IVOD_ID |
154372 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/154372 |
日期 |
2024-06-27 |
會議資料.會議代碼 |
委員會-11-1-19-17 |
會議資料.會議代碼:str |
第11屆第1會期經濟委員會第17次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
17 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第1會期經濟委員會第17次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-06-27T11:34:06+08:00 |
結束時間 |
2024-06-27T11:45:15+08:00 |
影片長度 |
00:11:09 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/767b6a9d27b3726cecf02945965b8d7821a3f23b3ad13ea2e70b5822ad681b896b5ac9660c38a9835ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
張啓楷 |
委員發言時間 |
11:34:06 - 11:45:15 |
會議時間 |
2024-06-27T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期經濟委員會第17次全體委員會議(事由:邀請農業部部長就「農業移工政策改善措施」進行報告,並備質詢。【6月26日及6月27日兩天一次會】) |
gazette.lineno |
892 |
gazette.blocks[0][0] |
張委員啓楷:(11時34分)謝謝主席。部長,你喝水喝完再上來,沒關係,慢慢來。 |
gazette.blocks[1][0] |
主席:請部長。 |
gazette.blocks[2][0] |
陳部長駿季:委員早。 |
gazette.blocks[3][0] |
張委員啓楷:部長早。最近雞蛋盛產,我們的蛋農跟蛋商都很慘,可是我沒想到的是,最近中央畜產會還倒蛋,還倒貨進我們的市場。不是應該減少這個蛋的量嗎?怎麼中央畜產會還火上加油呢?這裡面至少有三大的衝擊。第一,有沒有衝擊、影響到我們蛋農的生計?第二,破壞了你農業部最重要的任務──產銷的平衡;第三個是可能會出現的,現在釋出的是去年過期的蛋,或者是即將過期的蛋。等一下這部分我們要好好談,我有數據給你看。有沒有過期的蛋,或即將過期的蛋,吃到我們的肚子?我畫了個問號,等一下我們來談。 |
gazette.blocks[3][1] |
這三部分,我先問你。部長,這次產銷失衡就是蛋太多嘛,對不對?你的任務跟中央畜產會的任務,應該是助雞蛋減少啊!結果為什麼反而中央畜產會從今年5月17日開始,到現在已經五梯次公開標售蛋。蛋就已經太多了,你還倒蛋下去,火上加油!我算起來,全液蛋加上蛋黃液蛋、茶葉蛋、滷蛋,如果是用「顆」來算量,大概已經倒進市場兩千兩百多萬顆,這個會不會太離譜了?你要解決問題的人結果去製造問題,這在臺灣話中叫什麼?是不是「生雞卵的無,放雞屎的有」? |
gazette.blocks[3][2] |
如果從行政學上去看,這是什麼?行政管理上是什麼?失職、失能又失德。有些農民都已經氣到講那句話了,我實在不好意思說,很夭壽耶!你沒有解決問題,中央畜產會這時候還倒貨進去?現在你想像那兩個畫面,蛋價就連去買飼料的錢都不夠了,弄到後來,前幾天有那麼多媒體都報導那個畫面,大家想一下,有些為了減少蛋再進到市場,拿去養豬,就是要減少它的量啊!你想到這邊,欸!這是多心疼的事情!結果你相對這邊的畫面是什麼?中央畜產會從5月17號開始,你在市場裡面倒了兩千兩百多萬顆的蛋進去,這時人民不會憤怒嗎?欺負我們善良的農民是不是? |
gazette.blocks[3][3] |
部長,這個中央畜產會到底在幹嘛?它有替我們人民解決問題嗎?它反而製造了問題,是不是這樣? |
gazette.blocks[4][0] |
陳部長駿季:我可不可以說明一下? |
gazette.blocks[5][0] |
張委員啓楷:請說。 |
gazette.blocks[6][0] |
陳部長駿季:我想整個雞蛋的產銷,第一個我們是回歸到市場機制,農業部的任務就是能夠穩定生產端跟消費端的部分,然後中央畜產會本身,依畜牧法它是負有產銷調節的部分,我跟要跟委員說明,中央畜產會…… |
gazette.blocks[7][0] |
張委員啓楷:抱歉,我先提醒你一下,你的任務是產銷是要平衡的,中央畜產會也是對不對?現在是產量過剩,要減少喔,中央畜產會現在不只沒有減少,他還倒貨進來喔!你贊成它這樣做是不是? |
gazette.blocks[8][0] |
陳部長駿季:不是我贊成這樣做,這是產銷調節的一環,因為這些進口、加工……… |
gazette.blocks[9][0] |
張委員啓楷:調節應該是減少它的量,讓價格回升啊!你倒貨不是價格會越來越低? |
gazette.blocks[10][0] |
陳部長駿季:這個就是…… |
gazette.blocks[11][0] |
張委員啓楷:你這是火上加油,怎麼會是解決問題? |
gazette.blocks[12][0] |
陳部長駿季:不是,這個就類似112年的時候,我們的進口雞蛋為什麼會有那麼多報廢?因為我們是看到市場的蛋,本身的價格穩定,我們不會往市場裡面去倒。那這些是生鮮雞蛋,這個部分是,它已經是一個加工蛋,但加工蛋的標的跟生鮮雞蛋的標的市場是不一樣的。 |
gazette.blocks[13][0] |
張委員啓楷:部長…… |
gazette.blocks[14][0] |
陳部長駿季:第二個…… |
gazette.blocks[15][0] |
張委員啓楷:部長,今天液蛋和生鮮的蛋,早上我如果有吃液蛋,我蒸了一個蛋,我還需要去吃一個雞蛋嗎? |
gazette.blocks[16][0] |
陳部長駿季:不是、不是…… |
gazette.blocks[17][0] |
張委員啓楷:它本身的那個量…… |
gazette.blocks[18][0] |
陳部長駿季:那個液蛋是…… |
gazette.blocks[19][0] |
張委員啓楷:我告訴你,你現在沒有錯,你現在為了雞蛋,生鮮的可能要壞掉了,你現在就必須把它變成加工的,對不對?我現在所有的資料都是從中央畜產會進口蛋加工品專區拉下來的東西。去年的快過期了,或者我甚至擔心有沒有過期問題。好,就算沒有過期,也即將過期,對不對?為了要保存多一點點,所以要把它打成液蛋嘛!那你應該是去年賣啊!或者是在雞蛋少的時候賣啊!你怎麼會找現在雞蛋最多、最便宜的時候,把蛋又丟進去呢?怎麼會有這種離譜的…… |
gazette.blocks[20][0] |
陳部長駿季:我想,我們…… |
gazette.blocks[21][0] |
張委員啓楷:你剛剛講了,你說兩個有不一樣嗎?它都是蛋啊!我如果吃了液蛋,你今天釋出來的……不是,你聽我說。你今天釋出來的不是只有液蛋喔,你還釋出了茶葉蛋跟滷蛋,我今天如果吃了一顆茶葉蛋、吃了一顆滷蛋,我為什麼還要吃一顆生鮮的蛋?它本身就是可以選擇的嘛! |
gazette.blocks[22][0] |
陳部長駿季:我瞭解,我跟委員報告,就是我們畜產會在做這樣的操作的時候有他們的一個邏輯;第二個就是說,它以每天2,400萬顆的這個量,它所釋出的那個比重,其實他們都有做一些相關的評估啦! |
gazette.blocks[23][0] |
張委員啓楷:部長,你這麼專業的人,你應該是有專業的,你是有知識沒有常識嗎?明明市場就過多了,價格已經跌成這樣,你量就是加進去,你還在幫他辯護! |
gazette.blocks[24][0] |
陳部長駿季:沒有,不是,我是說整個雞蛋本身的…… |
gazette.blocks[25][0] |
張委員啓楷:你是有專業,你是有知識,可是我剛剛講的是一個常識問題啊! |
gazette.blocks[26][0] |
陳部長駿季:對,這個部分就是…… |
gazette.blocks[27][0] |
張委員啓楷:你的農業部功能是什麼?產跟銷要平衡,對不對?產就已經生產過剩,你還把東西加進去!過剩了,怎麼叫做平衡?太多的東西要變少,對不對?過剩了,要怎麼平衡…… |
gazette.blocks[28][0] |
陳部長駿季:產銷的平衡…… |
gazette.blocks[29][0] |
張委員啓楷:要變少,結果你現在又加量進去! |
gazette.blocks[30][0] |
陳部長駿季:有一部分是蛋農自主調節,這也是一個,他為什麼要去淘汰老母雞…… |
gazette.blocks[31][0] |
張委員啓楷:你的調節是減少欸!好,OK、OK,我問你一個更嚴重的問題,你目前已經丟了兩千兩百多萬顆進去,我看了你去年給我的資料,加工蛋加起來一共還有七千萬顆,去年因為你買蛋買太多了,除了銷毀之外,做成加工的有七千萬顆,現在已經倒了兩千兩百多萬顆進去,本席做一個明確的要求,剩下的四千多萬顆最近不能再倒了,可不可以? |
gazette.blocks[32][0] |
陳部長駿季:我想他們會基於專業的判斷,調整釋出的時間點。 |
gazette.blocks[33][0] |
張委員啓楷:部長,農民已經氣到不止憤怒而已,失職、失能,已經是夭壽了,說實在的,是失德了,人民現在能夠多憤怒!能夠罵多重的話!再想一想,在失衡的時候,你倒這麼多蛋已經不對了,後續還有四千多萬顆…… |
gazette.blocks[34][0] |
陳部長駿季:我們一定會觀察蛋本身的產銷平衡狀態再決定它的…… |
gazette.blocks[35][0] |
張委員啓楷:目前就是太多了啦,你還要丟蛋進去!第二個,部長,我知道你有你的專業,但是我要一再強調一件事,人在公門好修行,有腦袋之外,拜託,有那個心啦!好不好?剛剛鍾佳濱立委,我覺得他的質詢很好啊,他說蛋就是太多了,可以拜託國軍多吃一點營養的蛋,我覺得不管是哪一個黨,有心幫人民解決問題就是好立委,一樣啊,不是只有腦袋,要有心。部長,到目前大家對你的評價不錯,如果你有心,你就是一個好官員,你現在都沒有感受到那種痛嗎?你如果是一個養雞戶、是一個蛋農、是一個蛋商,心裡都在淌血了,因為你看到有些…… |
gazette.blocks[36][0] |
陳部長駿季:我當然瞭解、我當然瞭解,我們會努力來做這方面的事。 |
gazette.blocks[37][0] |
張委員啓楷:做個好官,好不好?我提兩點,動動腦啦!我們用心跟用腦幫蛋農和人民解決問題。第一個,飼料太貴,對不對?剛才賴惠員委員也這樣說,針對國外進來的部分,我知道你已經做了一部分,你降了關稅嘛! |
gazette.blocks[38][0] |
陳部長駿季:是。 |
gazette.blocks[39][0] |
張委員啓楷:但是目前還是太貴,對不對?考慮一下,農產品太多的時候,你都去補助了,考慮一下,怎麼去補助蛋農,特別在飼料那一塊,好不好?你已經降低關稅了,想一下,能不能再有一點補助?這是第一個。第二個更重要,去年進口蛋進口太多,對不對?你做了什麼動作?加工打成液蛋,對不對?你解決了嘛,對不對?去年為了進口蛋你這樣解決,現在國內本土蛋農出問題,你不能用同樣的方法嗎?除了叫國軍買以外,農業部不能叫中央畜產會去買一些回來,一樣做成蛋液,或是做成滷蛋、茶葉蛋,以後有需要再賣,可以嗎?去年可以這樣幫忙,為什麼今年沒辦法照顧我們的蛋農? |
gazette.blocks[40][0] |
陳部長駿季:跟委員報告,我們現在正在評估,這就是我講的,我們必須有一些國產蛋去做庫存緩衝的空間,去做一個調配,但這個調配需要比較細緻的操作。 |
gazette.blocks[41][0] |
張委員啓楷:你剛才跟主席的對話其實我有聽到,你說你要控制到一天就是兩千四百萬顆,對不對? |
gazette.blocks[42][0] |
陳部長駿季:是。 |
gazette.blocks[43][0] |
張委員啓楷:目前為什麼會過剩?多三十…… |
gazette.blocks[44][0] |
陳部長駿季:三十二萬顆左右。 |
gazette.blocks[45][0] |
張委員啓楷:多三十二萬顆的蛋,所以我剛才生氣你又丟了兩千兩百萬顆進來。好,至少這個多出來的蛋你可以買,就像去年一樣,買完以後做成液蛋,就有一年期限,對不對?你都可以幫外國,為什麼不能幫我們本國?好好想一下這件事,好不好? |
gazette.blocks[46][0] |
陳部長駿季:瞭解,我們已經有在做這樣的規劃。 |
gazette.blocks[47][0] |
張委員啓楷:有規劃了,那趕快做,好不好?我覺得量都可以講,像去年多買七千萬顆放在那裡,至少今年你也可以買我們本國的蛋,買七千萬顆進來,那量就減少了,就真的達到產銷平衡了,對不對?七千萬顆沒有過期的蛋,你把它做成液蛋、茶葉蛋,未來一年,隨時缺蛋就可以放進去,好不好? |
gazette.blocks[48][0] |
陳部長駿季:好。 |
gazette.blocks[49][0] |
張委員啓楷:因為冬天需要的量比較大…… |
