iVOD / 153354

Field Value
IVOD_ID 153354
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/153354
日期 2024-05-30
會議資料.會議代碼 委員會-11-1-19-14
會議資料.會議代碼:str 第11屆第1會期經濟委員會第14次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 14
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第1會期經濟委員會第14次全體委員會議
影片種類 Clip
開始時間 2024-05-30T10:48:50+08:00
結束時間 2024-05-30T10:59:04+08:00
影片長度 00:10:14
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/bbbc431469b8aebaffab3a294d8f02281766e5648a1e6b71beba37a180c9b1cde185865d7265e4505ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 10:48:50 - 10:59:04
會議時間 2024-05-30T09:00:00+08:00
會議名稱 立法院第11屆第1會期經濟委員會第14次全體委員會議(事由:邀請國家發展委員會主任委員列席報告業務概況,並備質詢。【5月27日、5月29日及5月30日三天一次會】)
gazette.lineno 341
gazette.blocks[0][0] 邱委員志偉:(10時49分)謝謝主席,是不是請國發會劉主委主委?
gazette.blocks[0][1] 主委你好。因為您是國發會主委,也是行政院政務委員。
gazette.blocks[1][0] 劉主任委員鏡清:是的。
gazette.blocks[2][0] 邱委員志偉:作為政務委員,你督導經濟部及相關的財經部門,包括財政部、金管會都是由你督導,經濟部底下又有台電,所以你相關的發言,雖然你個人說你不排斥核電,你關心的次序應該是電夠不夠、低碳發電夠不夠,最後就是淨零,所以你不排斥核電是你個人意見,還是未來政策規劃的方向?
gazette.blocks[3][0] 劉主任委員鏡清:我當時只是在表達我們願意接受公開的討論,但是就我個人當時跟總統談的2050的路徑裡面是沒有核能的,就是我在負責減碳這個部分。
gazette.blocks[4][0] 邱委員志偉:因為核能……
gazette.blocks[5][0] 劉主任委員鏡清:非核家園的終極目標還是要實現。
gazette.blocks[6][0] 邱委員志偉:這個議題不僅是非常高度專業,也是非常政治性,所以您的發言,當然我相信你的專業,從產業界有你的看法,但是你動見觀瞻,你的一言一行,因為你督導經濟部,那會讓外界認為你不排斥核電,如果你最關心的事項是會不會缺電、電夠不夠,如果電不夠的時候,人家的邏輯上會直接去聯想,未來核能重啟是不是一個選項。
gazette.blocks[7][0] 劉主任委員鏡清:是,這個我學到了。
gazette.blocks[8][0] 邱委員志偉:所以你不是主委而已,你是政務委員,你要協調各部會的政策。你也提到未來的綠氫,綠氫有幾個階段?有灰氫、有藍氫、有綠氫,對不對?你說明年度要投入去碳燃氫的發電計劃。
gazette.blocks[9][0] 劉主任委員鏡清:是藍綠氫。
gazette.blocks[10][0] 邱委員志偉:藍綠氫,事實上台電已經有了,台電去年在興達電廠就用燃氣混氫5%的示範電廠,2025年大概就可以正式發電,這個計畫已經成熟了,中研院有相關的成果,具體落實在興達電廠,初步是混氫5%,再慢慢做一個示範,如果成效好,我們再繼續推廣。
gazette.blocks[11][0] 劉主任委員鏡清:是。
gazette.blocks[12][0] 邱委員志偉:我希望未來綠氫可成為一個主要的發電方式,但是這部分還有待科學上更多的克服,其他國家也做得很好,我們也需要迎頭趕上。所以有關新的能源,我想國發會未來也要督促及協調跟經濟部怎麼樣讓新的能源、綠能、再生能源能夠達到更多的比例。
gazette.blocks[13][0] 劉主任委員鏡清:是。
gazette.blocks[14][0] 邱委員志偉:我想請教主委,有關新經濟移民法,賴總統在當行政院長的時候曾經提出這個新經濟移民法,有一段時間也成為國發會主推的優先法案,是解決人才跟人力的雙缺口,因為人力不足,人口結構改變,少子化、高齡化的狀況,臺灣非常嚴重,對不對?高齡的勞動參與率、少子化的狀況是全球最嚴重的國家之一,我們大概跟南韓、日本差不多,這個狀況都非常嚴重。有關新經濟移民法,你現在當主委,會不會把當時我們賴總統當行政院長時所推的新經濟移民法重新來推動?我覺得要整合為一個好的法案,而不是各部會各行其是,這個效果我覺得是事半功倍,如果有一個專法來整合各部會,由國發會來主推,您的看法怎麼樣?
