iVOD / 153399

Field Value
IVOD_ID 153399
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/153399
日期 2024-05-30
會議資料.會議代碼 委員會-11-1-20-15
會議資料.會議代碼:str 第11屆第1會期財政委員會第15次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 15
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第15次全體委員會議
影片種類 Clip
開始時間 2024-05-30T11:50:03+08:00
結束時間 2024-05-30T12:01:26+08:00
影片長度 00:11:23
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/bbbc431469b8aebaec0db872aa51cd134622ddde1e3527b9446d6a815e9137447884b307e7568acc5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 11:50:03 - 12:01:26
會議時間 2024-05-30T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第15次全體委員會議(事由:邀請財政部莊部長翠雲、金融監督管理委員會彭主任委員金隆率所屬相關單位就「如何精進ESG制度評鑑、永續報告書及公司治理評鑑制度,並導引金融機構落實放貸及貸後管理工作」進行專題報告,並備質詢。)
gazette.lineno 761
gazette.blocks[0][0] 羅委員明才:(11時49分)主席、各位委員、出列席官員,大家好。有請彭主委和莊部長。
gazette.blocks[1][0] 主席:有請彭主委、莊部長。
gazette.blocks[2][0] 莊部長翠雲:委員好。
gazette.blocks[3][0] 羅委員明才:部長好,其實我們都希望ESG永續的發展,但是在普惠金融這一塊,我想最近很多委員也跟本席一樣非常關心,我們發現整個金融的發展和布局,大概總歸來講就是肥了大企業,瘦了小老百姓。的確,很多的民眾因為M型化社會的來臨,辛苦了非常多,舉個例子,股市現在都已經漲到2萬點,站穩2萬多點,可是真正賺錢的行業大概百分比有多少,你們有沒有算過?當股市到2萬點的時候,我們發現傳產的一些特別傳統的夕陽產業也好,或者過去即將要淘汰的產業也好,以前是毛三到四,現在不要虧錢就不得了了。不曉得主委有沒有發現這樣的情況?
gazette.blocks[4][0] 彭主任委員金隆:我了解一下狀況。
gazette.blocks[5][0] 羅委員明才:因為主委剛上任,其實身負重任,我們希望社會和諧,永續是把國家的資源平均照顧到每個人身上,我知道很辛苦,企業也是講求利潤,但是不要忘記了,沒有過去的努力、沒有過去的農民、沒有過去的傳統產業撐起臺灣一片天,這些好的電子公司也不會有今天的成就啊!當我們看到AI時代來臨時,我們看到Jensen黃回到臺灣,我們看到很感動,因為他是臺灣囝仔、臺南人,不只他,蘇姿丰、第4名的Charles(梁見後),全部都是臺灣人,臺北工專畢業的,這都不容易,但是提醒主委和部長,當他們撐起一片天,總市值接近3兆美金的時候,我們要主動的跟他們聯絡,請他們有機會不要忘了臺灣這個地方,生他、養他、育他的地方,多多給臺灣機會,特別應該多給臺灣的年青人機會。請問部長,八大公股銀行裡面,平均年齡是多少?
gazette.blocks[6][0] 莊部長翠雲:平均年齡我手邊目前沒有資料,會後送給委員。
gazette.blocks[7][0] 羅委員明才:這也是請兩位上來的原因之一,我們一些公股銀行不斷老化,呈現的就是老葉凋零,都是一些老人,反而我們看到一些新興的金融產業年青人很多,包括電商交易也好,包括FinTech,沙盒裡面都是一些年青人,可是我發現政府政策都是導入過去的老思維比較多,過去怎麼做,就是照本宣科。所有的銀行董、總,永遠都沒有求新求變,更遑論永續經營的思想。請教主委,國外的數據來說,整個GDP裡面金融的分配占比大概是怎麼樣?
gazette.blocks[8][0] 彭主任委員金隆:我所掌握的資料,臺灣現在大概占GDP的6%左右,加上其他周邊可能將近2位數。
gazette.blocks[9][0] 羅委員明才:所以從2位數的成長我們就發現臺灣的金融要加油。莊部長,金融營業稅從5%調降到2%,或者外界解讀的3%,什麼時候開始推動?
gazette.blocks[10][0] 莊部長翠雲:金融營業稅的部分其實就是銀行業和保險業的本業部分,其他的部分目前大致都是2%,至於這兩業要不要調整,我們跟金管會都在充分討論當中。
gazette.blocks[11][0] 羅委員明才:你們兩位現在都在,你們馬上討論啊!那麼簡單,就是要降到3%或2%,你們彼此有沒有加LINE?
gazette.blocks[12][0] 莊部長翠雲:我們會……
gazette.blocks[13][0] 羅委員明才:你們把所有數字一傳,那麼大的官員見面就是政策方向,要不要定案、省下來的稅金要做什麼使用、是不是多加強整個金融人員的訓練,或者多多鼓勵銀行加薪。
gazette.blocks[14][0] 莊部長翠雲:委員的建議很好,我們都會納入考量。
gazette.blocks[15][0] 羅委員明才:剛剛有提到華南金控也好、合庫金控也好,它們在公股銀行表現算中上、前段班,可是你知道它們跟富邦、國泰和一些外商銀行的薪水差了多少?舉例來說,像合庫董事長1個月薪水大概多少?
