IVOD_ID |
154228 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/154228 |
日期 |
2024-06-26 |
會議資料.會議代碼 |
聯席會議-11-1-26,35-1 |
會議資料.會議代碼:str |
第11屆第1會期社會福利及衛生環境、外交及國防委員會第1次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
1 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼[1] |
35 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.委員會代碼:str[1] |
外交及國防委員會 |
會議資料.標題 |
第11屆第1會期社會福利及衛生環境、外交及國防委員會第1次聯席會議 |
影片種類 |
Clip |
開始時間 |
2024-06-26T10:05:54+08:00 |
結束時間 |
2024-06-26T10:15:55+08:00 |
影片長度 |
00:10:01 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0ea7781078621bd132f90b1003370006b086792d04172957ee23585586e40b3a03e0b134b6616cf05ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
蘇清泉 |
委員發言時間 |
10:05:54 - 10:15:55 |
會議時間 |
2024-06-26T09:10:00+08:00 |
會議名稱 |
立法院第11屆第1會期社會福利及衛生環境、外交及國防委員會第1次聯席會議(事由:審查勞動部函送「駐印度台北經濟文化中心與印度台北協會促進僱用印度勞工瞭解備忘錄」之中、英及印地文文本影本案。
【6月26日及27日二天一次會】) |
gazette.lineno |
378 |
gazette.blocks[0][0] |
蘇委員清泉:(10時6分)謝謝主席,我請部長。 |
gazette.blocks[1][0] |
何部長佩珊:委員好。 |
gazette.blocks[2][0] |
蘇委員清泉:部長,大家都問很多,我先問三個問題,比較尖銳一點,你就不要講善意的謊言。第一個,政府要引進印度移工的理由是因為他們比較優秀,還是我們要做多國的補充人力?究竟是什麼原因?我們缺工的漏洞有多大,現在缺工到底多少人? |
gazette.blocks[3][0] |
何部長佩珊:其實委員也很瞭解問題,這真的是為了增加來源國。至於缺工現在缺多少,按照主計總處的統計是24萬人,不過這是官方統計,當然實際數字我覺得必須要再更精確地檢視。 |
gazette.blocks[4][0] |
蘇委員清泉:近來只要是在職場上……剛剛有些委員在擔心是不是看護的問題,其實不是,現在都是職場上的勞工,包括工地、營建等,是不是都是這些? |
gazette.blocks[5][0] |
何部長佩珊:您是說缺工嗎? |
gazette.blocks[6][0] |
蘇委員清泉:我是說我們要引進印度移工…… |
gazette.blocks[7][0] |
何部長佩珊:現在先以製造業為主,只能先以製造業為主。 |
gazette.blocks[8][0] |
蘇委員清泉:我在中研院有碰過印度的post Dr.,就是在中研院的博士後研究員,中研院裡面的印度籍研究員還不少,他們的薪資也不錯,我覺得他們也蠻敬業的,有的英文講得還不錯。根據主計總處的統計是缺工缺二十幾萬人,實際上可能比這還要多。 |
gazette.blocks[9][0] |
何部長佩珊:我相信委員的瞭解也許比我更深刻。 |
gazette.blocks[10][0] |
蘇委員清泉:好,這是第一個問題。第二個問題,印度那麼大,三百七十幾萬平方公里的面積,裡面住了15億人口,外媒報導印度每15分鐘就發生一起性侵,這是很可怕的,全世界對印度的觀念和印象就是這樣,而且他們這個情況是蠻嚴重,你會不會擔心如果他們進來的人數多,會不會造成臺灣的治安變差?你如何因應外界的質疑?有辦法解決嗎? |
gazette.blocks[11][0] |
何部長佩珊:第一個,當然印度他們本土的治安也許有他們的狀況,這部分我們就是客觀尊重對方,這是他們的問題,可是來到我們這裡,我們第一個一定確保……我們會先以跟我們國情接近的移工為主,比如他有英語能力,比如他有一定程度的技術能力,另外還包括他有良民證等等,這方面的檢查一定都是必備的,在他進來之後,還會有一定程度的規範跟講習,必須要讓他瞭解臺灣的法制是什麼樣子。其實我們跟移民署之間已經開始展開關於引進印度移工的一些規範作業…… |
gazette.blocks[12][0] |
蘇委員清泉:所以是挑比較文明的幾個省,他們不知是算省還是邦?你們要派員過去看看他們上課的情形,甚至不排除我們的人過去跟他們上課,談談臺灣的治安等等各方面,因為只有印度人在那邊講,也不知道他們在講什麼,我看…… |
gazette.blocks[13][0] |
何部長佩珊:對,一定要先這樣。 |
gazette.blocks[14][0] |
蘇委員清泉:MOU簽了,我們黨團這邊有附帶決議,要嘛就是退回,要嘛就是修正,這是我們的附帶決議,那…… |
gazette.blocks[15][0] |
何部長佩珊:委員,我跟您報告,依照條約締結法第十條,如果被修正了,我們只能被退回,這個要拜託委員能夠支持。 |
gazette.blocks[16][0] |
蘇委員清泉:我把我們黨團的附帶決議唸給你聽:要求勞動部指定或設立專責機構,推動政府與政府直接聘僱,並擬定績效指標,保障移工勞動條件,推動移工直接聘任之成效。設立專責機構這應該做得到,你剛剛說要雙軌,我們黨團是希望政府對政府直接聘僱,所謂擬定績效指標就是KPI。 |
gazette.blocks[17][0] |
何部長佩珊:你是指附帶決議嘛! |
gazette.blocks[18][0] |
蘇委員清泉:對。 |
gazette.blocks[19][0] |
何部長佩珊:附帶決議這是OK的,謝謝。 |
gazette.blocks[20][0] |
蘇委員清泉:第三個問題,缺工是臺灣最大的問題,少子化是一個原因,但是臺灣本地勞工的薪資是偏低的,所以你要一直往上加,你不要讓人家覺得一直引進外國的移工,然後我們勞工的薪資也沒有明顯提升,這樣百姓跟我們的鄉親父老是不會支持的。 |
gazette.blocks[21][0] |
何部長佩珊:當然。 |
gazette.blocks[22][0] |
蘇委員清泉:針對本國勞工今年度的基本薪資又要開始打架了,你的看法是怎麼樣? |
gazette.blocks[23][0] |
何部長佩珊:謝謝委員,下午我才要開第一次諮詢會,我跟委員報告,那個諮詢會就是當年您通過的最低工資法裡面的機制,它就是以前的工作小組,其實那只是一個溝通會議,它不會去決定調幅,也不會去決定任何事情,所以只是我跟委員的見面會而已,而且我也是新任的,然後裡面委員也有很多新聘的,所以我們大概是第一次先見見面、聊一聊這樣子。 |
gazette.blocks[24][0] |
蘇委員清泉:這一次印度移工要進來,他們要匯款回去,我們看一下地下匯兌。銀行匯兌金額最高7萬塊,手續費500塊,時間要二到三天;地下匯兌沒有上限,手續費相對便宜,時間不用一天,效率好,但是非法、風險高。我看屏東那邊有很多移工,他們要在上班時間去銀行匯兌有其困難,我們的銀行三點半就結束了,他們還在上班,星期六、星期天我們的銀行都休息,所以他們有很多人都用地下匯兌,但地下匯兌的危險性很高,曾經有越南移工被騙了60萬,這是他們辛辛苦苦賺來的錢。針對印度來的移工,你們要用什麼系統,你們跟金管會有沒有什麼想法? |
gazette.blocks[25][0] |
何部長佩珊:跟委員報告,金管會其實在2021年就有制定外籍移工小額匯兌辦法,金管會現在有許可四家做小額匯兌,不過這不曉得能不能完全滿足移工的需求是一個問題,我們會再來檢視,然後進一步擴大推動合法且方便移工匯兌的機制。 |
gazette.blocks[26][0] |
蘇委員清泉:銀行的常上班時間沒辦法迎合他們的…… |
gazette.blocks[27][0] |
何部長佩珊:對,可是現在有手機,其實他們用app就可以轉了。 |
gazette.blocks[28][0] |
蘇委員清泉:app可以轉? |
gazette.blocks[29][0] |
何部長佩珊:對,那四家都是app的,這應該算是新創吧!就是FinTech新創沙盒實驗的那一種業者,總共有四家,只是說可能推廣率不夠。 |
gazette.blocks[30][0] |
蘇委員清泉:你們再去瞭解一下好不好? |
gazette.blocks[31][0] |
何部長佩珊:好。 |
gazette.blocks[32][0] |
蘇委員清泉:實際的情況要跟金管會好好地討論一下,因為現在碰到的情況就是這樣,然後他們都用地下匯兌,事實上現在就是這樣幹,所以…… |
gazette.blocks[33][0] |
何部長佩珊:那個量很大我知道。 |
gazette.blocks[34][0] |
蘇委員清泉:你表面上這樣講是沒有到位啦! |
gazette.blocks[35][0] |
何部長佩珊:我瞭解,我們再來檢討。 |
gazette.blocks[36][0] |
蘇委員清泉:最後一個問題,我再用20秒就好了。請問他們進來的健檢費用誰負擔?然後印度人有沒有特殊的疾病?我是一個臨床醫師,像現在東南亞進來的寄生蟲什麼的,包括肺結核也蠻常碰到的,印度這邊有沒有什麼特殊的疾病?他的費用是誰出?因為如果是政府對政府直接聘僱的話,誰要付錢?是我們臺灣的雇主嗎? |
gazette.blocks[37][0] |
何部長佩珊:健檢費嗎? |
gazette.blocks[38][0] |
蘇委員清泉:對。 |
gazette.blocks[39][0] |
何部長佩珊:健檢費是雙方合議,也是要雙方談,也是要談才能知道。 |
gazette.blocks[40][0] |
蘇委員清泉:現在是政府要自己搞,怎麼會是雙方合議? |
