88].start |
601.30409375 |
transcript.pyannote[88].end |
616.74471875 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
616.74471875 |
transcript.pyannote[89].end |
617.31846875 |
transcript.pyannote[90].speaker |
SPEAKER_03 |
transcript.pyannote[90].start |
617.31846875 |
transcript.pyannote[90].end |
619.93409375 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
617.40284375 |
transcript.pyannote[91].end |
617.55471875 |
transcript.pyannote[92].speaker |
SPEAKER_02 |
transcript.pyannote[92].start |
618.76971875 |
transcript.pyannote[92].end |
623.81534375 |
transcript.pyannote[93].speaker |
SPEAKER_03 |
transcript.pyannote[93].start |
621.62159375 |
transcript.pyannote[93].end |
622.11096875 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
623.96721875 |
transcript.pyannote[94].end |
627.35909375 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
627.83159375 |
transcript.pyannote[95].end |
631.91534375 |
transcript.pyannote[96].speaker |
SPEAKER_03 |
transcript.pyannote[96].start |
630.07596875 |
transcript.pyannote[96].end |
632.65784375 |
transcript.pyannote[97].speaker |
SPEAKER_03 |
transcript.pyannote[97].start |
633.09659375 |
transcript.pyannote[97].end |
640.43721875 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
640.43721875 |
transcript.pyannote[98].end |
641.65221875 |
transcript.pyannote[99].speaker |
SPEAKER_03 |
transcript.pyannote[99].start |
641.29784375 |
transcript.pyannote[99].end |
643.06971875 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
642.41159375 |
transcript.pyannote[100].end |
645.87096875 |
transcript.pyannote[101].speaker |
SPEAKER_03 |
transcript.pyannote[101].start |
644.41971875 |
transcript.pyannote[101].end |
662.84721875 |
transcript.pyannote[102].speaker |
SPEAKER_03 |
transcript.pyannote[102].start |
663.23534375 |
transcript.pyannote[102].end |
671.25096875 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
672.19596875 |
transcript.pyannote[103].end |
673.76534375 |
transcript.pyannote[104].speaker |
SPEAKER_03 |
transcript.pyannote[104].start |
673.76534375 |
transcript.pyannote[104].end |
674.99721875 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
674.45721875 |
transcript.pyannote[105].end |
677.05596875 |
transcript.pyannote[106].speaker |
SPEAKER_03 |
transcript.pyannote[106].start |
675.16596875 |
transcript.pyannote[106].end |
675.97596875 |
transcript.pyannote[107].speaker |
SPEAKER_03 |
transcript.pyannote[107].start |
677.05596875 |
transcript.pyannote[107].end |
677.71409375 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
677.71409375 |
transcript.pyannote[108].end |
678.49034375 |
transcript.pyannote[109].speaker |
SPEAKER_03 |
transcript.pyannote[109].start |
677.74784375 |
transcript.pyannote[109].end |
678.33846875 |
transcript.pyannote[110].speaker |
SPEAKER_03 |
transcript.pyannote[110].start |
678.49034375 |
