iVOD / 153930

Field Value
IVOD_ID 153930
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/153930
日期 2024-06-13
會議資料.會議代碼 聯席會議-11-1-36,15-1
會議資料.會議代碼:str 第11屆第1會期司法及法制、內政委員會第1次聯席會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 36
會議資料.委員會代碼[1] 15
會議資料.委員會代碼:str[0] 司法及法制委員會
會議資料.委員會代碼:str[1] 內政委員會
會議資料.標題 立法院第11屆第1會期司法及法制、內政委員會第1次聯席會議
影片種類 Clip
開始時間 2024-06-13T10:03:09+08:00
結束時間 2024-06-13T10:11:46+08:00
影片長度 00:08:37
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/cf02c7fc60cc7ba07031ac796df1abb88ff7e0bc1ebc5021ae5baf1b56d4773406c82363fbb529205ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 謝龍介
委員發言時間 10:03:09 - 10:11:46
會議時間 2024-06-13T09:00:00+08:00
會議名稱 立法院第11屆第1會期司法及法制、內政委員會第1次聯席會議(事由:併案審查 (一)委員蘇清泉等27人擬具「警察人員人事條例修正第三十五條條文及增訂附表三草案」案。 (二)委員萬美玲等19人擬具「警察人員人事條例第三十五條條文修正草案」案。 (三)委員謝龍介等19人擬具「警察人員人事條例第三十五條條文修正草案」案。 (四)委員王鴻薇等29人擬具「警察人員人事條例第三十五條條文修正草案」案。 (五)委員丁學忠等17人擬具「警察人員人事條例第三十五條條文修正草案」案。 (六)委員顏寬恒等20人擬具「警察人員人事條例第三十五條條文修正草案」案。 (七)委員鄭天財Sra Kacaw等18人擬具「警察人員人事條例部分條文修正草案」案。 (八)委員林思銘等23人擬具「警察人員人事條例第三十五條條文修正草案」案。 (九)委員伍麗華Saidhai‧Tahovecahe等16人擬具「警察人員人事條例第三十五條及第三十六條條文修正草案」案。 (十)委員王鴻薇等18人擬具「警察人員人事條例第三十五條條文修正草案」案。 (十一)委員游顥等38人擬具「警察人員人事條例第三十五條條文修正草案」案。 (十二)委員張智倫等17人擬具「警察人員人事條例第三十五條條文修正草案」案。 【第(六)至(十)案如經院會復議,則不予審查;第(十一)及(十二)案各黨團若未提出不復議同意書,則不予審查】)
gazette.lineno 354
gazette.blocks[0][0] 謝委員龍介:(10時3分)主席,我請警政署長和消防署長。
gazette.blocks[1][0] 主席:麻煩請兩位署長。
gazette.blocks[2][0] 張署長榮興:委員好。
gazette.blocks[3][0] 謝委員龍介:張署長,很久不見了!
gazette.blocks[4][0] 張署長榮興:是啊!
gazette.blocks[5][0] 謝委員龍介:你的電話號碼有換嗎?
gazette.blocks[6][0] 張署長榮興:都沒有換。
gazette.blocks[7][0] 謝委員龍介:你在我們臺南這麼多年,很辛苦啦!
gazette.blocks[8][0] 張署長榮興:謝謝委員。
gazette.blocks[9][0] 謝委員龍介:還好我們清德兄慧眼識英雄!要討論這個議題,說實在的,我的心情很沈重,所有朝野委員大家都想要針對警察、警消、軍人、殘障、弱勢、低收入戶、老人、農民、漁民通通照顧到,因為士農工商沒有一個不是我們中華民國的國民,手指頭咬下去是隻隻痛,每個都是我們的孩子,但是警察、警消若出意外,大家參加公祭時說到退休金,就只能跟他們說很抱歉!你是當署長的人,請問你有什麼感想?