gazette.blocks[41][0] |
何部長佩珊:就是要談。 |
gazette.blocks[42][0] |
蘇委員清泉:已經有雇主了,所以由這邊的雇主來付,還是你們編預算? |
gazette.blocks[43][0] |
何部長佩珊:沒有,就是要看雇主如果願意付,當然雇主來付最好,不過這個東西要經過工作層級會議來談。 |
gazette.blocks[44][0] |
蘇委員清泉:我覺得藉著這一次跟印度簽MOU非常地慎重,也把以前我們跟東南亞、印尼這些國家的部分好好地檢視一次。 |
gazette.blocks[45][0] |
何部長佩珊:對,有,我正在做這樣的工作。 |
gazette.blocks[46][0] |
蘇委員清泉:也好好地檢視一下,因為這樣的話,不要有太大的差別,而且有一些以前的缺失要好好地做,把它整個都補起來。 |
gazette.blocks[47][0] |
何部長佩珊:是。 |
gazette.blocks[48][0] |
蘇委員清泉:我們會持續來盯你喔。 |
gazette.blocks[49][0] |
何部長佩珊:好,謝謝。 |
gazette.blocks[50][0] |
蘇委員清泉:謝謝。 |
gazette.blocks[51][0] |
主席:謝謝。 |
gazette.blocks[51][1] |
接下來請羅美玲委員質詢。 |
gazette.agenda.page_end |
114 |
gazette.agenda.meet_id |
聯席會議-11-1-26,35-1 |
gazette.agenda.speakers[0] |
王育敏 |
gazette.agenda.speakers[1] |
林月琴 |
gazette.agenda.speakers[2] |
蘇清泉 |
gazette.agenda.speakers[3] |
陳昭姿 |
gazette.agenda.speakers[4] |
陳菁徽 |
gazette.agenda.speakers[5] |
廖偉翔 |
gazette.agenda.speakers[6] |
王正旭 |
gazette.agenda.speakers[7] |
邱鎮軍 |
gazette.agenda.speakers[8] |
羅美玲 |
gazette.agenda.speakers[9] |
洪申翰 |
gazette.agenda.speakers[10] |
黃秀芳 |
gazette.agenda.speakers[11] |
林楚茵 |
gazette.agenda.speakers[12] |
王定宇 |
gazette.agenda.speakers[13] |
陳冠廷 |
gazette.agenda.speakers[14] |
羅廷瑋 |
gazette.agenda.speakers[15] |
涂權吉 |
gazette.agenda.speakers[16] |
沈伯洋 |
gazette.agenda.speakers[17] |
陳培瑜 |
gazette.agenda.speakers[18] |
黃珊珊 |
gazette.agenda.speakers[19] |
林淑芬 |
gazette.agenda.speakers[20] |
陳瑩 |
gazette.agenda.speakers[21] |
劉建國 |
gazette.agenda.speakers[22] |
林憶君 |
gazette.agenda.speakers[23] |
楊曜 |
gazette.agenda.speakers[24] |
盧縣一 |
gazette.agenda.speakers[25] |
楊瓊瓔 |
gazette.agenda.page_start |
49 |
gazette.agenda.meetingDate[0] |
2024-06-26 |
gazette.agenda.gazette_id |
1136701 |
gazette.agenda.agenda_lcidc_ids[0] |
1136701_00003 |
gazette.agenda.meet_name |
立法院第11屆第1會期社會福利及衛生環境、外交及國防委員會第1次聯席會議紀錄 |
gazette.agenda.content |
審查勞動部函送「駐印度台北經濟文化中心與印度台北協會促進僱用印度勞工瞭解備忘錄」之
中、英及印地文文本影本案 |
gazette.agenda.agenda_id |
1136701_00002 |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
1.02659375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
2.64659375 |
transcript.pyannote[1].end |
3.03471875 |
transcript.pyannote[2].speaker |
SPEAKER_02 |
transcript.pyannote[2].start |
12.21471875 |
transcript.pyannote[2].end |
13.29471875 |
transcript.pyannote[3].speaker |
SPEAKER_02 |
transcript.pyannote[3].start |
16.97346875 |
transcript.pyannote[3].end |
19.63971875 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
24.04409375 |
transcript.pyannote[4].end |
24.90471875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
29.12346875 |
transcript.pyannote[5].end |
29.47784375 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
29.84909375 |
transcript.pyannote[6].end |
30.35534375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
30.15284375 |
transcript.pyannote[7].end |
32.97096875 |
transcript.pyannote[8].speaker |
SPEAKER_02 |
transcript.pyannote[8].start |
30.81096875 |
transcript.pyannote[8].end |
34.96221875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
32.97096875 |
transcript.pyannote[9].end |
33.10596875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
33.10596875 |
transcript.pyannote[10].end |
33.15659375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
33.73034375 |
transcript.pyannote[11].end |
33.74721875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
33.74721875 |
transcript.pyannote[12].end |
34.42221875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
34.42221875 |
transcript.pyannote[13].end |
34.47284375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
34.65846875 |
transcript.pyannote[14].end |
34.70909375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
34.70909375 |
transcript.pyannote[15].end |
35.02971875 |
transcript.pyannote[16].speaker |
SPEAKER_02 |
transcript.pyannote[16].start |
35.02971875 |
transcript.pyannote[16].end |
35.08034375 |
transcript.pyannote[17].speaker |
SPEAKER_02 |
transcript.pyannote[17].start |
35.16471875 |
transcript.pyannote[17].end |
36.04221875 |
transcript.pyannote[18].speaker |
SPEAKER_02 |
transcript.pyannote[18].start |
36.36284375 |
transcript.pyannote[18].end |
38.11784375 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
39.87284375 |
transcript.pyannote[19].end |
39.88971875 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
39.88971875 |
transcript.pyannote[20].end |
40.80096875 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
39.97409375 |