gazette.blocks[15][0] 劉主任委員鏡清:這個我們可以研究一下,因為就我瞭解,我們現在是有人才專法,是讓高階的人才可以快速地移民進來。
gazette.blocks[16][0] 邱委員志偉:對,但我覺得是治標不治本,你要有一個專法,各方面解決人才跟人力的雙缺口,不只人力,還有人才。
gazette.blocks[17][0] 劉主任委員鏡清:是,我們回去研究,跟您回報。
gazette.blocks[18][0] 邱委員志偉:這是賴總統當行政院長主推的優先法案,行政院長換人之後,當然就有不同思考,這個給你做參考。
gazette.blocks[19][0] 劉主任委員鏡清:好,謝謝。
gazette.blocks[20][0] 邱委員志偉:那你不提,我會來提,我覺得要有一個專法來推動我們人才跟人力不足的問題,來解決這個問題。
gazette.blocks[21][0] 劉主任委員鏡清:是。
gazette.blocks[22][0] 邱委員志偉:另外,您有跟數發部的黃部長,有關AI的生態園區,北部要設立一個生態園區,南部要設立一個生態園區,數發部是您督導的嗎?
gazette.blocks[23][0] 劉主任委員鏡清:不是。
gazette.blocks[24][0] 邱委員志偉:好,沒關係,你是主委,跟數發部黃部長趕快討論一下,趕快把這個AI生態園區能夠落實,先找一個點出來,北部當然陳超明委員可能願意,陳超明委員在苗栗,可能有希望;南部的話,我當然希望是在橋頭科學園區,它是半導體S廊帶的中心點,北有南科,中間有路科還有橋科,還有楠梓產業園區,所以你把AI生態園區設在橋頭園區,現在橋頭已經在規劃第二期,我期待這個AI的園區,因為我們條件都非常適合,IC設計、晶圓製造、封裝測試,什麼都在北高雄,所以未來是不是可以考慮把這個AI生態園區設置在北高雄?
gazette.blocks[25][0] 劉主任委員鏡清:我下午會跟黃部長開會,我會轉達委員的意見來討論。
gazette.blocks[26][0] 邱委員志偉:不是,不是轉達,你要深入研究,我可以幫你做簡報,我可以跟你做簡報……
gazette.blocks[27][0] 劉主任委員鏡清:沒有、沒有,好,我們來研究。
gazette.blocks[28][0] 邱委員志偉:因為所有的條件我都非常清楚,我可以跟你做簡報,讓你更清楚整個圖像、整個條件,然後你選擇出一個最好的地點,所以北高雄是最好的一個點。
gazette.blocks[28][1] 另外,針對所得分配的狀況,先講一下女性的勞參率,你看比起其他國家如香港、日本、南韓,我們女性的勞參率是比較低的,中老年再度就業、銀髮族的勞參率也是偏低,不管是中老年或是青壯人口,或者是女性的勞參率,相對比其他鄰近國家還低,必須把這個原因找出來,然後提出解決方案及誘因,來鼓勵臺灣女性的勞參率可以提高。主委,這個應該是列為你們的工作計畫之一吧?
gazette.blocks[29][0] 劉主任委員鏡清:謝謝委員提醒,我們會就這個題目去研究。
gazette.blocks[30][0] 邱委員志偉:另外,你的報告裡面,在醫療服務的部分,有關AI在臨床上的落地應用,我看你的報告有提到這一點,所以你要怎麼樣確保醫療AI的安全跟效益?這個很重要。所以有關其安全性及效益,你要先建置一個相對應的倫理準則,因為你的報告也提到這一點,好像上一次的報告裡面沒有提到這一點,所以我發現你有這個想法,你要怎麼突破醫療資料的使用困境?你們要去思考這個問題,你的想法是怎麼樣?