transcript.pyannote[110].end |
678.82784375 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
679.18221875 |
transcript.pyannote[111].end |
681.08909375 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
681.10596875 |
transcript.pyannote[112].end |
681.13971875 |
transcript.pyannote[113].speaker |
SPEAKER_03 |
transcript.pyannote[113].start |
681.13971875 |
transcript.pyannote[113].end |
681.81471875 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
681.81471875 |
transcript.pyannote[114].end |
681.96659375 |
transcript.pyannote[115].speaker |
SPEAKER_03 |
transcript.pyannote[115].start |
681.96659375 |
transcript.pyannote[115].end |
683.60346875 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
682.03409375 |
transcript.pyannote[116].end |
682.10159375 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
683.08034375 |
transcript.pyannote[117].end |
685.79721875 |
transcript.pyannote[118].speaker |
SPEAKER_03 |
transcript.pyannote[118].start |
685.08846875 |
transcript.pyannote[118].end |
690.53909375 |
transcript.pyannote[119].speaker |
SPEAKER_03 |
transcript.pyannote[119].start |
690.96096875 |
transcript.pyannote[119].end |
696.59721875 |
transcript.pyannote[120].speaker |
SPEAKER_02 |
transcript.pyannote[120].start |
697.01909375 |
transcript.pyannote[120].end |
698.75721875 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
699.36471875 |
transcript.pyannote[121].end |
702.55409375 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
702.55409375 |
transcript.pyannote[122].end |
702.67221875 |
transcript.pyannote[123].speaker |
SPEAKER_03 |
transcript.pyannote[123].start |
702.67221875 |
transcript.pyannote[123].end |
702.97596875 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
702.97596875 |
transcript.pyannote[124].end |
716.45909375 |
transcript.pyannote[125].speaker |
SPEAKER_03 |
transcript.pyannote[125].start |
716.32409375 |
transcript.pyannote[125].end |
716.34096875 |
transcript.pyannote[126].speaker |
SPEAKER_03 |
transcript.pyannote[126].start |
716.45909375 |
transcript.pyannote[126].end |
719.63159375 |
transcript.pyannote[127].speaker |
SPEAKER_02 |
transcript.pyannote[127].start |
719.63159375 |
transcript.pyannote[127].end |
730.02659375 |
transcript.pyannote[128].speaker |
SPEAKER_03 |
transcript.pyannote[128].start |
730.02659375 |
transcript.pyannote[128].end |
744.18471875 |
transcript.pyannote[129].speaker |
SPEAKER_03 |
transcript.pyannote[129].start |
744.89346875 |
transcript.pyannote[129].end |
749.09534375 |
transcript.pyannote[130].speaker |
SPEAKER_02 |
transcript.pyannote[130].start |
749.34846875 |
transcript.pyannote[130].end |
754.47846875 |
transcript.pyannote[131].speaker |
SPEAKER_03 |
transcript.pyannote[131].start |
753.90471875 |
transcript.pyannote[131].end |
761.14409375 |
transcript.pyannote[132].speaker |
SPEAKER_02 |