transcript.pyannote[21].end |
42.43784375 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
40.83471875 |
transcript.pyannote[22].end |
44.76659375 |
transcript.pyannote[23].speaker |
SPEAKER_02 |
transcript.pyannote[23].start |
45.59346875 |
transcript.pyannote[23].end |
54.08159375 |
transcript.pyannote[24].speaker |
SPEAKER_02 |
transcript.pyannote[24].start |
54.38534375 |
transcript.pyannote[24].end |
56.34284375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
57.37221875 |
transcript.pyannote[25].end |
64.25721875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
64.62846875 |
transcript.pyannote[26].end |
70.06221875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
70.60221875 |
transcript.pyannote[27].end |
77.80784375 |
transcript.pyannote[28].speaker |
SPEAKER_02 |
transcript.pyannote[28].start |
77.70659375 |
transcript.pyannote[28].end |
80.65971875 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
81.13221875 |
transcript.pyannote[29].end |
88.33784375 |
transcript.pyannote[30].speaker |
SPEAKER_02 |
transcript.pyannote[30].start |
88.60784375 |
transcript.pyannote[30].end |
89.01284375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
88.69221875 |
transcript.pyannote[31].end |
88.70909375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
88.70909375 |
transcript.pyannote[32].end |
89.02971875 |
transcript.pyannote[33].speaker |
SPEAKER_02 |
transcript.pyannote[33].start |
89.02971875 |
transcript.pyannote[33].end |
93.97409375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
89.19846875 |
transcript.pyannote[34].end |
89.26596875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
91.91534375 |
transcript.pyannote[35].end |
92.35409375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
94.10909375 |
transcript.pyannote[36].end |
95.45909375 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
95.23971875 |
transcript.pyannote[37].end |
96.84284375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
95.71221875 |
transcript.pyannote[38].end |
95.96534375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
96.65721875 |
transcript.pyannote[39].end |
99.55971875 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
99.55971875 |
transcript.pyannote[40].end |
100.31909375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
100.03221875 |
transcript.pyannote[41].end |
101.93909375 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
101.87159375 |
transcript.pyannote[42].end |
111.65909375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
111.91221875 |
transcript.pyannote[43].end |
112.70534375 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
112.62096875 |
transcript.pyannote[44].end |
118.88159375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
117.16034375 |
transcript.pyannote[45].end |
117.17721875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
117.17721875 |
transcript.pyannote[46].end |
117.75096875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
117.75096875 |
transcript.pyannote[47].end |
117.76784375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
117.76784375 |
transcript.pyannote[48].end |
117.78471875 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
118.76346875 |
transcript.pyannote[49].end |
119.13471875 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
118.94909375 |
transcript.pyannote[50].end |
121.63221875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
121.64909375 |
transcript.pyannote[51].end |
122.03721875 |
transcript.pyannote[52].speaker |
SPEAKER_02 |
transcript.pyannote[52].start |
122.17221875 |
transcript.pyannote[52].end |
129.56346875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
127.97721875 |
transcript.pyannote[53].end |
128.09534375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
131.13284375 |
transcript.pyannote[54].end |
136.22909375 |
transcript.pyannote[55].speaker |
SPEAKER_02 |
transcript.pyannote[55].start |
134.81159375 |
transcript.pyannote[55].end |
136.24596875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
136.24596875 |
transcript.pyannote[56].end |
136.97159375 |
transcript.pyannote[57].speaker |
SPEAKER_02 |
transcript.pyannote[57].start |
136.97159375 |
transcript.pyannote[57].end |
137.29221875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
138.01784375 |
transcript.pyannote[58].end |
138.03471875 |
transcript.pyannote[59].speaker |
SPEAKER_02 |
transcript.pyannote[59].start |
138.03471875 |
transcript.pyannote[59].end |
