iVOD / 153280

Field Value
IVOD_ID 153280
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/153280
日期 2024-05-29
會議資料.會議代碼 委員會-11-1-20-14
會議資料.會議代碼:str 第11屆第1會期財政委員會第14次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 14
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第14次全體委員會議
影片種類 Clip
開始時間 2024-05-29T12:13:38+08:00
結束時間 2024-05-29T12:20:01+08:00
影片長度 00:06:23
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/2c978e04ca5e1331ac5bef522e7632255c2a8e696f21355cc09f7998a2d5a4c1c45c48c28a1760735ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 12:13:38 - 12:20:01
會議時間 2024-05-29T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第14次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿率所屬單位主管列席業務報告,並備質詢。)
gazette.lineno 900
gazette.blocks[0][0] 鄭天財Sra Kacaw委員:(12時13分)主席,請主計長。
gazette.blocks[1][0] 主席:有請主計長。
gazette.blocks[2][0] 陳主計長淑姿:委員好。
gazette.blocks[3][0] 鄭天財Sra Kacaw委員:主計長好,恭喜你!
gazette.blocks[4][0] 陳主計長淑姿:謝謝委員。
gazette.blocks[5][0] 鄭天財Sra Kacaw委員:你曾經在行政院主計總處服務過。
gazette.blocks[6][0] 陳主計長淑姿:是。
gazette.blocks[7][0] 鄭天財Sra Kacaw委員:民國90年。
gazette.blocks[8][0] 陳主計長淑姿:到臺南。
gazette.blocks[9][0] 鄭天財Sra Kacaw委員:我那時候在原民會。
gazette.blocks[10][0] 陳主計長淑姿:是,我知道。
gazette.blocks[11][0] 鄭天財Sra Kacaw委員:我是老公務員,30年的老公務員,從省政府到中央。
gazette.blocks[12][0] 陳主計長淑姿:是,我們在省政府也有共事過。
gazette.blocks[13][0] 鄭天財Sra Kacaw委員:所以這個部分還是要請主計長和行政院主計總處的所有同仁能夠再次瞭解原住民的困境。
gazette.blocks[14][0] 陳主計長淑姿:是。
gazette.blocks[15][0] 鄭天財Sra Kacaw委員:我們看111年原住民就業者參加勞保的情形,原住民無勞保之勞工,就是勞工但沒有勞保,有4萬553人;112年又增加到5萬2,002人,一直增加。沒有勞保的話,就沒有辦法給予很多相關的各方面協助,事實上,我在106年就已經質詢過,勞動部當時的司長,就是勞保局局長,他已經退休了,當時的司長也開過三次會議,最後一次在106年7月10日,要編列預算,但是沒有錢,一直到現在都沒有解決。事實上,原住民族基本法第二十六條第二項規定,政府對原住民參加社會保險無力負擔者,得予補助,這個非常非常的重要,這個部分請勞動部跟主計總處能夠互相協調,給予最大的支持,可以嗎?
gazette.blocks[16][0] 陳主計長淑姿:據同仁所提供的資料,勞工職業災害保險法裡面已經有提供原民勞工職災給付的保障,所以他本身如果有這些的保障,就能解決沒有參加勞保的問題。
gazette.blocks[17][0] 鄭天財Sra Kacaw委員:那個部分我來說明,那個只是其中之一,有勞保跟沒有勞保差很多,平常生病及平常對於這些相關勞保的協助都有。再講到職災,職災的時候如果他有勞保,我們就講今年0403地震,有一個開大貨車的被石頭壓到過世了,職災只能用最基本工資,最低的那個勞保啊,如果他有勞保的話,那個差距就很大,所以這個部分還是有差別,好不好?我希望能夠讓主計長瞭解,還有主計總處同仁也瞭解,原漢的平均餘命落差很大,所以我們常常會有訴求,像國民年金法就是原住民是55歲;公教人員退休,原住民是55歲,還有很多還沒有完成的,比如勞工還有其他的,都是需要降低年齡。
gazette.blocks[17][1] 再來看原漢平均收入差距也是很大,所得就有影響。再者,包括失業率、粗在學率,教育是向上提升最重要的,這些為什麼要跟主計總處講呢?你看107學年度粗在學率原漢的落差,全國是85.8,原住民53.9,差距是31.9。但是到了111學年度,全國88.9,原住民56.5,雖然我們也上升了,但是差距加大為32.4,有很大的原因是什麼呢?因為我們原住民的升學保障,原住民族教育法有升學保障,那是外加2%,外加不影響一般學生的升學,我們是外加2%,以前沒有,以前不是外加,只要加分就可以考上,現在是外加2%。外加2%的結果是怎麼樣呢?就跑到私立大學了,就繳不起那些學費。所以這次選舉前私立大學增加了很多的補助,對不對?但是對原住民毫無幫助,因為原住民不會在那邊,所以這個部分變成是要根據原住民族教育法,怎麼樣讓我們的孩子能夠考上、就學,並且怎麼樣給予協助,就是變成主計總處要支持教育部,增加相關的就學補助,可以嗎?好不好?