gazette.blocks[50][0] |
主席:好,謝謝。 |
gazette.blocks[51][0] |
張委員啓楷:抱歉,我講一下,消極面部分,剩下的四千五百萬顆不要再釋出了,不要再倒貨了,好不好?這是消極面;第二個,積極面部分,剛才講的考慮一下,補助飼料,讓我們的蛋農、蛋商負擔不要那麼大,好不好?另外,好好想一想,我想可能買個七千萬顆應該可以,合理啦!好不好? |
gazette.blocks[52][0] |
陳部長駿季:瞭解。 |
gazette.blocks[53][0] |
張委員啓楷:多動動腦啦!我們多一點…… |
gazette.blocks[54][0] |
陳部長駿季:我們會來規劃。 |
gazette.blocks[55][0] |
張委員啓楷:部長,多用心,專業之外多用心,我們期待的是一個好的官員,好不好?多謝,繼續努力。 |
gazette.blocks[56][0] |
主席:好,謝謝,我們也請部長將你所謂很細緻的方案儘速提出來,送交我們經濟委員會,以協助蛋農,謝謝。 |
gazette.blocks[56][1] |
接下來我們請黃仁委員。謝謝。 |
gazette.agenda.page_end |
302 |
gazette.agenda.meet_id |
委員會-11-1-19-17 |
gazette.agenda.speakers[0] |
楊瓊瓔 |
gazette.agenda.speakers[1] |
林岱樺 |
gazette.agenda.speakers[2] |
邱議瑩 |
gazette.agenda.speakers[3] |
黃國昌 |
gazette.agenda.speakers[4] |
鄭正鈐 |
gazette.agenda.speakers[5] |
鄭天財Sra Kacaw |
gazette.agenda.speakers[6] |
謝衣鳯 |
gazette.agenda.speakers[7] |
呂玉玲 |
gazette.agenda.speakers[8] |
陳超明 |
gazette.agenda.speakers[9] |
賴瑞隆 |
gazette.agenda.speakers[10] |
賴惠員 |
gazette.agenda.speakers[11] |
蔡易餘 |
gazette.agenda.speakers[12] |
鍾佳濱 |
gazette.agenda.speakers[13] |
張嘉郡 |
gazette.agenda.speakers[14] |
張啓楷 |
gazette.agenda.speakers[15] |
黃仁 |
gazette.agenda.speakers[16] |
黃珊珊 |
gazette.agenda.speakers[17] |
洪孟楷 |
gazette.agenda.speakers[18] |
洪申翰 |
gazette.agenda.speakers[19] |
葉元之 |
gazette.agenda.speakers[20] |
邱志偉 |
gazette.agenda.speakers[21] |
陳亭妃 |
gazette.agenda.speakers[22] |
陳冠廷 |
gazette.agenda.page_start |
235 |
gazette.agenda.meetingDate[0] |
2024-06-27 |
gazette.agenda.gazette_id |
1136701 |
gazette.agenda.agenda_lcidc_ids[0] |
1136701_00006 |
gazette.agenda.meet_name |
立法院第11屆第1會期經濟委員會第17次全體委員會議紀錄 |
gazette.agenda.content |
邀請農業部部長就「農業移工政策改善措施」進行報告,並備質詢 |
gazette.agenda.agenda_id |
1136701_00005 |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
4.26659375 |
transcript.pyannote[0].end |
4.75596875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
6.47721875 |
transcript.pyannote[1].end |
10.44284375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
13.14284375 |
transcript.pyannote[2].end |
13.66596875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
19.89284375 |
transcript.pyannote[3].end |
19.90971875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
19.90971875 |
transcript.pyannote[4].end |
20.48346875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
24.26346875 |
transcript.pyannote[5].end |
25.10721875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
26.00159375 |
transcript.pyannote[6].end |
26.67659375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
27.57096875 |
transcript.pyannote[7].end |
30.45659375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
31.26659375 |
transcript.pyannote[8].end |
33.27471875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
34.27034375 |
transcript.pyannote[9].end |
36.12659375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
36.32909375 |
transcript.pyannote[10].end |
36.97034375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
37.67909375 |
transcript.pyannote[11].end |
38.70846875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
39.48471875 |
transcript.pyannote[12].end |
42.42096875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
42.84284375 |
transcript.pyannote[13].end |
44.37846875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
45.12096875 |
transcript.pyannote[14].end |
47.97284375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
48.34409375 |
transcript.pyannote[15].end |
51.92159375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
52.41096875 |
transcript.pyannote[16].end |
53.08596875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
53.54159375 |
transcript.pyannote[17].end |
55.73534375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
56.07284375 |
transcript.pyannote[18].end |
59.14409375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
59.97096875 |
transcript.pyannote[19].end |
60.93284375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
61.45596875 |
transcript.pyannote[20].end |
62.87346875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
63.59909375 |
transcript.pyannote[21].end |
67.24409375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
67.46346875 |
transcript.pyannote[22].end |
67.93596875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
68.76284375 |
transcript.pyannote[23].end |
73.09971875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
73.25159375 |
transcript.pyannote[24].end |
74.90534375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
75.93471875 |
transcript.pyannote[25].end |
76.33971875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
77.82471875 |
transcript.pyannote[26].end |
79.09034375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
79.52909375 |
transcript.pyannote[27].end |
80.17034375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
80.57534375 |
transcript.pyannote[28].end |
81.70596875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
82.66784375 |
transcript.pyannote[29].end |
85.30034375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
85.46909375 |
transcript.pyannote[30].end |
86.73471875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
87.42659375 |
transcript.pyannote[31].end |
88.32096875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
89.28284375 |
transcript.pyannote[32].end |
90.70034375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
90.93659375 |
transcript.pyannote[33].end |
92.30346875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
93.23159375 |
transcript.pyannote[34].end |
95.62784375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
96.13409375 |
transcript.pyannote[35].end |
98.86784375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
99.69471875 |