gazette.blocks[10][0] 張署長榮興:報告委員,非常感謝這次委員提案要來照顧警察同仁的福利,警察的工作真的是具危險性、不特定性,而且非常辛苦,所以我的心態是,不管是現職或退休的警察,我覺得都要照顧。
gazette.blocks[11][0] 謝委員龍介:你說到重點了,不要在這裡提案後,又再喬成好像是現任和退休對立的狀態,這樣不好!坦白跟大家報告,臺灣鄉親們的左鄰右舍都有警察,當然也有一些害群之馬;警察開你紅單,讓你罵到氣歪歪的,這我也知道,有的人對警察印象很不好,所以你們內部一定要調整,一些服務不好的、態度不好的、品行不好的,都要強力處理,這樣人家才會疼你們入心。警察同仁們無暝無日工作,要知道現在全臺灣人民平均壽命是82歲,但警察至少少我們6歲至8歲,讓他們拚到65歲退休,說實在的,領這些退休金也沒有幾年!
gazette.blocks[11][1] 事實上,我家裡也沒有人當警察,但為什麼要這樣?因為我擔任民意代表服務社會二十多年,看了太多無暝無日為臺灣人打拚的這些消防、警察人員,在我擔任臺南市玉皇宮顧問的時候,你知道嗎?這個宮廟來自十方的善款,每年一定都固定撥差不多一千萬支持臺南市消防隊購買一些特殊設備,為什麼?當發生火災時,裡面濃煙密布,沒有人知道到底火源在哪裡、起火點在哪裡,一進去就准死,所以玉皇宮支持他們購買紅外線探測儀,臺南市竟然沒辦法編列這個預算,你說政府照顧得到你們嗎?照顧不到!包括警察的防彈背心、防彈衣,包括第一手武器,你想想看,現在作奸犯科的歹徒一進來拿的都是衝鋒槍,火力越來越強,甚至警察執法的時候,以前是在你面前嗆聲,現在不用了,槍拿起來就直接開了,甚至外役監跑出去的也能打死警察,真是無所不至!點點滴滴,都讓我們感到心痛,所以今天提出這個案子。
gazette.blocks[11][2] 在年改的時候,我們估計預算將近二兆元而已,到今天已經是二兆八千多億,增加八、九千億,世代有問題嗎?有,有問題,但我問你,增加這八千多億有照顧到這些新世代嗎?沒有!有照顧到這些警察、警消嗎?也沒有!錢跑到哪裡去了?持家才知米鹽貴,政府不一定是無心,你看朝野大家都有心要照顧,這樣很好啊!大家面對問題,發展經濟,不要吵架,讓該照顧的都照顧到,但要一步一步來,這裡照顧好了,再來照顧別的地方,二千八百多億,我告訴你,大人少吃一口,小孩就吃到膩,可以分一點出來啊!我剛才看銓敘部的報告說會多出十幾億、二十幾億、三十幾億,我告訴你,光是預算部分,八年多了八千多億,八千多億是每一年喔!現在每一年都二兆八千多億了!
gazette.blocks[11][3] 在此語重心長,署長,要加油啦!人家要照顧我們,我們內部的自律也要加強,警消也一樣,我曾經聽過開餐廳要檢查消防、公安,檢查之後,就有人告訴老闆要找哪一間來做比較穩妥,一定會通過檢查,你知道有這種事情嗎?這種傳聞就很負面,人家要挺你,結果變成餐廳的消防、公安檢查以後,向人家表示讓這間做不會過關,一定要讓哪一家做才會通過,有這樣的耶!我親身經歷過耶!
gazette.blocks[12][0] 蕭署長煥章:報告委員,現在都法制化了,都是委託……
gazette.blocks[13][0] 謝委員龍介:我哪不知道法制化,就委外啊!委外就變成什麼人做會通過,誰做就不會通過,你聽不懂嗎?欸!這各個縣市都有,美惠委員,對不對?
gazette.blocks[14][0] 王委員美惠:對啊!