gazette.blocks[18][0] 陳主計長淑姿:盡力。
gazette.blocks[19][0] 鄭天財Sra Kacaw委員:請主計長多多幫忙。
gazette.blocks[20][0] 陳主計長淑姿:是。
gazette.blocks[21][0] 主席:謝謝鄭天財委員的質詢。
gazette.blocks[21][1] 繼續請楊瓊瓔委員、楊瓊瓔委員、楊瓊瓔委員不在。
gazette.blocks[21][2] 鄭正鈐委員、鄭正鈐委員、鄭正鈐委員不在。
gazette.blocks[21][3] 謝衣鳯委員、謝衣鳯委員、謝衣鳯委員不在。
gazette.blocks[21][4] 羅智強委員、羅智強委員、羅智強委員不在。
gazette.blocks[21][5] 何欣純委員、何欣純委員、何欣純委員不在。
gazette.blocks[21][6] 洪孟楷委員、洪孟楷委員、洪孟楷委員不在。
gazette.blocks[21][7] 林楚茵委員、林楚茵委員、林楚茵委員不在。
gazette.blocks[21][8] 今日登記發言的委員已詢答完畢,本次會議作如下決定:一、報告及詢答完畢;二、委員質詢及委員質詢未及答復或請補充資訊,請行政院主計總處於一週內以書面答復,委員另有要求期限者,從其所定。
gazette.blocks[21][9] 本次會議議程已進行完畢,倘有不在委員補提書面資料,一併列入紀錄,刊登公報,並請議事人員協助處理。散會。
gazette.blocks[21][10] 散會(12時20分)
gazette.agenda.page_end 108
gazette.agenda.meet_id 委員會-11-1-20-14
gazette.agenda.speakers[0] 郭國文
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 顏寬恒
gazette.agenda.speakers[4] 賴惠員
gazette.agenda.speakers[5] 賴士葆
gazette.agenda.speakers[6] 王鴻薇
gazette.agenda.speakers[7] 王世堅
gazette.agenda.speakers[8] 李彥秀
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 李坤城
gazette.agenda.speakers[11] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[12] 陳玉珍
gazette.agenda.speakers[13] 羅明才
gazette.agenda.speakers[14] 鄭天財Sra Kacaw
gazette.agenda.page_start 55
gazette.agenda.meetingDate[0] 2024-05-29
gazette.agenda.gazette_id 1135301
gazette.agenda.agenda_lcidc_ids[0] 1135301_00003
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第14次全體委員會議紀錄
gazette.agenda.content 邀請行政院主計總處陳主計長淑姿率所屬單位主管列席業務報告,並備質詢
gazette.agenda.agenda_id 1135301_00002
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.62159375
transcript.pyannote[0].end 2.35971875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 2.91659375
transcript.pyannote[1].end 4.03034375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 3.74346875
transcript.pyannote[2].end 4.99221875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 5.26221875
transcript.pyannote[3].end 7.16909375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 8.29971875
transcript.pyannote[4].end 11.16846875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 11.16846875
transcript.pyannote[5].end 11.57346875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 11.96159375
transcript.pyannote[6].end 13.17659375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 14.74596875
transcript.pyannote[7].end 15.42096875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 14.84721875
transcript.pyannote[8].end 17.66534375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 17.86784375
transcript.pyannote[9].end 19.23471875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 18.42471875
transcript.pyannote[10].end 24.58409375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 20.58471875
transcript.pyannote[11].end 21.14159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 24.70221875
transcript.pyannote[12].end 27.11534375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 25.47846875
transcript.pyannote[13].end 25.79909375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 27.36846875
transcript.pyannote[14].end 27.75659375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 27.92534375
transcript.pyannote[15].end 36.48096875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 36.75096875
transcript.pyannote[16].end 39.87284375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 41.18909375
transcript.pyannote[17].end 50.33534375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 51.22971875
transcript.pyannote[18].end 56.88284375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 57.54096875
transcript.pyannote[19].end 60.07221875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 60.07221875
transcript.pyannote[20].end 60.81471875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 60.76409375
transcript.pyannote[21].end 61.35471875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 62.14784375
transcript.pyannote[22].end 65.10096875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 63.73409375
transcript.pyannote[23].end 63.81846875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 66.04596875
transcript.pyannote[24].end 67.54784375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 67.75034375
transcript.pyannote[25].end 70.46721875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 70.88909375
transcript.pyannote[26].end 71.88471875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 72.40784375
transcript.pyannote[27].end 76.96409375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 77.38596875
transcript.pyannote[28].end 77.80784375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 77.87534375
transcript.pyannote[29].end 78.39846875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 78.93846875
transcript.pyannote[30].end 79.44471875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 79.69784375