transcript.pyannote[36].end |
102.02346875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
102.81659375 |
transcript.pyannote[37].end |
103.55909375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
103.87971875 |
transcript.pyannote[38].end |
104.40284375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
104.90909375 |
transcript.pyannote[39].end |
105.24659375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
105.46596875 |
transcript.pyannote[40].end |
106.32659375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
106.86659375 |
transcript.pyannote[41].end |
107.65971875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
107.72721875 |
transcript.pyannote[42].end |
108.35159375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
108.43596875 |
transcript.pyannote[43].end |
110.24159375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
111.67596875 |
transcript.pyannote[44].end |
112.84034375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
113.49846875 |
transcript.pyannote[45].end |
114.25784375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
114.79784375 |
transcript.pyannote[46].end |
116.13096875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
118.42596875 |
transcript.pyannote[47].end |
119.77596875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
120.07971875 |
transcript.pyannote[48].end |
122.44221875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
123.11721875 |
transcript.pyannote[49].end |
124.07909375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
124.33221875 |
transcript.pyannote[50].end |
126.30659375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
127.03221875 |
transcript.pyannote[51].end |
128.71971875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
129.22596875 |
transcript.pyannote[52].end |
130.30596875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
130.93034375 |
transcript.pyannote[53].end |
132.75284375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
133.59659375 |
transcript.pyannote[54].end |
135.89159375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
136.63409375 |
transcript.pyannote[55].end |
137.44409375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
137.96721875 |
transcript.pyannote[56].end |
140.34659375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
141.89909375 |
transcript.pyannote[57].end |
143.51909375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
144.70034375 |
transcript.pyannote[58].end |
145.34159375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
146.72534375 |
transcript.pyannote[59].end |
148.64909375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
149.17221875 |
transcript.pyannote[60].end |
150.48846875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
151.01159375 |
transcript.pyannote[61].end |
153.77909375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
154.52159375 |
transcript.pyannote[62].end |
157.55909375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
158.14971875 |
transcript.pyannote[63].end |
159.43221875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
159.82034375 |
transcript.pyannote[64].end |
160.78221875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
160.96784375 |
transcript.pyannote[65].end |
162.08159375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
162.36846875 |
transcript.pyannote[66].end |
163.98846875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
164.79846875 |
transcript.pyannote[67].end |
166.94159375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
167.54909375 |
transcript.pyannote[68].end |
169.01721875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
169.21971875 |
transcript.pyannote[69].end |
172.08846875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
172.56096875 |
transcript.pyannote[70].end |
173.74221875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
174.55221875 |
transcript.pyannote[71].end |
176.18909375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
178.24784375 |
transcript.pyannote[72].end |
178.65284375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
179.27721875 |
transcript.pyannote[73].end |
180.49221875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
181.96034375 |
transcript.pyannote[74].end |
183.36096875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
183.85034375 |
transcript.pyannote[75].end |
185.08221875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
185.79096875 |
transcript.pyannote[76].end |
186.39846875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
186.75284375 |
transcript.pyannote[77].end |
186.78659375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
186.78659375 |
transcript.pyannote[78].end |
187.90034375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
187.90034375 |
transcript.pyannote[79].end |
188.69346875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
188.69346875 |
transcript.pyannote[80].end |
194.38034375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
194.71784375 |
transcript.pyannote[81].end |
204.79221875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
205.41659375 |
transcript.pyannote[82].end |
207.69471875 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
207.96471875 |
transcript.pyannote[83].end |
209.97284375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
209.97284375 |
transcript.pyannote[84].end |
211.40721875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
211.87971875 |
transcript.pyannote[85].end |
215.42346875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
216.30096875 |
transcript.pyannote[86].end |
218.41034375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
218.93346875 |
transcript.pyannote[87].end |