139.84034375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
139.94159375 |
transcript.pyannote[60].end |
153.07034375 |
transcript.pyannote[61].speaker |
SPEAKER_02 |
transcript.pyannote[61].start |
154.40346875 |
transcript.pyannote[61].end |
157.99784375 |
transcript.pyannote[62].speaker |
SPEAKER_02 |
transcript.pyannote[62].start |
158.55471875 |
transcript.pyannote[62].end |
161.22096875 |
transcript.pyannote[63].speaker |
SPEAKER_02 |
transcript.pyannote[63].start |
161.71034375 |
transcript.pyannote[63].end |
163.56659375 |
transcript.pyannote[64].speaker |
SPEAKER_02 |
transcript.pyannote[64].start |
164.05596875 |
transcript.pyannote[64].end |
169.43909375 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
170.41784375 |
transcript.pyannote[65].end |
171.39659375 |
transcript.pyannote[66].speaker |
SPEAKER_02 |
transcript.pyannote[66].start |
171.64971875 |
transcript.pyannote[66].end |
172.24034375 |
transcript.pyannote[67].speaker |
SPEAKER_02 |
transcript.pyannote[67].start |
172.64534375 |
transcript.pyannote[67].end |
174.43409375 |
transcript.pyannote[68].speaker |
SPEAKER_02 |
transcript.pyannote[68].start |
175.29471875 |
transcript.pyannote[68].end |
177.92721875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
178.58534375 |
transcript.pyannote[69].end |
191.88284375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
192.06846875 |
transcript.pyannote[70].end |
194.73471875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
195.19034375 |
transcript.pyannote[71].end |
195.66284375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
196.18596875 |
transcript.pyannote[72].end |
197.73846875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
198.26159375 |
transcript.pyannote[73].end |
229.85159375 |
transcript.pyannote[74].speaker |
SPEAKER_02 |
transcript.pyannote[74].start |
227.92784375 |
transcript.pyannote[74].end |
238.89659375 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
239.60534375 |
transcript.pyannote[75].end |
241.81596875 |
transcript.pyannote[76].speaker |
SPEAKER_02 |
transcript.pyannote[76].start |
241.88346875 |
transcript.pyannote[76].end |
250.03409375 |
transcript.pyannote[77].speaker |
SPEAKER_02 |
transcript.pyannote[77].start |
250.37159375 |
transcript.pyannote[77].end |
252.70034375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
251.09721875 |
transcript.pyannote[78].end |
251.41784375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
252.31221875 |
transcript.pyannote[79].end |
253.81409375 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
253.81409375 |
transcript.pyannote[80].end |
255.97409375 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
256.53096875 |
transcript.pyannote[81].end |
260.90159375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
260.90159375 |
transcript.pyannote[82].end |
261.10409375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
261.10409375 |
transcript.pyannote[83].end |
261.42471875 |
transcript.pyannote[84].speaker |
SPEAKER_02 |
transcript.pyannote[84].start |
261.42471875 |
transcript.pyannote[84].end |
267.68534375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
261.44159375 |
transcript.pyannote[85].end |
261.45846875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
267.48284375 |
transcript.pyannote[86].end |
280.79721875 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
279.10971875 |
transcript.pyannote[87].end |
283.15971875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
282.78846875 |
transcript.pyannote[88].end |
283.05846875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
283.15971875 |
transcript.pyannote[89].end |
283.44659375 |
transcript.pyannote[90].speaker |
SPEAKER_02 |
transcript.pyannote[90].start |
283.75034375 |
transcript.pyannote[90].end |
298.00971875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
292.64346875 |
transcript.pyannote[91].end |
293.06534375 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
297.94221875 |
transcript.pyannote[92].end |
297.99284375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
298.00971875 |
transcript.pyannote[93].end |
298.43159375 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
298.43159375 |
transcript.pyannote[94].end |
308.20221875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
308.35409375 |
transcript.pyannote[95].end |
308.89409375 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
308.89409375 |
transcript.pyannote[96].end |