transcript.pyannote[132].start |
761.27909375 |
transcript.pyannote[132].end |
763.10159375 |
transcript.pyannote[133].speaker |
SPEAKER_03 |
transcript.pyannote[133].start |
762.86534375 |
transcript.pyannote[133].end |
783.94221875 |
transcript.pyannote[134].speaker |
SPEAKER_02 |
transcript.pyannote[134].start |
771.89346875 |
transcript.pyannote[134].end |
772.24784375 |
transcript.pyannote[135].speaker |
SPEAKER_02 |
transcript.pyannote[135].start |
772.48409375 |
transcript.pyannote[135].end |
773.00721875 |
transcript.pyannote[136].speaker |
SPEAKER_03 |
transcript.pyannote[136].start |
784.76909375 |
transcript.pyannote[136].end |
793.34159375 |
transcript.pyannote[137].speaker |
SPEAKER_03 |
transcript.pyannote[137].start |
793.47659375 |
transcript.pyannote[137].end |
794.11784375 |
transcript.whisperx[0].start |
4.295 |
transcript.whisperx[0].end |
32.658 |
transcript.whisperx[0].text |
謝謝主席 請人事長 請數位人事長委員早 人事長早 人事長我想今天就這個AI的一個效能的問題 我首先來請教人事長 就是我們人事總處就公務人員的AI智能的數位轉型你都有相關的規劃安排了 今天的業報也寫得很清楚但是我在意的是說 有關數位落差的問題 也就是說 |
transcript.whisperx[1].start |
33.519 |
transcript.whisperx[1].end |
44.51 |
transcript.whisperx[1].text |
你對於這些比較資深的公務人員﹐對於數位化的熟悉度﹐跟我們新進的公務人員﹐他們是不是會產生數位的落差? |
transcript.whisperx[2].start |
47.04 |
transcript.whisperx[2].end |
64.8 |
transcript.whisperx[2].text |
這個現象一定是會的因為現在新進到公務機關服務已經是有2000年次之後的那這些都是屬於數位延伸所以一定會有不一樣的一個程度的差別對對對對於數位化的認識以及他的技能所以你會做培訓嗎你來培訓嗎 |
transcript.whisperx[3].start |
68.183 |
transcript.whisperx[3].end |
94.977 |
transcript.whisperx[3].text |
培訓就是事實上我們的主要任務就是所有公務人員的一個培訓那陳盧委員你所了解的吧要把所有的公務人員全部都招訓來開實體課有困難所以我們從9月1號開始我們就開了5門的人工智慧的課程那之前的這6年我們就開人工智慧相關的像RPA的相關人工智慧的一些課程我們陸陸續續都有進行 |
transcript.whisperx[4].start |
96.538 |
transcript.whisperx[4].end |
109.432 |
transcript.whisperx[4].text |
市長你有開這課程培訓課程我了解就是說但是你有沒有考慮到你開這些這個課程啊你有沒有做差異化的培訓全部招進來但是每個程度不一樣 |
transcript.whisperx[5].start |
111.647 |
transcript.whisperx[5].end |
126.78 |
transcript.whisperx[5].text |
我跟委員我跟委員差異化做這個適當的一個訓練差異化大概就是有些是培養種子的部分我們就是有實體課大概3天而且還要有一些考試要取得一個證照 |
transcript.whisperx[6].start |
127.461 |
transcript.whisperx[6].end |
144.651 |
transcript.whisperx[6].text |
那如果是一般通識型的話就是我們在我們的公務人力發展中心有一個數位學習課程讓公務人員他自己上去選他有興趣的課題因為這裡面有些是應用面有些是委員所關心的可能 |
transcript.whisperx[7].start |
145.011 |
transcript.whisperx[7].end |
145.351 |
transcript.whisperx[7].text |
所以在講 |
transcript.whisperx[8].start |
161.901 |
transcript.whisperx[8].end |
181.621 |
transcript.whisperx[8].text |
市長我的意思就是說其實我是建議你啦因為大概程度就真的都不一樣所以你在設計相關的培訓課程啊可能你要做一些差異化的一個課程的設計就你剛才講的啊有些人可能他的這個什麼應該講什麼障礙啊會有這樣的一個學習的一個能力的不一樣 |
transcript.whisperx[9].start |
183.158 |
transcript.whisperx[9].end |
201.809 |
transcript.whisperx[9].text |
對他的了解不一樣即便你有通識的一個教育但是當你進入到這個要更深入的課程AI人工智慧課程的一個培訓的時候如果你還是用一樣的課程去做訓練的話會不會造成人家學習上的一個障礙 |
transcript.whisperx[10].start |
203.223 |
transcript.whisperx[10].end |
224.038 |
transcript.whisperx[10].text |