gazette.blocks[16][0] 莊部長翠雲:我不曉得他1個月薪水多少。
gazette.blocks[17][0] 羅委員明才:他人在啊!你馬上問就知道了。你不知道,那我請教你,星展銀行新加坡的總經理、董事長1個月薪水多少?
gazette.blocks[18][0] 莊部長翠雲:一定比我們高。
gazette.blocks[19][0] 羅委員明才:高多少?
gazette.blocks[20][0] 莊部長翠雲:不知道。
gazette.blocks[21][0] 羅委員明才:你要知道整個市場的變化,才知道應該怎麼選任新的人來擔任新的事務。部長,最近已經到6、7月,公股銀行有幾家準備要進行董事長、總經理的改選?
gazette.blocks[22][0] 莊部長翠雲:今年會有3家。
gazette.blocks[23][0] 羅委員明才:哪3家?
gazette.blocks[24][0] 莊部長翠雲:兆豐、第一和臺企銀會改選。
gazette.blocks[25][0] 羅委員明才:會不會換人?
gazette.blocks[26][0] 莊部長翠雲:它們會在6月21日召開股東會。
gazette.blocks[27][0] 羅委員明才:已經到了啊!再過幾天就端午節了。
gazette.blocks[28][0] 莊部長翠雲:也跟委員報告,在金融機構裡面,我們要有相當的資歷、相當的經驗來帶領我們公股行庫的經營,當然我們對新血也非常重視,我們也都會吸收多一些新血,讓更有專業、更有活力的年青人可以進到公股金融事業,我覺得這兩方面都不可偏廢,兩個都非常重要,我們的公股金融事業在創新思維上也不會落後。
gazette.blocks[29][0] 羅委員明才:剛講的這3家金控公司董總會不會換人?
gazette.blocks[30][0] 莊部長翠雲:第一,名單先提列出來,到時候還要等大會決議。
gazette.blocks[31][0] 羅委員明才:你能不能把名單讓我看一下?
gazette.blocks[32][0] 莊部長翠雲:可以,都有公告啊!
gazette.blocks[33][0] 羅委員明才:請國會聯絡人拿給我。
gazette.blocks[34][0] 莊部長翠雲:會後也可以提供給委員,沒問題。
gazette.blocks[35][0] 羅委員明才:兆豐表現得好不好?
gazette.blocks[36][0] 莊部長翠雲:兆豐表現得不錯。
gazette.blocks[37][0] 羅委員明才:表現得好,需要把他換掉嗎?
gazette.blocks[38][0] 莊部長翠雲:有提名單,目前還是林董事長。
gazette.blocks[39][0] 羅委員明才:林董會繼續做?
gazette.blocks[40][0] 莊部長翠雲:這個部分還是要等到整個大會……
gazette.blocks[41][0] 羅委員明才:一銀的金控董事長呢?
gazette.blocks[42][0] 莊部長翠雲:第一金控目前是邱董事長。
gazette.blocks[43][0] 羅委員明才:表現得好不好?
gazette.blocks[44][0] 莊部長翠雲:也很好。
gazette.blocks[45][0] 羅委員明才:你有沒有問他要不要繼續擔任?
gazette.blocks[46][0] 莊部長翠雲:我沒有問他。
gazette.blocks[47][0] 羅委員明才:他也在,你馬上問一下。時間暫停,問一下,還是等一下再問?還有哪一家?
gazette.blocks[48][0] 莊部長翠雲:等一下再問,他上來是要回答委員問題,不是回答我的問題。
gazette.blocks[49][0] 羅委員明才:人事是你決定,如果我決定,我馬上就說繼續留任,因為他以前在新加坡待過,而且表現也非常好,非常的圓融,企業大家都很稱讚他。
gazette.blocks[50][0] 莊部長翠雲:謝謝委員的肯定,他表現很好。
gazette.blocks[51][0] 羅委員明才:而且賺錢賺很多,一銀旗下一銀證券都已經破紀錄,EPS都創新高,都很好的人選。還有哪一家?
gazette.blocks[52][0] 莊部長翠雲:臺企銀。
gazette.blocks[53][0] 羅委員明才:臺企銀董事長是誰?
gazette.blocks[54][0] 莊部長翠雲:劉董事長。
gazette.blocks[55][0] 羅委員明才:總經理做的好不好?
gazette.blocks[56][0] 莊部長翠雲:他們都有非常豐富的經驗。
gazette.blocks[57][0] 羅委員明才:臺企銀過去快要瀕臨7塊、6塊,已經是10塊保衛戰,你知道現在漲到多少錢?
