iVOD / 153279

Field Value
IVOD_ID 153279
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/153279
日期 2024-05-29
會議資料.會議代碼 委員會-11-1-20-14
會議資料.會議代碼:str 第11屆第1會期財政委員會第14次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 14
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第14次全體委員會議
影片種類 Clip
開始時間 2024-05-29T12:02:30+08:00
結束時間 2024-05-29T12:13:29+08:00
影片長度 00:10:59
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/2c978e04ca5e1331e080c65fcb77f85e5c2a8e696f21355cc09f7998a2d5a4c1d5a460e69db745675ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 12:02:30 - 12:13:29
會議時間 2024-05-29T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第14次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿率所屬單位主管列席業務報告,並備質詢。)
gazette.lineno 854
gazette.blocks[0][0] 羅委員明才:(12時2分)主席、各位委員、出列席官員,大家早安、大家好!主席,可不可以請陳淑姿陳主計長?
gazette.blocks[1][0] 主席:有請陳主計長。
gazette.blocks[2][0] 羅委員明才:陳主計長,你好。
gazette.blocks[3][0] 陳主計長淑姿:委員好。
gazette.blocks[4][0] 羅委員明才:你現在可以說是最重要的管錢的人,像財神爺,每個人看到你,特別是每縣市都是嗷嗷待哺,剛剛陳玉珍委員講到金門,金門是離島,要多多照顧。
gazette.blocks[5][0] 陳主計長淑姿:是。
gazette.blocks[6][0] 羅委員明才:因為有您多照顧,明天才會變得更好,因為離島過去資源不多,物產也不豐,都靠自給自足,要多補助一點,以全國22縣市來說,主計長覺得還有哪一個地方應該多補助一點?
gazette.blocks[7][0] 陳主計長淑姿:因為要補助的縣市也很多啦,每個縣市都喊窮說沒有錢,對於這個部分,我們在一般性的補助,我們都有給一個保證,保證就是說會成長,所以我們每一年在分配的時候,都有保證每一年固定成長2%到3%。
gazette.blocks[8][0] 羅委員明才:對,但是因為你是新來的,新擔任這個職務,就這二、三十年來看,我覺得這個職務是相當重要的,因為運籌帷幄,那怎麼樣讓地方自主性可以增加,以前經常講一鄉一特色,或者運用什麼樣的加持力量,讓它可以有自主性的發展。比如以也是臺灣之光NVIDIA Jetson的黃仁勳為例,他現在回來臺灣,要在高雄設廠,其實他本來在臺灣就有公司了,員工也有上千人,都有在做。我覺得中央應該要統籌力量,怎麼樣平均的來分配?比如說新竹是半導體的重鎮,那就有一個特色,所以在過去民國七十幾年的時候,因為有打下這樣的基礎,所以能夠開枝散葉,整個半導體核心就能夠廣布,很平均的上下游這個鏈就生成了,我覺得主計長位置的重要性,就是農林漁牧或者是觀光也好,像剛剛講的離島,你要賦予離島有其特性,那每個人都來要錢,當然錢是越多越好,可是你在給預算的同時,也希望能多多跟他們聊聊看,當地的教育文化、過去的歷史特性,有沒有什麼可以給予重點支持?比如說泰國好了,講到泰國,主計長最先想到的是他們的什麼產業比較發達?
gazette.blocks[9][0] 陳主計長淑姿:泰國的產業……,是觀光吧?
gazette.blocks[10][0] 羅委員明才:對,你不要害怕,你要胸有成竹,你的經驗很豐富,就是觀光,所以他們的產業鏈就形成了。所以我希望在一般性補助或是特別補助,你們在統籌統支,中央的立場在分配的時候,可以除了照顧之外,另外還可以求未來性的發展。
gazette.blocks[10][1] 接下來我們再提到財劃法的問題,大概已經等了25年了,地方都嗷嗷待哺,本席也希望多聽聽主計長多年來在公務生涯的經驗,你除了在臺南待過,還在哪邊待過?
gazette.blocks[11][0] 陳主計長淑姿:省政府。
gazette.blocks[12][0] 羅委員明才:省政府也待過?
