iVOD / 154572

Field Value
IVOD_ID 154572
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/154572
日期 2024-07-09
會議資料.會議代碼 院會-11-1-21
會議資料.會議代碼:str 第11屆第1會期第21次會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 21
會議資料.種類 院會
會議資料.標題 第11屆第1會期第21次會議
影片種類 Clip
開始時間 2024-07-09T09:49:34+08:00
結束時間 2024-07-09T10:05:35+08:00
影片長度 00:16:01
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/21d04b5a781cb618187bcb70fac09ad7a09fb1100d58f4beceec261fe3d6156a046c78d44cb01c825ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳琪銘
委員發言時間 09:49:34 - 10:05:35
會議時間 2024-07-09T09:00:00+08:00
會議名稱 第11屆第1會期第21次會議(事由:一、對行政院院長報告施政方針繼續質詢。 二、7月5日上午9時至10時為國是論壇時間。 三、7月9日下午1時50分至2時30分為處理臨時提案時間。)
gazette.lineno 268
gazette.blocks[0][0] 吳委員琪銘:(9時49分)主席、與會媒體,大家好。請行政院長與交通部長。
gazette.blocks[1][0] 主席:請行政院長與交通部長備詢。
gazette.blocks[2][0] 卓院長榮泰:吳委員好。
gazette.blocks[3][0] 吳委員琪銘:院長好、部長好,辛苦了,新的執政團隊有新氣象,在各項經濟指標都有突出的表現,最近半年來的臺股指數,我早上看到已經將近2萬4,000點,臺灣股市是52年來的新高,臺灣的股票市值在全球排名已經是第15名,鏡電視民調顯示卓院長的滿意度也將近五成,恭喜院長!尤其我們護國神山台積電的半導體技術領先全球,也替臺灣帶來可觀的稅收,各項福國利民的政策也讓民眾生活更加有感,讓執政黨的滿意度穩定領先。對此,國家應該以更好的條件來做福國利民的事,做出更多的努力。
gazette.blocks[3][1] 本席這邊跟院長提出一些討論,首先是我們國人的驕傲──黃仁勳,他在6月來臺掀起了AI旋風,並且有意在臺灣繼續設立研發中心;過去在選舉期間我也提出了土城、三峽AI的科技廊道,掛出許多看板並提出相關政見,地方民眾對這項政策也相當期待。我身為土城、三峽所選出的民意代表,也向院長推薦土城,土城有工業區的基礎,加上許多科技廠商也都在土城,土城、三峽有許多的國有地可以提供,這8年來的努力,土城、三峽的交通基礎建設可以說是發展快速,捷運三鶯線、板南線、萬大線的共構,還有土城交流道、金城交流道已經開始動工,未來台65延伸快速道路要成為串連北部科技園區的要道,這對整個科技產業是一大福音。
gazette.blocks[3][2] 這邊請院長看一下,關於土城、三峽未來的科技廊道,土城司法園區的南側還有很多國有地,現在的簡報圖片就是其北側以及南側,北側的司法園區有84公頃,南側有將近100公頃,那是以前土城的彈藥庫,未來我們要推動AI科技產業,一定要找國家的土地才能提供更寬大的土地給所有有意願進駐的廠商,而這邊有一百多公頃,那是土城、三峽大家共同的期待,讓AI產業能夠趕快推動,是不是請院長找相關單位來做研議?院長,關於AI科技園區,當初賴總統來到土城還特別贊同我們推動AI科技園區,請院長來做說明,好不好?
gazette.blocks[4][0] 卓院長榮泰:謝謝委員,委員一開始講到關於臺灣經濟的發展,我們都知道這是全國人民共同的努力,政府該做的是維護國家的安全,讓成熟的民主政治往更健全的方向發展。另外兩件很重要的事,我們要接得住世界的潮流,也要穩定對我們的基礎建設做全面的開發,如果做到這點,那在全國人民的努力之下就會得到更好的成果。
gazette.blocks[4][1] 至於國際大廠要到臺灣哪裡設廠,任何一個大型的開發,我們都非常的歡迎,但也要符合我們整個戰略布局跟整體發展目標,現在委員所提出的AI旋風當然是橫掃全臺灣,我想各地、包括每位委員在這裡都會為自己的選區、自己的所在地提出很多希望跟期待。
gazette.blocks[4][2] 剛剛委員所提到的司法園區,目前我所知道的,已經開始辦理區段徵收工程的作業當中,未來它是不是有進一步發展的可能性,我想包括中央、地方的合作、努力,應該要再做進一步,然後用這個來吸引更多的國際大廠來投資,對地方絕對就是一個好的發展。
gazette.blocks[5][0] 吳委員琪銘:跟院長還有部長報告,因為土城這個地方,早期包括鴻海、一些科技大廠都在土城工業區;現在土城的房價,大家都知道,也都已經上漲了,尤其是廠商,他們要取得土地很不容易,所以要取得土地就要找我們國有的土地,我就說,土城有交通便利性,還有土城的醫療,在各種條件下,我們都會比其他各縣市來得有便利性。此外,我們南區這邊還有100公頃的土地,然後我們北區這邊已經打造了一個司法園區,未來我們的看守所以及地方法院以及地檢署全部都會搬遷到司法園區,計有84公頃,未來在我們南側這一邊有將近100公頃,這部分未來可以好好去規劃,因為那裡國有地占的比例最高,若好好來推動的話,我相信包含AI的研發中心,也可以進駐新北土城、三峽這個地方,所以這一點我拜託院長,是不是找我們相關單位來做研議?