221.66721875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
222.42659375 |
transcript.pyannote[88].end |
222.96659375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
222.96659375 |
transcript.pyannote[89].end |
229.98659375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
228.68721875 |
transcript.pyannote[90].end |
237.98534375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
235.04909375 |
transcript.pyannote[91].end |
236.39909375 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
236.95596875 |
transcript.pyannote[92].end |
259.36596875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
258.18471875 |
transcript.pyannote[93].end |
258.38721875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
258.75846875 |
transcript.pyannote[94].end |
259.23096875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
259.36596875 |
transcript.pyannote[95].end |
259.38284375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
259.55159375 |
transcript.pyannote[96].end |
259.95659375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
260.74971875 |
transcript.pyannote[97].end |
266.84159375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
267.68534375 |
transcript.pyannote[98].end |
274.46909375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
267.87096875 |
transcript.pyannote[99].end |
268.29284375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
268.78221875 |
transcript.pyannote[100].end |
270.25034375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
274.67159375 |
transcript.pyannote[101].end |
277.21971875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
277.59096875 |
transcript.pyannote[102].end |
278.92409375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
279.27846875 |
transcript.pyannote[103].end |
280.29096875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
280.69596875 |
transcript.pyannote[104].end |
282.34971875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
282.56909375 |
transcript.pyannote[105].end |
283.81784375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
284.59409375 |
transcript.pyannote[106].end |
290.16284375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
290.71971875 |
transcript.pyannote[107].end |
293.09909375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
293.85846875 |
transcript.pyannote[108].end |
297.03096875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
297.18284375 |
transcript.pyannote[109].end |
298.63409375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
299.39346875 |
transcript.pyannote[110].end |
304.18596875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
301.24971875 |
transcript.pyannote[111].end |
303.71346875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
304.54034375 |
transcript.pyannote[112].end |
305.18159375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
305.75534375 |
transcript.pyannote[113].end |
309.61971875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
310.26096875 |
transcript.pyannote[114].end |
313.43346875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
310.85159375 |
transcript.pyannote[115].end |
311.15534375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
313.82159375 |
transcript.pyannote[116].end |
315.13784375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
315.34034375 |
transcript.pyannote[117].end |
315.93096875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
316.79159375 |
transcript.pyannote[118].end |
317.80409375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
317.93909375 |
transcript.pyannote[119].end |
319.22159375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
320.23409375 |
transcript.pyannote[120].end |
322.00596875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
322.57971875 |
transcript.pyannote[121].end |
323.25471875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
322.59659375 |
transcript.pyannote[122].end |
322.96784375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
323.25471875 |
transcript.pyannote[123].end |
323.27159375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
323.27159375 |
transcript.pyannote[124].end |
323.96346875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
323.96346875 |
transcript.pyannote[125].end |
323.98034375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
323.98034375 |
transcript.pyannote[126].end |
325.19534375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
323.99721875 |
transcript.pyannote[127].end |
341.39534375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
341.39534375 |
transcript.pyannote[128].end |
342.00284375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
342.42471875 |
transcript.pyannote[129].end |
343.42034375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
344.21346875 |
transcript.pyannote[130].end |
345.41159375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
346.33971875 |
transcript.pyannote[131].end |
347.79096875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
349.00596875 |
transcript.pyannote[132].end |
354.05159375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
354.42284375 |
transcript.pyannote[133].end |
358.28721875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
357.02159375 |
transcript.pyannote[134].end |
360.32909375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
360.32909375 |
transcript.pyannote[135].end |
360.51471875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
360.51471875 |
transcript.pyannote[136].end |
360.68346875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
360.81846875 |
transcript.pyannote[137].end |
366.20159375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
361.47659375 |
transcript.pyannote[138].end |
361.96596875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
