iVOD / 153734

Field Value
IVOD_ID 153734
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/153734
日期 2024-06-06
會議資料.會議代碼 委員會-11-1-20-16
會議資料.會議代碼:str 第11屆第1會期財政委員會第16次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 16
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第16次全體委員會議
影片種類 Clip
開始時間 2024-06-06T11:23:53+08:00
結束時間 2024-06-06T11:34:58+08:00
影片長度 00:11:05
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0d7b1f4370c473d56f5b8af0e858802e2248f66a23a11b53ee56b966b91e113054c550af5f56c1715ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 11:23:53 - 11:34:58
會議時間 2024-06-06T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第16次全體委員會議(事由:邀請中央銀行楊總裁金龍就「日圓貶值效應會否導致亞洲貨幣競貶,及對台灣經濟影響」進行專題報告,並備質詢;另邀請經濟部列席備詢。 【6月3日及6日二天一次會】)
gazette.lineno 741
gazette.blocks[0][0] 羅委員明才:(11時24分)主席、各位委員、出列席官員,大家好。主席,可不可以邀請楊總裁?
gazette.blocks[1][0] 主席:好,請楊總裁。
gazette.blocks[2][0] 羅委員明才:楊總裁,你好。
gazette.blocks[3][0] 楊總裁金龍:羅委員早。
gazette.blocks[4][0] 羅委員明才:你現在心情還好嗎?
gazette.blocks[5][0] 楊總裁金龍:都好啊!
gazette.blocks[6][0] 羅委員明才:看你這幾年來的表現,就和臺幣對美元的匯率一樣,很穩定。
gazette.blocks[7][0] 楊總裁金龍:我們的匯率是很穩定啦!對,沒有錯。
gazette.blocks[8][0] 羅委員明才:不管環境怎麼變化,你大概都會像小說中的至理名言「他強由他強,清風拂山崗,他恨任他恨,明月照大江。」以前彭淮南是柳樹理論,楊金龍是有一個新的平衡理論,就是不會受環境影響,而且心裡有定見。所以新臺幣對美元的匯率,看起來大概都是持平的,就在你設想的區間,在總裁的防線左右兩邊。貶到最低時大概是多少?
gazette.blocks[9][0] 楊總裁金龍:我們最低好像就是到三十二點六七餘元吧!
gazette.blocks[10][0] 羅委員明才:所以這是一條線。那強的時候呢?
gazette.blocks[11][0] 楊總裁金龍:我們強的時候也是到二十七點六餘元的樣子。
gazette.blocks[12][0] 羅委員明才:27元大概是彭淮南的防線,這二、三十年來,故事不斷在那邊重複演出。
gazette.blocks[13][0] 楊總裁金龍:不過我要向委員報告,確實,匯率本身就是有一個……
gazette.blocks[14][0] 羅委員明才:有好有壞啦!不過基本上本席還是讚佩啦!
gazette.blocks[15][0] 楊總裁金龍:謝謝啦!委員的誇獎,我們真的很受用。
gazette.blocks[16][0] 羅委員明才:也謝謝央行啦!每年都繳了很多錢給國庫。去年繳多少?
gazette.blocks[17][0] 楊總裁金龍:謝謝啦!我們去年繳1,850億元左右。
gazette.blocks[18][0] 羅委員明才:今年呢?
gazette.blocks[19][0] 楊總裁金龍:今年我們的預算因為美國的利率提高,所以我們繳了2,000億元,不過我……
gazette.blocks[20][0] 羅委員明才:增加了?
gazette.blocks[21][0] 楊總裁金龍:對,我們有增加。
gazette.blocks[22][0] 羅委員明才:其實應該不只啦!從央行的外匯存底比重來看的話,現在美元的部位有沒有增加?是六成多嗎?
gazette.blocks[23][0] 楊總裁金龍:當然,我們美元的部位也是時常在檢討。第二個,美元的部位和其他幣別的部位都是上上下下,不過它的上上下下和……
gazette.blocks[24][0] 羅委員明才:是。有沒有六成多?如果和去年比起來,大概……
gazette.blocks[25][0] 楊總裁金龍:大概差不多啦!變化不會很大。
gazette.blocks[26][0] 羅委員明才:日圓的部分,5年前你們有沒有減持?
gazette.blocks[27][0] 楊總裁金龍:有。向委員報告……
gazette.blocks[28][0] 羅委員明才:減持你們就賺到了啊!
gazette.blocks[29][0] 楊總裁金龍:對啦!我們日幣的部位……
gazette.blocks[30][0] 羅委員明才:日幣大概算是雜幣的項目,是不是?因為主要都是美元、歐元。人民幣的部分,你們現在比重大概有多少?
gazette.blocks[31][0] 楊總裁金龍:我們人民幣的比重也不高。
gazette.blocks[32][0] 羅委員明才:也不高啦!大概2%左右。
gazette.blocks[33][0] 楊總裁金龍:我的記憶力稍微有點……不高啦!主要還是美元,其他的加起來還是……
gazette.blocks[34][0] 羅委員明才:記憶突然喪失,消失的暗室。因為日圓現在是歷史的低點,你們是否考慮大概在160元的時候大量買進?其實大家一直在問,奇怪!為什麼……
gazette.blocks[35][0] 楊總裁金龍:我們外匯存底的……
gazette.blocks[36][0] 羅委員明才:五千七百多億元。
gazette.blocks[37][0] 楊總裁金龍:我們有外匯存底的manage管理準則,當然,第一個必須在適當的時間做調整。第二個,調整不能太頻繁。
gazette.blocks[38][0] 羅委員明才:所以日圓的部分呢?