gazette.blocks[58][0] 莊部長翠雲:去年的表現也非常好。
gazette.blocks[59][0] 羅委員明才:好得不得了,以前林謙浩每天沒日沒夜的工作,到了10點,我問他為什麼還不下班?他說他一定要把臺企銀帶動起來,所以當林董事長調到合庫,因為太累了生病而過世,我心裡覺得非常捨不得。
gazette.blocks[60][0] 莊部長翠雲:是,非常遺憾。
gazette.blocks[61][0] 羅委員明才:拜託部長,好的人選要多多鼓勵,鼓勵他們要多栽培一些年青人。
gazette.blocks[62][0] 莊部長翠雲:會的。
gazette.blocks[63][0] 羅委員明才:先讓平均年齡低一點,我認識的金融機構有一家平均年齡居然才27、28歲,不過是電商。主委,我們把門打開,你第一天來的時候大家寄予眾望,希望你帶動整個產業蓬勃發展,過去大概幾個字可以形容,保守有餘,開創不足,希望在主委的領導之下,可以讓大家看到亮眼的成果,好不好?謝謝。
gazette.blocks[64][0] 莊部長翠雲:謝謝委員。
gazette.blocks[65][0] 主席:謝謝羅明才委員的質詢。
gazette.blocks[65][1] 接著請陳玉珍委員質詢,我們也開放現場用餐。
gazette.agenda.page_end 274
gazette.agenda.meet_id 委員會-11-1-20-15
gazette.agenda.speakers[0] 郭國文
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 王鴻薇
gazette.agenda.speakers[5] 顏寬恒
gazette.agenda.speakers[6] 賴惠員
gazette.agenda.speakers[7] 李坤城
gazette.agenda.speakers[8] 李彥秀
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[11] 王世堅
gazette.agenda.speakers[12] 羅明才
gazette.agenda.speakers[13] 陳玉珍
gazette.agenda.speakers[14] 黃國昌
gazette.agenda.speakers[15] 鍾佳濱
gazette.agenda.speakers[16] 林楚茵
gazette.agenda.speakers[17] 邱志偉
gazette.agenda.speakers[18] 張智倫
gazette.agenda.speakers[19] 楊瓊瓔
gazette.agenda.speakers[20] 蔡易餘
gazette.agenda.page_start 209
gazette.agenda.meetingDate[0] 2024-05-30
gazette.agenda.gazette_id 1135401
gazette.agenda.agenda_lcidc_ids[0] 1135401_00009
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第15次全體委員會議紀錄
gazette.agenda.content 邀請財政部莊部長翠雲、金融監督管理委員會彭主任委員金隆率所屬相關單位就「如何精進 ESG 制度評鑑,並導引金融機構落實放貸及貸後管理工作」進行專題報告,並備質詢
gazette.agenda.agenda_id 1135401_00010
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.06471875
transcript.pyannote[0].end 1.66784375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 6.52784375
transcript.pyannote[1].end 7.03409375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 8.02971875
transcript.pyannote[2].end 8.60346875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 9.39659375
transcript.pyannote[3].end 13.83471875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 14.39159375
transcript.pyannote[4].end 18.44159375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 18.61034375
transcript.pyannote[5].end 23.90909375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 24.87096875
transcript.pyannote[6].end 28.53284375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 29.05596875
transcript.pyannote[7].end 29.57909375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 30.11909375
transcript.pyannote[8].end 31.14846875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 31.53659375
transcript.pyannote[9].end 33.42659375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 34.25346875
transcript.pyannote[10].end 35.87346875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 36.63284375
transcript.pyannote[11].end 37.13909375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 38.03346875
transcript.pyannote[12].end 42.33659375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 43.12971875
transcript.pyannote[13].end 44.74971875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 45.61034375
transcript.pyannote[14].end 46.30221875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 47.39909375
transcript.pyannote[15].end 47.77034375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 48.37784375
transcript.pyannote[16].end 49.17096875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 49.55909375
transcript.pyannote[17].end 50.31846875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 50.63909375
transcript.pyannote[18].end 54.04784375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 54.38534375
transcript.pyannote[19].end 57.28784375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 57.50721875
transcript.pyannote[20].end 60.29159375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 61.72596875
transcript.pyannote[21].end 63.70034375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 64.40909375
transcript.pyannote[22].end 65.38784375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 66.02909375
transcript.pyannote[23].end 67.49721875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 68.15534375
transcript.pyannote[24].end 68.91471875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 69.25221875
transcript.pyannote[25].end 69.85971875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 70.09596875
transcript.pyannote[26].end 70.82159375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 71.19284375
transcript.pyannote[27].end 72.01971875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 72.40784375
transcript.pyannote[28].end 73.31909375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 74.17971875
transcript.pyannote[29].end 77.13284375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 78.09471875
transcript.pyannote[30].end 80.52471875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 81.01409375
transcript.pyannote[31].end 82.73534375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 83.89971875
transcript.pyannote[32].end 85.48596875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 85.55346875
transcript.pyannote[33].end 87.19034375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 89.78909375
transcript.pyannote[34].end 91.74659375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 92.79284375
transcript.pyannote[35].end 96.99471875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 97.56846875
transcript.pyannote[36].end 100.38659375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 101.07846875
transcript.pyannote[37].end 101.53409375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 101.83784375
transcript.pyannote[38].end 102.83346875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 102.96846875
transcript.pyannote[39].end 104.80784375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 105.39846875
transcript.pyannote[40].end 107.49096875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 109.88721875