366.64034375 |
transcript.pyannote[139].end |
368.51346875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
368.96909375 |
transcript.pyannote[140].end |
370.20096875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
370.99409375 |
transcript.pyannote[141].end |
373.54221875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
374.72346875 |
transcript.pyannote[142].end |
375.29721875 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
375.63471875 |
transcript.pyannote[143].end |
380.56221875 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
375.66846875 |
transcript.pyannote[144].end |
376.51221875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
378.38534375 |
transcript.pyannote[145].end |
387.44721875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
385.86096875 |
transcript.pyannote[146].end |
389.16846875 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
389.84346875 |
transcript.pyannote[147].end |
390.80534375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
391.07534375 |
transcript.pyannote[148].end |
392.17221875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
393.01596875 |
transcript.pyannote[149].end |
394.48409375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
394.58534375 |
transcript.pyannote[150].end |
396.27284375 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
397.42034375 |
transcript.pyannote[151].end |
397.89284375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
398.39909375 |
transcript.pyannote[152].end |
400.72784375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
401.58846875 |
transcript.pyannote[153].end |
402.98909375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
403.41096875 |
transcript.pyannote[154].end |
405.06471875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
405.40221875 |
transcript.pyannote[155].end |
408.55784375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
409.06409375 |
transcript.pyannote[156].end |
412.81034375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
413.33346875 |
transcript.pyannote[157].end |
415.18971875 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
415.18971875 |
transcript.pyannote[158].end |
415.20659375 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
415.86471875 |
transcript.pyannote[159].end |
415.96596875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
415.96596875 |
transcript.pyannote[160].end |
416.64096875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
416.64096875 |
transcript.pyannote[161].end |
416.77596875 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
416.77596875 |
transcript.pyannote[162].end |
416.79284375 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
416.79284375 |
transcript.pyannote[163].end |
416.84346875 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
416.96159375 |
transcript.pyannote[164].end |
416.97846875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
416.97846875 |
transcript.pyannote[165].end |
417.45096875 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
418.10909375 |
transcript.pyannote[166].end |
423.34034375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
423.77909375 |
transcript.pyannote[167].end |
423.91409375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
424.06596875 |
transcript.pyannote[168].end |
424.45409375 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
424.84221875 |
transcript.pyannote[169].end |
425.24721875 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
426.12471875 |
transcript.pyannote[170].end |
428.43659375 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
429.92159375 |
transcript.pyannote[171].end |
431.37284375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
431.59221875 |
transcript.pyannote[172].end |
433.46534375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
434.34284375 |
transcript.pyannote[173].end |
437.32971875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
439.13534375 |
transcript.pyannote[174].end |
439.87784375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
440.73846875 |
transcript.pyannote[175].end |
445.44659375 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
446.27346875 |
transcript.pyannote[176].end |
446.29034375 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
446.29034375 |
transcript.pyannote[177].end |
446.37471875 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
446.37471875 |
transcript.pyannote[178].end |
446.39159375 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
446.39159375 |
transcript.pyannote[179].end |
446.47596875 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
446.47596875 |
transcript.pyannote[180].end |
447.47159375 |
transcript.pyannote[181].speaker |
SPEAKER_01 |
transcript.pyannote[181].start |
446.49284375 |
transcript.pyannote[181].end |
450.57659375 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
449.78346875 |
transcript.pyannote[182].end |
451.82534375 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
452.17971875 |
transcript.pyannote[183].end |
453.10784375 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
453.59721875 |
transcript.pyannote[184].end |
454.15409375 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
455.04846875 |
transcript.pyannote[185].end |
456.51659375 |
transcript.pyannote[186].speaker |
SPEAKER_00 |
transcript.pyannote[186].start |
457.68096875 |
transcript.pyannote[186].end |
460.14471875 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
460.36409375 |
transcript.pyannote[187].end |
462.54096875 |
transcript.pyannote[188].speaker |
SPEAKER_00 |
transcript.pyannote[188].start |
463.09784375 |
transcript.pyannote[188].end |
463.53659375 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