gazette.blocks[31][0] 劉主任委員鏡清:是,同意。
gazette.blocks[32][0] 邱委員志偉:不是,同意,但你要有想法。
gazette.blocks[33][0] 劉主任委員鏡清:這個需要改善,我們現在其實是跟相關單位這邊正在主導健康臺灣的政策,數位醫療是放在裡面很重要的一項,也是……
gazette.blocks[34][0] 邱委員志偉:對,我說你同意我的觀點,固然是好事,我很開心,但是你要有你的想法,國發會要有你的主張、有你的政策、有你執行的時程,這個部分……
gazette.blocks[35][0] 劉主任委員鏡清:是的,會啦,這是我的專業,我會提出一些我們的看法。
gazette.blocks[36][0] 邱委員志偉:主席站起來了,因為後面還有委員要發言。以後還有很多機會跟主委再來討論,就是說您又是主委、又是政委,所以你的發言是動見觀瞻,很容易被顯微鏡擴大來檢視,也有可能被放大鏡來把你的話無限上綱地延伸,所以這個要提醒您。謝謝。
gazette.blocks[37][0] 劉主任委員鏡清:是,謝謝委員。
gazette.blocks[38][0] 主席:謝謝邱志偉委員。
gazette.blocks[38][1] 主委,南部的AI生態園區就設在邱志偉委員的選區,我支持、贊成;但是北部的話要設在苗栗,大矽谷計畫,就是我們的苗栗園區,好不好?你同意他也要同意我啊!
gazette.blocks[39][0] 劉主任委員鏡清:這可能還要跟……
gazette.blocks[40][0] 主席:好,我瞭解,都支持。
gazette.blocks[40][1] 現在鍾佳濱委員替代羅美玲委員先行質詢。現在請鍾佳濱委員質詢。
gazette.agenda.page_end 402
gazette.agenda.meet_id 委員會-11-1-19-14
gazette.agenda.speakers[0] 楊瓊瓔
gazette.agenda.speakers[1] 邱議瑩
gazette.agenda.speakers[2] 鄭正鈐
gazette.agenda.speakers[3] 呂玉玲
gazette.agenda.speakers[4] 賴瑞隆
gazette.agenda.speakers[5] 鄭天財Sra Kacaw
gazette.agenda.speakers[6] 張嘉郡
gazette.agenda.speakers[7] 陳超明
gazette.agenda.speakers[8] 邱志偉
gazette.agenda.speakers[9] 鍾佳濱
gazette.agenda.speakers[10] 羅美玲
gazette.agenda.speakers[11] 李坤城
gazette.agenda.speakers[12] 陳亭妃
gazette.agenda.speakers[13] 牛煦庭
gazette.agenda.speakers[14] 王鴻薇
gazette.agenda.speakers[15] 黃珊珊
gazette.agenda.speakers[16] 洪孟楷
gazette.agenda.speakers[17] 謝衣鳯
gazette.agenda.speakers[18] 李柏毅
gazette.agenda.speakers[19] 陳培瑜
gazette.agenda.speakers[20] 張啓楷
gazette.agenda.speakers[21] 蔡易餘
gazette.agenda.speakers[22] 林岱樺
gazette.agenda.speakers[23] 陳冠廷
gazette.agenda.page_start 347
gazette.agenda.meetingDate[0] 2024-05-30
gazette.agenda.gazette_id 1135501
gazette.agenda.agenda_lcidc_ids[0] 1135501_00007
gazette.agenda.meet_name 立法院第11屆第1會期經濟委員會第14次全體委員會議紀錄
gazette.agenda.content 邀請國家發展委員會主任委員列席報告業務概況,並備質詢
gazette.agenda.agenda_id 1135501_00006
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.60471875
transcript.pyannote[0].end 0.72284375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 0.72284375
transcript.pyannote[1].end 1.02659375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 1.02659375
transcript.pyannote[2].end 1.14471875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 1.29659375
transcript.pyannote[3].end 1.98846875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 2.17409375
transcript.pyannote[4].end 3.50721875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 3.50721875
transcript.pyannote[5].end 3.54096875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 12.11346875
transcript.pyannote[6].end 17.04096875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 25.14096875
transcript.pyannote[7].end 33.79784375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 34.23659375
transcript.pyannote[8].end 40.10909375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 40.22721875
transcript.pyannote[9].end 41.72909375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 42.55596875
transcript.pyannote[10].end 43.16346875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 43.56846875
transcript.pyannote[11].end 46.15034375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 46.55534375
transcript.pyannote[12].end 48.64784375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 49.93034375
transcript.pyannote[13].end 52.81596875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 53.44034375
transcript.pyannote[14].end 53.84534375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 53.89596875
transcript.pyannote[15].end 55.31346875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 55.38096875
transcript.pyannote[16].end 57.03471875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 57.99659375
transcript.pyannote[17].end 58.94159375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 59.26221875
transcript.pyannote[18].end 62.09721875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 62.95784375
transcript.pyannote[19].end 63.71721875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 63.85221875
transcript.pyannote[20].end 65.43846875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 65.43846875
transcript.pyannote[21].end 65.47221875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 66.14721875
transcript.pyannote[22].end 73.38659375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 73.90971875
transcript.pyannote[23].end 82.39784375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 82.65096875
transcript.pyannote[24].end 89.50221875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 84.87846875
transcript.pyannote[25].end 86.70096875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 89.50221875
transcript.pyannote[26].end 94.26096875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 94.49721875
transcript.pyannote[27].end 104.53784375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 95.03721875