transcript.pyannote[41].end 110.76471875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 111.38909375
transcript.pyannote[42].end 112.75596875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 114.03846875
transcript.pyannote[43].end 114.51096875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 114.98346875
transcript.pyannote[44].end 115.74284375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 116.16471875
transcript.pyannote[45].end 122.88096875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 123.69096875
transcript.pyannote[46].end 125.95221875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 126.35721875
transcript.pyannote[47].end 128.16284375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 129.20909375
transcript.pyannote[48].end 130.13721875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 130.47471875
transcript.pyannote[49].end 131.55471875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 131.80784375
transcript.pyannote[50].end 132.78659375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 133.79909375
transcript.pyannote[51].end 134.62596875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 134.96346875
transcript.pyannote[52].end 135.50346875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 135.97596875
transcript.pyannote[53].end 136.36409375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 136.70159375
transcript.pyannote[54].end 138.20346875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 138.89534375
transcript.pyannote[55].end 140.12721875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 141.15659375
transcript.pyannote[56].end 141.88221875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 142.18596875
transcript.pyannote[57].end 143.58659375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 144.22784375
transcript.pyannote[58].end 145.03784375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 145.56096875
transcript.pyannote[59].end 147.61971875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 148.12596875
transcript.pyannote[60].end 150.47159375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 151.14659375
transcript.pyannote[61].end 154.11659375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 155.01096875
transcript.pyannote[62].end 155.93909375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 157.17096875
transcript.pyannote[63].end 157.72784375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 158.23409375
transcript.pyannote[64].end 159.65159375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 160.91721875
transcript.pyannote[65].end 162.95909375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 163.60034375
transcript.pyannote[66].end 164.83221875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 165.50721875
transcript.pyannote[67].end 168.56159375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 169.69221875
transcript.pyannote[68].end 171.91971875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 172.71284375
transcript.pyannote[69].end 176.18909375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 177.26909375
transcript.pyannote[70].end 179.44596875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 180.03659375
transcript.pyannote[71].end 182.11221875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 182.83784375
transcript.pyannote[72].end 183.81659375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 184.08659375
transcript.pyannote[73].end 186.63471875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 187.98471875
transcript.pyannote[74].end 188.38971875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 189.09846875
transcript.pyannote[75].end 189.48659375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 189.97596875
transcript.pyannote[76].end 191.30909375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 192.00096875
transcript.pyannote[77].end 194.17784375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 194.36346875
transcript.pyannote[78].end 196.21971875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 198.27846875
transcript.pyannote[79].end 204.10034375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 204.42096875
transcript.pyannote[80].end 207.66096875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 208.30221875
transcript.pyannote[81].end 210.02346875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 210.52971875
transcript.pyannote[82].end 212.28471875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 213.48284375
transcript.pyannote[83].end 214.42784375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 215.20409375
transcript.pyannote[84].end 215.74409375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 216.63846875
transcript.pyannote[85].end 217.88721875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 218.83221875
transcript.pyannote[86].end 219.81096875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 221.07659375
transcript.pyannote[87].end 223.06784375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 223.60784375
transcript.pyannote[88].end 224.90721875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 225.66659375
transcript.pyannote[89].end 226.91534375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 227.89409375
transcript.pyannote[90].end 229.32846875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 230.12159375
transcript.pyannote[91].end 230.62784375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 231.50534375
transcript.pyannote[92].end 232.09596875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 233.47971875
transcript.pyannote[93].end 235.92659375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 236.60159375
transcript.pyannote[94].end 237.42846875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 238.54221875
transcript.pyannote[95].end 240.24659375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 241.09034375