gazette.blocks[15][0] 謝委員龍介:不是啦!你們內部如果自律、有檢討,沒有委員不支持你們啦!這一鍋很大鍋,舀兩勺分給警察吃,他們這麼拚命,坦白說,光是看平均壽命少我們一般人6到8歲,我們就夠心疼了,不然為什麼現在大家都急著要退休?不是他們愛退休,退休後也養不起家庭、小孩,是他被操到沒辦法了,撐到長官要挺也挺不下去,他就沒辦法出勤了嘛!不退休不行,如果按照現在的所得替代率,一旦退休,家庭就會陷入困難,所以我們要有良心,而且不只是照顧警察、警消而已,全民我們都要照顧,謝謝。
gazette.blocks[16][0] 主席:謝謝。下一位我們請王美惠委員發言。
gazette.agenda.page_end 282
gazette.agenda.meet_id 聯席會議-11-1-36,15-1
gazette.agenda.speakers[0] 吳宗憲
gazette.agenda.speakers[1] 蘇清泉
gazette.agenda.speakers[2] 謝龍介
gazette.agenda.speakers[3] 丁學忠
gazette.agenda.speakers[4] 游顥
gazette.agenda.speakers[5] 王鴻薇
gazette.agenda.speakers[6] 張宏陸
gazette.agenda.speakers[7] 陳俊宇
gazette.agenda.speakers[8] 鍾佳濱
gazette.agenda.speakers[9] 蘇巧慧
gazette.agenda.speakers[10] 王美惠
gazette.agenda.speakers[11] 羅智強
gazette.agenda.speakers[12] 牛煦庭
gazette.agenda.speakers[13] 沈發惠
gazette.agenda.speakers[14] 陳玉珍
gazette.agenda.speakers[15] 翁曉玲
gazette.agenda.speakers[16] 林思銘
gazette.agenda.speakers[17] 黃捷
gazette.agenda.speakers[18] 黃建賓
gazette.agenda.speakers[19] 黃國昌
gazette.agenda.speakers[20] 許宇甄
gazette.agenda.speakers[21] 莊瑞雄
gazette.agenda.speakers[22] 徐欣瑩
gazette.agenda.speakers[23] 張智倫
gazette.agenda.speakers[24] 鄭天財Sra Kacaw
gazette.agenda.speakers[25] 林德福
gazette.agenda.speakers[26] 洪孟楷
gazette.agenda.speakers[27] 吳思瑤
gazette.agenda.speakers[28] 楊瓊瓔
gazette.agenda.speakers[29] 陳冠廷
gazette.agenda.speakers[30] 楊曜
gazette.agenda.speakers[31] 李彥秀
gazette.agenda.speakers[32] 柯建銘
gazette.agenda.speakers[33] 傅崐萁
gazette.agenda.speakers[34] 高金素梅
gazette.agenda.page_start 127
gazette.agenda.meetingDate[0] 2024-06-13
gazette.agenda.gazette_id 1136301
gazette.agenda.agenda_lcidc_ids[0] 1136301_00009
gazette.agenda.meet_name 立法院第11屆第1會期司法及法制、內政委員會第1次聯席會議紀錄
gazette.agenda.content 併案審查( 一 ) 委員蘇清泉等27 人擬具「警察人員人事條例修正第三十五條條文及增訂附表三草 案」案、(二)委員萬美玲等19人擬具「警察人員人事條例第三十五條條文修正草案」案、(三)委 員謝龍介等19人擬具「警察人員人事條例第三十五條條文修正草案」案、(四)委員王鴻薇等29人 擬具「警察人員人事條例第三十五條條文修正草案」案、(五)委員丁學忠等17人擬具「警察人員 人事條例第三十五條條文修正草案」案、(六)委員顏寬恒等20人擬具「警察人員人事條例第三十 五條條文修正草案」案、(七)委員鄭天財 Sra Kacaw 等18人擬具「警察人員人事條例部分條文修 正草案」案、( 八) 委員林思銘等23 人擬具「警察人員人事條例第三十五條條文修正草案」案、 (九)委員伍麗華 Saidhai Tahovecahe 等16人擬具「警察人員人事條例第三十五條及第三十六條 條文修正草案」案、(十)委員王鴻薇等18人擬具「警察人員人事條例第三十五條條文修正草案」 案、(十一)委員游顥等38人擬具「警察人員人事條例第三十五條條文修正草案」案、(十二)委員 張智倫等17人擬具「警察人員人事條例第三十五條條文修正草案」案
gazette.agenda.agenda_id 1136301_00011
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 10.86471875
transcript.pyannote[0].end 14.18909375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 14.27346875
transcript.pyannote[1].end 15.52221875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 22.59284375
transcript.pyannote[2].end 22.96409375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 22.96409375
transcript.pyannote[3].end 23.18346875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 23.18346875
transcript.pyannote[4].end 23.85846875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 23.85846875
transcript.pyannote[5].end 26.71034375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 26.71034375
transcript.pyannote[6].end 27.04784375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 27.85784375
transcript.pyannote[7].end 30.65909375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 31.95846875
transcript.pyannote[8].end 34.25346875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 35.50221875
transcript.pyannote[9].end 37.25721875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 37.81409375
transcript.pyannote[10].end 42.62346875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 43.53471875
transcript.pyannote[11].end 44.04096875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 47.26409375
transcript.pyannote[12].end 52.57971875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 54.40221875
transcript.pyannote[13].end 60.20721875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 61.45596875
transcript.pyannote[14].end 66.40034375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 66.72096875
transcript.pyannote[15].end 67.73346875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 68.59409375
transcript.pyannote[16].end 70.24784375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 70.99034375
transcript.pyannote[17].end 71.58096875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 71.71596875
transcript.pyannote[18].end 72.93096875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 74.04471875
transcript.pyannote[19].end 75.58034375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 75.71534375
transcript.pyannote[20].end 76.17096875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 78.17909375
transcript.pyannote[21].end 80.08596875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 81.16596875
transcript.pyannote[22].end 82.38096875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 84.72659375
transcript.pyannote[23].end 87.40971875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 88.15221875
transcript.pyannote[24].end 90.85221875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 92.13471875
transcript.pyannote[25].end 94.61534375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 96.21846875
transcript.pyannote[26].end 97.55159375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 98.41221875