我跟委員報告大概有兩個角度第一個角度是我們課程有一些是屬於出街還有進街還有高街然後出街的課程是否一般公務人員他應該要來學習的然後這裡面有一個很重要我們就是在設計課程設計課程設計很重要 |
transcript.whisperx[11].start |
226.94 |
transcript.whisperx[11].end |
227.06 |
transcript.whisperx[11].text |
主席 |
transcript.whisperx[12].start |
242.602 |
transcript.whisperx[12].end |
244.863 |
transcript.whisperx[12].text |
我們是否有考量到各機關內部你是否已經具備有相當到位的數位軟體設備 |
transcript.whisperx[13].start |
270.27 |
transcript.whisperx[13].end |
278.251 |
transcript.whisperx[13].text |
他要來訓練那你是不是有他們機關內部他們各種軟硬體的設備是否有到位可以來搭配執行 |
transcript.whisperx[14].start |
280.02 |
transcript.whisperx[14].end |
301.585 |
transcript.whisperx[14].text |
我跟委員報告一下那個假如是在人工智慧方面因為目前市面上可以使用的比如像深層式人工智慧因為有一般的人工智慧還有深層式的那深層式的現在Google Gemini還有其他的CHAP GPT它有很多的人工智慧我想 |
transcript.whisperx[15].start |
302.525 |
transcript.whisperx[15].end |
325.001 |
transcript.whisperx[15].text |
這一個就是速發部他會訂一個使用的概賴供各個機關去參考那基本上他需要的一個軟體這裡面會有硬體上面需求還有軟體上面需求那一個假如是在公有營的部分我想每一個機關他使用上面的loading會比較輕因為委員也很清楚 |
transcript.whisperx[16].start |
325.761 |
transcript.whisperx[16].end |
354.801 |
transcript.whisperx[16].text |
這些人工智慧尤其生成式的它需要耗用很多的運算資源那以每一個部會內部的現在的resource來講的話坦白講會有不夠那所以樹花部他們也有在規劃或者經濟部他們也有在規劃譬如去買灰打的一些金幣大家講經營的概念你解釋那麼多我聽起來就說確實我們到目前為止我們這些軟硬體的設備還沒有到位嘛 |
transcript.whisperx[17].start |
355.401 |
transcript.whisperx[17].end |
355.421 |
transcript.whisperx[17].text |
市長﹗ |
transcript.whisperx[18].start |
374.981 |
transcript.whisperx[18].end |
403.604 |
transcript.whisperx[18].text |
報告委員我們在數位政府是有一支計畫就是建立政府機關共用的AI平台那在這個平台裡面他就是會用一個API去串接那我們盡量去取得目前市面上各式各樣的各式各樣的大型語言模型那讓各機關在這個階段他他可以選擇他現在要用哪一個平台那目前建制的情況怎樣我們請 |
transcript.whisperx[19].start |
404.904 |
transcript.whisperx[19].end |
428.171 |
transcript.whisperx[19].text |
蘇政司補充包委員我們現在大概明年第一季可以開始使用明年第一季我想既然要做AI的各部門要做AI的一個智能效應的一個利用跟使用發揮我們的行政效率所以這部分軟硬體的設備你要盡速的把它建置完成所以你預期明年第一季 |
transcript.whisperx[20].start |
429.051 |
transcript.whisperx[20].end |
457.079 |
transcript.whisperx[20].text |
明年底還是明年初?明年初明年初就會把這些軟體設備建置到位嗎?那再請教我們有關於這個治安的問題我想我們經過未來數位轉型AI之後AI技術的迅速發展與廣泛應用優化我們政府的運作流程並加速政府運作的效能在帶來便利的同時會不會帶來風險? |
transcript.whisperx[21].start |
459.34 |
transcript.whisperx[21].end |
472.777 |
transcript.whisperx[21].text |
當然,所以在那個國科會公布的人工智慧基本法裡面速發部就必須對這些AI模型去做評測那評測裡面最重要非常重要的一個項目就是治安的風險是 |
transcript.whisperx[22].start |
474.259 |
transcript.whisperx[22].end |
501.572 |
transcript.whisperx[22].text |
那目前為止我們對於治安的防護呢有沒有落實到位嚴格把關目前蘇發部已經成立的AI評測中心在治安院已經成立了AI評測中心那也對目前市面上的一些語言模型已經做了一些評測好那我再請教齁這個可能跟人事長沒有有關啦齁人事長學工現在我們未來在系統的運作齁指派作業人員的政策方面我們是既用具有 |
transcript.whisperx[23].start |
502.933 |
transcript.whisperx[23].end |
519.312 |
transcript.whisperx[23].text |
專業的我們現在這個就是在我們各機關用的這些公務人員作為這些治安人員的一個的就是安排他來做這個治安的一個管理還是說我們是要編列預算外包給廠商 |
transcript.whisperx[24].start |
522.223 |
transcript.whisperx[24].end |
540.175 |
transcript.whisperx[24].text |
這個大概分兩個部分啦第一個就是資安人員上一年年底速發部有提缺到考選部所以今年有入企的9位是屬於資安類科的不過這9位坦白講是不夠用的那其他的會從現有的資訊人員 |
transcript.whisperx[25].start |
544.899 |
transcript.whisperx[25].end |
547.301 |