309.23159375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
310.26096875 |
transcript.pyannote[97].end |
311.56034375 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
310.34534375 |
transcript.pyannote[98].end |
311.10471875 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
311.50971875 |
transcript.pyannote[99].end |
312.69096875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
312.37034375 |
transcript.pyannote[100].end |
316.50471875 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
314.34471875 |
transcript.pyannote[101].end |
314.83409375 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
314.88471875 |
transcript.pyannote[102].end |
324.58784375 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
325.12784375 |
transcript.pyannote[103].end |
334.35846875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
326.57909375 |
transcript.pyannote[104].end |
327.10221875 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
335.21909375 |
transcript.pyannote[105].end |
337.21034375 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
337.61534375 |
transcript.pyannote[106].end |
340.29846875 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
341.04096875 |
transcript.pyannote[107].end |
344.50034375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
344.31471875 |
transcript.pyannote[108].end |
345.86721875 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
345.52971875 |
transcript.pyannote[109].end |
347.72346875 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
347.75721875 |
transcript.pyannote[110].end |
348.97221875 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
349.74846875 |
transcript.pyannote[111].end |
353.32596875 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
353.84909375 |
transcript.pyannote[112].end |
355.26659375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
353.93346875 |
transcript.pyannote[113].end |
375.29721875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
375.46596875 |
transcript.pyannote[114].end |
383.65034375 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
382.65471875 |
transcript.pyannote[115].end |
388.08846875 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
388.57784375 |
transcript.pyannote[116].end |
391.21034375 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
392.59409375 |
transcript.pyannote[117].end |
396.49221875 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
396.69471875 |
transcript.pyannote[118].end |
398.09534375 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
398.14596875 |
transcript.pyannote[119].end |
399.91784375 |
transcript.pyannote[120].speaker |
SPEAKER_02 |
transcript.pyannote[120].start |
400.49159375 |
transcript.pyannote[120].end |
405.43596875 |
transcript.pyannote[121].speaker |
SPEAKER_02 |
transcript.pyannote[121].start |
406.48221875 |
transcript.pyannote[121].end |
408.40596875 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
408.59159375 |
transcript.pyannote[122].end |
409.58721875 |
transcript.pyannote[123].speaker |
SPEAKER_02 |
transcript.pyannote[123].start |
409.82346875 |
transcript.pyannote[123].end |
412.96221875 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
413.28284375 |
transcript.pyannote[124].end |
417.13034375 |
transcript.pyannote[125].speaker |
SPEAKER_02 |
transcript.pyannote[125].start |
417.61971875 |
transcript.pyannote[125].end |
418.15971875 |
transcript.pyannote[126].speaker |
SPEAKER_02 |
transcript.pyannote[126].start |
418.59846875 |
transcript.pyannote[126].end |
419.56034375 |
transcript.pyannote[127].speaker |
SPEAKER_02 |
transcript.pyannote[127].start |
420.04971875 |
transcript.pyannote[127].end |
421.85534375 |
transcript.pyannote[128].speaker |
SPEAKER_02 |
transcript.pyannote[128].start |
422.61471875 |
transcript.pyannote[128].end |
423.47534375 |
transcript.pyannote[129].speaker |
SPEAKER_02 |
transcript.pyannote[129].start |
423.77909375 |
transcript.pyannote[129].end |
425.88846875 |
transcript.pyannote[130].speaker |
SPEAKER_02 |
transcript.pyannote[130].start |
426.27659375 |
transcript.pyannote[130].end |
428.36909375 |
transcript.pyannote[131].speaker |
SPEAKER_02 |
transcript.pyannote[131].start |
428.45346875 |
transcript.pyannote[131].end |
429.73596875 |
transcript.pyannote[132].speaker |
SPEAKER_02 |
transcript.pyannote[132].start |
431.03534375 |
transcript.pyannote[132].end |
435.65909375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