464.05971875 |
transcript.pyannote[189].end |
467.08034375 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
467.67096875 |
transcript.pyannote[190].end |
468.81846875 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
469.61159375 |
transcript.pyannote[191].end |
472.10909375 |
transcript.pyannote[192].speaker |
SPEAKER_00 |
transcript.pyannote[192].start |
472.66596875 |
transcript.pyannote[192].end |
473.66159375 |
transcript.pyannote[193].speaker |
SPEAKER_00 |
transcript.pyannote[193].start |
474.40409375 |
transcript.pyannote[193].end |
476.93534375 |
transcript.pyannote[194].speaker |
SPEAKER_00 |
transcript.pyannote[194].start |
477.59346875 |
transcript.pyannote[194].end |
478.13346875 |
transcript.pyannote[195].speaker |
SPEAKER_00 |
transcript.pyannote[195].start |
479.06159375 |
transcript.pyannote[195].end |
479.87159375 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
480.20909375 |
transcript.pyannote[196].end |
480.78284375 |
transcript.pyannote[197].speaker |
SPEAKER_00 |
transcript.pyannote[197].start |
481.05284375 |
transcript.pyannote[197].end |
486.75659375 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
487.43159375 |
transcript.pyannote[198].end |
489.23721875 |
transcript.pyannote[199].speaker |
SPEAKER_00 |
transcript.pyannote[199].start |
489.60846875 |
transcript.pyannote[199].end |
490.92471875 |
transcript.pyannote[200].speaker |
SPEAKER_00 |
transcript.pyannote[200].start |
491.43096875 |
transcript.pyannote[200].end |
493.25346875 |
transcript.pyannote[201].speaker |
SPEAKER_00 |
transcript.pyannote[201].start |
493.62471875 |
transcript.pyannote[201].end |
494.45159375 |
transcript.pyannote[202].speaker |
SPEAKER_00 |
transcript.pyannote[202].start |
494.99159375 |
transcript.pyannote[202].end |
496.25721875 |
transcript.pyannote[203].speaker |
SPEAKER_01 |
transcript.pyannote[203].start |
495.64971875 |
transcript.pyannote[203].end |
499.27784375 |
transcript.pyannote[204].speaker |
SPEAKER_00 |
transcript.pyannote[204].start |
497.55659375 |
transcript.pyannote[204].end |
497.80971875 |
transcript.pyannote[205].speaker |
SPEAKER_00 |
transcript.pyannote[205].start |
498.83909375 |
transcript.pyannote[205].end |
499.53096875 |
transcript.pyannote[206].speaker |
SPEAKER_00 |
transcript.pyannote[206].start |
499.71659375 |
transcript.pyannote[206].end |
501.80909375 |
transcript.pyannote[207].speaker |
SPEAKER_00 |
transcript.pyannote[207].start |
502.29846875 |
transcript.pyannote[207].end |
504.12096875 |
transcript.pyannote[208].speaker |
SPEAKER_00 |
transcript.pyannote[208].start |
504.77909375 |
transcript.pyannote[208].end |
506.51721875 |
transcript.pyannote[209].speaker |
SPEAKER_00 |
transcript.pyannote[209].start |
507.66471875 |
transcript.pyannote[209].end |
508.77846875 |
transcript.pyannote[210].speaker |
SPEAKER_00 |
transcript.pyannote[210].start |
508.81221875 |
transcript.pyannote[210].end |
509.87534375 |
transcript.pyannote[211].speaker |
SPEAKER_00 |
transcript.pyannote[211].start |
510.01034375 |
transcript.pyannote[211].end |
512.91284375 |
transcript.pyannote[212].speaker |
SPEAKER_00 |
transcript.pyannote[212].start |
513.23346875 |
transcript.pyannote[212].end |
515.19096875 |
transcript.pyannote[213].speaker |
SPEAKER_00 |
transcript.pyannote[213].start |
516.08534375 |
transcript.pyannote[213].end |
516.72659375 |
transcript.pyannote[214].speaker |
SPEAKER_00 |
transcript.pyannote[214].start |
517.65471875 |
transcript.pyannote[214].end |
519.24096875 |
transcript.pyannote[215].speaker |
SPEAKER_00 |
transcript.pyannote[215].start |
519.44346875 |
transcript.pyannote[215].end |
521.89034375 |
transcript.pyannote[216].speaker |
SPEAKER_00 |
transcript.pyannote[216].start |
522.51471875 |
transcript.pyannote[216].end |
527.89784375 |
transcript.pyannote[217].speaker |
SPEAKER_00 |
transcript.pyannote[217].start |
527.96534375 |
transcript.pyannote[217].end |
531.00284375 |
transcript.pyannote[218].speaker |
SPEAKER_00 |
transcript.pyannote[218].start |
531.71159375 |
transcript.pyannote[218].end |
533.58471875 |
transcript.pyannote[219].speaker |
SPEAKER_00 |
transcript.pyannote[219].start |
534.31034375 |
transcript.pyannote[219].end |
535.13721875 |
transcript.pyannote[220].speaker |
SPEAKER_00 |
transcript.pyannote[220].start |
536.20034375 |
transcript.pyannote[220].end |
536.80784375 |
transcript.pyannote[221].speaker |
SPEAKER_00 |
transcript.pyannote[221].start |
537.48284375 |
transcript.pyannote[221].end |
539.32221875 |
transcript.pyannote[222].speaker |
SPEAKER_00 |
transcript.pyannote[222].start |
539.69346875 |
transcript.pyannote[222].end |
541.39784375 |
transcript.pyannote[223].speaker |
SPEAKER_00 |
transcript.pyannote[223].start |
541.83659375 |
transcript.pyannote[223].end |
542.57909375 |
transcript.pyannote[224].speaker |
SPEAKER_00 |
transcript.pyannote[224].start |
543.25409375 |
transcript.pyannote[224].end |
545.14409375 |
transcript.pyannote[225].speaker |
SPEAKER_00 |
transcript.pyannote[225].start |
545.54909375 |
transcript.pyannote[225].end |
546.67971875 |
transcript.pyannote[226].speaker |
SPEAKER_00 |
transcript.pyannote[226].start |
547.72596875 |
transcript.pyannote[226].end |
551.57346875 |
transcript.pyannote[227].speaker |
SPEAKER_00 |
transcript.pyannote[227].start |
552.83909375 |
transcript.pyannote[227].end |
553.83471875 |
transcript.pyannote[228].speaker |
SPEAKER_00 |
transcript.pyannote[228].start |
554.40846875 |
transcript.pyannote[228].end |
556.31534375 |
transcript.pyannote[229].speaker |
SPEAKER_00 |
transcript.pyannote[229].start |
556.75409375 |
transcript.pyannote[229].end |
558.98159375 |
transcript.pyannote[230].speaker |
SPEAKER_00 |
transcript.pyannote[230].start |