gazette.blocks[13][0] 陳主計長淑姿:行政院主計總處也待過。
gazette.blocks[14][0] 羅委員明才:都待過,所以就你的經驗,你趕快把數字準備出來,希望你能給予大家一個比較公平及有建設性的建議,第一是貧富懸殊不要越來越大,第二是給錢的同時,你要教他釣魚,要怎麼樣帶動地方發展,或者是缺少的部分,你們就要媒合,去拜託經濟部啊。過去的沈部長、後來的行政院副院長,我覺得他對臺灣貢獻就很大,當初他跟這些AI很成功的全世界大概是前四大,他大概每個都有接觸過,然後他們來臺灣的時候都跟他們探討,怎麼樣把這些技術,或者他們缺晶片,他馬上把管道連接上,所以希望主計長也扮演好為每個地方、為國家多多做事的重責大任。
gazette.blocks[15][0] 陳主計長淑姿:是。
gazette.blocks[16][0] 羅委員明才:另外就是過去主計的預測好像都失準,準確度都不高,比如你們對今年經濟成長率估計多少?
gazette.blocks[17][0] 陳主計長淑姿:3.43。
gazette.blocks[18][0] 羅委員明才:多少?
gazette.blocks[19][0] 陳主計長淑姿:3.43。
gazette.blocks[20][0] 羅委員明才:3.43,去年估的時候呢?
gazette.blocks[21][0] 陳主計長淑姿:去年是比較低啦,去年是低一點。
gazette.blocks[22][0] 羅委員明才:去年估2點多,2點多到3點之間差很多耶,對不對?因為差一個0.1的百分比就差多少?多少的數字?
gazette.blocks[23][0] 陳主計長淑姿:差0.1的百分比喔,它是用GDP的……
gazette.blocks[24][0] 羅委員明才:1%是多少代表?
gazette.blocks[25][0] 陳主計長淑姿:200多億啦。
gazette.blocks[26][0] 羅委員明才:對不對?所以這個金額都是很大的,我也期許主計長把餅做大,我希望在你的資源裡面稍微盤點一下,多多注重民生大家關心的議題。
gazette.blocks[27][0] 陳主計長淑姿:是。
gazette.blocks[28][0] 羅委員明才:比如說有些產業,你們跟各部會要聊一下,比如像toro,toro的價格最近怎麼樣?就是鮪魚、生魚片。
gazette.blocks[29][0] 陳主計長淑姿:降到200塊。
gazette.blocks[30][0] 羅委員明才:更低喔,更低了,以前是一小片可能就是200、300塊,還到500塊,現在是那麼大片,多了一片,價格也變,降很多,所以對這些民生的數字,也希望你們多多瞭解農民的辛苦、漁民的困難,因為量多嘛,量多你就可以請其他單位未雨綢繆,多多促銷。
gazette.blocks[31][0] 陳主計長淑姿:好。
gazette.blocks[32][0] 羅委員明才:比如一個便當,我們吃的雞腿便當現在一個多少錢?
gazette.blocks[33][0] 陳主計長淑姿:我最近在火車站那邊買有85到120塊,然後85塊和100塊的排骨便當,裡面的內容還是不太一樣,所以還是有各種不同的價格,雞排便當大概要100塊。
gazette.blocks[34][0] 羅委員明才:對,台鐵便當現在一個大概100塊,雞腿便當變成是120塊,以前大概60、80塊就可以吃得到,現在一直飆漲。其實在漲的同時,你們可以有另外一個機制宣布出來,比如告訴民眾注意現在toro很便宜,所以你們要促銷啊!
gazette.blocks[35][0] 陳主計長淑姿:好。
gazette.blocks[36][0] 羅委員明才:所以你們第一線去查的這些數字,不是放在辦公室吹冷氣啊,是要把這些數字有效精準的給其他單位,這點可以做得到嗎?
gazette.blocks[37][0] 陳主計長淑姿:可以,我們儘量,我們一定努力來做。
gazette.blocks[38][0] 羅委員明才:你也可以跟教育部互相聯繫好,因為小朋友營養午餐等等要吃得好、吃得飽,鮪魚現在價格比較低,你就叫他們多使用鮪魚啊,當香蕉量產太多的時候,呼籲大家多吃香蕉,反正這些民生物資,我看以前彭淮南總裁,他貴為央行的總裁,常常微服出巡,希望主計長也可以多多比照,多瞭解一下民間苦人何其多,可以多多站在他們的立場來想事情。
gazette.blocks[39][0] 陳主計長淑姿:是。
gazette.blocks[40][0] 羅委員明才:最後提醒你,新北市人口有四百多萬人,以前升格到現在中央欠新北市很多錢,該給的統籌分配稅款、一般補助、專案補助都比期待值差很多,希望主計長對這個數字也能多多瞭解一下,我們一起共同為新北市的市民多做爭取,可以嗎?