transcript.pyannote[31].end 81.79034375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 82.49909375
transcript.pyannote[32].end 83.15721875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 83.69721875
transcript.pyannote[33].end 85.40159375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 85.60409375
transcript.pyannote[34].end 97.87221875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 85.67159375
transcript.pyannote[35].end 86.16096875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 86.16096875
transcript.pyannote[36].end 86.24534375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 98.29409375
transcript.pyannote[37].end 100.96034375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 101.78721875
transcript.pyannote[38].end 102.17534375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 102.44534375
transcript.pyannote[39].end 103.45784375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 104.30159375
transcript.pyannote[40].end 106.91721875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 107.20409375
transcript.pyannote[41].end 109.56659375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 110.10659375
transcript.pyannote[42].end 111.11909375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 111.84471875
transcript.pyannote[43].end 112.53659375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 112.95846875
transcript.pyannote[44].end 114.93284375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 115.96221875
transcript.pyannote[45].end 121.09221875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 121.48034375
transcript.pyannote[46].end 125.56409375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 126.30659375
transcript.pyannote[47].end 127.62284375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 128.01096875
transcript.pyannote[48].end 130.62659375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 131.08221875
transcript.pyannote[49].end 137.98409375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 133.90034375
transcript.pyannote[50].end 134.49096875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 138.92909375
transcript.pyannote[51].end 146.16846875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 146.37096875
transcript.pyannote[52].end 150.03284375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 150.26909375
transcript.pyannote[53].end 157.77846875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 156.59721875
transcript.pyannote[54].end 158.70659375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 158.48721875
transcript.pyannote[55].end 158.87534375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 159.53346875
transcript.pyannote[56].end 161.33909375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 161.27159375
transcript.pyannote[57].end 161.96346875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 161.96346875
transcript.pyannote[58].end 162.72284375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 162.04784375
transcript.pyannote[59].end 164.14034375
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 164.12346875
transcript.pyannote[60].end 164.52846875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 164.78159375
transcript.pyannote[61].end 166.50284375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 166.62096875
transcript.pyannote[62].end 168.40971875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 169.00034375
transcript.pyannote[63].end 171.37971875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 171.86909375
transcript.pyannote[64].end 173.05034375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 173.99534375
transcript.pyannote[65].end 175.68284375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 176.10471875
transcript.pyannote[66].end 177.50534375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 177.80909375
transcript.pyannote[67].end 179.41221875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 180.22221875
transcript.pyannote[68].end 181.08284375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 182.28096875
transcript.pyannote[69].end 183.46221875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 184.15409375
transcript.pyannote[70].end 184.89659375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 184.94721875
transcript.pyannote[71].end 187.03971875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 188.38971875
transcript.pyannote[72].end 191.57909375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 192.32159375
transcript.pyannote[73].end 194.17784375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 194.48159375
transcript.pyannote[74].end 196.23659375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 196.42221875
transcript.pyannote[75].end 196.48971875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 197.46846875