gazette.blocks[39][0] 楊總裁金龍:如果調整太頻繁,市場會覺得中央銀行在市場speculation……
gazette.blocks[40][0] 羅委員明才:總裁,現在和5年前比較,日圓在我們外匯存底的比重,大概下降百分之幾?
gazette.blocks[41][0] 楊總裁金龍:事實上從5年前到目前,大概都很低啦!5年前就已經調整了。
gazette.blocks[42][0] 羅委員明才:恭喜啊!因為現在比重很低,你們會不會考慮在這個時刻調整,也捧場一下,多買一些日圓?因為現在民眾……
gazette.blocks[43][0] 楊總裁金龍:對啦!這個部分我們也在調整。委員,基本上你對manage的準則滿有sense的。
gazette.blocks[44][0] 羅委員明才:本席有自己的見解啦!謝謝總裁抬愛。如果是本席的話,現在就會多換一點日圓,這樣的做法對嗎?因為你一直稱讚我啊!
gazette.blocks[45][0] 楊總裁金龍:我想就個人的理財方式來說是可以的,但是……
gazette.blocks[46][0] 羅委員明才:其實本席覺得分批買進也不錯,因為第一個,日本不會倒嘛!總裁,日本會不會倒?
gazette.blocks[47][0] 楊總裁金龍:應該是不會啦!
gazette.blocks[48][0] 羅委員明才:第二個就是它已經是歷史新低,反正就是加減買啦!因為以前最高的時候,日圓兌美元大概是80元,對不對?
gazette.blocks[49][0] 楊總裁金龍:對,沒有錯。
gazette.blocks[50][0] 羅委員明才:所以相對的,現在的160元很便宜啊!還有一個好處,國人都很喜歡到日本遊玩,所以可以加減買,個人的部分可以比照央行,買一個小水庫、小水位,當你的小孩、家人去日本,例如阿公、阿媽就可以拿一些私房錢給孫子到日本用,這樣也不錯,這是個人理財的部分。
gazette.blocks[51][0] 楊總裁金龍:是,對啦!
gazette.blocks[52][0] 羅委員明才:另外,本席再繞回來經濟發展的問題,是不是可以請經濟部林次長一起上台?
gazette.blocks[53][0] 主席:好,請林次長。
gazette.blocks[54][0] 羅委員明才:請問一下總裁,臺灣會不會像日本一樣有失落的30年?還是要借鏡啦!事實上臺灣不一樣,因為臺灣有護國神山,也因為有護國神山挺住,包括它的產業鏈。請問次長,整個股市如果是一個櫥窗,電子因為它非常的亮麗,占我們經濟發展的比重是多少?
gazette.blocks[55][0] 林次長全能:目前比重應該超過五成以上。
gazette.blocks[56][0] 羅委員明才:所以臺灣的發展和日本是不一樣的,我們是靠50%的電子產業撐住。請問一下次長,現在會不會再多另外一隻腳,就是另外一個護國神山?AI有沒有可能產生效應?
gazette.blocks[57][0] 林次長全能:這個部分是有很大的發展潛力,而且我們的供應鏈能力,也能在這個面向發揮更好的價值。
gazette.blocks[58][0] 羅委員明才:對。本席有看到NVIDIA AI未來的發展,他們的供應廠商,60%、65%都是臺灣的生產鏈。
gazette.blocks[59][0] 林次長全能:是的。
gazette.blocks[60][0] 羅委員明才:本席也問過他們,因為這是滿核心的問題,他們在選擇廠商的vendor code時,主要是以臺灣為主,當然還有日本的少許公司。請問一下次長,臺灣和日本比較的話,臺灣的優勢在哪裡?
gazette.blocks[61][0] 林次長全能:第一個,我們供應鏈聚落的能量比較健全。
gazette.blocks[62][0] 羅委員明才:對。所以黃仁勳Jensen說要來臺灣設廠,你們的態度是否歡迎?
gazette.blocks[63][0] 林次長全能:當然,我們非常歡迎這樣的國際大廠到臺灣,和我們的供應鏈結合,創造更高的價值。
gazette.blocks[64][0] 羅委員明才:是,謝謝。這真的是臺灣人的驕傲,以後不是只有張忠謀。我們希望能多出幾個張忠謀、黃仁勳,各方面的人才要多一點嘛!是不是?
gazette.blocks[65][0] 林次長全能:是的。
gazette.blocks[66][0] 羅委員明才:總裁,你覺得呢?
gazette.blocks[67][0] 楊總裁金龍:委員說的沒有錯。
gazette.blocks[68][0] 羅委員明才:那我要提醒總裁,現在金管會已經在推動虛擬資產的專法,要開始管理了。
gazette.blocks[69][0] 楊總裁金龍:對。
gazette.blocks[70][0] 羅委員明才:我們看到香港、新加坡,現在很多地方的資金都從那裡撤退了,因為他們管理趨於嚴格,所以希望總裁重視,這一塊也許是另外一隻腳,這是關於理財的部分。因為我們的金融占GDP的產值不到6%,在海外的部分,新加坡、香港都超過百分之十幾,所以要拜託你們,在金融管制方面,請總裁準備好,我們希望未來可以取代香港、新加坡,讓臺灣成為大家驕傲的亞洲營運理財中心,好不好?