432.52034375 |
transcript.pyannote[133].end |
433.09409375 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
435.50721875 |
transcript.pyannote[134].end |
436.21596875 |
transcript.pyannote[135].speaker |
SPEAKER_02 |
transcript.pyannote[135].start |
435.89534375 |
transcript.pyannote[135].end |
443.79284375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
444.75471875 |
transcript.pyannote[136].end |
454.20471875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
454.52534375 |
transcript.pyannote[137].end |
462.28784375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
462.54096875 |
transcript.pyannote[138].end |
468.80159375 |
transcript.pyannote[139].speaker |
SPEAKER_02 |
transcript.pyannote[139].start |
468.12659375 |
transcript.pyannote[139].end |
472.42971875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
471.31596875 |
transcript.pyannote[140].end |
473.35784375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
473.35784375 |
transcript.pyannote[141].end |
473.94846875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
473.94846875 |
transcript.pyannote[142].end |
473.99909375 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
473.99909375 |
transcript.pyannote[143].end |
474.01596875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
474.53909375 |
transcript.pyannote[144].end |
476.31096875 |
transcript.pyannote[145].speaker |
SPEAKER_02 |
transcript.pyannote[145].start |
476.31096875 |
transcript.pyannote[145].end |
477.10409375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
476.74971875 |
transcript.pyannote[146].end |
492.71346875 |
transcript.pyannote[147].speaker |
SPEAKER_02 |
transcript.pyannote[147].start |
491.66721875 |
transcript.pyannote[147].end |
505.50471875 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
493.05096875 |
transcript.pyannote[148].end |
494.45159375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
496.22346875 |
transcript.pyannote[149].end |
497.16846875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
497.52284375 |
transcript.pyannote[150].end |
498.23159375 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
500.39159375 |
transcript.pyannote[151].end |
500.96534375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
504.86346875 |
transcript.pyannote[152].end |
507.14159375 |
transcript.pyannote[153].speaker |
SPEAKER_02 |
transcript.pyannote[153].start |
505.82534375 |
transcript.pyannote[153].end |
508.74471875 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
508.74471875 |
transcript.pyannote[154].end |
509.03159375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
509.03159375 |
transcript.pyannote[155].end |
509.48721875 |
transcript.pyannote[156].speaker |
SPEAKER_02 |
transcript.pyannote[156].start |
509.48721875 |
transcript.pyannote[156].end |
511.84971875 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
511.52909375 |
transcript.pyannote[157].end |
513.77346875 |
transcript.pyannote[158].speaker |
SPEAKER_02 |
transcript.pyannote[158].start |
512.17034375 |
transcript.pyannote[158].end |
515.98409375 |
transcript.pyannote[159].speaker |
SPEAKER_02 |
transcript.pyannote[159].start |
516.67596875 |
transcript.pyannote[159].end |
518.22846875 |
transcript.pyannote[160].speaker |
SPEAKER_02 |
transcript.pyannote[160].start |
519.62909375 |
transcript.pyannote[160].end |
520.81034375 |
transcript.pyannote[161].speaker |
SPEAKER_02 |
transcript.pyannote[161].start |
521.19846875 |
transcript.pyannote[161].end |
526.17659375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
522.59909375 |
transcript.pyannote[162].end |
522.64971875 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
522.64971875 |
transcript.pyannote[163].end |
522.73409375 |
transcript.pyannote[164].speaker |
SPEAKER_02 |
transcript.pyannote[164].start |
526.29471875 |
transcript.pyannote[164].end |
535.54221875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
529.58534375 |
transcript.pyannote[165].end |
531.07034375 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
535.20471875 |
transcript.pyannote[166].end |
536.60534375 |
transcript.pyannote[167].speaker |
SPEAKER_02 |
transcript.pyannote[167].start |
536.80784375 |
transcript.pyannote[167].end |
541.17846875 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
538.68096875 |
transcript.pyannote[168].end |
538.79909375 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
538.79909375 |
transcript.pyannote[169].end |