gazette.blocks[6][0] 卓院長榮泰:這個會再請經濟部他們來做研議,因為南側的土地目前還是屬於非都市計畫土地,還要再經過都市計畫的檢討跟變更,所以程序上還要再進行,如果地方有需要、產業有需要,目的事業主管機關認為應該朝向更有利土地發展的利用發展的方向去,我們會請經濟部跟地方、跟委員再來做一些瞭解,看看以後該怎麼進行。
gazette.blocks[7][0] 吳委員琪銘:好的,希望我們中央跟新北市大家來合作、來推動,謝謝。
gazette.blocks[7][1] 再來,剛才我所講到的,因為我們地方要推動整個產業鏈的結合,首先,交通的問題我們還是要解決,土城跟三峽這邊的人口密集度,現在成長速度非常快,尤其在台65線的延伸上,三峽這邊已經列入我們的優先路段,我跟院長及部長報告,三峽的部分,尤其是在北大,北大兩年前有4萬7,000多人,短短兩年的時間,又暴增到6萬多人;目前新北市又規劃了麥仔園這個地段要做重劃,還有樹林跟大柑園地區這邊也要推動重劃區,但那裡就只有靠國道3號,造成國道3號整個車流量都非常擁擠,所以台65線的延伸,早期我還曾向公共工程委員會吳主委要求相關單位來做研議,那時候得到我們公路總局的許可,在111年1月30號上網招標可行性評估作業,在4月30號決標,6月27號召開會議,辦理可行性初期報告審查作業,交通部預計在明(114)年3月提出期中報告。我要拜託部長,是不是台65線這一個沿線能夠予以抓住,一定要順利地推動,請部長來說明。
gazette.blocks[8][0] 李部長孟諺:我想這是一條非常重要的快速道路,因為現在從龍潭一直到土城,甚至到中和的北二高,都非常容易塞車,在上下班的時候,塞車的狀況很嚴重,所以如果能夠平行北二高來興建一條板龍快速道路,我覺得對整個交通紓解很有幫助。現在當然還有一些技術上要去克服,我想我們這個可行性評估會儘快來辦理,而且這條快速道路也列為桃竹苗大矽谷重要交通建設的一環。
gazette.blocks[9][0] 吳委員琪銘:謝謝部長。部長很清楚都是短程,所以對外交通就要靠國道3號,但國道3號再怎麼拓寬還是不夠用!唯一的辦法就是推動65快速道路,至於短程部分,就把土城、三峽列為優先路段,這樣可以解決車流量與壅塞的問題。
gazette.blocks[10][0] 李部長孟諺:現在需要去處理的,就是怎麼跟堤防共構,並與水利單位協調,這部分需要一些時間趕快把它付諸實施。
gazette.blocks[11][0] 吳委員琪銘:我也提醒部長,從柑林橋過來可以連接土城工業區,要是快速道路能夠連接上去,就可以解決土城工業區的車流量問題,這是我們未來整個規劃,請部長一定要特別加註進去,好不好?謝謝。
gazette.blocks[11][1] 再來,請教部長,上個會期在王國材部長任內,我要求在三峽……三峽在2020年獲選為交通部經典小鎮。三峽商圈方面,我們現在在推動長福橋改建,而長福橋就是當初我跟水利署要求經費來整治三峽河,而三峽再過去就是三峽老街、祖師廟,那邊我們列為經典小鎮,觀光人潮很多,但停車的問題一直沒辦法解決!在上會期,我也要求過交通部王國材部長,他也承諾要是新北市將序位排前的話,那麼交通部在前瞻的賸餘款……我們當初編了260億,現在還有賸餘款,要是新北市同意將排序列在前面,那麼交通部原則上是支持的。現在部長又換人了,部長會不會繼續來推動、來支持這個案子?
gazette.blocks[12][0] 李部長孟諺:據我們目前的瞭解,交通部已經完成初審,而新北市也將本案排為第一,審查完以後,這個案子在新北的排序是最優先的,所以最近會運用節餘款來提報。
gazette.blocks[13][0] 吳委員琪銘:什麼時候?
gazette.blocks[14][0] 李部長孟諺:應該這一、兩個月就會來做進一步的處理。
gazette.blocks[15][0] 吳委員琪銘:這一、兩個月?現在7月了,下個月可不可以核定?
gazette.blocks[16][0] 李部長孟諺:是不是容我會後再跟您報告比較明確的時間?
gazette.blocks[17][0] 吳委員琪銘:真的不要跳票,因為這關係到三峽的觀光產業。三峽現在最主要就是靠觀光,所以三峽一定要有停車場,不然整個三峽的交通會癱瘓,因此停車場是重中之重,請政府一定要重視。新北市也非常重視停車場問題,所以拜託部長允諾,儘快核定經費。我知道經費多達5.78億,中央補助2.7億,這一點我就要拜託部長,絕對不要跳票,好不好?可以吧?