transcript.pyannote[27].end 99.45846875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 101.77034375
transcript.pyannote[28].end 103.00221875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 103.69409375
transcript.pyannote[29].end 106.09034375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 106.57971875
transcript.pyannote[30].end 113.59971875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 114.17346875
transcript.pyannote[31].end 117.04221875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 117.61596875
transcript.pyannote[32].end 117.97034375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 118.42596875
transcript.pyannote[33].end 120.70409375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 120.97409375
transcript.pyannote[34].end 123.21846875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 123.75846875
transcript.pyannote[35].end 124.46721875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 124.63596875
transcript.pyannote[36].end 125.96909375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 126.22221875
transcript.pyannote[37].end 130.62659375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 130.62659375
transcript.pyannote[38].end 131.97659375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 132.83721875
transcript.pyannote[39].end 135.36846875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 135.75659375
transcript.pyannote[40].end 138.42284375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 139.55346875
transcript.pyannote[41].end 140.17784375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 141.37596875
transcript.pyannote[42].end 142.75971875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 142.96221875
transcript.pyannote[43].end 144.26159375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 145.35846875
transcript.pyannote[44].end 151.87221875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 152.22659375
transcript.pyannote[45].end 153.86346875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 154.55534375
transcript.pyannote[46].end 156.07409375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 157.69409375
transcript.pyannote[47].end 160.81596875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 161.22096875
transcript.pyannote[48].end 162.04784375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 162.35159375
transcript.pyannote[49].end 163.17846875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 164.25846875
transcript.pyannote[50].end 165.69284375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 166.38471875
transcript.pyannote[51].end 167.93721875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 169.54034375
transcript.pyannote[52].end 171.58221875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 173.25284375
transcript.pyannote[53].end 174.53534375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 175.19346875
transcript.pyannote[54].end 178.09596875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 179.26034375
transcript.pyannote[55].end 180.64409375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 182.28096875
transcript.pyannote[56].end 182.98971875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 184.18784375
transcript.pyannote[57].end 185.79096875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 186.95534375
transcript.pyannote[58].end 191.79846875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 192.72659375
transcript.pyannote[59].end 194.21159375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 197.58659375
transcript.pyannote[60].end 198.54846875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 198.81846875
transcript.pyannote[61].end 200.35409375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 201.55221875
transcript.pyannote[62].end 206.36159375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 206.66534375
transcript.pyannote[63].end 209.38221875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 209.55096875
transcript.pyannote[64].end 213.34784375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 213.53346875
transcript.pyannote[65].end 214.86659375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 216.85784375
transcript.pyannote[66].end 219.55784375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 219.74346875
transcript.pyannote[67].end 225.22784375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 225.83534375
transcript.pyannote[68].end 233.51346875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 234.71159375
transcript.pyannote[69].end 237.19221875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 237.69846875
transcript.pyannote[70].end 239.74034375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 240.21284375
transcript.pyannote[71].end 240.76971875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 242.27159375
transcript.pyannote[72].end 243.33471875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 243.92534375
transcript.pyannote[73].end 244.70159375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 247.08096875
transcript.pyannote[74].end 247.92471875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 248.71784375