gazette.blocks[71][0] 楊總裁金龍:謝謝委員的指教,謝謝。
gazette.blocks[72][0] 羅委員明才:可以嗎?
gazette.blocks[73][0] 楊總裁金龍:謝謝。
gazette.blocks[74][0] 羅委員明才:考不考慮以後買比特幣?本席在6,000元的時候和你說過,現在已經7萬元了,聽說還會漲到10萬元。
gazette.blocks[75][0] 楊總裁金龍:謝謝。
gazette.blocks[76][0] 羅委員明才:有沒有可能把虛擬資產納入外匯存底的項目?
gazette.blocks[77][0] 楊總裁金龍:我們會注意它啦!但是目前還沒有這樣的考慮。
gazette.blocks[78][0] 羅委員明才:你們的數位貨幣什麼時候提出?
gazette.blocks[79][0] 楊總裁金龍:我們還是持續在進行。
gazette.blocks[80][0] 羅委員明才:已經開始在做了嗎?
gazette.blocks[81][0] 楊總裁金龍:我們有階段性的計畫,都安排的很好,謝謝你。
gazette.blocks[82][0] 羅委員明才:什麼時候會亮相,並且對外公布?
gazette.blocks[83][0] 楊總裁金龍:我們會報告進度。
gazette.blocks[84][0] 羅委員明才:好,謝謝。
gazette.blocks[85][0] 楊總裁金龍:謝謝。
gazette.blocks[86][0] 主席:非常感謝羅明才召委,也請楊總裁、林次長回座,謝謝。
gazette.blocks[87][0] 主席(羅委員明才):下一位請林楚茵委員質詢。
gazette.agenda.page_end 274
gazette.agenda.meet_id 委員會-11-1-20-16
gazette.agenda.speakers[0] 羅明才
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 郭國文
gazette.agenda.speakers[5] 賴惠員
gazette.agenda.speakers[6] 顏寬恒
gazette.agenda.speakers[7] 李彥秀
gazette.agenda.speakers[8] 王鴻薇
gazette.agenda.speakers[9] 李坤城
gazette.agenda.speakers[10] 黃珊珊
gazette.agenda.speakers[11] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[12] 王世堅
gazette.agenda.speakers[13] 羅明才
gazette.agenda.speakers[14] 林楚茵
gazette.agenda.speakers[15] 廖先翔
gazette.agenda.speakers[16] 謝衣鳯
gazette.agenda.speakers[17] 葉元之
gazette.agenda.speakers[18] 陳玉珍
gazette.agenda.page_start 229
gazette.agenda.meetingDate[0] 2024-06-06
gazette.agenda.gazette_id 1135801
gazette.agenda.agenda_lcidc_ids[0] 1135801_00004
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第16次全體委員會議紀錄
gazette.agenda.content 邀邀請中央銀行楊總裁金龍就「日圓貶值效應會否導致亞洲貨幣競貶,及對台灣經濟影響」進行 專題報告,並備質詢;另邀請經濟部列席備詢
gazette.agenda.agenda_id 1135801_00003
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 1.06034375
transcript.pyannote[0].end 4.84034375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 5.44784375
transcript.pyannote[1].end 7.16909375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 11.80971875
transcript.pyannote[2].end 12.75471875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 12.29909375
transcript.pyannote[3].end 12.70409375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 12.75471875
transcript.pyannote[4].end 12.80534375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 12.80534375
transcript.pyannote[5].end 12.97409375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 12.97409375
transcript.pyannote[6].end 13.51409375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 13.51409375
transcript.pyannote[7].end 15.03284375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 15.28596875
transcript.pyannote[8].end 15.62346875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 16.11284375
transcript.pyannote[9].end 17.12534375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 17.26034375
transcript.pyannote[10].end 23.62221875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 24.31409375
transcript.pyannote[11].end 26.30534375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 25.25909375
transcript.pyannote[12].end 25.84971875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 26.17034375
transcript.pyannote[13].end 27.65534375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 26.60909375
transcript.pyannote[14].end 29.20784375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 27.82409375
transcript.pyannote[15].end 33.69659375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 34.43909375
transcript.pyannote[16].end 35.87346875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 36.63284375
transcript.pyannote[17].end 38.38784375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 38.84346875
transcript.pyannote[18].end 40.54784375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 40.88534375
transcript.pyannote[19].end 42.58971875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 42.85971875
transcript.pyannote[20].end 43.31534375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 43.33221875
transcript.pyannote[21].end 45.45846875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 45.81284375
transcript.pyannote[22].end 47.28096875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 47.28096875
transcript.pyannote[23].end 47.65221875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 47.65221875
transcript.pyannote[24].end 47.68596875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 47.75346875
transcript.pyannote[25].end 48.39471875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 48.79971875
transcript.pyannote[26].end 53.11971875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 53.05221875
transcript.pyannote[27].end 53.08596875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 53.11971875
transcript.pyannote[28].end 53.37284375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 53.35596875
transcript.pyannote[29].end 56.57909375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 56.79846875
transcript.pyannote[30].end 59.85284375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 59.97096875
transcript.pyannote[31].end 71.20971875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 65.65784375
transcript.pyannote[32].end 65.82659375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 71.61471875
transcript.pyannote[33].end 72.20534375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 72.50909375
transcript.pyannote[34].end 74.78721875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 75.74909375
transcript.pyannote[35].end 80.52471875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 80.59221875
transcript.pyannote[36].end 82.71846875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 80.89596875
transcript.pyannote[37].end 82.85346875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 82.85346875
transcript.pyannote[38].end 83.03909375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 83.03909375
transcript.pyannote[39].end 84.65909375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 84.84471875
transcript.pyannote[40].end 89.78909375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 89.26596875
transcript.pyannote[41].end 91.79721875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 92.37096875
transcript.pyannote[42].end 98.36159375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 93.95721875
transcript.pyannote[43].end 94.00784375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 94.02471875
transcript.pyannote[44].end 94.04159375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 97.72034375
transcript.pyannote[45].end 103.49159375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 103.42409375