gazette.blocks[18][0] 李部長孟諺:是,我們會全力支持。
gazette.blocks[19][0] 吳委員琪銘:謝謝部長。還有一點,三鶯線明年就要通車了,除了三鶯線還有萬大線,我跟吳秉叡、蘇巧慧三位委員在107年為萬大線共同爭取555億的前瞻經費,但疫情過後原物料缺乏,工資上漲,所以我們所編的預算不夠,現在還有220億的缺口,總經費來到770億。本席想拜託交通部是不是趕快審議,讓捷運萬大線能早日通車?有關這部分請部長說明。
gazette.blocks[20][0] 李部長孟諺:因為現在確實是有原物料上漲的情形,像過去我們在編建築工程費用時,以前一坪大概都是編10萬塊,現在實際上的建築成本大概一坪要22萬以上,所以確實是有倍增的狀況,也因此,很多原來之前編的計畫,現在在執行發包以後,或是在實際執行上,配合這個物調,可能都需要調整經費,只要他們送來交通部審核,國發會審議通過後,會照比例來分擔。
gazette.blocks[21][0] 吳委員琪銘:好,謝謝部長。院長,因為時間的關係,社會住宅的資料再多拜託你了。
gazette.blocks[22][0] 卓院長榮泰:好。
gazette.blocks[23][0] 吳委員琪銘:謝謝。
gazette.blocks[24][0] 卓院長榮泰:謝謝委員。
gazette.blocks[25][0] 主席:謝謝吳委員。下一位請葉元之委員質詢。
gazette.agenda.page_end 182
gazette.agenda.meet_id 院會-11-1-21
gazette.agenda.speakers[0] 江啟臣
gazette.agenda.speakers[1] 王定宇
gazette.agenda.speakers[2] 黃國昌
gazette.agenda.speakers[3] 羅明才
gazette.agenda.speakers[4] 吳琪銘
gazette.agenda.speakers[5] 葉元之
gazette.agenda.speakers[6] 邱若華
gazette.agenda.speakers[7] 楊曜
gazette.agenda.speakers[8] 羅智強
gazette.agenda.speakers[9] 黃健豪
gazette.agenda.speakers[10] 盧縣一
gazette.agenda.speakers[11] 蘇清泉
gazette.agenda.speakers[12] 林國成
gazette.agenda.speakers[13] 李昆澤
gazette.agenda.speakers[14] 羅廷瑋
gazette.agenda.speakers[15] 陳培瑜
gazette.agenda.speakers[16] 林月琴
gazette.agenda.speakers[17] 游顥
gazette.agenda.speakers[18] 王正旭
gazette.agenda.speakers[19] 林淑芬
gazette.agenda.speakers[20] 涂權吉
gazette.agenda.page_start 93
gazette.agenda.meetingDate[0] 2024-07-09
gazette.agenda.gazette_id 1136601
gazette.agenda.agenda_lcidc_ids[0] 1136601_00005
gazette.agenda.agenda_lcidc_ids[1] 1136601_00006
gazette.agenda.meet_name 立法院第11屆第1會期第21次會議紀錄
gazette.agenda.content 施政質詢 對行政院院長報告施政方針繼續質詢─ 詢答完畢─
gazette.agenda.agenda_id 1136601_00004
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 16.12971875
transcript.pyannote[0].end 22.66034375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 23.41971875
transcript.pyannote[1].end 25.64721875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 33.61221875
transcript.pyannote[2].end 34.35471875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 33.74721875
transcript.pyannote[3].end 35.13096875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 34.38846875
transcript.pyannote[4].end 38.08409375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 38.70846875
transcript.pyannote[5].end 46.09971875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 46.33596875
transcript.pyannote[6].end 46.65659375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 47.14596875
transcript.pyannote[7].end 48.68159375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 48.79971875
transcript.pyannote[8].end 49.79534375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 49.94721875
transcript.pyannote[9].end 55.19534375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 55.33034375
transcript.pyannote[10].end 58.13159375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 58.21596875
transcript.pyannote[11].end 58.68846875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 58.87409375
transcript.pyannote[12].end 60.24096875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 60.35909375
transcript.pyannote[13].end 61.16909375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 61.50659375
transcript.pyannote[14].end 66.06284375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 66.56909375
transcript.pyannote[15].end 71.14221875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 71.44596875
transcript.pyannote[16].end 73.43721875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 73.97721875
transcript.pyannote[17].end 76.35659375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 76.52534375
transcript.pyannote[18].end 78.92159375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 79.15784375
transcript.pyannote[19].end 81.67221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 82.11096875
transcript.pyannote[20].end 84.74346875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 84.86159375
transcript.pyannote[21].end 87.39284375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 87.81471875
transcript.pyannote[22].end 88.69221875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 89.06346875
transcript.pyannote[23].end 91.78034375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 92.10096875
transcript.pyannote[24].end 94.12596875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 94.58159375
transcript.pyannote[25].end 99.66096875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 99.98159375
transcript.pyannote[26].end 102.09096875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 102.49596875
transcript.pyannote[27].end 115.35471875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 115.47284375
transcript.pyannote[28].end 119.23596875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 119.35409375
transcript.pyannote[29].end 121.29471875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 121.59846875
transcript.pyannote[30].end 124.28159375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 124.46721875
transcript.pyannote[31].end 126.88034375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 127.08284375
transcript.pyannote[32].end 129.09096875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 129.34409375
transcript.pyannote[33].end 132.14534375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 132.41534375
transcript.pyannote[34].end 133.78221875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 134.03534375
transcript.pyannote[35].end 136.34721875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 136.63409375
transcript.pyannote[36].end 140.04284375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 140.41409375
transcript.pyannote[37].end 143.38409375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 143.58659375
transcript.pyannote[38].end 144.63284375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 145.07159375
transcript.pyannote[39].end 149.49284375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 149.86409375
transcript.pyannote[40].end 151.83846875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 152.09159375
transcript.pyannote[41].end 154.43721875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 154.63971875
transcript.pyannote[42].end 156.29346875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 156.52971875
transcript.pyannote[43].end 157.25534375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 157.52534375
transcript.pyannote[44].end 159.11159375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 159.26346875
transcript.pyannote[45].end 160.76534375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 160.98471875
transcript.pyannote[46].end 162.28409375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 162.53721875
transcript.pyannote[47].end 164.34284375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 164.52846875