transcript.pyannote[75].end 255.14721875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 257.50971875
transcript.pyannote[76].end 259.21409375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 259.82159375
transcript.pyannote[77].end 260.85096875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 262.18409375
transcript.pyannote[78].end 264.00659375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 264.58034375
transcript.pyannote[79].end 264.95159375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 265.17096875
transcript.pyannote[80].end 266.63909375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 267.38159375
transcript.pyannote[81].end 268.64721875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 269.64284375
transcript.pyannote[82].end 272.83221875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 273.47346875
transcript.pyannote[83].end 275.29596875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 277.89471875
transcript.pyannote[84].end 279.09284375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 280.94909375
transcript.pyannote[85].end 282.70409375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 284.86409375
transcript.pyannote[86].end 288.96471875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 290.53409375
transcript.pyannote[87].end 292.37346875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 292.84596875
transcript.pyannote[88].end 294.06096875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 295.68096875
transcript.pyannote[89].end 296.62596875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 297.41909375
transcript.pyannote[90].end 298.31346875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 298.87034375
transcript.pyannote[91].end 299.79846875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 301.21596875
transcript.pyannote[92].end 302.51534375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 304.30409375
transcript.pyannote[93].end 304.64159375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 304.79346875
transcript.pyannote[94].end 306.05909375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 307.72971875
transcript.pyannote[95].end 309.16409375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 311.35784375
transcript.pyannote[96].end 312.67409375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 314.96909375
transcript.pyannote[97].end 316.70721875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 319.22159375
transcript.pyannote[98].end 320.92596875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 321.83721875
transcript.pyannote[99].end 327.97971875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 328.36784375
transcript.pyannote[100].end 328.85721875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 329.73471875
transcript.pyannote[101].end 332.75534375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 334.18971875
transcript.pyannote[102].end 335.30346875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 336.38346875
transcript.pyannote[103].end 337.91909375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 339.08346875
transcript.pyannote[104].end 344.41596875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 344.80409375
transcript.pyannote[105].end 345.61409375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 346.20471875
transcript.pyannote[106].end 347.43659375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 348.73596875
transcript.pyannote[107].end 349.61346875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 352.60034375
transcript.pyannote[108].end 355.58721875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 356.46471875
transcript.pyannote[109].end 359.02971875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 359.58659375
transcript.pyannote[110].end 363.18096875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 363.50159375
transcript.pyannote[111].end 364.98659375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 366.40409375
transcript.pyannote[112].end 370.50471875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 371.11221875
transcript.pyannote[113].end 377.62596875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 380.56221875
transcript.pyannote[114].end 385.47284375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 387.41346875
transcript.pyannote[115].end 387.80159375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 388.79721875
transcript.pyannote[116].end 391.49721875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 392.91471875
transcript.pyannote[117].end 397.08284375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 397.80846875
transcript.pyannote[118].end 399.44534375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 399.83346875
transcript.pyannote[119].end 400.94721875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 400.94721875
transcript.pyannote[120].end 401.48721875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 401.48721875
transcript.pyannote[121].end 401.99346875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 404.11971875
transcript.pyannote[122].end 405.26721875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 406.48221875