transcript.pyannote[76].end 198.95346875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 199.42596875
transcript.pyannote[77].end 201.87284375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 202.53096875
transcript.pyannote[78].end 202.83471875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 204.92721875
transcript.pyannote[79].end 212.90909375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 212.94284375
transcript.pyannote[80].end 213.51659375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 213.26346875
transcript.pyannote[81].end 218.27534375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 218.64659375
transcript.pyannote[82].end 226.66221875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 226.81409375
transcript.pyannote[83].end 232.93971875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 233.20971875
transcript.pyannote[84].end 235.80846875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 235.96034375
transcript.pyannote[85].end 236.41596875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 236.39909375
transcript.pyannote[86].end 239.72346875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 240.14534375
transcript.pyannote[87].end 241.51221875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 242.00159375
transcript.pyannote[88].end 247.09784375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 244.93784375
transcript.pyannote[89].end 245.34284375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 247.09784375
transcript.pyannote[90].end 247.62096875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 247.13159375
transcript.pyannote[91].end 247.18221875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 247.65471875
transcript.pyannote[92].end 249.73034375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 249.94971875
transcript.pyannote[93].end 251.09721875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 251.31659375
transcript.pyannote[94].end 251.95784375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 252.34596875
transcript.pyannote[95].end 253.51034375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 255.34971875
transcript.pyannote[96].end 258.82596875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 258.18471875
transcript.pyannote[97].end 258.55596875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 259.21409375
transcript.pyannote[98].end 262.04909375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 262.92659375
transcript.pyannote[99].end 265.17096875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 265.86284375
transcript.pyannote[100].end 267.38159375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 268.34346875
transcript.pyannote[101].end 270.82409375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 270.92534375
transcript.pyannote[102].end 272.79846875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 273.13596875
transcript.pyannote[103].end 280.45971875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 280.86471875
transcript.pyannote[104].end 282.19784375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 283.04159375
transcript.pyannote[105].end 285.60659375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 286.23096875
transcript.pyannote[106].end 291.36096875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 291.90096875
transcript.pyannote[107].end 293.48721875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 294.12846875
transcript.pyannote[108].end 294.80346875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 295.59659375
transcript.pyannote[109].end 297.03096875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 297.90846875
transcript.pyannote[110].end 299.64659375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 300.18659375
transcript.pyannote[111].end 301.95846875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 302.78534375
transcript.pyannote[112].end 304.08471875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 304.92846875
transcript.pyannote[113].end 307.12221875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 307.49346875
transcript.pyannote[114].end 309.46784375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 310.12596875
transcript.pyannote[115].end 311.72909375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 312.16784375
transcript.pyannote[116].end 315.99846875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 316.38659375
transcript.pyannote[117].end 323.42346875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 323.84534375
transcript.pyannote[118].end 325.29659375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 326.08971875
transcript.pyannote[119].end 327.82784375
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 327.87846875
transcript.pyannote[120].end 328.14846875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 328.38471875