transcript.pyannote[48].end 165.72659375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 166.03034375
transcript.pyannote[49].end 169.45596875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 169.59096875
transcript.pyannote[50].end 171.10971875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 171.43034375
transcript.pyannote[51].end 173.67471875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 173.75909375
transcript.pyannote[52].end 175.49721875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 175.78409375
transcript.pyannote[53].end 176.44221875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 176.66159375
transcript.pyannote[54].end 178.45034375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 178.66971875
transcript.pyannote[55].end 179.66534375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 179.98596875
transcript.pyannote[56].end 181.52159375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 182.29784375
transcript.pyannote[57].end 187.00596875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 187.22534375
transcript.pyannote[58].end 188.59221875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 188.82846875
transcript.pyannote[59].end 191.84909375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 192.13596875
transcript.pyannote[60].end 193.01346875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 193.41846875
transcript.pyannote[61].end 193.68846875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 194.00909375
transcript.pyannote[62].end 195.39284375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 195.93284375
transcript.pyannote[63].end 198.80159375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 198.98721875
transcript.pyannote[64].end 204.13409375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 204.55596875
transcript.pyannote[65].end 212.48721875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 212.95971875
transcript.pyannote[66].end 214.88346875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 214.98471875
transcript.pyannote[67].end 221.02596875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 221.32971875
transcript.pyannote[68].end 223.47284375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 223.54034375
transcript.pyannote[69].end 226.64534375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 226.86471875
transcript.pyannote[70].end 229.71659375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 229.95284375
transcript.pyannote[71].end 240.33096875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 240.41534375
transcript.pyannote[72].end 242.57534375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 242.87909375
transcript.pyannote[73].end 247.30034375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 247.50284375
transcript.pyannote[74].end 249.03846875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 249.39284375
transcript.pyannote[75].end 261.91409375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 261.91409375
transcript.pyannote[76].end 262.79159375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 263.14596875
transcript.pyannote[77].end 264.10784375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 264.66471875
transcript.pyannote[78].end 266.16659375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 266.94284375
transcript.pyannote[79].end 268.00596875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 268.14096875
transcript.pyannote[80].end 269.65971875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 269.84534375
transcript.pyannote[81].end 271.39784375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 269.96346875
transcript.pyannote[82].end 270.13221875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 271.90409375
transcript.pyannote[83].end 273.01784375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 273.52409375
transcript.pyannote[84].end 275.07659375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 275.58284375
transcript.pyannote[85].end 277.37159375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 277.74284375
transcript.pyannote[86].end 281.01659375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 281.33721875
transcript.pyannote[87].end 282.51846875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 282.73784375
transcript.pyannote[88].end 289.57221875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 289.84221875
transcript.pyannote[89].end 290.53409375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 291.14159375
transcript.pyannote[90].end 293.95971875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 294.01034375
transcript.pyannote[91].end 297.62159375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 298.04346875
transcript.pyannote[92].end 301.01346875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 301.23284375
transcript.pyannote[93].end 301.95846875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 302.04284375
transcript.pyannote[94].end 303.51096875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 303.91596875
transcript.pyannote[95].end 307.18971875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 307.59471875
transcript.pyannote[96].end 312.03284375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 312.35346875
transcript.pyannote[97].end 315.52596875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 315.98159375
transcript.pyannote[98].end 318.42846875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 318.95159375
transcript.pyannote[99].end 325.34721875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 325.71846875
transcript.pyannote[100].end 329.12721875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 329.46471875
transcript.pyannote[101].end 332.99159375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 333.32909375
transcript.pyannote[102].end 334.59471875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 334.84784375
transcript.pyannote[103].end 336.77159375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 337.10909375
transcript.pyannote[104].end 340.82159375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 341.56409375
transcript.pyannote[105].end 344.16284375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 344.39909375
transcript.pyannote[106].end 346.25534375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 346.82909375
transcript.pyannote[107].end 351.67221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 352.00971875
transcript.pyannote[108].end 352.33034375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 352.63409375
transcript.pyannote[109].end 354.32159375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 354.79409375
transcript.pyannote[110].end 355.62096875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 355.78971875
transcript.pyannote[111].end 360.63284375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 360.85221875