transcript.pyannote[28].end 95.96534375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 104.74034375
transcript.pyannote[29].end 106.05659375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 106.39409375
transcript.pyannote[30].end 107.76096875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 108.36846875
transcript.pyannote[31].end 108.65534375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 109.04346875
transcript.pyannote[32].end 112.43534375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 112.85721875
transcript.pyannote[33].end 115.79346875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 116.19846875
transcript.pyannote[34].end 118.07159375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 118.25721875
transcript.pyannote[35].end 119.23596875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 119.53971875
transcript.pyannote[36].end 120.70409375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 120.73784375
transcript.pyannote[37].end 123.13409375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 123.70784375
transcript.pyannote[38].end 126.10409375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 126.71159375
transcript.pyannote[39].end 127.06596875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 127.72409375
transcript.pyannote[40].end 128.83784375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 128.83784375
transcript.pyannote[41].end 128.98971875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 129.49596875
transcript.pyannote[42].end 132.98909375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 133.03971875
transcript.pyannote[43].end 133.09034375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 133.09034375
transcript.pyannote[44].end 133.34346875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 133.34346875
transcript.pyannote[45].end 133.36034375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 133.34346875
transcript.pyannote[46].end 136.00971875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 136.39784375
transcript.pyannote[47].end 136.97159375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 137.20784375
transcript.pyannote[48].end 140.04284375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 140.46471875
transcript.pyannote[49].end 143.95784375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 144.29534375
transcript.pyannote[50].end 145.62846875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 145.91534375
transcript.pyannote[51].end 149.00346875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 149.88096875
transcript.pyannote[52].end 150.80909375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 151.18034375
transcript.pyannote[53].end 153.69471875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 151.73721875
transcript.pyannote[54].end 152.29409375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 155.19659375
transcript.pyannote[55].end 157.39034375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 157.74471875
transcript.pyannote[56].end 159.80346875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 160.44471875
transcript.pyannote[57].end 163.27971875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 163.80284375
transcript.pyannote[58].end 167.46471875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 167.49846875
transcript.pyannote[59].end 167.93721875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 167.93721875
transcript.pyannote[60].end 170.97471875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 170.97471875
transcript.pyannote[61].end 171.29534375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 171.22784375
transcript.pyannote[62].end 173.25284375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 173.70846875
transcript.pyannote[63].end 174.13034375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 174.13034375
transcript.pyannote[64].end 176.03721875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 176.54346875
transcript.pyannote[65].end 178.06221875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 178.28159375
transcript.pyannote[66].end 180.64409375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 180.93096875
transcript.pyannote[67].end 181.25159375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 181.13346875
transcript.pyannote[68].end 182.33159375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 182.88846875
transcript.pyannote[69].end 185.92596875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 186.21284375
transcript.pyannote[70].end 191.47784375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 192.43971875
transcript.pyannote[71].end 196.06784375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 196.06784375
transcript.pyannote[72].end 196.45596875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 196.45596875
transcript.pyannote[73].end 197.78909375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 198.14346875