transcript.pyannote[96].end 242.62596875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 242.87909375
transcript.pyannote[97].end 244.29659375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 245.12346875
transcript.pyannote[98].end 246.23721875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 246.79409375
transcript.pyannote[99].end 248.14409375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 248.86971875
transcript.pyannote[100].end 249.84846875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 250.15221875
transcript.pyannote[101].end 251.21534375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 252.00846875
transcript.pyannote[102].end 252.49784375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 252.97034375
transcript.pyannote[103].end 254.48909375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 255.87284375
transcript.pyannote[104].end 256.51409375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 257.52659375
transcript.pyannote[105].end 259.53471875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 260.44596875
transcript.pyannote[106].end 260.86784375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 261.54284375
transcript.pyannote[107].end 262.57221875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 264.19221875
transcript.pyannote[108].end 265.79534375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 266.89221875
transcript.pyannote[109].end 268.27596875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 268.76534375
transcript.pyannote[110].end 269.59221875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 269.74409375
transcript.pyannote[111].end 270.77346875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 271.38096875
transcript.pyannote[112].end 272.39346875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 273.59159375
transcript.pyannote[113].end 282.19784375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 278.67096875
transcript.pyannote[114].end 278.72159375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 282.23159375
transcript.pyannote[115].end 282.26534375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 282.26534375
transcript.pyannote[116].end 282.28221875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 282.28221875
transcript.pyannote[117].end 282.31596875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 282.31596875
transcript.pyannote[118].end 283.80096875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 283.96971875
transcript.pyannote[119].end 287.09159375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 287.42909375
transcript.pyannote[120].end 289.94346875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 291.25971875
transcript.pyannote[121].end 291.74909375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 293.28471875
transcript.pyannote[122].end 293.79096875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 294.83721875
transcript.pyannote[123].end 295.90034375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 296.33909375
transcript.pyannote[124].end 297.43596875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 297.87471875
transcript.pyannote[125].end 299.19096875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 299.42721875
transcript.pyannote[126].end 300.13596875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 300.64221875
transcript.pyannote[127].end 301.31721875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 301.77284375
transcript.pyannote[128].end 304.01721875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 304.55721875
transcript.pyannote[129].end 306.04221875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 306.48096875
transcript.pyannote[130].end 306.95346875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 307.52721875
transcript.pyannote[131].end 323.64284375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 312.97784375
transcript.pyannote[132].end 313.11284375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 313.12971875
transcript.pyannote[133].end 313.23096875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 323.84534375
transcript.pyannote[134].end 327.33846875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 327.42284375
transcript.pyannote[135].end 327.45659375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 327.45659375
transcript.pyannote[136].end 327.57471875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 327.57471875
transcript.pyannote[137].end 327.69284375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 327.69284375
transcript.pyannote[138].end 327.96284375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 327.96284375
transcript.pyannote[139].end 345.17534375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 344.63534375
transcript.pyannote[140].end 345.36096875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 345.24284375
transcript.pyannote[141].end 356.63346875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 351.52034375
transcript.pyannote[142].end 351.62159375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 356.51534375
transcript.pyannote[143].end 356.80221875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 356.68409375
transcript.pyannote[144].end 360.17721875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 360.17721875
transcript.pyannote[145].end 365.83034375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 360.90284375
transcript.pyannote[146].end 361.54409375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 364.27784375
transcript.pyannote[147].end 368.24346875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 368.56409375
transcript.pyannote[148].end 369.94784375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 370.31909375
transcript.pyannote[149].end 373.35659375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 373.69409375
transcript.pyannote[150].end 374.26784375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 374.63909375