transcript.pyannote[112].end 361.29096875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 361.42596875
transcript.pyannote[113].end 370.03221875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 370.09971875
transcript.pyannote[114].end 370.77471875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 371.21346875
transcript.pyannote[115].end 372.59721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 372.81659375
transcript.pyannote[116].end 373.13721875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 373.50846875
transcript.pyannote[117].end 374.67284375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 375.49971875
transcript.pyannote[118].end 376.17471875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 376.32659375
transcript.pyannote[119].end 386.97471875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 387.76784375
transcript.pyannote[120].end 389.47221875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 389.57346875
transcript.pyannote[121].end 391.58159375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 391.90221875
transcript.pyannote[122].end 393.87659375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 394.18034375
transcript.pyannote[123].end 399.10784375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 399.36096875
transcript.pyannote[124].end 400.39034375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 400.82909375
transcript.pyannote[125].end 412.03409375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 412.08471875
transcript.pyannote[126].end 413.02971875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 413.19846875
transcript.pyannote[127].end 414.36284375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 414.70034375
transcript.pyannote[128].end 416.23596875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 416.52284375
transcript.pyannote[129].end 419.17221875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 419.32409375
transcript.pyannote[130].end 420.69096875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 421.02846875
transcript.pyannote[131].end 423.54284375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 423.77909375
transcript.pyannote[132].end 426.54659375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 427.30596875
transcript.pyannote[133].end 430.03971875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 430.24221875
transcript.pyannote[134].end 431.74409375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 431.91284375
transcript.pyannote[135].end 433.68471875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 433.98846875
transcript.pyannote[136].end 440.21534375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 440.67096875
transcript.pyannote[137].end 440.92409375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 441.43034375
transcript.pyannote[138].end 448.88909375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 449.05784375
transcript.pyannote[139].end 450.91409375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 451.16721875
transcript.pyannote[140].end 453.10784375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 453.59721875
transcript.pyannote[141].end 456.68534375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 456.12846875
transcript.pyannote[142].end 461.71409375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 461.98409375
transcript.pyannote[143].end 462.94596875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 464.09346875
transcript.pyannote[144].end 467.01284375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 467.23221875
transcript.pyannote[145].end 473.79659375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 474.45471875
transcript.pyannote[146].end 478.79159375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 479.41596875
transcript.pyannote[147].end 484.09034375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 484.51221875
transcript.pyannote[148].end 486.48659375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 486.70596875
transcript.pyannote[149].end 489.03471875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 489.13596875
transcript.pyannote[150].end 490.31721875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 490.67159375
transcript.pyannote[151].end 493.18596875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 493.55721875
transcript.pyannote[152].end 494.13096875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 495.54846875
transcript.pyannote[153].end 502.07909375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 503.29409375
transcript.pyannote[154].end 508.00221875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 508.40721875
transcript.pyannote[155].end 513.41909375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 513.99284375
transcript.pyannote[156].end 518.34659375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 518.76846875
transcript.pyannote[157].end 530.42909375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 530.53034375
transcript.pyannote[158].end 545.39721875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 545.53221875
transcript.pyannote[159].end 548.08034375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 548.28284375
transcript.pyannote[160].end 550.27409375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 550.62846875
transcript.pyannote[161].end 561.42846875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 561.61409375
transcript.pyannote[162].end 567.97596875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 568.26284375
transcript.pyannote[163].end 570.37221875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 570.55784375
transcript.pyannote[164].end 576.14346875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 576.19409375
transcript.pyannote[165].end 576.95346875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 577.17284375
transcript.pyannote[166].end 582.11721875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 582.75846875
transcript.pyannote[167].end 587.38221875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 587.68596875
transcript.pyannote[168].end 594.52034375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 594.77346875
transcript.pyannote[169].end 596.71409375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 597.10221875
transcript.pyannote[170].end 598.73909375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 599.00909375
transcript.pyannote[171].end 600.59534375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 600.84846875
transcript.pyannote[172].end 602.36721875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 602.65409375
transcript.pyannote[173].end 605.48909375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 605.84346875
transcript.pyannote[174].end 609.38721875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 609.64034375
transcript.pyannote[175].end 610.23096875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 610.43346875