transcript.pyannote[46].end 108.95909375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 103.82909375
transcript.pyannote[47].end 105.51659375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 105.78659375
transcript.pyannote[48].end 106.20846875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 108.95909375
transcript.pyannote[49].end 115.94534375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 110.14034375
transcript.pyannote[50].end 110.30909375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 113.78534375
transcript.pyannote[51].end 114.59534375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 116.23221875
transcript.pyannote[52].end 118.49346875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 116.48534375
transcript.pyannote[53].end 117.22784375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 118.64534375
transcript.pyannote[54].end 123.58971875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 119.47221875
transcript.pyannote[55].end 120.68721875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 122.83034375
transcript.pyannote[56].end 123.43784375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 124.70346875
transcript.pyannote[57].end 131.31846875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 131.80784375
transcript.pyannote[58].end 145.39221875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 141.59534375
transcript.pyannote[59].end 155.61846875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 155.98971875
transcript.pyannote[60].end 168.40971875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 157.72784375
transcript.pyannote[61].end 158.30159375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 166.63784375
transcript.pyannote[62].end 168.51096875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 168.73034375
transcript.pyannote[63].end 170.46846875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 170.01284375
transcript.pyannote[64].end 175.80096875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 171.51471875
transcript.pyannote[65].end 173.25284375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 175.15971875
transcript.pyannote[66].end 179.88471875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 180.35721875
transcript.pyannote[67].end 182.90534375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 181.31909375
transcript.pyannote[68].end 181.62284375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 181.85909375
transcript.pyannote[69].end 182.71971875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 182.90534375
transcript.pyannote[70].end 184.05284375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 184.42409375
transcript.pyannote[71].end 189.06471875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 185.35221875
transcript.pyannote[72].end 187.05659375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 187.29284375
transcript.pyannote[73].end 191.57909375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 190.44846875
transcript.pyannote[74].end 196.79346875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 197.01284375
transcript.pyannote[75].end 201.16409375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 201.80534375
transcript.pyannote[76].end 202.31159375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 202.31159375
transcript.pyannote[77].end 202.81784375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 202.81784375
transcript.pyannote[78].end 202.86846875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 203.18909375
transcript.pyannote[79].end 205.65284375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 205.88909375
transcript.pyannote[80].end 209.88846875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 210.10784375
transcript.pyannote[81].end 211.27221875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 211.27221875
transcript.pyannote[82].end 213.44909375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 211.39034375
transcript.pyannote[83].end 212.11596875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 213.24659375
transcript.pyannote[84].end 217.33034375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 217.39784375
transcript.pyannote[85].end 226.08846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 221.43096875
transcript.pyannote[86].end 222.74721875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 222.74721875
transcript.pyannote[87].end 222.76409375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 224.24909375
transcript.pyannote[88].end 227.28659375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 227.45534375
transcript.pyannote[89].end 228.18096875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 228.18096875
transcript.pyannote[90].end 234.39096875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 233.19284375
transcript.pyannote[91].end 233.42909375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 235.80846875
transcript.pyannote[92].end 246.22034375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 237.71534375
transcript.pyannote[93].end 238.57596875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 239.16659375
transcript.pyannote[94].end 241.56284375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 245.62971875
transcript.pyannote[95].end 247.21596875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 247.21596875
transcript.pyannote[96].end 252.07596875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 251.63721875
transcript.pyannote[97].end 251.92409375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 252.32909375
transcript.pyannote[98].end 274.60409375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 260.36159375
transcript.pyannote[99].end 261.13784375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 273.60846875
transcript.pyannote[100].end 274.72221875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 274.72221875
transcript.pyannote[101].end 275.02596875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 275.02596875
transcript.pyannote[102].end 283.37909375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 283.69971875
transcript.pyannote[103].end 293.03159375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 290.06159375
transcript.pyannote[104].end 290.80409375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 291.56346875
transcript.pyannote[105].end 292.06971875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 293.03159375
transcript.pyannote[106].end 301.62096875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 296.64284375
transcript.pyannote[107].end 296.96346875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 300.52409375