transcript.pyannote[151].end 375.70221875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 376.22534375
transcript.pyannote[152].end 377.49096875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 378.31784375
transcript.pyannote[153].end 379.21221875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 379.73534375
transcript.pyannote[154].end 381.13596875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 381.50721875
transcript.pyannote[155].end 384.88221875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 385.48971875
transcript.pyannote[156].end 386.33346875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 387.39659375
transcript.pyannote[157].end 387.91971875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 388.56096875
transcript.pyannote[158].end 388.96596875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 389.28659375
transcript.pyannote[159].end 393.35346875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 393.72471875
transcript.pyannote[160].end 396.08721875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 395.68221875
transcript.pyannote[161].end 397.85909375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 399.64784375
transcript.pyannote[162].end 407.46096875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 407.57909375
transcript.pyannote[163].end 409.28346875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 409.31721875
transcript.pyannote[164].end 409.92471875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 410.32971875
transcript.pyannote[165].end 411.88221875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 412.77659375
transcript.pyannote[166].end 413.33346875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 414.37971875
transcript.pyannote[167].end 417.07971875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 417.55221875
transcript.pyannote[168].end 424.33596875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 424.65659375
transcript.pyannote[169].end 427.20471875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 427.54221875
transcript.pyannote[170].end 428.55471875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 428.79096875
transcript.pyannote[171].end 429.95534375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 430.30971875
transcript.pyannote[172].end 431.79471875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 431.96346875
transcript.pyannote[173].end 432.97596875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 433.61721875
transcript.pyannote[174].end 434.71409375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 435.30471875
transcript.pyannote[175].end 435.81096875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 436.36784375
transcript.pyannote[176].end 442.40909375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 438.52784375
transcript.pyannote[177].end 439.35471875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 441.61596875
transcript.pyannote[178].end 442.83096875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 442.99971875
transcript.pyannote[179].end 443.80971875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 443.96159375
transcript.pyannote[180].end 443.97846875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 443.97846875
transcript.pyannote[181].end 444.24846875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 444.24846875
transcript.pyannote[182].end 445.29471875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 444.28221875
transcript.pyannote[183].end 444.67034375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 445.29471875
transcript.pyannote[184].end 445.34534375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 445.34534375
transcript.pyannote[185].end 445.42971875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 445.42971875
transcript.pyannote[186].end 445.48034375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 445.48034375
transcript.pyannote[187].end 446.77971875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 445.51409375
transcript.pyannote[188].end 446.32409375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 446.96534375
transcript.pyannote[189].end 454.00221875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 453.51284375
transcript.pyannote[190].end 454.77846875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 454.76159375
transcript.pyannote[191].end 490.40159375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 456.31409375
transcript.pyannote[192].end 458.96346875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 487.90409375
transcript.pyannote[193].end 490.38471875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 490.40159375
transcript.pyannote[194].end 490.41846875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 490.41846875
transcript.pyannote[195].end 490.50284375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 490.50284375
transcript.pyannote[196].end 490.51971875
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 491.11034375
transcript.pyannote[197].end 493.52346875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 493.89471875
transcript.pyannote[198].end 499.61534375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 499.59846875
transcript.pyannote[199].end 501.28596875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 501.37034375
transcript.pyannote[200].end 503.31096875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 503.44596875
transcript.pyannote[201].end 508.54221875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 503.61471875
transcript.pyannote[202].end 507.69846875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 507.95159375
transcript.pyannote[203].end 509.92596875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 510.26346875
transcript.pyannote[204].end 513.63846875
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 512.60909375
transcript.pyannote[205].end 515.83221875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 516.13596875