transcript.pyannote[74].end 211.47471875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 212.18346875
transcript.pyannote[75].end 214.83284375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 215.45721875
transcript.pyannote[76].end 217.61721875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 218.41034375
transcript.pyannote[77].end 218.96721875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 219.22034375
transcript.pyannote[78].end 224.08034375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 224.40096875
transcript.pyannote[79].end 233.24346875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 233.58096875
transcript.pyannote[80].end 236.87159375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 237.32721875
transcript.pyannote[81].end 238.13721875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 238.37346875
transcript.pyannote[82].end 243.03096875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 243.26721875
transcript.pyannote[83].end 245.49471875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 245.73096875
transcript.pyannote[84].end 252.80159375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 253.30784375
transcript.pyannote[85].end 256.81784375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 257.50971875
transcript.pyannote[86].end 260.20971875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 260.81721875
transcript.pyannote[87].end 274.73909375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 275.09346875
transcript.pyannote[88].end 278.72159375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 279.09284375
transcript.pyannote[89].end 281.45534375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 282.14721875
transcript.pyannote[90].end 284.83034375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 285.62346875
transcript.pyannote[91].end 286.53471875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 287.41221875
transcript.pyannote[92].end 287.76659375
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 287.76659375
transcript.pyannote[93].end 287.80034375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 288.30659375
transcript.pyannote[94].end 297.84096875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 296.47409375
transcript.pyannote[95].end 300.70971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 301.50284375
transcript.pyannote[96].end 302.73471875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 303.22409375
transcript.pyannote[97].end 305.23221875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 305.48534375
transcript.pyannote[98].end 307.12221875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 307.49346875
transcript.pyannote[99].end 314.56409375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 314.93534375
transcript.pyannote[100].end 318.14159375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 318.41159375
transcript.pyannote[101].end 321.65159375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 320.36909375
transcript.pyannote[102].end 320.45346875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 322.37721875
transcript.pyannote[103].end 322.71471875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 322.96784375
transcript.pyannote[104].end 324.11534375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 324.60471875
transcript.pyannote[105].end 327.96284375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 328.11471875
transcript.pyannote[106].end 329.70096875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 330.40971875
transcript.pyannote[107].end 331.52346875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 331.65846875
transcript.pyannote[108].end 332.01284375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 332.38409375
transcript.pyannote[109].end 335.18534375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 335.70846875
transcript.pyannote[110].end 336.94034375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 337.36221875
transcript.pyannote[111].end 340.34909375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 340.90596875
transcript.pyannote[112].end 342.32346875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 343.03221875
transcript.pyannote[113].end 346.82909375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 346.93034375
transcript.pyannote[114].end 357.91596875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 358.11846875
transcript.pyannote[115].end 360.78471875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 361.47659375
transcript.pyannote[116].end 362.82659375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 363.14721875
transcript.pyannote[117].end 363.63659375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 363.95721875
transcript.pyannote[118].end 369.44159375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 370.15034375