transcript.pyannote[108].end 316.97721875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 302.44784375
transcript.pyannote[109].end 303.67971875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 307.03784375
transcript.pyannote[110].end 307.45971875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 315.89721875
transcript.pyannote[111].end 322.00596875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 322.39409375
transcript.pyannote[112].end 324.33471875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 324.70596875
transcript.pyannote[113].end 326.17409375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 326.44409375
transcript.pyannote[114].end 333.88596875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 329.16096875
transcript.pyannote[115].end 331.84409375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 332.56971875
transcript.pyannote[116].end 334.02096875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 334.02096875
transcript.pyannote[117].end 334.03784375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 334.03784375
transcript.pyannote[118].end 339.57284375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 339.57284375
transcript.pyannote[119].end 339.62346875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 339.62346875
transcript.pyannote[120].end 340.02846875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 340.02846875
transcript.pyannote[121].end 340.07909375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 340.07909375
transcript.pyannote[122].end 340.09596875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 340.09596875
transcript.pyannote[123].end 340.12971875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 340.12971875
transcript.pyannote[124].end 341.37846875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 341.74971875
transcript.pyannote[125].end 341.96909375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 341.96909375
transcript.pyannote[126].end 342.05346875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 342.05346875
transcript.pyannote[127].end 342.07034375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 342.07034375
transcript.pyannote[128].end 342.15471875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 342.15471875
transcript.pyannote[129].end 342.34034375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 342.34034375
transcript.pyannote[130].end 342.35721875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 342.35721875
transcript.pyannote[131].end 342.44159375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 342.44159375
transcript.pyannote[132].end 342.52596875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 342.52596875
transcript.pyannote[133].end 342.64409375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 342.64409375
transcript.pyannote[134].end 343.79159375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 342.67784375
transcript.pyannote[135].end 348.87096875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 349.27596875
transcript.pyannote[136].end 350.40659375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 350.71034375
transcript.pyannote[137].end 352.66784375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 353.15721875
transcript.pyannote[138].end 353.69721875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 353.96721875
transcript.pyannote[139].end 354.82784375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 355.24971875
transcript.pyannote[140].end 356.00909375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 356.29596875
transcript.pyannote[141].end 356.68409375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 356.68409375
transcript.pyannote[142].end 356.70096875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 356.85284375
transcript.pyannote[143].end 357.73034375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 356.90346875
transcript.pyannote[144].end 366.38721875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 364.91909375
transcript.pyannote[145].end 365.23971875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 366.33659375
transcript.pyannote[146].end 367.01159375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 366.48846875
transcript.pyannote[147].end 366.65721875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 367.01159375
transcript.pyannote[148].end 368.02409375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 368.22659375
transcript.pyannote[149].end 399.90096875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 389.21909375
transcript.pyannote[150].end 389.40471875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 400.25534375
transcript.pyannote[151].end 401.97659375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 403.03971875
transcript.pyannote[152].end 409.30034375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 409.84034375
transcript.pyannote[153].end 410.65034375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 411.35909375
transcript.pyannote[154].end 412.69221875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 413.18159375
transcript.pyannote[155].end 414.93659375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 415.44284375
transcript.pyannote[156].end 421.65284375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 422.53034375
transcript.pyannote[157].end 432.80721875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 433.87034375
transcript.pyannote[158].end 446.99909375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 447.30284375
transcript.pyannote[159].end 451.23471875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 451.85909375
transcript.pyannote[160].end 455.97659375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 455.97659375
transcript.pyannote[161].end 455.99346875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 456.33096875
transcript.pyannote[162].end 456.34784375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 456.34784375
transcript.pyannote[163].end 456.97221875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 456.97221875
transcript.pyannote[164].end 465.83159375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 465.83159375
transcript.pyannote[165].end 465.84846875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 466.03409375
transcript.pyannote[166].end 466.05096875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 466.05096875
transcript.pyannote[167].end 467.02971875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 467.02971875
transcript.pyannote[168].end 473.05409375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 473.27346875
transcript.pyannote[169].end 475.29846875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 475.85534375