transcript.pyannote[206].end 523.84784375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 524.13471875
transcript.pyannote[207].end 525.75471875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 525.92346875
transcript.pyannote[208].end 526.49721875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 526.22721875
transcript.pyannote[209].end 527.03721875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 527.86409375
transcript.pyannote[210].end 530.69909375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 529.78784375
transcript.pyannote[211].end 533.24721875
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 532.04909375
transcript.pyannote[212].end 536.09909375
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 536.16659375
transcript.pyannote[213].end 537.09471875
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 537.19596875
transcript.pyannote[214].end 538.09034375
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 537.92159375
transcript.pyannote[215].end 541.17846875
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 540.53721875
transcript.pyannote[216].end 542.79846875
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 542.44409375
transcript.pyannote[217].end 546.47721875
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 544.01346875
transcript.pyannote[218].end 545.02596875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 547.33784375
transcript.pyannote[219].end 548.51909375
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 548.97471875
transcript.pyannote[220].end 549.32909375
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 549.32909375
transcript.pyannote[221].end 550.61159375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 549.66659375
transcript.pyannote[222].end 553.90221875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 553.90221875
transcript.pyannote[223].end 558.86346875
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 558.89721875
transcript.pyannote[224].end 558.93096875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 558.93096875
transcript.pyannote[225].end 559.82534375
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 559.23471875
transcript.pyannote[226].end 561.34409375
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 561.78284375
transcript.pyannote[227].end 581.03721875
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 562.33971875
transcript.pyannote[228].end 564.71909375
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 566.89596875
transcript.pyannote[229].end 568.34721875
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 569.71409375
transcript.pyannote[230].end 572.44784375
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 574.70909375
transcript.pyannote[231].end 575.18159375
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 580.02471875
transcript.pyannote[232].end 580.24409375
transcript.pyannote[233].speaker SPEAKER_01
transcript.pyannote[233].start 581.42534375
transcript.pyannote[233].end 582.87659375
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 583.26471875
transcript.pyannote[234].end 585.54284375
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 585.88034375
transcript.pyannote[235].end 587.23034375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 587.50034375
transcript.pyannote[236].end 589.76159375
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 589.96409375
transcript.pyannote[237].end 592.63034375
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 592.88346875
transcript.pyannote[238].end 592.90034375
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 592.90034375
transcript.pyannote[239].end 597.06846875
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 597.20346875
transcript.pyannote[240].end 597.64221875
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 597.64221875
transcript.pyannote[241].end 601.23659375
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 599.07659375
transcript.pyannote[242].end 602.89034375
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 602.89034375
transcript.pyannote[243].end 605.53971875
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 605.79284375
transcript.pyannote[244].end 611.58096875
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 612.00284375
transcript.pyannote[245].end 616.10346875
transcript.pyannote[246].speaker SPEAKER_00
transcript.pyannote[246].start 615.10784375
transcript.pyannote[246].end 615.74909375
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 616.64346875
transcript.pyannote[247].end 618.19596875
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 618.60096875
transcript.pyannote[248].end 625.75596875
transcript.pyannote[249].speaker SPEAKER_01
transcript.pyannote[249].start 623.56221875
transcript.pyannote[249].end 624.11909375
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 624.54096875
transcript.pyannote[250].end 625.09784375
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 625.97534375
transcript.pyannote[251].end 628.05096875
transcript.pyannote[252].speaker SPEAKER_01
transcript.pyannote[252].start 627.64596875
transcript.pyannote[252].end 629.19846875
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 628.97909375
transcript.pyannote[253].end 634.07534375
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 634.34534375
transcript.pyannote[254].end 636.60659375
transcript.pyannote[255].speaker SPEAKER_01
transcript.pyannote[255].start 636.60659375
transcript.pyannote[255].end 637.77096875
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 637.70346875
transcript.pyannote[256].end 649.31346875
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 637.87221875
transcript.pyannote[257].end 637.97346875
transcript.pyannote[258].speaker SPEAKER_01
transcript.pyannote[258].start 647.55846875
transcript.pyannote[258].end 647.99721875
transcript.pyannote[259].speaker SPEAKER_02
transcript.pyannote[259].start 649.90409375