transcript.pyannote[119].end 377.45721875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 378.18284375
transcript.pyannote[120].end 379.60034375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 380.08971875
transcript.pyannote[121].end 385.16909375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 385.82721875
transcript.pyannote[122].end 392.37471875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 392.79659375
transcript.pyannote[123].end 404.06909375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 404.82846875
transcript.pyannote[124].end 406.70159375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 407.19096875
transcript.pyannote[125].end 409.01346875
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 409.01346875
transcript.pyannote[126].end 409.04721875
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 409.30034375
transcript.pyannote[127].end 409.31721875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 409.31721875
transcript.pyannote[128].end 410.24534375
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 410.24534375
transcript.pyannote[129].end 410.27909375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 410.27909375
transcript.pyannote[130].end 410.97096875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 410.97096875
transcript.pyannote[131].end 411.22409375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 412.30409375
transcript.pyannote[132].end 412.62471875
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 413.08034375
transcript.pyannote[133].end 422.37846875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 419.71221875
transcript.pyannote[134].end 419.93159375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 422.02409375
transcript.pyannote[135].end 422.34471875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 422.37846875
transcript.pyannote[136].end 422.86784375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 423.93096875
transcript.pyannote[137].end 433.11096875
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 423.96471875
transcript.pyannote[138].end 424.33596875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 426.68159375
transcript.pyannote[139].end 427.12034375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 433.48221875
transcript.pyannote[140].end 439.70909375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 440.23221875
transcript.pyannote[141].end 441.04221875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 441.91971875
transcript.pyannote[142].end 442.49346875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 442.78034375
transcript.pyannote[143].end 443.42159375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 445.14284375
transcript.pyannote[144].end 446.30721875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 446.59409375
transcript.pyannote[145].end 448.14659375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 449.44596875
transcript.pyannote[146].end 450.50909375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 451.25159375
transcript.pyannote[147].end 451.82534375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 453.41159375
transcript.pyannote[148].end 455.04846875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 455.43659375
transcript.pyannote[149].end 457.30971875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 457.86659375
transcript.pyannote[150].end 460.44846875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 460.78596875
transcript.pyannote[151].end 464.24534375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 465.32534375
transcript.pyannote[152].end 465.62909375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 465.96659375
transcript.pyannote[153].end 468.09284375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 468.41346875
transcript.pyannote[154].end 471.77159375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 471.92346875
transcript.pyannote[155].end 474.80909375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 475.34909375
transcript.pyannote[156].end 476.34471875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 476.96909375
transcript.pyannote[157].end 484.96784375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 485.50784375
transcript.pyannote[158].end 487.75221875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 488.32596875
transcript.pyannote[159].end 489.05159375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 489.38909375
transcript.pyannote[160].end 489.92909375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 490.77284375
transcript.pyannote[161].end 491.44784375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 491.81909375
transcript.pyannote[162].end 492.73034375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 492.83159375
transcript.pyannote[163].end 494.33346875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 495.78471875
transcript.pyannote[164].end 498.90659375