transcript.pyannote[170].end 477.35721875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 477.82971875
transcript.pyannote[171].end 478.25159375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 478.80846875
transcript.pyannote[172].end 481.74471875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 482.38596875
transcript.pyannote[173].end 483.68534375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 483.98909375
transcript.pyannote[174].end 486.53721875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 486.82409375
transcript.pyannote[175].end 494.97471875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 494.97471875
transcript.pyannote[176].end 495.27846875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 495.27846875
transcript.pyannote[177].end 495.31221875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 495.91971875
transcript.pyannote[178].end 500.32409375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 502.02846875
transcript.pyannote[179].end 503.05784375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 503.05784375
transcript.pyannote[180].end 503.07471875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 503.36159375
transcript.pyannote[181].end 504.18846875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 504.40784375
transcript.pyannote[182].end 505.42034375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 505.65659375
transcript.pyannote[183].end 506.29784375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 506.87159375
transcript.pyannote[184].end 507.93471875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 508.35659375
transcript.pyannote[185].end 508.37346875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 508.37346875
transcript.pyannote[186].end 510.16221875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 510.53346875
transcript.pyannote[187].end 518.88659375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 519.54471875
transcript.pyannote[188].end 519.56159375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 519.56159375
transcript.pyannote[189].end 519.57846875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 519.57846875
transcript.pyannote[190].end 519.96659375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 519.96659375
transcript.pyannote[191].end 520.03409375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 520.03409375
transcript.pyannote[192].end 526.05846875
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 526.96971875
transcript.pyannote[193].end 527.57721875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 528.25221875
transcript.pyannote[194].end 528.92721875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 529.55159375
transcript.pyannote[195].end 530.95221875
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 531.74534375
transcript.pyannote[196].end 532.11659375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 532.20096875
transcript.pyannote[197].end 533.55096875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 535.35659375
transcript.pyannote[198].end 536.31846875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 536.48721875
transcript.pyannote[199].end 538.27596875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 538.79909375
transcript.pyannote[200].end 540.62159375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 540.73971875
transcript.pyannote[201].end 541.46534375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 540.90846875
transcript.pyannote[202].end 542.32596875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 542.32596875
transcript.pyannote[203].end 545.75159375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 542.98409375
transcript.pyannote[204].end 543.84471875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 545.65034375
transcript.pyannote[205].end 545.70096875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 545.71784375
transcript.pyannote[206].end 545.92034375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 545.92034375
transcript.pyannote[207].end 549.39659375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 549.86909375
transcript.pyannote[208].end 553.39596875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 553.85159375
transcript.pyannote[209].end 554.83034375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 555.31971875
transcript.pyannote[210].end 558.34034375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 558.82971875
transcript.pyannote[211].end 561.27659375
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 561.56346875
transcript.pyannote[212].end 564.55034375
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 564.51659375
transcript.pyannote[213].end 564.85409375
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 564.85409375
transcript.pyannote[214].end 564.87096875
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 564.92159375
transcript.pyannote[215].end 567.53721875
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 568.02659375
transcript.pyannote[216].end 571.95846875
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 572.51534375
transcript.pyannote[217].end 573.84846875
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 573.86534375
transcript.pyannote[218].end 574.25346875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 574.43909375
transcript.pyannote[219].end 575.02971875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 575.04659375
transcript.pyannote[220].end 576.88596875
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 577.34159375
transcript.pyannote[221].end 578.82659375
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 579.38346875
transcript.pyannote[222].end 580.63221875
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 580.96971875
transcript.pyannote[223].end 583.68659375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 583.78784375
transcript.pyannote[224].end 584.04096875
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 583.99034375
transcript.pyannote[225].end 587.78721875
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 588.49596875
transcript.pyannote[226].end 588.85034375
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 589.42409375
transcript.pyannote[227].end 590.72346875
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 591.12846875
transcript.pyannote[228].end 591.82034375
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 592.30971875
transcript.pyannote[229].end 593.62596875
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 593.79471875
transcript.pyannote[230].end 595.12784375
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 595.71846875