transcript.pyannote[176].end 615.09096875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 615.29346875
transcript.pyannote[177].end 617.04846875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 617.30159375
transcript.pyannote[178].end 618.66846875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 618.98909375
transcript.pyannote[179].end 621.01409375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 621.79034375
transcript.pyannote[180].end 626.59971875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 627.13971875
transcript.pyannote[181].end 639.57659375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 640.04909375
transcript.pyannote[182].end 641.24721875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 641.36534375
transcript.pyannote[183].end 642.79971875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 642.85034375
transcript.pyannote[184].end 643.67721875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 643.71096875
transcript.pyannote[185].end 644.92596875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 645.29721875
transcript.pyannote[186].end 646.71471875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 646.98471875
transcript.pyannote[187].end 650.79846875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 651.15284375
transcript.pyannote[188].end 651.28784375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 651.87846875
transcript.pyannote[189].end 655.64159375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 655.84409375
transcript.pyannote[190].end 663.01596875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 661.31159375
transcript.pyannote[191].end 661.69971875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 662.45909375
transcript.pyannote[192].end 663.89346875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 664.06221875
transcript.pyannote[193].end 664.21409375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 664.23096875
transcript.pyannote[194].end 667.52159375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 667.89284375
transcript.pyannote[195].end 668.38221875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 669.42846875
transcript.pyannote[196].end 670.57596875
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 671.11596875
transcript.pyannote[197].end 671.75721875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 672.21284375
transcript.pyannote[198].end 681.62909375
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 681.84846875
transcript.pyannote[199].end 685.34159375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 685.49346875
transcript.pyannote[200].end 688.26096875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 688.51409375
transcript.pyannote[201].end 688.59846875
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 689.37471875
transcript.pyannote[202].end 690.11721875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 692.07471875
transcript.pyannote[203].end 694.45409375
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 695.26409375
transcript.pyannote[204].end 701.17034375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 701.69346875
transcript.pyannote[205].end 702.63846875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 703.61721875
transcript.pyannote[206].end 709.45596875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 710.04659375
transcript.pyannote[207].end 713.06721875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 713.40471875
transcript.pyannote[208].end 715.83471875
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 716.02034375
transcript.pyannote[209].end 719.49659375
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 719.54721875
transcript.pyannote[210].end 722.50034375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 722.70284375
transcript.pyannote[211].end 727.46159375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 727.66409375
transcript.pyannote[212].end 734.68409375
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 734.90346875
transcript.pyannote[213].end 739.62846875
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 739.91534375
transcript.pyannote[214].end 744.62346875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 744.97784375
transcript.pyannote[215].end 747.22221875
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 747.86346875
transcript.pyannote[216].end 748.65659375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 749.06159375
transcript.pyannote[217].end 751.44096875
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 751.57596875
transcript.pyannote[218].end 753.31409375
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 753.71909375
transcript.pyannote[219].end 755.87909375
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 756.09846875
transcript.pyannote[220].end 756.72284375
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 756.95909375
transcript.pyannote[221].end 757.29659375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 757.85346875
transcript.pyannote[222].end 758.96721875
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 759.22034375
transcript.pyannote[223].end 762.12284375
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 762.32534375
transcript.pyannote[224].end 764.06346875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 764.14784375
transcript.pyannote[225].end 766.78034375
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 767.82659375
transcript.pyannote[226].end 768.38346875
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 768.72096875
transcript.pyannote[227].end 769.02471875
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 769.02471875
transcript.pyannote[228].end 770.67846875
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 771.13409375
transcript.pyannote[229].end 773.95221875
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 774.23909375
transcript.pyannote[230].end 775.69034375
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 775.96034375
transcript.pyannote[231].end 779.06534375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 779.18346875
transcript.pyannote[232].end 781.93409375
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 782.23784375
transcript.pyannote[233].end 789.32534375
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 789.46034375
transcript.pyannote[234].end 790.67534375
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 789.56159375
transcript.pyannote[235].end 790.57409375
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 791.02971875
transcript.pyannote[236].end 791.83971875
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 791.28284375
transcript.pyannote[237].end 791.62034375
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 792.00846875
transcript.pyannote[238].end 796.86846875