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 498.90659375
transcript.pyannote[165].end 498.92346875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 499.86846875
transcript.pyannote[166].end 499.90221875
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 499.90221875
transcript.pyannote[167].end 503.63159375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 505.09971875
transcript.pyannote[168].end 506.53409375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 507.14159375
transcript.pyannote[169].end 508.28909375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 508.77846875
transcript.pyannote[170].end 510.17909375
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 510.93846875
transcript.pyannote[171].end 511.44471875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 511.81596875
transcript.pyannote[172].end 514.65096875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 514.97159375
transcript.pyannote[173].end 515.62971875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 515.79846875
transcript.pyannote[174].end 519.78096875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 520.42221875
transcript.pyannote[175].end 521.31659375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 521.94096875
transcript.pyannote[176].end 531.37409375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 532.08284375
transcript.pyannote[177].end 533.48346875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 533.65221875
transcript.pyannote[178].end 534.25971875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 534.71534375
transcript.pyannote[179].end 535.72784375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 536.08221875
transcript.pyannote[180].end 544.99221875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 545.17784375
transcript.pyannote[181].end 546.49409375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 546.73034375
transcript.pyannote[182].end 547.64159375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 548.21534375
transcript.pyannote[183].end 548.24909375
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 548.24909375
transcript.pyannote[184].end 548.95784375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 550.07159375
transcript.pyannote[185].end 550.34159375
transcript.pyannote[186].speaker SPEAKER_03
transcript.pyannote[186].start 550.34159375
transcript.pyannote[186].end 552.97409375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 551.64096875
transcript.pyannote[187].end 552.31596875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 553.29471875
transcript.pyannote[188].end 553.31159375
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 553.31159375
transcript.pyannote[189].end 553.37909375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 553.37909375
transcript.pyannote[190].end 553.42971875
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 553.42971875
transcript.pyannote[191].end 555.69096875
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 556.38284375
transcript.pyannote[192].end 557.07471875
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 558.03659375
transcript.pyannote[193].end 567.45284375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 566.22096875
transcript.pyannote[194].end 574.08471875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 574.75971875
transcript.pyannote[195].end 579.73784375
transcript.pyannote[196].speaker SPEAKER_03
transcript.pyannote[196].start 579.73784375
transcript.pyannote[196].end 579.75471875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 580.68284375
transcript.pyannote[197].end 582.38721875
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 580.73346875
transcript.pyannote[198].end 584.81721875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 585.71159375
transcript.pyannote[199].end 589.13721875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 589.57596875
transcript.pyannote[200].end 590.21721875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 590.57159375
transcript.pyannote[201].end 592.29284375
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 592.36034375
transcript.pyannote[202].end 599.92034375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 599.92034375
transcript.pyannote[203].end 599.95409375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 599.95409375
transcript.pyannote[204].end 599.98784375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 599.97096875
transcript.pyannote[205].end 600.03846875
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 600.00471875
transcript.pyannote[206].end 600.67971875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 600.07221875
transcript.pyannote[207].end 600.08909375
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 600.10596875
transcript.pyannote[208].end 600.13971875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 601.06784375
transcript.pyannote[209].end 608.10471875