gazette.blocks[41][0] 陳主計長淑姿:是,我們一定盡力。謝謝委員。
gazette.blocks[42][0] 羅委員明才:謝謝主計長。
gazette.blocks[43][0] 主席:謝謝羅明才委員的質詢。
gazette.blocks[43][1] 接著請鄭天財委員質詢。
gazette.agenda.page_end 108
gazette.agenda.meet_id 委員會-11-1-20-14
gazette.agenda.speakers[0] 郭國文
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 顏寬恒
gazette.agenda.speakers[4] 賴惠員
gazette.agenda.speakers[5] 賴士葆
gazette.agenda.speakers[6] 王鴻薇
gazette.agenda.speakers[7] 王世堅
gazette.agenda.speakers[8] 李彥秀
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 李坤城
gazette.agenda.speakers[11] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[12] 陳玉珍
gazette.agenda.speakers[13] 羅明才
gazette.agenda.speakers[14] 鄭天財Sra Kacaw
gazette.agenda.page_start 55
gazette.agenda.meetingDate[0] 2024-05-29
gazette.agenda.gazette_id 1135301
gazette.agenda.agenda_lcidc_ids[0] 1135301_00003
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第14次全體委員會議紀錄
gazette.agenda.content 邀請行政院主計總處陳主計長淑姿率所屬單位主管列席業務報告,並備質詢
gazette.agenda.agenda_id 1135301_00002
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.43596875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 0.63846875
transcript.pyannote[1].end 3.11909375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 5.17784375
transcript.pyannote[2].end 5.92034375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 6.56159375
transcript.pyannote[3].end 6.83159375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 7.43909375
transcript.pyannote[4].end 8.63721875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 9.12659375
transcript.pyannote[5].end 11.03346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 11.84346875
transcript.pyannote[6].end 16.33221875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 16.78784375
transcript.pyannote[7].end 18.03659375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 18.64409375
transcript.pyannote[8].end 24.07784375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 24.39846875
transcript.pyannote[9].end 25.76534375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 26.27159375
transcript.pyannote[10].end 27.35159375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 27.35159375
transcript.pyannote[11].end 27.73971875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 28.16159375
transcript.pyannote[12].end 28.58346875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 29.08971875
transcript.pyannote[13].end 32.59971875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 32.88659375
transcript.pyannote[14].end 33.20721875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 33.64596875
transcript.pyannote[15].end 35.01284375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 35.46846875
transcript.pyannote[16].end 36.66659375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 37.27409375
transcript.pyannote[17].end 37.78034375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 37.91534375
transcript.pyannote[18].end 41.67846875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 41.98221875
transcript.pyannote[19].end 43.41659375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 43.83846875
transcript.pyannote[20].end 48.61409375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 49.42409375
transcript.pyannote[21].end 52.19159375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 53.62596875
transcript.pyannote[22].end 57.33846875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 57.87846875
transcript.pyannote[23].end 77.43659375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 78.60096875
transcript.pyannote[24].end 78.87096875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 79.44471875
transcript.pyannote[25].end 80.23784375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 80.94659375
transcript.pyannote[26].end 82.66784375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 82.51596875
transcript.pyannote[27].end 82.88721875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 82.88721875
transcript.pyannote[28].end 82.93784375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 82.93784375
transcript.pyannote[29].end 84.77721875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 85.58721875
transcript.pyannote[30].end 86.07659375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 86.32971875
transcript.pyannote[31].end 89.08034375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 89.11409375
transcript.pyannote[32].end 91.42596875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 91.32471875
transcript.pyannote[33].end 91.84784375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 91.44284375
transcript.pyannote[34].end 92.33721875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 92.87721875
transcript.pyannote[35].end 93.73784375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 93.78846875
transcript.pyannote[36].end 94.46346875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 95.05409375
transcript.pyannote[37].end 95.42534375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 95.59409375
transcript.pyannote[38].end 97.04534375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 97.80471875
transcript.pyannote[39].end 99.05346875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 99.57659375
transcript.pyannote[40].end 100.55534375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 101.09534375
transcript.pyannote[41].end 103.72784375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 104.82471875
transcript.pyannote[42].end 105.48284375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 105.82034375
transcript.pyannote[43].end 109.46534375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 109.66784375
transcript.pyannote[44].end 113.54909375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 114.96659375
transcript.pyannote[45].end 115.54034375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 116.60346875
transcript.pyannote[46].end 117.36284375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 118.30784375