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 796.00784375
transcript.pyannote[239].end 796.75034375
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 796.86846875
transcript.pyannote[240].end 798.11721875
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 798.11721875
transcript.pyannote[241].end 798.16784375
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 798.16784375
transcript.pyannote[242].end 798.42096875
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 798.42096875
transcript.pyannote[243].end 799.45034375
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 800.31096875
transcript.pyannote[244].end 805.66034375
transcript.pyannote[245].speaker SPEAKER_01
transcript.pyannote[245].start 804.78284375
transcript.pyannote[245].end 807.44909375
transcript.pyannote[246].speaker SPEAKER_01
transcript.pyannote[246].start 807.56721875
transcript.pyannote[246].end 813.38909375
transcript.pyannote[247].speaker SPEAKER_01
transcript.pyannote[247].start 813.64221875
transcript.pyannote[247].end 818.94096875
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 813.69284375
transcript.pyannote[248].end 814.08096875
transcript.pyannote[249].speaker SPEAKER_01
transcript.pyannote[249].start 819.29534375
transcript.pyannote[249].end 821.03346875
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 821.48909375
transcript.pyannote[250].end 833.33534375
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 833.53784375
transcript.pyannote[251].end 836.99721875
transcript.pyannote[252].speaker SPEAKER_01
transcript.pyannote[252].start 837.26721875
transcript.pyannote[252].end 840.35534375
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 837.53721875
transcript.pyannote[253].end 837.77346875
transcript.pyannote[254].speaker SPEAKER_01
transcript.pyannote[254].start 840.54096875
transcript.pyannote[254].end 842.07659375
transcript.pyannote[255].speaker SPEAKER_01
transcript.pyannote[255].start 842.36346875
transcript.pyannote[255].end 846.14346875
transcript.pyannote[256].speaker SPEAKER_01
transcript.pyannote[256].start 846.51471875
transcript.pyannote[256].end 849.45096875
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 849.85596875
transcript.pyannote[257].end 851.47596875
transcript.pyannote[258].speaker SPEAKER_01
transcript.pyannote[258].start 852.62346875
transcript.pyannote[258].end 853.09596875
transcript.pyannote[259].speaker SPEAKER_00
transcript.pyannote[259].start 853.31534375
transcript.pyannote[259].end 855.96471875
transcript.pyannote[260].speaker SPEAKER_01
transcript.pyannote[260].start 856.08284375
transcript.pyannote[260].end 858.00659375
transcript.pyannote[261].speaker SPEAKER_01
transcript.pyannote[261].start 858.74909375
transcript.pyannote[261].end 859.00221875
transcript.pyannote[262].speaker SPEAKER_01
transcript.pyannote[262].start 859.37346875
transcript.pyannote[262].end 865.53284375
transcript.pyannote[263].speaker SPEAKER_01
transcript.pyannote[263].start 865.95471875
transcript.pyannote[263].end 867.84471875
transcript.pyannote[264].speaker SPEAKER_01
transcript.pyannote[264].start 868.26659375
transcript.pyannote[264].end 870.05534375
transcript.pyannote[265].speaker SPEAKER_01
transcript.pyannote[265].start 870.34221875
transcript.pyannote[265].end 874.88159375
transcript.pyannote[266].speaker SPEAKER_01
transcript.pyannote[266].start 875.26971875
transcript.pyannote[266].end 878.98221875
transcript.pyannote[267].speaker SPEAKER_01
transcript.pyannote[267].start 879.85971875
transcript.pyannote[267].end 883.69034375
transcript.pyannote[268].speaker SPEAKER_01
transcript.pyannote[268].start 884.09534375
transcript.pyannote[268].end 885.20909375
transcript.pyannote[269].speaker SPEAKER_01
transcript.pyannote[269].start 885.56346875
transcript.pyannote[269].end 886.35659375
transcript.pyannote[270].speaker SPEAKER_01
transcript.pyannote[270].start 886.60971875
transcript.pyannote[270].end 888.07784375
transcript.pyannote[271].speaker SPEAKER_01
transcript.pyannote[271].start 888.22971875
transcript.pyannote[271].end 891.08159375
transcript.pyannote[272].speaker SPEAKER_01
transcript.pyannote[272].start 891.38534375
transcript.pyannote[272].end 894.40596875
transcript.pyannote[273].speaker SPEAKER_01
transcript.pyannote[273].start 894.70971875
transcript.pyannote[273].end 897.29159375
transcript.pyannote[274].speaker SPEAKER_01
transcript.pyannote[274].start 897.49409375
transcript.pyannote[274].end 898.25346875
transcript.pyannote[275].speaker SPEAKER_01
transcript.pyannote[275].start 898.54034375
transcript.pyannote[275].end 900.43034375
transcript.pyannote[276].speaker SPEAKER_01
transcript.pyannote[276].start 900.46409375
transcript.pyannote[276].end 906.25221875
transcript.pyannote[277].speaker SPEAKER_01
transcript.pyannote[277].start 906.60659375
transcript.pyannote[277].end 909.66096875
transcript.pyannote[278].speaker SPEAKER_00
transcript.pyannote[278].start 910.03221875
transcript.pyannote[278].end 911.16284375
transcript.pyannote[279].speaker SPEAKER_00
transcript.pyannote[279].start 911.77034375
transcript.pyannote[279].end 913.74471875
transcript.pyannote[280].speaker SPEAKER_00
transcript.pyannote[280].start 914.04846875
transcript.pyannote[280].end 917.64284375
transcript.pyannote[281].speaker SPEAKER_00
transcript.pyannote[281].start 917.98034375
transcript.pyannote[281].end 920.37659375
transcript.pyannote[282].speaker SPEAKER_00
transcript.pyannote[282].start 920.69721875
transcript.pyannote[282].end 924.44346875
transcript.pyannote[283].speaker SPEAKER_00
transcript.pyannote[283].start 924.47721875
transcript.pyannote[283].end 924.49409375
transcript.pyannote[284].speaker SPEAKER_00
transcript.pyannote[284].start 924.79784375
transcript.pyannote[284].end 927.39659375
transcript.pyannote[285].speaker SPEAKER_00
transcript.pyannote[285].start 927.68346875
transcript.pyannote[285].end 931.17659375
transcript.pyannote[286].speaker SPEAKER_00
transcript.pyannote[286].start 931.51409375
transcript.pyannote[286].end 933.55596875
transcript.pyannote[287].speaker SPEAKER_00
transcript.pyannote[287].start 933.70784375
transcript.pyannote[287].end 940.13721875
transcript.pyannote[288].speaker SPEAKER_01
transcript.pyannote[288].start 935.61471875
transcript.pyannote[288].end 935.74971875
transcript.pyannote[289].speaker SPEAKER_01
transcript.pyannote[289].start 945.14909375
transcript.pyannote[289].end 947.91659375
transcript.pyannote[290].speaker SPEAKER_01
transcript.pyannote[290].start 950.44784375
transcript.pyannote[290].end 950.73471875
transcript.pyannote[291].speaker SPEAKER_01
transcript.pyannote[291].start 953.53596875
transcript.pyannote[291].end 954.97034375
transcript.pyannote[292].speaker SPEAKER_00
transcript.pyannote[292].start 954.97034375
transcript.pyannote[292].end 958.36221875
transcript.whisperx[0].start 16.438
transcript.whisperx[0].end 25.32