transcript.whisperx[25].text |
蘇發部治安署有安排訓練課程,讓他們取得一些證照。 |
transcript.whisperx[26].start |
558.01 |
transcript.whisperx[26].end |
573.215 |
transcript.whisperx[26].text |
這是混合的那外包它是怎麼樣是在進入注點來這個它會有買服務的也有注點的會有不同樣態的這種搭配跟民間企業的搭配的方式 |
transcript.whisperx[27].start |
574.456 |
transcript.whisperx[27].end |
595.552 |
transcript.whisperx[27].text |
市長還有那個次長我總結來問了就是說你們是否能夠保證說在治安層面上一定能夠落實嚴格把關杜絕我們的這個資訊不會淪落為犯罪集團的這個作案工具可以做出保證 |
transcript.whisperx[28].start |
598.222 |
transcript.whisperx[28].end |
598.403 |
transcript.whisperx[28].text |
主席 |
transcript.whisperx[29].start |
613.214 |
transcript.whisperx[29].end |
637.873 |
transcript.whisperx[29].text |
不會把我們相關的資訊安全去洩漏出去嗎?你要嚴格把關啊,你能夠保證嗎?外包人員會用合約規範,然後會用,比如說那因為我們目前的法規只能對公務機關的人員跟跟這個行政機,跟這個行政法人的所以這個我剛才才會問你嘛如果你要外包,你要如何的落實說我們的這些資料不會外洩嗎? |
transcript.whisperx[30].start |
640.435 |
transcript.whisperx[30].end |
643.878 |
transcript.whisperx[30].text |
這個你要嚴格把關啦我想時間的關係我再問最後一個問題啦就是說人事總處你在3個會期我詢詢詢問人事長就是說我們對於這個資安長的一個聘用或是各機關資安長他的一個資格 |
transcript.whisperx[31].start |
663.334 |
transcript.whisperx[31].end |
670.258 |
transcript.whisperx[31].text |
你跟我講說你跟數位發展部有合作辦理資安長的共事營這共事營辦了幾期 |
transcript.whisperx[32].start |
672.47 |
transcript.whisperx[32].end |
698.275 |
transcript.whisperx[32].text |
這個我們一年辦兩次一年辦兩次每一次有兩期每一次有兩場大概幾個人每次都是大概兩三百人兩三百人所以各部會的所謂的各部會還有地方機關的資安長資安長都會來那這些資安長的資格我想我有問過人事長這個資安長到底是由我們各機關的什麼主管來擔任資安長一般是副首長 |
transcript.whisperx[33].start |
699.403 |
transcript.whisperx[33].end |
719.45 |
transcript.whisperx[33].text |
副首長,副首長對資安他了解嗎?這個業務他了解嗎?跟委員報告,就是因為考慮第一個資安長未必需要所有的資安的細節但是他必須對於法尊以及制度要有了解所以他不需要具有資安相關的一個專業背景 |
transcript.whisperx[34].start |
720.51 |
transcript.whisperx[34].end |
743.126 |
transcript.whisperx[34].text |
他需要的背景跟資安人員的背景不一樣所以這是我們在共識營裡面給他上的課最主要就是針對他站在資安其實我是陳剛才審發會委員講的AI長的問題所以說如果你沒有把這個資安長把他的資格去做一個很明確的一個聘用的一個限制的話很可能就是外行領導內行 |
transcript.whisperx[35].start |
745.072 |
transcript.whisperx[35].end |
760.946 |
transcript.whisperx[35].text |
不懂治安也可以來當治安長如何領導統一我們最重要的是治安的法尊所以在治安 治安長共事其實治安不是只有法尊的問題如果這樣子的話任何學法的我跟莊惠雄都可以去擔任了 |
transcript.whisperx[36].start |
762.347 |
transcript.whisperx[36].end |
783.239 |
transcript.whisperx[36].text |
所以你要對這個資訊安全要有相當的理解了解有專業的背景所以這部分我是希望你們要做改進做改善資安長的未來的不是資安長的聘任就是我們資安長是不是什麼副所長來擔任那這個副所長是不是有資安的專業背景這你們要去考慮 |
transcript.whisperx[37].start |
784.824 |
transcript.whisperx[37].end |
784.964 |
transcript.whisperx[37].text |
主席 |
會議時間 |
2024-10-14T09:00:00+08:00 |
委員發言時間 |
09:51:02 - 10:04:16 |
會議名稱 |
立法院第11屆第2會期司法及法制委員會第4次全體委員會議(事由:邀請行政院人事行政總處人事長暨相關部會列席就「政府機關導入AI提升效能」進行專題報告,並備質詢。) |
IVOD_ID |
155407 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/155407 |
日期 |
2024-10-14 |
會議資料.會議代碼 |
委員會-11-2-36-4 |
會議資料.屆 |
11 |
會議資料.會期 |
2 |
會議資料.會次 |
4 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
36 |
會議資料.標題 |
第11屆第2會期司法及法制委員會第4次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-10-14T09:51:02+08:00 |
結束時間 |
2024-10-14T10:04:16+08:00 |
支援功能[0] |
ai-transcript |