559.40346875 |
transcript.pyannote[230].end |
561.02346875 |
transcript.pyannote[231].speaker |
SPEAKER_00 |
transcript.pyannote[231].start |
561.36096875 |
transcript.pyannote[231].end |
565.90034375 |
transcript.pyannote[232].speaker |
SPEAKER_01 |
transcript.pyannote[232].start |
561.64784375 |
transcript.pyannote[232].end |
562.01909375 |
transcript.pyannote[233].speaker |
SPEAKER_01 |
transcript.pyannote[233].start |
564.80346875 |
transcript.pyannote[233].end |
574.11846875 |
transcript.pyannote[234].speaker |
SPEAKER_01 |
transcript.pyannote[234].start |
574.48971875 |
transcript.pyannote[234].end |
576.02534375 |
transcript.pyannote[235].speaker |
SPEAKER_01 |
transcript.pyannote[235].start |
576.27846875 |
transcript.pyannote[235].end |
578.52284375 |
transcript.pyannote[236].speaker |
SPEAKER_00 |
transcript.pyannote[236].start |
579.33284375 |
transcript.pyannote[236].end |
581.39159375 |
transcript.pyannote[237].speaker |
SPEAKER_00 |
transcript.pyannote[237].start |
581.77971875 |
transcript.pyannote[237].end |
583.14659375 |
transcript.pyannote[238].speaker |
SPEAKER_00 |
transcript.pyannote[238].start |
583.36596875 |
transcript.pyannote[238].end |
588.02346875 |
transcript.pyannote[239].speaker |
SPEAKER_01 |
transcript.pyannote[239].start |
586.28534375 |
transcript.pyannote[239].end |
586.62284375 |
transcript.pyannote[240].speaker |
SPEAKER_00 |
transcript.pyannote[240].start |
588.39471875 |
transcript.pyannote[240].end |
594.30096875 |
transcript.pyannote[241].speaker |
SPEAKER_01 |
transcript.pyannote[241].start |
589.40721875 |
transcript.pyannote[241].end |
590.63909375 |
transcript.pyannote[242].speaker |
SPEAKER_01 |
transcript.pyannote[242].start |
591.70221875 |
transcript.pyannote[242].end |
591.85409375 |
transcript.pyannote[243].speaker |
SPEAKER_00 |
transcript.pyannote[243].start |
594.65534375 |
transcript.pyannote[243].end |
595.95471875 |
transcript.pyannote[244].speaker |
SPEAKER_00 |
transcript.pyannote[244].start |
596.96721875 |
transcript.pyannote[244].end |
601.00034375 |
transcript.pyannote[245].speaker |
SPEAKER_00 |
transcript.pyannote[245].start |
602.01284375 |
transcript.pyannote[245].end |
602.40096875 |
transcript.pyannote[246].speaker |
SPEAKER_00 |
transcript.pyannote[246].start |
603.19409375 |
transcript.pyannote[246].end |
607.24409375 |
transcript.pyannote[247].speaker |
SPEAKER_01 |
transcript.pyannote[247].start |
606.38346875 |
transcript.pyannote[247].end |
609.84284375 |
transcript.pyannote[248].speaker |
SPEAKER_00 |
transcript.pyannote[248].start |
608.83034375 |
transcript.pyannote[248].end |
609.50534375 |
transcript.pyannote[249].speaker |
SPEAKER_00 |
transcript.pyannote[249].start |
610.04534375 |
transcript.pyannote[249].end |
617.72346875 |
transcript.pyannote[250].speaker |
SPEAKER_00 |
transcript.pyannote[250].start |
617.85846875 |
transcript.pyannote[250].end |
618.87096875 |
transcript.pyannote[251].speaker |
SPEAKER_00 |
transcript.pyannote[251].start |
619.27596875 |
transcript.pyannote[251].end |
623.10659375 |
transcript.pyannote[252].speaker |
SPEAKER_00 |
transcript.pyannote[252].start |
623.81534375 |
transcript.pyannote[252].end |
624.92909375 |
transcript.pyannote[253].speaker |
SPEAKER_00 |
transcript.pyannote[253].start |
625.62096875 |
transcript.pyannote[253].end |
625.97534375 |
transcript.pyannote[254].speaker |
SPEAKER_00 |
transcript.pyannote[254].start |
626.44784375 |
transcript.pyannote[254].end |
629.26596875 |
transcript.pyannote[255].speaker |
SPEAKER_00 |
transcript.pyannote[255].start |
629.80596875 |
transcript.pyannote[255].end |
639.50909375 |
transcript.pyannote[256].speaker |
SPEAKER_00 |
transcript.pyannote[256].start |
640.33596875 |
transcript.pyannote[256].end |
641.70284375 |
transcript.pyannote[257].speaker |
SPEAKER_00 |
transcript.pyannote[257].start |
642.17534375 |
transcript.pyannote[257].end |
643.08659375 |
transcript.pyannote[258].speaker |
SPEAKER_00 |
transcript.pyannote[258].start |
643.32284375 |
transcript.pyannote[258].end |
645.53346875 |
transcript.pyannote[259].speaker |
SPEAKER_00 |
transcript.pyannote[259].start |
646.03971875 |
transcript.pyannote[259].end |
646.69784375 |
transcript.pyannote[260].speaker |
SPEAKER_00 |
transcript.pyannote[260].start |
647.30534375 |
transcript.pyannote[260].end |
647.87909375 |
transcript.pyannote[261].speaker |
SPEAKER_00 |
transcript.pyannote[261].start |
648.63846875 |
transcript.pyannote[261].end |
649.11096875 |
transcript.pyannote[262].speaker |
SPEAKER_00 |
transcript.pyannote[262].start |
649.43159375 |
transcript.pyannote[262].end |
651.05159375 |
transcript.pyannote[263].speaker |
SPEAKER_00 |
transcript.pyannote[263].start |
651.57471875 |
transcript.pyannote[263].end |
656.60346875 |
transcript.pyannote[264].speaker |
SPEAKER_00 |
transcript.pyannote[264].start |
656.82284375 |
transcript.pyannote[264].end |
657.93659375 |
transcript.pyannote[265].speaker |
SPEAKER_00 |
transcript.pyannote[265].start |
658.32471875 |
transcript.pyannote[265].end |
659.92784375 |
transcript.pyannote[266].speaker |
SPEAKER_00 |
transcript.pyannote[266].start |
660.45096875 |
transcript.pyannote[266].end |
660.75471875 |
transcript.pyannote[267].speaker |
SPEAKER_00 |
transcript.pyannote[267].start |
661.02471875 |
transcript.pyannote[267].end |
661.69971875 |
transcript.pyannote[268].speaker |
SPEAKER_00 |
transcript.pyannote[268].start |
662.03721875 |
transcript.pyannote[268].end |
664.41659375 |
transcript.pyannote[269].speaker |
SPEAKER_01 |
transcript.pyannote[269].start |
663.67409375 |
transcript.pyannote[269].end |
663.92721875 |
transcript.pyannote[270].speaker |
SPEAKER_00 |
transcript.pyannote[270].start |
664.56846875 |