transcript.pyannote[210].speaker SPEAKER_03
transcript.pyannote[210].start 608.10471875
transcript.pyannote[210].end 608.50971875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 608.27346875
transcript.pyannote[211].end 610.45034375
transcript.pyannote[212].speaker SPEAKER_03
transcript.pyannote[212].start 610.45034375
transcript.pyannote[212].end 613.63971875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 611.80034375
transcript.pyannote[213].end 612.10409375
transcript.pyannote[214].speaker SPEAKER_03
transcript.pyannote[214].start 613.74096875
transcript.pyannote[214].end 614.04471875
transcript.whisperx[0].start 0.609
transcript.whisperx[0].end 12.996
transcript.whisperx[0].text 請邱志偉委員質詢。謝謝主席。是不是請國話會劉主委。
transcript.whisperx[1].start 25.285
transcript.whisperx[1].end 48.313
transcript.whisperx[1].text 主委您好,因為您是國會主委也是行政院的政務委員是的你作為政務委員,你督導包括經濟部包括相關的財經部門是的包括財政部、經管會,大家都你督導那經濟部門底下又台電所以對你相關的發言,雖然你個人說這個你不排斥核電
transcript.whisperx[2].start 49.94
transcript.whisperx[2].end 62.568
transcript.whisperx[2].text 議員議員議員
transcript.whisperx[3].start 63.238
transcript.whisperx[3].end 85.349
transcript.whisperx[3].text 還是未來政策規劃的方向?我當時只是在表達這個就是我們願意接受公開的討論但是就我的了解就是現在就個人我當時跟總統談的2050的路徑裡面是沒有核能的就是我在檢探負責檢探這個部分非核家園還是會要終極目標要實現
transcript.whisperx[4].start 89.511
transcript.whisperx[4].end 89.591
transcript.whisperx[4].text 邱志偉
transcript.whisperx[5].start 108.41
transcript.whisperx[5].end 109.29
transcript.whisperx[5].text 是,這個我學到了
transcript.whisperx[6].start 129.577
transcript.whisperx[6].end 148.55
transcript.whisperx[6].text 所以你不是主委而已,你是政委員,政委員你要協調各部會的政策那你知道你也說到這個未來綠青綠青有幾個階段,有灰青有藍青要綠青你說明年度你要投入這個去看藍青的發電計畫是藍綠青藍綠青,事實上台電已經有了
transcript.whisperx[7].start 155.33
transcript.whisperx[7].end 164.675
transcript.whisperx[7].text 昨年在新達電廠我們就用這個燃氣混清5%的這個示範電廠那今年2025大概就是發電這個計畫已經成熟終於有這個相關的成果那具體落實在新達電廠
transcript.whisperx[8].start 173.82
transcript.whisperx[8].end 173.98
transcript.whisperx[8].text 是的。
transcript.whisperx[9].start 192.469
transcript.whisperx[9].end 193.069
transcript.whisperx[9].text 新經濟移民法
transcript.whisperx[10].start 220.145
transcript.whisperx[10].end 236.672
transcript.whisperx[10].text 我們總統賴總統在當行政院議長的時候曾經提出這個新經濟移民法也是在國會發會有一段時間成為國會發會主推的這個優先法案當時解決人才跟人力的雙缺口
transcript.whisperx[11].start 237.392
transcript.whisperx[11].end 237.512
transcript.whisperx[11].text ﹚邱志偉
transcript.whisperx[12].start 258.632
transcript.whisperx[12].end 286.219
transcript.whisperx[12].text 現階段如果你現在當主委會不會把這個當時我們賴總統當行政院長所推的新濟民法重新來推動我覺得要整合一個好的法案而不是各部分各部會是各行其事那這個效果我覺得是事半功倍那如果有一個專法來整合各部會那由國會去主推您的看法怎麼樣
transcript.whisperx[13].start 289
transcript.whisperx[13].end 300.551
transcript.whisperx[13].text 這個我們可以研究一下啦因為就我了解我們現在是有人才專法是讓高階的人才可以快速的移民進來我覺得是治標但不治本你要有一個專法
transcript.whisperx[14].start 301.51
transcript.whisperx[14].end 322.09
transcript.whisperx[14].text ⋯⋯⋯
transcript.whisperx[15].start 323.022
transcript.whisperx[15].end 323.282
transcript.whisperx[15].text 委員會主席
transcript.whisperx[16].start 343.052
transcript.whisperx[16].end 369.041
transcript.whisperx[16].text 北部要設立一個生態園區南部要設立一個生態園區大概就是您跟蘇發部蘇發部是您督導的嗎?不是沒關係你用主委跟蘇發部黃部長趕快討論一下趕快把這個AI生態的園區能夠落實落實先找一個點出來北部當然這個陳昌明可能他願意陳昌明委員在苗栗可能有希望
transcript.whisperx[17].start 370.205
transcript.whisperx[17].end 370.405
transcript.whisperx[17].text 邱志偉
transcript.whisperx[18].start 385.908
transcript.whisperx[18].end 411.105
transcript.whisperx[18].text 所以你把AI生態園區設在橋頭園區我期待能夠把這個AI的這個園區因為我們條件都非常適合IC設計、晶圓製造、封鑽測試什麼都在北高雄所以未來是不是可以考慮把這個AI生態園區把它設置在北高雄
transcript.whisperx[19].start 413.143
transcript.whisperx[19].end 439.176
transcript.whisperx[19].text 我下午會跟黃部長開會我會轉達委員的意見來討論不是轉達你要深入研究我可以幫你做簡報我會給你做簡報所有條件我都非常清楚我可以做簡報讓你更清楚整個圖像整個條件然後你選擇出一個最好的一個地點所以北高雄是最好的一個點
transcript.whisperx[20].start 442.904
transcript.whisperx[20].end 464.082
transcript.whisperx[20].text 另外針對所得分配的狀況先講一下女性的勞參率因為勞參率比起其他國家香港、日本、南韓我們女性的勞參率是比較低的
transcript.whisperx[21].start 466.674
transcript.whisperx[21].end 494.174
transcript.whisperx[21].text 中老年在度就業中老年的這個銀髮族的這個勞參率也是偏低不管是中老年或者是這個青壯人口或者是這個女性的勞參率相對其他鄰近國家還低必須把這個原因找出來提出解決方案誘因來鼓勵這個台灣女性的勞參率可以提高
transcript.whisperx[22].start 496.174
transcript.whisperx[22].end 519.219
transcript.whisperx[22].text 謝謝主委 這個應該是列為你們這個工作計畫之一吧謝謝委員提醒我們會登這個題目去研究那另外就是說未來這個你的報告裡面有AI在臨床上就是說醫療服務的部分你AI在臨床上落地運用我看你的報告也有提到這一點
transcript.whisperx[23].start 520.498
transcript.whisperx[23].end 530.21
transcript.whisperx[23].text 所以你要怎麼樣確保這個醫療AI的安全跟效益是很重要所以你要這安全性效益你要先建置一個相對應的這個倫理準則
transcript.whisperx[24].start 532.15
transcript.whisperx[24].end 552.637
transcript.whisperx[24].text 因為你報告有提到這一點那這也是你好像上一次的報告裡面沒有提到這一點我發現你有這個想法你要怎麼突破醫療資料的這個使用的困境這裡面去思考這個問題 你的想法是怎麼樣是 同意不是 同意 這個需要改善 這個需要改善 這個
transcript.whisperx[25].start 558.143
transcript.whisperx[25].end 584.637
transcript.whisperx[25].text 我們現在是跟其實跟外務這邊現在正在主導一塊健康台灣的政策裡面數位醫療是放在裡面很重要的一項我同意我的觀點當然過程是好事我很開心但是你要有你的想法你要國發會國發會有你的主張有你的政策有你實行的這個時程是的會啦這是我的專業我會提出一些我們的看法
transcript.whisperx[26].start 585.845
transcript.whisperx[26].end 586.405
transcript.whisperx[26].text 謝謝邱主委員