transcript.pyannote[123].end 408.81096875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 409.70534375
transcript.pyannote[124].end 412.25346875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 412.91159375
transcript.pyannote[125].end 414.26159375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 414.41346875
transcript.pyannote[126].end 417.83909375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 418.61534375
transcript.pyannote[127].end 419.18909375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 420.03284375
transcript.pyannote[128].end 421.51784375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 422.74971875
transcript.pyannote[129].end 424.94346875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 425.41596875
transcript.pyannote[130].end 428.92596875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 429.41534375
transcript.pyannote[131].end 434.03909375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 434.76471875
transcript.pyannote[132].end 435.52409375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 436.14846875
transcript.pyannote[133].end 437.78534375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 439.05096875
transcript.pyannote[134].end 439.45596875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 439.97909375
transcript.pyannote[135].end 439.99596875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 439.99596875
transcript.pyannote[136].end 440.01284375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 440.01284375
transcript.pyannote[137].end 440.02971875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 440.02971875
transcript.pyannote[138].end 445.10909375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 442.56096875
transcript.pyannote[139].end 448.21409375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 448.95659375
transcript.pyannote[140].end 451.62284375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 453.74909375
transcript.pyannote[141].end 454.47471875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 455.48721875
transcript.pyannote[142].end 459.68909375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 460.00971875
transcript.pyannote[143].end 461.03909375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 461.88284375
transcript.pyannote[144].end 462.69284375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 463.68846875
transcript.pyannote[145].end 465.61221875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 466.64159375
transcript.pyannote[146].end 468.70034375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 468.97034375
transcript.pyannote[147].end 470.77596875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 471.55221875
transcript.pyannote[148].end 477.27284375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 478.09971875
transcript.pyannote[149].end 478.48784375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 479.77034375
transcript.pyannote[150].end 485.96346875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 486.95909375
transcript.pyannote[151].end 488.37659375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 488.95034375
transcript.pyannote[152].end 492.22409375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 492.69659375
transcript.pyannote[153].end 494.01284375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 495.26159375
transcript.pyannote[154].end 496.62846875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 497.52284375
transcript.pyannote[155].end 498.80534375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 499.41284375
transcript.pyannote[156].end 501.57284375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 502.23096875
transcript.pyannote[157].end 503.81721875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 504.28971875
transcript.pyannote[158].end 505.60596875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 506.44971875
transcript.pyannote[159].end 508.39034375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 508.77846875
transcript.pyannote[160].end 509.84159375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 510.34784375
transcript.pyannote[161].end 512.35596875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 512.89596875
transcript.pyannote[162].end 514.36409375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 514.49909375
transcript.pyannote[163].end 514.85346875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 516.08534375
transcript.pyannote[164].end 516.52409375
transcript.whisperx[0].start 11.145
transcript.whisperx[0].end 29.791
transcript.whisperx[0].text 主席,我請金正恩署長及蕭鴻署長。好,麻煩請兩位署長。委員好。哎,金正恩,吃久沒看喔。是啊。你電話有碗沒有啊?沒有啊,都沒碗。
transcript.whisperx[1].start 32.111
transcript.whisperx[1].end 59.538
transcript.whisperx[1].text 你在我們台南這麼多年,很辛苦啦。謝謝委員。好在我們剩下的那些復原式營養。我討論這個議題實在是說,我心情真正當。所有條約的委員,大家都想要把警察、警校、軍人
transcript.whisperx[2].start 61.499
transcript.whisperx[2].end 75.181
transcript.whisperx[2].text 三草案.立法院第11屆第1會期司法及法制、內政委員會第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次聯席會議第1次
transcript.whisperx[3].start 92.322
transcript.whisperx[3].end 99.208
transcript.whisperx[3].text 若說到退休金就跟你說很抱歉你做輸定的人你有什麼感想?