transcript.pyannote[121].end 328.95846875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 330.02159375
transcript.pyannote[122].end 330.52784375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 331.06784375
transcript.pyannote[123].end 332.36721875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 333.14346875
transcript.pyannote[124].end 335.53971875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 336.29909375
transcript.pyannote[125].end 338.29034375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 338.86409375
transcript.pyannote[126].end 339.43784375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 340.09596875
transcript.pyannote[127].end 341.44596875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 341.86784375
transcript.pyannote[128].end 342.91409375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 343.60596875
transcript.pyannote[129].end 344.93909375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 345.36096875
transcript.pyannote[130].end 352.85346875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 353.20784375
transcript.pyannote[131].end 356.41409375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 356.53221875
transcript.pyannote[132].end 359.06346875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 359.41784375
transcript.pyannote[133].end 361.54409375
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 361.54409375
transcript.pyannote[134].end 361.93221875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 362.40471875
transcript.pyannote[135].end 363.14721875
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 362.89409375
transcript.pyannote[136].end 363.72096875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 363.67034375
transcript.pyannote[137].end 369.17159375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 369.18846875
transcript.pyannote[138].end 369.89721875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 369.37409375
transcript.pyannote[139].end 383.14409375
transcript.whisperx[0].start 0.626
transcript.whisperx[0].end 10.224
transcript.whisperx[0].text 委員好主計長好恭喜你謝謝謝謝委員這個你曾經在行政院主計總處服務過是民國90年
transcript.whisperx[1].start 16.374
transcript.whisperx[1].end 39.146
transcript.whisperx[1].text 我那時候在延明會我是老公務員三四年老公務員從省政府到中央我們在省政府也有共事過所以這個部分還是要請主計長還有我們行政院主計總處的同仁能夠再次了解原住民的困境
transcript.whisperx[2].start 41.663
transcript.whisperx[2].end 55.753
transcript.whisperx[2].text 我們看111年這個原住民就業者參加勞保的情形原住民無勞保之勞工他是勞工但是沒有勞保的4萬0553人112年這又增加到5萬2002人一直增加
transcript.whisperx[3].start 66.367
transcript.whisperx[3].end 66.588
transcript.whisperx[3].text 委員會主席
transcript.whisperx[4].start 82.557
transcript.whisperx[4].end 84.718
transcript.whisperx[4].text 執行委員會執行委員會執行委員會執行委員會執行
transcript.whisperx[5].start 111.932
transcript.whisperx[5].end 137.666
transcript.whisperx[5].text 事實上嚴住民族基本法26條第二項規定政府對嚴住民參加社會保險無力負擔者得以補助所以這個非常非常的重要這個部分請勞動部跟主計總處能夠互相的協調給最大的支持可以嗎
transcript.whisperx[6].start 139.173
transcript.whisperx[6].end 157.649
transcript.whisperx[6].text 因為就同仁提供資料裡面他就是說在勞工職業災害保險法裡面呢他已經有提供那個原民勞工的一個職災給付的一個保障那所以這個部分呢他本身如果有這些的保障就能解決那些沒有參加那個部分我來說明
transcript.whisperx[7].start 159.625
transcript.whisperx[7].end 182.989
transcript.whisperx[7].text 那個只是其中之一啦有勞保跟沒有勞保差很多啊平常生病平常這個什麼相關的這些勞保的這些協助都有嘛好講到植栽植栽的時候如果他有勞保我們就講這次的0403地震呢有一個開大號車的被大壓石頭壓過濕了
transcript.whisperx[8].start 188.464
transcript.whisperx[8].end 202.609
transcript.whisperx[8].text 指摘他只能用什麼呢﹖最基本工資啊﹖最低的那個勞保啊﹖如果他有勞保的話那個差距就很大啊﹖所以這個部分還是有差別好不好
transcript.whisperx[9].start 206.064
transcript.whisperx[9].end 232.434
transcript.whisperx[9].text 讓主計長瞭解還有我們主計總策同仁也瞭解我們的平均移民落差很大沿漢的平均移民落差很大所以我們常常會有訴求所以像國民年金法就是原住民是55歲公教退休原住民是55歲還有很多還沒有完成的比如說勞工的還有其他的
transcript.whisperx[10].start 233.354
transcript.whisperx[10].end 261.952
transcript.whisperx[10].text 都是需要去降低他的年齡我們看這個平均收入我們的差距差距也是很大連漢的平均收入差距也很大所得就有影響我們的失業率我們的這個出債協力教育是向上提升最重要的對不對教育向上提升最重要的
transcript.whisperx[11].start 263.244
transcript.whisperx[11].end 275.859
transcript.whisperx[11].text 這裡面為什麼要跟這個主計總處講呢你看我們107斜年度沿漢的落差那時候107斜年度全國是85.8原住民53.9差距是31.9
transcript.whisperx[12].start 283.089
transcript.whisperx[12].end 303.625
transcript.whisperx[12].text 但是到了111斜年度全國88.9原住民56.5雖然我們也上升了但是差距加大了32.4有很大的原因是什麼呢因為我們原住民的那個身血保障
transcript.whisperx[13].start 304.963
transcript.whisperx[13].end 331.537
transcript.whisperx[13].text 原住民族教育法有升學保障但是是外加百分之二外加不影響一般學生的升學我們是外加百分之二以前沒有以前不是外加只要加分就可以考上現在是外加百分之二外加百分之二的結果是怎麼樣呢就跑到私立大學了就繳不起那些學費所以這次選舉前
transcript.whisperx[14].start 333.191
transcript.whisperx[14].end 361.188
transcript.whisperx[14].text 增加了很多的補助私立大學對不對但是對原住民毫無幫助啊因為原住民不會在那邊的所以這個部分啊這個就變成是說能夠根據原住民族教育法怎麼樣讓我們的能夠考上就學了怎麼樣讓他能夠協助就是變成主計總處要支持教育部增加那個相關的這些就學的一個補助可以嗎
transcript.whisperx[15].start 370.672
transcript.whisperx[15].end 382.957
transcript.whisperx[15].text 謝謝鄭天財委員的質詢。接著請楊瓊瑩委員、楊瓊瑩委員、楊瓊瑩委員不在、鄭振賢委員、鄭振賢委員、鄭振賢委員不在、謝一鳳委員、謝一鳳委員、謝一鳳委員不在、羅志強委員、羅志強委員、羅志強委員不在、何新春委員、何新雄委員、何新雄委員不在、