539.13659375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
539.13659375 |
transcript.pyannote[170].end |
539.20409375 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
539.20409375 |
transcript.pyannote[171].end |
539.23784375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
540.99284375 |
transcript.pyannote[172].end |
541.14471875 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
541.17846875 |
transcript.pyannote[173].end |
542.29221875 |
transcript.pyannote[174].speaker |
SPEAKER_02 |
transcript.pyannote[174].start |
541.93784375 |
transcript.pyannote[174].end |
544.55346875 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
543.11909375 |
transcript.pyannote[175].end |
547.75971875 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
548.45159375 |
transcript.pyannote[176].end |
548.53596875 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
548.75534375 |
transcript.pyannote[177].end |
550.57784375 |
transcript.pyannote[178].speaker |
SPEAKER_02 |
transcript.pyannote[178].start |
548.92409375 |
transcript.pyannote[178].end |
552.82221875 |
transcript.pyannote[179].speaker |
SPEAKER_02 |
transcript.pyannote[179].start |
553.41284375 |
transcript.pyannote[179].end |
556.72034375 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
553.48034375 |
transcript.pyannote[180].end |
554.50971875 |
transcript.pyannote[181].speaker |
SPEAKER_02 |
transcript.pyannote[181].start |
557.05784375 |
transcript.pyannote[181].end |
558.64409375 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
559.23471875 |
transcript.pyannote[182].end |
562.76159375 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
563.85846875 |
transcript.pyannote[183].end |
567.97596875 |
transcript.pyannote[184].speaker |
SPEAKER_02 |
transcript.pyannote[184].start |
567.09846875 |
transcript.pyannote[184].end |
579.04596875 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
578.99534375 |
transcript.pyannote[185].end |
581.29034375 |
transcript.pyannote[186].speaker |
SPEAKER_02 |
transcript.pyannote[186].start |
579.83909375 |
transcript.pyannote[186].end |
586.30221875 |
transcript.pyannote[187].speaker |
SPEAKER_02 |
transcript.pyannote[187].start |
586.84221875 |
transcript.pyannote[187].end |
589.03596875 |
transcript.pyannote[188].speaker |
SPEAKER_02 |
transcript.pyannote[188].start |
589.10346875 |
transcript.pyannote[188].end |
589.72784375 |
transcript.pyannote[189].speaker |
SPEAKER_01 |
transcript.pyannote[189].start |
589.40721875 |
transcript.pyannote[189].end |
589.42409375 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
589.42409375 |
transcript.pyannote[190].end |
589.91346875 |
transcript.pyannote[191].speaker |
SPEAKER_01 |
transcript.pyannote[191].start |
589.72784375 |
transcript.pyannote[191].end |
589.77846875 |
transcript.pyannote[192].speaker |
SPEAKER_01 |
transcript.pyannote[192].start |
589.91346875 |
transcript.pyannote[192].end |
589.98096875 |
transcript.pyannote[193].speaker |
SPEAKER_00 |
transcript.pyannote[193].start |
589.98096875 |
transcript.pyannote[193].end |
590.01471875 |
transcript.pyannote[194].speaker |
SPEAKER_02 |
transcript.pyannote[194].start |
590.01471875 |
transcript.pyannote[194].end |
594.13221875 |
transcript.pyannote[195].speaker |
SPEAKER_00 |
transcript.pyannote[195].start |
593.87909375 |
transcript.pyannote[195].end |
595.53284375 |
transcript.pyannote[196].speaker |
SPEAKER_02 |
transcript.pyannote[196].start |
594.72284375 |
transcript.pyannote[196].end |
595.21221875 |
transcript.pyannote[197].speaker |
SPEAKER_00 |
transcript.pyannote[197].start |
597.18659375 |
transcript.pyannote[197].end |
597.97971875 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
599.16096875 |
transcript.pyannote[198].end |
601.15221875 |
transcript.whisperx[0].start |
0.069 |
transcript.whisperx[0].end |
0.75 |
transcript.whisperx[0].text |
好 謝謝主席好我請部長 |
transcript.whisperx[1].start |
31.405 |
transcript.whisperx[1].end |
56.181 |
transcript.whisperx[1].text |
政府要引進印度的移工的理由是因為他們比較優秀還是我們要做多國的補充人力是什麼原因?我們切工的漏洞我們切工現在到底多少人? |
transcript.whisperx[2].start |
57.481 |
transcript.whisperx[2].end |
58.181 |
transcript.whisperx[2].text |
所以近來只要是在職場上 |
transcript.whisperx[3].start |
81.067 |
transcript.whisperx[3].end |
81.407 |
transcript.whisperx[3].text |
現在先以製造業為主 |
transcript.whisperx[4].start |
101.903 |
transcript.whisperx[4].end |
116.212 |
transcript.whisperx[4].text |
我在中研院有碰過印度的博士後的研究員在中研院我們中研院裡面的研究員還不少喔印度的喔那薪資也不錯啦我覺得他們也蠻敬業的我的蔣英文講的還不錯 |