transcript.pyannote[231].end 596.17409375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 596.64659375
transcript.pyannote[232].end 597.40596875
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 598.01346875
transcript.pyannote[233].end 598.72221875
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 598.95846875
transcript.pyannote[234].end 599.70096875
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 600.24096875
transcript.pyannote[235].end 602.46846875
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 602.70471875
transcript.pyannote[236].end 605.53971875
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 606.55221875
transcript.pyannote[237].end 612.27284375
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 612.27284375
transcript.pyannote[238].end 612.30659375
transcript.pyannote[239].speaker SPEAKER_00
transcript.pyannote[239].start 612.54284375
transcript.pyannote[239].end 614.93909375
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 616.32284375
transcript.pyannote[240].end 616.44096875
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 616.60971875
transcript.pyannote[241].end 617.67284375
transcript.pyannote[242].speaker SPEAKER_00
transcript.pyannote[242].start 616.82909375
transcript.pyannote[242].end 619.42784375
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 617.95971875
transcript.pyannote[243].end 620.37284375
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 620.37284375
transcript.pyannote[244].end 622.02659375
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 620.38971875
transcript.pyannote[245].end 622.88721875
transcript.pyannote[246].speaker SPEAKER_00
transcript.pyannote[246].start 623.14034375
transcript.pyannote[246].end 625.04721875
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 625.04721875
transcript.pyannote[247].end 627.35909375
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 625.06409375
transcript.pyannote[248].end 627.02159375
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 627.35909375
transcript.pyannote[249].end 627.61221875
transcript.pyannote[250].speaker SPEAKER_02
transcript.pyannote[250].start 627.61221875
transcript.pyannote[250].end 632.55659375
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 632.65784375
transcript.pyannote[251].end 632.70846875
transcript.pyannote[252].speaker SPEAKER_00
transcript.pyannote[252].start 632.70846875
transcript.pyannote[252].end 632.75909375
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 632.75909375
transcript.pyannote[253].end 632.92784375
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 632.92784375
transcript.pyannote[254].end 633.94034375
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 633.94034375
transcript.pyannote[255].end 633.95721875
transcript.pyannote[256].speaker SPEAKER_00
transcript.pyannote[256].start 633.95721875
transcript.pyannote[256].end 633.99096875
transcript.pyannote[257].speaker SPEAKER_02
transcript.pyannote[257].start 633.99096875
transcript.pyannote[257].end 634.02471875
transcript.pyannote[258].speaker SPEAKER_00
transcript.pyannote[258].start 634.02471875
transcript.pyannote[258].end 634.75034375
transcript.pyannote[259].speaker SPEAKER_02
transcript.pyannote[259].start 635.56034375
transcript.pyannote[259].end 637.92284375
transcript.pyannote[260].speaker SPEAKER_00
transcript.pyannote[260].start 637.92284375
transcript.pyannote[260].end 639.54284375
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 640.28534375
transcript.pyannote[261].end 643.13721875
transcript.pyannote[262].speaker SPEAKER_00
transcript.pyannote[262].start 643.13721875
transcript.pyannote[262].end 646.05659375
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 643.42409375
transcript.pyannote[263].end 645.26346875
transcript.pyannote[264].speaker SPEAKER_00
transcript.pyannote[264].start 646.37721875
transcript.pyannote[264].end 647.20409375
transcript.pyannote[265].speaker SPEAKER_02
transcript.pyannote[265].start 647.27159375
transcript.pyannote[265].end 650.83221875
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 651.33846875
transcript.pyannote[266].end 653.86971875
transcript.pyannote[267].speaker SPEAKER_00
transcript.pyannote[267].start 653.05971875
transcript.pyannote[267].end 653.88659375
transcript.pyannote[268].speaker SPEAKER_02
transcript.pyannote[268].start 653.88659375
transcript.pyannote[268].end 653.92034375
transcript.pyannote[269].speaker SPEAKER_00
transcript.pyannote[269].start 653.92034375
transcript.pyannote[269].end 660.33284375
transcript.pyannote[270].speaker SPEAKER_02
transcript.pyannote[270].start 653.97096875
transcript.pyannote[270].end 654.25784375
transcript.pyannote[271].speaker SPEAKER_02
transcript.pyannote[271].start 654.37596875
transcript.pyannote[271].end 655.18596875
transcript.pyannote[272].speaker SPEAKER_02
transcript.pyannote[272].start 655.30409375
transcript.pyannote[272].end 655.67534375
transcript.pyannote[273].speaker SPEAKER_02
transcript.pyannote[273].start 659.42159375
transcript.pyannote[273].end 659.69159375
transcript.whisperx[0].start 1.261
transcript.whisperx[0].end 23.024
transcript.whisperx[0].text 主席各位主列席官員大家好主席各位請楊總裁好請楊總裁楊總裁你好你現在心情還好嗎都好啊我看你這幾年來表現就好像台幣對美元匯率的一樣很穩定
transcript.whisperx[1].start 24.729
transcript.whisperx[1].end 35.276
transcript.whisperx[1].text 我們的匯率是很穩定的,沒有錯啦,我們的匯率是穩定的大概小說中的治理名言就是他搶由他搶
transcript.whisperx[2].start 37.067
transcript.whisperx[2].end 58.81
transcript.whisperx[2].text 親封佛山岡他恨任他恨明月照大江以前彭淮南是柳樹理論我看金龍金龍就有一個新的平衡理論就是不會受環境的影響心裡還是還有定見
transcript.whisperx[3].start 60.211
transcript.whisperx[3].end 74.586
transcript.whisperx[3].text 所以我們看到新台幣對美元的匯率大概都看起來都蠻持平的就在你的區間在總裁的防線左右兩邊大概貶最低意思大概到時候多少
transcript.whisperx[4].start 76.66
transcript.whisperx[4].end 82.366
transcript.whisperx[4].text 我們到最低好像是就32.67幾吧那搶的時候呢我們搶的時候也到27.66幾27大概是澎海南防線
transcript.whisperx[5].start 92.589
transcript.whisperx[5].end 112.342
transcript.whisperx[5].text 這個大概就二三十年了這個故事不斷在那邊就重複的演出不過我跟委員報告是確實匯率它本身它就是有一個有好有壞不過基本上我還是很讚佩啦謝謝啦謝謝委員真的委員的誇獎我們真的就很受用因為謝謝央行每年都
transcript.whisperx[6].start 120.988
transcript.whisperx[6].end 121.389
transcript.whisperx[6].text 我們去年繳1850億左右
transcript.whisperx[7].start 131.997
transcript.whisperx[7].end 155.328
transcript.whisperx[7].text 今年我們的預算因為美國的利率提高所以我們就繳了2000億其實應該不止因為從央行的外匯存體你的比重來看的話大概外匯存體的比重美元的部位現在有沒有增加
transcript.whisperx[8].start 156.038
transcript.whisperx[8].end 179.737
transcript.whisperx[8].text 我們美元的部位呢當然啦就是說美元的部位我們都也是時常在檢討第二個呢美元的部位跟其他幣別的部位呢也都說上上下下啦不過跟去年比起來的話大概是差不多啦大概差不多也不會說變化很大日圓的部分在五年前你有沒有減持啊
transcript.whisperx[9].start 180.407
transcript.whisperx[9].end 182.549
transcript.whisperx[9].text 人民幣的部分手上現在大概比重有多少?