transcript.whisperx[0].text 主席一位媒體我們請行政院長以及交通部長請行政院長交通部長備詢吳委員好委員長好部長好辛苦了我們新的執政團隊新氣象在各項的經濟指標都有突出的表現
transcript.whisperx[1].start 47.185
transcript.whisperx[1].end 75.72
transcript.whisperx[1].text 在這近半年台股的指示現在我早上看已經將近兩萬四千點了這時候臺灣的股市是52年來最新高臺灣的股票市值已經在全球排名已經第15了那靜電視民調顯示我們卓院長的滿意度也將近五成恭喜卓院長尤其我們富國神山台積電
transcript.whisperx[2].start 76.621
transcript.whisperx[2].end 103.14
transcript.whisperx[2].text 的半導體的技術領先全球也替臺灣帶來可觀的稅收各項的福果利民政策也讓民眾的生活更加的有感讓執政黨的滿意度的穩定的領先對此國家應該好更好的條件來做福果利民做出更多的努力那本期這邊跟院長來提出的討論
transcript.whisperx[3].start 104.1
transcript.whisperx[3].end 133.303
transcript.whisperx[3].text 首先我們國人的驕傲黃仁軒在6月來臺也掀起了AI的洩風並且有意在臺灣繼續設立研發中心過去選舉期間我也提出了土城三峽AI的科技廊道在政見裡掛出許多的看板地方的民眾對這項的政策也相當的期待我身為土城三峽民意代表醒出來也向院長推薦
transcript.whisperx[4].start 134.143
transcript.whisperx[4].end 134.163
transcript.whisperx[4].text 吳琪銘議員
transcript.whisperx[5].start 159.401
transcript.whisperx[5].end 159.421
transcript.whisperx[5].text 吳琪銘
transcript.whisperx[6].start 182.432
transcript.whisperx[6].end 182.672
transcript.whisperx[6].text 吳琪銘議員吳琪銘議員吳琪銘議員
transcript.whisperx[7].start 204.625
transcript.whisperx[7].end 204.645
transcript.whisperx[7].text 吳琪銘議員
transcript.whisperx[8].start 223.773
transcript.whisperx[8].end 223.793
transcript.whisperx[8].text 吳琪銘
transcript.whisperx[9].start 249.485
transcript.whisperx[9].end 249.925
transcript.whisperx[9].text 議員一開始講關於臺灣的經濟的發展
transcript.whisperx[10].start 266.977
transcript.whisperx[10].end 290.156
transcript.whisperx[10].text 我們都知道這是全國人民共同的努力政府該做的就是維護國家的安全讓成熟的民主政治更往健全的方向去發展另外兩件很重要的是我們要接得住世界的潮流也要穩定的對我們的基礎建設做全面的開發如果做到這點那全國人民努力之下就會得到更好的成果至於說
transcript.whisperx[11].start 291.526
transcript.whisperx[11].end 315.369
transcript.whisperx[11].text 國際的大廠要到台灣到哪裡設置任何的一個大型的開發我們都非常的歡迎但是也要符合我們的整個戰略的佈局跟我們的整體發展的目標那現在委員所提出的這個AI的旋風當然是很掃全台灣我想各地包括每位委員在這裡都會為自己的選區自己的所在地提出很多的希望跟期待
transcript.whisperx[12].start 316.01
transcript.whisperx[12].end 340.649
transcript.whisperx[12].text 那至於剛剛委員所提到的這個司法園區的部分目前我所知道已經開始在辦理這個區段徵收工程的作業當中那是不是它未來有進一步的發展的這個可能性我想這個地方的整個包括中央地方的合作努力應該要再做進一步那用這個來吸引更多的這個國際大廠來投資對地方絕對就是一個好的發展
transcript.whisperx[13].start 341.598
transcript.whisperx[13].end 360.479
transcript.whisperx[13].text 好的跟院長報告還有部長因為土城這個地方早期我們土城工業區包括鴻海一些科技大廠都在土城那現在土城的房價大家都知道已經都上漲尤其廠商他們要取得土地都不容易
transcript.whisperx[14].start 361.773
transcript.whisperx[14].end 361.793
transcript.whisperx[14].text 吳琪
transcript.whisperx[15].start 377.423
transcript.whisperx[15].end 377.443
transcript.whisperx[15].text 吳琪銘
transcript.whisperx[16].start 401.131
transcript.whisperx[16].end 426.144
transcript.whisperx[16].text 南側這一邊有將近100公頃那100公頃我們未來可以好好的規劃因為那都是我們國有地站的比例最高那我們這來推動的話我相信包含他們AI的研發中心也可以來進駐在新北的土城山峽這個地方所以這一點我也拜託院長是不是找我們相關單位來做研議
transcript.whisperx[17].start 427.312
transcript.whisperx[17].end 427.332
transcript.whisperx[17].text 吳琪銘議員
transcript.whisperx[18].start 453.784
transcript.whisperx[18].end 453.804
transcript.whisperx[18].text 吳琪銘
transcript.whisperx[19].start 474.557
transcript.whisperx[19].end 501.409
transcript.whisperx[19].text 首先我們那個交通的問題我們還是要解決因為土城跟三峽這邊的人口密集度現在成長速度非常快那成長速度非常快尤其在六五的延伸在六五的延伸不管是三峽這邊已經列入我們的優先路段尤其我跟院長跟部長報告
transcript.whisperx[20].start 504.142
transcript.whisperx[20].end 528.717
transcript.whisperx[20].text 三峽尤其是在北大,北大在兩年前兩年前4萬7千多人那目前短短兩年的時間又暴增了到6萬多人那目前新北市又規劃了麥子岩這個地段又要做重劃還有士林跟大甘園地區這邊也要推動重劃區
transcript.whisperx[21].start 530.678
transcript.whisperx[21].end 530.698
transcript.whisperx[21].text 吳琪
transcript.whisperx[22].start 545.949
transcript.whisperx[22].end 574.984
transcript.whisperx[22].text 要求相關單位來做研議早期那時候得到我們公路總局的席可在111年1月30號上網招標可行性評估作業在4月30號結標6月27號召開會議辦理可行性初期報告審查作業所以這是我們交通部依據在明年114年3月提出其中
transcript.whisperx[23].start 575.785
transcript.whisperx[23].end 586.779
transcript.whisperx[23].text 報告請我要拜託部長是不是65這一條沿線能夠抓住一定要順利的推動好不好請部長你來說明
transcript.whisperx[24].start 587.831
transcript.whisperx[24].end 609.237
transcript.whisperx[24].text 我想這個是非常重要的一條快速道路因為現在從龍潭一直到土城甚至到中和的北二高都非常容易塞車那在上下班的時候是塞車的狀況很嚴重所以如果能夠平行這個北二高來興建一條這個板龍快速道路我覺得對整個交通疏解很有幫助
transcript.whisperx[25].start 609.497
transcript.whisperx[25].end 609.517
transcript.whisperx[25].text ﹚吳琪銘
transcript.whisperx[26].start 622.297
transcript.whisperx[26].end 650.276
transcript.whisperx[26].text 謝謝部長,部長那你就很清楚吧因為我們這都是短程那短程他們對外的交通就要靠國道3號那國道3號你常常國道3號你再要怎樣拖關還是不過用那唯一的辦法就是推動這6565的快速道路那你短程你就把土城三峽列為優先路段這樣你就可以解決很多車流量的擁塞的問題
transcript.whisperx[27].start 651.889
transcript.whisperx[27].end 677.997
transcript.whisperx[27].text 那他現在可能需要去處理的就是要跟很多的提防怎麼樣共構那跟水利單位的一個協調那這個部分需要一些時間來趕快把它付出那我也跟部長提醒尤其在我們土城工業區還有這一條甘寧橋過來連接土城這個工業區那要是我們的快速道路能夠連接上去
transcript.whisperx[28].start 678.479
transcript.whisperx[28].end 678.499
transcript.whisperx[28].text 吳琪銘
transcript.whisperx[29].start 703.652
transcript.whisperx[29].end 708.887
transcript.whisperx[29].text 在我們三峽在2020年會獲得我們交通部列為經典的小鎮
transcript.whisperx[30].start 710.577
transcript.whisperx[30].end 738.406
transcript.whisperx[30].text 那我們三峽的商圈我們現在在推動這個長湖橋長湖橋就是當初我跟水利署要求經費然後我們的三峽河的整治然後再三峽再過去就是三峽老街還有祖師廟那邊的觀光人潮我們列為經典小鎮那人潮很多但是停車的問題一直沒辦法解決那在我們上個會期我也要求我們的交通部長王國才王部長
transcript.whisperx[31].start 739.966
transcript.whisperx[31].end 763.82
transcript.whisperx[31].text 他也承諾說要是新北市將序位排遣的話我們交通部在前瞻的贈禮款我們當初編了260億我們現在還有贈禮款要是我們新北市同意列為排序在前面我們交通部這邊原則上他是支持的那現在部長又換了我們部長現在你對這個案子
transcript.whisperx[32].start 767.824
transcript.whisperx[32].end 768.849
transcript.whisperx[32].text 會不會繼續來推動來支持
transcript.whisperx[33].start 771.632
transcript.whisperx[33].end 799.342
transcript.whisperx[33].text 目前我們的了解這個交通部已經完成這個初審那麼而且在新北市也是排第一那審查完以後這個案子也是在整個新北排序是最優先所以目前最近他會運用結一款會來提報那什麼時候重點應該是應該是今年的這一兩個月就會來做這兩個月那現在七月了那下個月可不可以
transcript.whisperx[34].start 800.616
transcript.whisperx[34].end 820.499
transcript.whisperx[34].text 可不可以核定我這個時間是我會後再跟您報告比較明確的時間因為真的不要跳票因為怎樣關係到整個三峽三峽的觀光產業三峽現在是最主要是靠的觀光觀光的產業你來到三峽你一定要有紀備的停車場不然你三峽在那邊整個交通都癱瘓
transcript.whisperx[35].start 821.787
transcript.whisperx[35].end 844.14
transcript.whisperx[35].text 所以這個停車場是一個重中之重這我們政府一定要重視因為新北市也是非常的重視這個停車場所以這也要拜託部長引落我們將這個經費趕快來做核定因為我也知道這個經費很多5.78億那我們中央補助的是2.7億
transcript.whisperx[36].start 846.584
transcript.whisperx[36].end 865.347
transcript.whisperx[36].text 那這一點我就要拜託部長了,絕對不要跳票好不好,可以吧?是,我們會全力來支持。好,謝謝,謝謝,謝謝部長。那部長還有一點,就是針對我們的山陵線明年就要通車了嘛。
transcript.whisperx[37].start 865.987
transcript.whisperx[37].end 876.264
transcript.whisperx[37].text 那山陵縣還有就是我們的萬大縣萬大縣在107年我跟吳秉瑞、蘇巧慧我們三位委員共同的爭取在555億的前瞻經費
transcript.whisperx[38].start 879.898
transcript.whisperx[38].end 909.487
transcript.whisperx[38].text 那現在555億,現在你知道疫情過後,原物料缺乏,工資會漲,所以我們所編的預算也不夠,那現在的缺口又少了220億,現在總共來到770億,那本市想拜託我們交通部這邊是不是趕快來審議,讓我們這個捷運萬大線能早日通車,是不是這個部分請部長來做說明好不好?
transcript.whisperx[39].start 910.046
transcript.whisperx[39].end 926.816
transcript.whisperx[39].text 是,我想因為現在確實是有原物料上漲,像過去我們在編這個建築工程以前都是一坪編大概10萬塊,現在實際上的建築成本大概一坪要22萬以上,所以確實是有倍增的一個狀況。
transcript.whisperx[40].start 927.757
transcript.whisperx[40].end 928.797
transcript.whisperx[40].text 吳琪銘議員吳琪銘議員吳琪銘議員吳琪銘議員吳琪銘議員吳琪銘議員
transcript.whisperx[41].start 954.216
transcript.whisperx[41].end 955.919
transcript.whisperx[41].text 好,謝謝吳委員。下一位請葉元之委員質詢。