transcript.whisperx[5].start |
122.256 |
transcript.whisperx[5].end |
129.389 |
transcript.whisperx[5].text |
好,所以主計處的總副是欠人,欠二十幾萬人啊,市政府可能比這個還要多啦 |
transcript.whisperx[6].start |
131.405 |
transcript.whisperx[6].end |
152.879 |
transcript.whisperx[6].text |
我相信委員的瞭解可能還比我 也許比我更深刻好 這個第一個問題那第二個問題外媒報導印度那麼大喔3700幾萬平方公里的印度的面積裡面有住了15億人口那外媒報導就是印度每15分鐘只有一個性侵 |
transcript.whisperx[7].start |
154.648 |
transcript.whisperx[7].end |
177.42 |
transcript.whisperx[7].text |
這個是很可怕的全世界對印度的觀念跟印象就是這樣而且他們是這個是蠻嚴重那你有沒有擔心他們進來如果人數多會不會造成台灣的治安會變差那你如何因應外界的質疑那有沒有辦法解決嗎 |
transcript.whisperx[8].start |
178.812 |
transcript.whisperx[8].end |
195.288 |
transcript.whisperx[8].text |
委員第一個印度他們當然本土的治安率也許有他們的狀況這我們就是客觀尊重對方這是他們對方的問題那可是當然來到我們這裡我們第一個一定確保我們 |
transcript.whisperx[9].start |
196.529 |
transcript.whisperx[9].end |
216.062 |
transcript.whisperx[9].text |
會以這個先跟我們國情接近的人為移工為主啦比如說他有英語能力好別他一定程度的技術能力等等的那麼這個其實還有包括他有良民證好等等這方面的檢查一定都必備的然後呢進來之後還會有一定程度的規範跟講習 |
transcript.whisperx[10].start |
217.603 |
transcript.whisperx[10].end |
238.453 |
transcript.whisperx[10].text |
然後必須要讓他瞭解臺灣的法制是什麼樣子對然後我們跟移民署之間其實也已經開始展開關於引進印度移工的一些所以會挑比較文明的幾個省他們有省他們也是算省嘛還是邦你們要派人過去看看 |
transcript.whisperx[11].start |
239.674 |
transcript.whisperx[11].end |
251.329 |
transcript.whisperx[11].text |
他們在上課的時候也要,甚至不排除我們的人過去跟他們上個課,台灣的治安啊台灣的那個,因為,只要印度人在那裡說,他們也不在那裡說什麼。是,對,一定要先這樣,對。 |
transcript.whisperx[12].start |
256.596 |
transcript.whisperx[12].end |
279.705 |
transcript.whisperx[12].text |
我們黨團這邊有互待修正是互待協議要嘛就是退回要嘛就是修正要嘛就是互待協議可是委員我跟您報告那個一條一地解法第十條如果被修正了我只能被退回耶這個要拜託拜託委員能夠支持我把我們黨團的那個念給你聽 |
transcript.whisperx[13].start |
283.866 |
transcript.whisperx[13].end |
292.689 |
transcript.whisperx[13].text |
要求勞動部指定或設立專責機構推動政府與政府直接聘僱並擬定績效指標保障移工勞動條件推動移工直接聘任之成效 |
transcript.whisperx[14].start |
310.342 |
transcript.whisperx[14].end |
333.588 |
transcript.whisperx[14].text |
你是指附帶決議嗎?附帶決議這是OK的,謝謝第三個問題缺工是台灣最大的問題少子化是一個原因但是台灣本地勞工的薪資是偏低的所以你要一直往上加你不要讓人家覺得一直引進外國的移工然後我們這邊 |
transcript.whisperx[15].start |
335.248 |
transcript.whisperx[15].end |
353.117 |
transcript.whisperx[15].text |
我們的勞工的薪資也沒有明顯的提升這樣百姓跟我們鄉親父老是不會支持的那你對本國勞工的今年度的基本薪資的又要開始打架了 |
transcript.whisperx[16].start |
354.297 |
transcript.whisperx[16].end |
374.967 |
transcript.whisperx[16].text |
謝謝委員。下午我才要開第一次諮詢會。我跟委員報告,那個諮詢會就是當年您通過的這個最低工資法裡面的一個機制。它就是以前的工作小組。其實那只是一個溝通會議。它不會去決定條幅,也不會去決定任何事情。所以只是我跟委員的見面會而已。而且我也是新的。 |
transcript.whisperx[17].start |
375.647 |
transcript.whisperx[17].end |
389.916 |
transcript.whisperx[17].text |
然後裡面委員也有很多新聘的所以我們大概先第一次見見面這樣子那這一次的印度要進來他們的匯款回去我們看一下地下匯隊 |
transcript.whisperx[18].start |
392.622 |
transcript.whisperx[18].end |
408.812 |
transcript.whisperx[18].text |
地下會對銀行會對金額最高7萬塊手續會500塊時間要2到3天地下會對沒有上線手續會相對便宜時間不用一天效率好但是非法風險高 |
transcript.whisperx[19].start |
410.073 |
transcript.whisperx[19].end |
428.978 |
transcript.whisperx[19].text |
我看我們屏東那邊很多漁工他們要在上班時間去銀行匯兌有他的困難我們的銀行三天半就結束了他們還要上班拜了禮拜我們的銀行都休困所以他們很多人都用地下匯兌那地下匯兌的 |
transcript.whisperx[20].start |
431.109 |
transcript.whisperx[20].end |
443.522 |
transcript.whisperx[20].text |
危險性是很高,曾經有越南的漁工被騙了60萬,所以你這辛辛苦苦的錢,印度來你要用什麼系統?你有沒有跟金管會要有什麼想法? |
transcript.whisperx[21].start |
444.87 |
transcript.whisperx[21].end |
472.659 |
transcript.whisperx[21].text |
是各位報告金管會其實在2021年就有外籍移工小額會對辦法啦啊金管會現在有許可4家做小額會對啦不過當然這個可能不曉得能不能完全滿足移工是一個問題我們以後再來檢視然後進一步擴大合法推動這種有利方便移工嘿會對的這樣子的機制你今天人家出門時間沒辦法迎合他們的對可是現在有手機 |
transcript.whisperx[22].start |
474.78 |
transcript.whisperx[22].end |
501.711 |
transcript.whisperx[22].text |
對,他用APP就可以轉耶對,那4家都是APP的他算是應該是新創吧?Fintech的新創的沙盒實驗的那種業者有4家只是說可能也許推廣率是不是不夠?你再去瞭解一下好不好?實際的情況他跟金管會好好的討論討論因為現在碰到的就是這樣然後他們都用地下會隊 |
transcript.whisperx[23].start |
502.791 |
transcript.whisperx[23].end |
502.971 |
transcript.whisperx[23].text |
建檢會用誰負擔? |
transcript.whisperx[24].start |
519.684 |
transcript.whisperx[24].end |
547.051 |
transcript.whisperx[24].text |
他們進來的健檢然後印度人他們有沒有受出的疾病我是一個臨床醫師像現在東南亞進來的寄生蟲什麼什麼飛機還蠻常碰到的那印度這邊有沒有什麼特殊的那他的費用是誰出因為如果是政府跟政府直接評估的話誰要付錢是我們台灣的部署嗎健檢費是雙方合意也是要雙方談 |
transcript.whisperx[25].start |
548.311 |
transcript.whisperx[25].end |
562.505 |
transcript.whisperx[25].text |
你現在是政府要自己搞,怎麼會跟雙方合議?是已經有僱主了,所以僱主這邊的,僱主來付,還是你們變預算?沒有,就是要看僱主,如果願意付,當然僱主來付吧,最好吧。 |
transcript.whisperx[26].start |
564.145 |
transcript.whisperx[26].end |
585.982 |
transcript.whisperx[26].text |
對,不過這個東西就是要經過工作層級會議。我覺得啦,藉著這一次跟印度的MOU非常的慎重,也把以前我們跟東南亞、印尼這些國家的業績好好地檢視一次。對,對,對,有,我正在做這樣的工作。因為這樣的話,不要有太大的差別,而且有一些以前的缺失。 |
transcript.whisperx[27].start |
586.863 |
transcript.whisperx[27].end |
587.003 |
transcript.whisperx[27].text |
羅美玲委員 |