transcript.whisperx[4].start 102.129
transcript.whisperx[4].end 130.123
transcript.whisperx[4].text 報告委員我非常感謝這次委員提議來照顧警察的這個同仁的這個福利那警察的工作是真的是危險性不特定性而且是非常辛苦所以我是我的心態就是說我不管是現職的警察還是退休的警察我是覺得都要照顧
transcript.whisperx[5].start 130.683
transcript.whisperx[5].end 155.422
transcript.whisperx[5].text 你講到重點嘛,不然在這裡提案還要再抄到變成現任的啦,跟退休的不需要要對立,這不好。我先不跟大家報告,我們台灣的鄉親,你出避頭尾都有警察,當然有一股海軍籍嘛,把你開洋裝什麼,讓你走到街外我也知道,有的對警察印象很壞,所以你內部
transcript.whisperx[6].start 158.028
transcript.whisperx[6].end 167.912
transcript.whisperx[6].text 一定我們要調整一些服務壞的、態度壞的、品行壞的、我們的強力處理,這樣人家聽你的就心了。但是你如果想說這個警察,他們這樣沒名沒力喔。我們現在全台灣我們的平均生命大概要八十二歲啦。警察啊,減我們六歲至八歲。
transcript.whisperx[7].start 187.297
transcript.whisperx[7].end 188.998
transcript.whisperx[7].text 草案案案案案案案案案案案案案案案案
transcript.whisperx[8].start 216.929
transcript.whisperx[8].end 233.398
transcript.whisperx[8].text 做不夠我擔任台南市廟房經的顧問的時候,你知不知道?這個宮廟來自十方的省份每一年都一定固定拔差不多一千萬來支持台南市消防隊為什麼?去買一些特殊的設備復生的時候裡面有沒有沒有人知道到底復原在哪裡?到底得到什麼機會?進去就要死了?不知道
transcript.whisperx[9].start 247.15
transcript.whisperx[9].end 254.494
transcript.whisperx[9].text 所以呢﹐這幾個環境支持人來買這個紅瓦薩的探測儀﹐第三次竟然沒辦法去編這個文章你說政府照顧你們會對嗎﹐照顧不夠﹐包括警察的風暖費金﹐風暖衣﹐包括第一手﹐的武器﹐你自己想說現在很乾坤坷的台獨﹐進來走都是衝鋒情﹐
transcript.whisperx[10].start 277.915
transcript.whisperx[10].end 278.835
transcript.whisperx[10].text 二)委員萬美玲等19人擬具 «警察人員人事條例第三
transcript.whisperx[11].start 307.759
transcript.whisperx[11].end 312.623
transcript.whisperx[11].text 我們國的武尊啊,最快兩條離議啊,到今天你兩條八千幾億,整個八九千億,世代有問題嗎?有問題。我問你這屆八千幾億有照顧到這新世代嗎?也沒有。有照顧到這警察警消嗎?也沒有。真是遭遇到啦。
transcript.whisperx[12].start 336.431
transcript.whisperx[12].end 340.292
transcript.whisperx[12].text 二)委員萬美玲等19人擬具、「警察人員人事條例第三
transcript.whisperx[13].start 366.625
transcript.whisperx[13].end 367.166
transcript.whisperx[13].text 二)委員三)委員
transcript.whisperx[14].start 392.97
transcript.whisperx[14].end 401.714
transcript.whisperx[14].text 蘇町,我告訴你,但是我們要照顧,我們內部的組織要加強,經銷也一樣,我也聽到人家的餐廳在開,人家說要消防檢查、要公安,檢查後就有人去跟他們討論,你就找到一間來做比較好,就溫過了,這你覺得怎麼有這個事情?
transcript.whisperx[15].start 422.936
transcript.whisperx[15].end 423.957
transcript.whisperx[15].text 二)委員萬美玲等19人擬具
transcript.whisperx[16].start 455.504
transcript.whisperx[16].end 474.138
transcript.whisperx[16].text 不是啦,內部你如果有主任啦,有擬特政委員沒人支持你啦因為不是,這坑很大坑嘛,坑兩個那邊警察借的啦,他們拚到快要死啦我坦白講,看到這個邊警守命,擬我們一般人六歲至八歲,我們就有夠痛心嘛
transcript.whisperx[17].start 479.81
transcript.whisperx[17].end 480.21
transcript.whisperx[17].text 三)委員萬美玲等19人擬具
transcript.whisperx[18].start 506.499
transcript.whisperx[18].end 513.027
transcript.whisperx[18].text 所以我們要有良心,在這裡,不是只照顧警察、警少年,專門我們都會照顧。謝謝