transcript.pyannote[259].end 651.50721875
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 651.82784375
transcript.pyannote[260].end 652.24971875
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 652.30034375
transcript.pyannote[261].end 654.67971875
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 655.10159375
transcript.pyannote[262].end 658.52721875
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 658.62846875
transcript.pyannote[263].end 661.75034375
transcript.pyannote[264].speaker SPEAKER_02
transcript.pyannote[264].start 662.57721875
transcript.pyannote[264].end 664.82159375
transcript.pyannote[265].speaker SPEAKER_02
transcript.pyannote[265].start 665.31096875
transcript.pyannote[265].end 670.87971875
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 672.04409375
transcript.pyannote[266].end 679.55346875
transcript.pyannote[267].speaker SPEAKER_01
transcript.pyannote[267].start 672.83721875
transcript.pyannote[267].end 673.49534375
transcript.whisperx[0].start 0.329
transcript.whisperx[0].end 28.122
transcript.whisperx[0].text 請彭主委、有請莊部長委員好部長好那其實ESG我們都希望永續的發展但是在普惠金融這一塊我想最近很多委員也都是跟本席一樣非常的關心我們發現整個金融的發展跟佈局
transcript.whisperx[1].start 29.07
transcript.whisperx[1].end 46.124
transcript.whisperx[1].text 他大概總歸的講就是肥了大企業瘦了小老百姓的確很多的民眾因為M型化社會的來臨啊辛苦的非常多舉個例子
transcript.whisperx[2].start 47.455
transcript.whisperx[2].end 76.846
transcript.whisperx[2].text 主委 我請教你啊股市現在都已經漲到2萬點 站穩2萬多點可是真正賺錢的行業大概百分比有多少你們有沒有算過當股市到2萬點的時候我們發現傳產的一些特別傳統的夕陽產業也好或者過去這個比較即將要淘汰的產業也好
transcript.whisperx[3].start 78.134
transcript.whisperx[3].end 107.268
transcript.whisperx[3].text 可以說是以前茅山道士啊現在不要虧錢就不得了啦所以不曉得主委有沒有發生有沒有發現這樣的情況現在我了解一下狀況對希望主委因為你剛剛來啦齁其實身負重任我們希望說社會的和諧永續是平均把國家的資源照顧到每個人的身上
transcript.whisperx[4].start 109.926
transcript.whisperx[4].end 131.931
transcript.whisperx[4].text 我知道很辛苦 企業也是講求利潤但是 不要忘記了沒有過去的努力 沒有過去的農民 沒有過去的傳統產業撐起台灣一邊天這些好的電子公司也不會有今天的成就啊當我們看到AI的時代來臨時候
transcript.whisperx[5].start 133.834
transcript.whisperx[5].end 159.21
transcript.whisperx[5].text 我們看到Jason Huang他回到台灣來我們看到很感動因為他是台灣ina 台南人不只他蘇之鋒還有第四名的Charles全部都是台灣人台北工專畢業的這都不容易但是提醒主委跟部長
transcript.whisperx[6].start 161.23
transcript.whisperx[6].end 185.657
transcript.whisperx[6].text 當他們撐起一片天總市值超過接近3兆美金的時候我們要主動的跟他們聯絡請他們有機會不要忘了台灣這個地方生他養他育他的地方多多給台灣機會特別是應該多給台灣的年輕人機會
transcript.whisperx[7].start 188.035
transcript.whisperx[7].end 215.478
transcript.whisperx[7].text 主委部長我想請問部長一下我們的八大公股銀行裡面平均年齡是多少平均年齡這個部分我手邊目前沒有資料會後送給委員是這也是請兩位上來的原因之一我們的一些公股銀行啊不斷的老化呈現的就是
transcript.whisperx[8].start 216.687
transcript.whisperx[8].end 244.021
transcript.whisperx[8].text 老業凋零都是一些老人反而我們看到一些新興的一些金融產業年輕人都很多包括電商交易也好包括Fintech比較在沙盒裡面都是一些年輕人可是我發現政府的政策都是保護過去的老思維比較多
transcript.whisperx[9].start 245.185
transcript.whisperx[9].end 271.932
transcript.whisperx[9].text 就過去怎麼做就是照本宣科所以的銀行、董、總永遠都沒有求新求變更遑任永續的這個經營的一個思想諸位我想請教一下國外的數據來說整個GDP裡面金融的分配佔比大概是怎麼樣
transcript.whisperx[10].start 273.632
transcript.whisperx[10].end 293.482
transcript.whisperx[10].text 我所掌握的資料臺灣現在是大概是佔GDP的6%左右6%那其他可能我們周邊可能將近兩位數字兩位數對所以從這個兩位數的成長我們就發現臺灣的金融要加油所以莊部長
transcript.whisperx[11].start 294.895
transcript.whisperx[11].end 322.591
transcript.whisperx[11].text 金融營業稅從5%要調降到2%或者是有人外界解讀的3%部長什麼時候開始推動?金融營業稅的部分其實就是銀行業的還有保險業的本業的部分其他的部分目前大致都是2%那至於這兩頁要不要做調整我想我們跟金管會也都在充分的討論當中
transcript.whisperx[12].start 323.868
transcript.whisperx[12].end 350.823
transcript.whisperx[12].text 好 謝謝那你們兩位現在都在阿你馬上討論阿這個那麼簡單就是說你要降到3%或是降到2%數字你們有沒有彼此有沒有加line我們會你把所有的數字一傳見面那麼大的官員見面就是政策方向要不要確定要不要定案省下來的稅金要做什麼樣的使用
transcript.whisperx[13].start 351.643
transcript.whisperx[13].end 377.301
transcript.whisperx[13].text 是不是來多多加強整個所有金融人員的訓練?或者是多多銀行要鼓勵他們來加薪啊?委員您的建議很好,我們都會納入這個考量。部長你知道,剛剛有提到華南清空也好,和庫清空也好,他們在公股銀行裡面表現算還是中上,前段班的。
transcript.whisperx[14].start 378.356
transcript.whisperx[14].end 397.603
transcript.whisperx[14].text 可是你知道他們跟富邦、跟國泰、跟一些外商銀行的薪水差了多少?舉例,核庫的董事長好了,他一個月薪水大概多少?我不曉得他一個月薪水多少?他人在啊,你馬上問就知道啦
transcript.whisperx[15].start 402.129
transcript.whisperx[15].end 416.602
transcript.whisperx[15].text 新展銀行新加坡總經理董事長一個月薪水多少?那一定也是比我們高嗎?高多少?高多少?不知道啊心理你要知道說整個市場的變化
transcript.whisperx[16].start 418.025
transcript.whisperx[16].end 435.393
transcript.whisperx[16].text 知道應該怎麼選任新的人來擔任新的事務。部長請問你最近已經到了六七月公股銀行有幾家準備要進行董事長總經理的改選
transcript.whisperx[17].start 437.172
transcript.whisperx[17].end 447.199
transcript.whisperx[17].text 今年會有三家銀行哪三家三家就是兆豐嘛兆豐有沒有來第一還有台企銀還有三家這個部分要做改選目前來說他們會在6月21號召開相關的董事會股東會已經到了會召開6月21號這過幾天就端午節了也跟委員報告在金融機構裡面第一個我們有
transcript.whisperx[18].start 463.45
transcript.whisperx[18].end 463.51
transcript.whisperx[18].text 剛剛講的這三家
transcript.whisperx[19].start 491.201
transcript.whisperx[19].end 515.441
transcript.whisperx[19].text 金康公司董總會不會換人目前當然第一個我們名單是先提列出來啦到時候還是要等到大會的你可不可以把名單讓我看一下名單可以有都有公告啊有公告請公關聯絡人拿給我一下可以提供給委員沒問題兆豐表現得好不好兆豐表現得不錯啊不錯表現得好你要需要把他換掉嗎
transcript.whisperx[20].start 516.556
transcript.whisperx[20].end 517.057
transcript.whisperx[20].text 雷董會繼續做?
transcript.whisperx[21].start 528.155
transcript.whisperx[21].end 544.173
transcript.whisperx[21].text 這個部分我想還是要等到整個大會議是好 那易穎的呢易穎的金空董事長易穎金空是目前是邱董事長是表現得好不好也很好啊好 那你有沒有問他要不繼續擔啊擔任啊我沒有問他啊你馬上在啊你問一下時間暫停問一下
transcript.whisperx[22].start 547.561
transcript.whisperx[22].end 573.939
transcript.whisperx[22].text 還是等一下再問他上來是要回答委員問題不是回答我的問題人事是你在決定如果我決定我馬上我就說繼續留任因為他以前在新加坡待過而且表現也非常好非常的圓融企業大家都很稱讚他而且賺錢賺得很好賺很多義營旗下義營證券都已經破紀錄對不對
transcript.whisperx[23].start 575.76
transcript.whisperx[23].end 585.247
transcript.whisperx[23].text 那個EPS都創新高啊都很好的人選啊那還有哪一家台企銀來台企銀董事長是劉董事長
transcript.whisperx[24].start 587.5
transcript.whisperx[24].end 591.504
transcript.whisperx[24].text 臺慶過去快要瀕臨7塊6塊,已經是10塊保衛戰了,現在漲到多少錢了?好的不得了,以前零千號每天無名無利
transcript.whisperx[25].start 608.661
transcript.whisperx[25].end 636.118
transcript.whisperx[25].text 到了10點我問他說你怎麼還不下班他說他一定要把台慶帶動起來所以當林董事長他到到和庫然後因為太累了然後生病過世了我覺得心裡非常的捨不得啊所以部長拜託啊好的人選你要多多鼓勵然後鼓勵他們要多待一些栽培一些年輕人會的會的
transcript.whisperx[26].start 637.839
transcript.whisperx[26].end 638.279
transcript.whisperx[26].text 主席
transcript.whisperx[27].start 662.608
transcript.whisperx[27].end 664.55
transcript.whisperx[27].text 謝謝羅明才委員的質詢接著我們請陳鈺貞委員質詢我們也開放現場用餐12點了