transcript.whisperx[10].start 202.277
transcript.whisperx[10].end 216.869
transcript.whisperx[10].text 人民幣人民幣的比重是也不高也不高大概2%左右我的記憶力也稍微有一點不高
transcript.whisperx[11].start 217.529
transcript.whisperx[11].end 233.756
transcript.whisperx[11].text 主要的還是 主要的還是美元啦美元啦 其他的加起來的話都還是日圓喔 考不考慮在現在歷史的低點 你到大概160的時候 你就大量買進啊
transcript.whisperx[12].start 236.414
transcript.whisperx[12].end 242.176
transcript.whisperx[12].text 我跟委員報告就是說我們外匯存底的一個管理的準則當然我們也會就是說我們必須要在適當的時間做調整第二個呢 你的調整就是說不能太頻繁
transcript.whisperx[13].start 265.521
transcript.whisperx[13].end 282.762
transcript.whisperx[13].text 對所以日圓的部分你的調整如果說太頻繁的時候呢人家市場會覺得就是說中央銀行在市場所以現在跟5年前比日圓的比重我們外匯整體的比重下降大概幾%
transcript.whisperx[14].start 286.925
transcript.whisperx[14].end 303.012
transcript.whisperx[14].text 從5年前大概就到目前都很低啦5年前就已經調整了那恭喜啊你現在很低喔你會考慮在這個時刻那調整一下也捧場一下多買一些日圓這個就是說我們在調整對啦那個委員的這個就是說
transcript.whisperx[15].start 310.095
transcript.whisperx[15].end 310.115
transcript.whisperx[15].text 韓國瑜議員
transcript.whisperx[16].start 340.496
transcript.whisperx[16].end 354.649
transcript.whisperx[16].text 總裁,日本會不會倒?應該是不會啦所以日本不會倒第二個就是歷史的新低反正就是加減賣加減換因為以前最高的時候日圓對美的大概80塊
transcript.whisperx[17].start 356.491
transcript.whisperx[17].end 373.824
transcript.whisperx[17].text 對,沒有錯所以你現在相對的一百六十塊很便宜那還有一個好處就是國人都很喜歡去日本去遊玩你就是部分當作你個人的好像央行一樣比照的一個小水庫
transcript.whisperx[18].start 374.665
transcript.whisperx[18].end 374.945
transcript.whisperx[18].text 請問一下總裁
transcript.whisperx[19].start 403.086
transcript.whisperx[19].end 432.646
transcript.whisperx[19].text 台灣大家很想說會不會是像日本一樣失落的30年借鏡那事實上台灣不一樣我們台灣有護國神山我們台灣因為這樣護國神山挺住他的產業鏈請問這個次長整個股市如果是一個櫥窗電子占我們經濟發展的比重因為他非常的亮麗大概比重有多少
transcript.whisperx[20].start 434.082
transcript.whisperx[20].end 455.392
transcript.whisperx[20].text 我想目前的比重應該有超過五成以上五成所以台灣的發展事實上跟日本是不一樣我們是靠50%電子方面撐在那個地方現在請問一下次長會不會再多另外一隻腳另外一個護國神山AI有沒有可能產生
transcript.whisperx[21].start 457.417
transcript.whisperx[21].end 476.665
transcript.whisperx[21].text 我想這個部分是有很大的一個這個發展的潛力而且我們的這個供應鏈的能力也可以在這個面向來發揮更好的價值對我看到NVIDIA他AI未來的發展的一些供應廠商但百分之六十六十五都是台灣的生產鏈
transcript.whisperx[22].start 478.886
transcript.whisperx[22].end 499.821
transcript.whisperx[22].text 因為我有問他,我問他說因為這蠻核心的他們在選擇就是廠商的vendor code裡面最重要他以台灣為主當然還有日本少許那請問一下次長台灣跟日本比較的話台灣的優勢在哪裡第一個我們的供應鏈的一個這個聚落的能量比較健全
transcript.whisperx[23].start 502.589
transcript.whisperx[23].end 530.747
transcript.whisperx[23].text 所以黃仁勳先生他說要來台灣設廠你的態度歡不歡迎當然我們是非常非常歡迎這樣的一個國際的大廠到台灣來然後跟我們的供應鏈結合創造更高的價值是謝謝這個真的是台灣人的驕傲以後不是只有張宗謀我們希望多出幾個張宗謀黃仁勳各方面多一點嘛
transcript.whisperx[24].start 531.792
transcript.whisperx[24].end 532.533
transcript.whisperx[24].text 委員說的沒有錯啊
transcript.whisperx[25].start 538.854
transcript.whisperx[25].end 567.05
transcript.whisperx[25].text 那你要按那個聲音委員說的沒有錯那我要提醒總裁還有一個現在金管會已經在推動虛擬資產的專法要開始管理了我們看到香港新加坡很多地方現在的資金都撤退因為他們管理區域嚴格希望總裁這一塊
transcript.whisperx[26].start 568.089
transcript.whisperx[26].end 587.232
transcript.whisperx[26].text 也許是另外一個理財的另外一個一隻腳會出現因為我們金融相對GDP產值就不到6%在海外的部分新加坡香港都超過十幾%所以拜託在金融管制方面
transcript.whisperx[27].start 589.667
transcript.whisperx[27].end 605.374
transcript.whisperx[27].text 請總裁要準備好我們希望台灣未來的發展是可以取代香港取代新加坡讓台灣成為世界上大家驕傲的亞洲營運理財中心好不好
transcript.whisperx[28].start 609.122
transcript.whisperx[28].end 634.509
transcript.whisperx[28].text 謝謝委員的指教 謝謝可以嗎謝謝考不考慮以後買比特幣我6千塊跟你講過現在已經7萬了聽說還會漲到10萬謝謝 謝謝有沒有可能把虛擬資產納入外匯全體的項目到目前為止我們會注意它但是目前都還沒有這樣的一個考慮的那你的數字貨幣什麼時候提出
transcript.whisperx[29].start 635.975
transcript.whisperx[29].end 659.624
transcript.whisperx[29].text 我們還是持續在進行已經開始在做了嗎我們都有階段性我們都安排得很好這個階段什麼時候會亮相對外公布我們會報告我們的進度我們會報告我們的進度謝謝非常感謝羅明才召委也請楊總裁林次長回座謝謝