transcript.pyannote[270].end |
666.71159375 |
transcript.pyannote[271].speaker |
SPEAKER_00 |
transcript.pyannote[271].start |
667.28534375 |
transcript.pyannote[271].end |
668.63534375 |
transcript.pyannote[272].speaker |
SPEAKER_00 |
transcript.pyannote[272].start |
668.78721875 |
transcript.pyannote[272].end |
669.46221875 |
transcript.whisperx[0].start |
6.459 |
transcript.whisperx[0].end |
9.18 |
transcript.whisperx[0].text |
請部長最近雞蛋盛產我們的蛋籠跟蛋商都很慘可是我沒想到的是 |
transcript.whisperx[1].start |
34.318 |
transcript.whisperx[1].end |
58.817 |
transcript.whisperx[1].text |
最近中央市場會還倒蛋還倒貨進我們的這個市場不是應該減少這個蛋的量嗎怎麼中央市場會還火上加油呢這裡面出了至少有三大的衝擊第一有沒有衝擊影響到我們蛋農的生計第二破壞了你農業部最重要的任務產銷的平衡第三個可能也會出現的 |
transcript.whisperx[2].start |
60.154 |
transcript.whisperx[2].end |
84.042 |
transcript.whisperx[2].text |
他現在釋出的是去年過期的蛋或者即將過期的蛋等一下這部分我沒有好好談我有數據給你看有沒有過期的蛋或即將過期的蛋吃到我們的肚子我畫了一個問號等一下我們來談來這三個部分我先問你部長這次產銷失衡就是蛋太多嘛 對不對你的任務跟中央細產會的任務應該是煮雞蛋鹹炒結果為什麼 |
transcript.whisperx[3].start |
89.352 |
transcript.whisperx[3].end |
112.499 |
transcript.whisperx[3].text |
反而中央市場會為今年5月17日開始:到現在已經5梯次公開飆收蛋兩天太多了你再倒兩下去火上加油我算起來錢一彈加上蛋黃一彈茶葉蛋五彈你如果算是用顆的這個顆量大概已經倒進市場兩千兩百多萬顆 |
transcript.whisperx[4].start |
118.856 |
transcript.whisperx[4].end |
138.252 |
transcript.whisperx[4].text |
這個會不會太離譜了?你要解決問題的人 接著我去製造問題這台灣會覺得什麼?施工的不好 又放棄財富是不是?如果從行政學上去看是什麼?行政管理上是什麼?失職 失能 又失德有些農民都已經氣到 講一句話我先抱歉講很夭壽的你沒有解決問題 你從市長會 這時候會倒貨進去現在畫面 你想像那兩個畫面單車 |
transcript.whisperx[5].start |
146.909 |
transcript.whisperx[5].end |
175.971 |
transcript.whisperx[5].text |
兩天買起了的錢就沒夠啊弄到後來前幾天有那麼多媒體都報導那個畫面大家想一下有些為了要減少蛋再進到市場欸 拿去起地欸就是要減少它的量啊結果你想像這邊 欸都多心疼的事情結果你想像這邊的畫面是什麼中央市場會 五月十七開始你要倒到市場裡面倒了2200多萬塊的蛋進去這人民不會憤怒嗎求我們善良的農民是不是 |
transcript.whisperx[6].start |
178.305 |
transcript.whisperx[6].end |
184.553 |
transcript.whisperx[6].text |
市長,這個中央市長會到底在幹嘛?因為台灣人民有跟我問題嗎?他反而製造了問題欸 |
transcript.whisperx[7].start |
185.996 |
transcript.whisperx[7].end |
209.412 |
transcript.whisperx[7].text |
我可以說明一下我想整個的一個雞蛋的產銷第一個我們是回歸到市場機制那農業部的任務就是能夠穩定生產端跟銷賣端的部分然後中央序長會本身他附有他的虛母法是附有產銷條約的部分我要跟委員說明中央序長會他的 |
transcript.whisperx[8].start |
216.476 |
transcript.whisperx[8].end |
237.462 |
transcript.whisperx[8].text |
現在是產量過剩喔!要減少喔!中央稀產會現在不只沒有減少喔!他還倒貨進來喔!你贊成他這樣做是不是?不是我贊成這樣做喔!這個是在產價調節的一個環喔!因為這些進口加工...調節!調節是應該減少他的量!讓價格回升啊!倒貨不是價格越來越高?你怎麼會?你這是火上加油!怎麼會是解決問題? |
transcript.whisperx[9].start |
238.502 |
transcript.whisperx[9].end |
239.042 |
transcript.whisperx[9].text |
我還需要去吃一個雞蛋嗎? |
transcript.whisperx[10].start |
267.742 |
transcript.whisperx[10].end |
292.638 |
transcript.whisperx[10].text |
不是不是,那個液彈是…對阿,你現在的磁爛,我跟你說,你現在沒有不對,你現在為了機能生鮮的可能要壞掉了你現在就必須要把它變成加工嘛,對不對我現在所有的資料都是從中央續產會的進口彈的這個加工品專區拖下來的東西去年快過期了,或者我甚至擔心有沒有過期問題,就是沒有過期,也即將過期,對不對為了要保存多一點點,所以把它打成液彈嘛 |
transcript.whisperx[11].start |
293.902 |
transcript.whisperx[11].end |
318.873 |
transcript.whisperx[11].text |
那你應該是去年賣阿 或者是雞蛋少的時候賣阿因為你現在找雞蛋太多 太多的時候你又把蛋丟進去勒我沒有這種離譜的 那你剛講的 你說兩個有不一樣嗎他都是蛋阿 我如果吃了液蛋你今天釋出的不是 聽我說喔 你今天釋出的不是只有液蛋喔你還釋出了茶葉蛋跟滷蛋 我今天我要吃一下 茶葉蛋吃一下 |
transcript.whisperx[12].start |
320.29 |
transcript.whisperx[12].end |
321.53 |
transcript.whisperx[12].text |
你這麼專業的人你應該是有專業的你是有知識沒有常識嗎? |
transcript.whisperx[13].start |
349.099 |
transcript.whisperx[13].end |
373.152 |
transcript.whisperx[13].text |
您明明那個市場就過多了,價格已經跌成這樣,你量這邊加進去,你還在幫他辨護?沒有,不是,我是說整個雞蛋本身的...你是有專業,你是有資格,可是我剛剛講的是不是一個常識問題啊?對,這個部分就是...你為什麼你的農業部的功能是什麼?產跟銷要平衡對不對?那產就已經生產過剩啊,啊你還把東西加進去,過剩什麼叫做平衡?太多的東西要變少對不對? |
transcript.whisperx[14].start |
374.798 |
transcript.whisperx[14].end |
379.179 |
transcript.whisperx[14].text |
我問一個更嚴重的你目前已經丟了2200多萬個進去的我去看你去年給我的資料我看一下你加起來一共還有 |
transcript.whisperx[15].start |
401.816 |
transcript.whisperx[15].end |
404.078 |
transcript.whisperx[15].text |
農民已經氣到不知道不是給他憤怒而已喔 |
transcript.whisperx[16].start |
430.16 |
transcript.whisperx[16].end |
456.127 |
transcript.whisperx[16].text |
施質施能已經要求說實在施得了 人民現在能夠多憤怒 能夠罵多重的話 再想一想 在施能的時候你為什麼倒這麼多蛋已經不對了 你現在嘔氣了 事情發生了 事情發生了 我們一定會觀察他本身的一個產銷平衡狀態去決定他的調 產銷啊 不行就去收債啊 你要丟蛋進去 好第二個 我知道你五十年了 |
transcript.whisperx[17].start |
457.708 |
transcript.whisperx[17].end |
477.959 |
transcript.whisperx[17].text |
人在公門 我一直在強調這件事 人在公門好休閒 有腦袋之外拜託有一個心啦 好不好剛剛宗嘉濮議員 宗嘉濮立委 我覺得他的質詢很好啊 要說農就消費啊 拜託國賓 這營養的農可以加一塊 我覺得不管是哪一個黨 有心幫人民解決問題就是好立委 一樣啊 |
transcript.whisperx[18].start |
479.107 |
transcript.whisperx[18].end |
482.109 |
transcript.whisperx[18].text |
我提兩個 我提兩個 我們動動腦啦我們用心跟用腦幫彈籠跟人民解決問題第一 |
transcript.whisperx[19].start |
507.768 |
transcript.whisperx[19].end |
519.535 |
transcript.whisperx[19].text |
農產品太多的時候你都去補助了嘛 考慮一下怎麼去補助蛋農 特別是在飼料那一塊有沒有 休息了 你已經降低關稅了 想一下能不能再有一點補助這是一個 第二個更重要 你鼓你進口蛋進口太多對不對 你做了什麼動作 |
transcript.whisperx[20].start |
536.26 |
transcript.whisperx[20].end |
551.422 |
transcript.whisperx[20].text |
加工啊打成液彈啊對不對你改過了嘛對不對啊你今年為了進口的彈這樣改過啊現在過來的本土的本土的彈籠出問題你不能用同樣的方法嗎你叫國軍賣液彈你跟我們農業部你叫中央市政府去賣一些回來啊 |
transcript.whisperx[21].start |
552.878 |
transcript.whisperx[21].end |
560.462 |
transcript.whisperx[21].text |
我跟委員報告我們現在正在評估這就是我講的我們必須有一些國產彈去做一個庫存緩衝的一個空間去做一個調配但是這個調配需要比較細緻的操作 |
transcript.whisperx[22].start |
579.597 |
transcript.whisperx[22].end |
600.834 |
transcript.whisperx[22].text |
其實你剛才主席對話我就聽了。你說你現在要控制到一天就是2400萬顆嘛對不對?目前其實為什麼過剩?32萬顆的蛋出來嘛。所以我就在想你又丟了2200萬顆。好,那至少這個多出來的蛋你可以買啊,像去年一樣啊。買完以後它做成一袋它就有一年喔。 |
transcript.whisperx[23].start |
602.062 |
transcript.whisperx[23].end |
625.798 |
transcript.whisperx[23].text |
對不對?你都可以幫外國,為什麼不能幫我們本國?好好想一下這個事,好不好?我了解,我們已經有在這樣一個規劃。有規劃是不是?對。趕快做好不好?好。我覺得量都可以講啦。你現在目前你看,今年你買七千顆放在那裡嘛。你至少今年你可以買我們本國的蛋啊,買七千顆一百。那量就減少了嘛,就真的達到產銷平衡了嘛,對不對?那七千顆,沒有過期,你把它做成一蛋。 |
transcript.whisperx[24].start |
626.502 |
transcript.whisperx[24].end |
644.411 |
transcript.whisperx[24].text |
做成茶葉蛋 每年你買一百到未來一年你隨時缺蛋你就放出去好不好 因為冬天需要量好 謝謝 所以抱歉 好消極麵我抱歉我講一下消極麵剩下的四千五百丁不要再釋出了好不好 不要再到貨了這是消極麵 第二個積極麵 考慮一下補助適量讓我們的蛋籠 |
transcript.whisperx[25].start |
651.636 |
transcript.whisperx[25].end |
651.656 |
transcript.whisperx[25].text |
﹚張啓楷﹚ |