transcript.pyannote[47].end 119.60721875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 120.07971875
transcript.pyannote[48].end 120.63659375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 121.00784375
transcript.pyannote[49].end 121.69971875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 122.27346875
transcript.pyannote[50].end 122.74596875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 123.79221875
transcript.pyannote[51].end 124.50096875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 124.90596875
transcript.pyannote[52].end 125.80034375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 126.20534375
transcript.pyannote[53].end 126.54284375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 126.99846875
transcript.pyannote[54].end 127.69034375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 128.48346875
transcript.pyannote[55].end 129.05721875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 129.73221875
transcript.pyannote[56].end 130.50846875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 130.87971875
transcript.pyannote[57].end 137.30909375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 138.08534375
transcript.pyannote[58].end 139.04721875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 139.60409375
transcript.pyannote[59].end 142.10159375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 142.92846875
transcript.pyannote[60].end 145.05471875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 146.55659375
transcript.pyannote[61].end 147.09659375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 148.34534375
transcript.pyannote[62].end 148.91909375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 149.76284375
transcript.pyannote[63].end 150.13409375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 151.50096875
transcript.pyannote[64].end 152.04096875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 152.34471875
transcript.pyannote[65].end 153.03659375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 153.52596875
transcript.pyannote[66].end 154.52159375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 155.56784375
transcript.pyannote[67].end 155.83784375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 155.98971875
transcript.pyannote[68].end 156.47909375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 156.69846875
transcript.pyannote[69].end 157.60971875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 158.68971875
transcript.pyannote[70].end 160.14096875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 160.41096875
transcript.pyannote[71].end 162.72284375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 163.27971875
transcript.pyannote[72].end 164.51159375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 166.63784375
transcript.pyannote[73].end 168.78096875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 168.96659375
transcript.pyannote[74].end 170.09721875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 170.80596875
transcript.pyannote[75].end 175.12596875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 175.61534375
transcript.pyannote[76].end 176.17221875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 176.57721875
transcript.pyannote[77].end 177.15096875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 177.42096875
transcript.pyannote[78].end 179.24346875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 180.27284375
transcript.pyannote[79].end 181.38659375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 181.82534375
transcript.pyannote[80].end 183.19221875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 183.69846875
transcript.pyannote[81].end 184.87971875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 185.47034375
transcript.pyannote[82].end 186.80346875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 187.78221875
transcript.pyannote[83].end 189.46971875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 190.26284375
transcript.pyannote[84].end 190.61721875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 191.15721875
transcript.pyannote[85].end 192.60846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 192.74346875
transcript.pyannote[86].end 195.03846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 195.05534375
transcript.pyannote[87].end 196.65846875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 196.89471875
transcript.pyannote[88].end 199.83096875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 200.65784375
transcript.pyannote[89].end 201.41721875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 201.88971875
transcript.pyannote[90].end 203.17221875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 204.35346875
transcript.pyannote[91].end 205.72034375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 206.15909375
transcript.pyannote[92].end 206.98596875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 207.20534375
transcript.pyannote[93].end 208.38659375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 210.41159375
transcript.pyannote[94].end 211.55909375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 212.74034375
transcript.pyannote[95].end 213.49971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 214.10721875
transcript.pyannote[96].end 216.03096875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 216.79034375
transcript.pyannote[97].end 218.42721875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 219.84471875
transcript.pyannote[98].end 221.16096875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 221.80221875
transcript.pyannote[99].end 222.51096875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 223.77659375
transcript.pyannote[100].end 225.02534375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 225.24471875
transcript.pyannote[101].end 226.24034375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 226.84784375
transcript.pyannote[102].end 232.07909375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 232.51784375
transcript.pyannote[103].end 233.36159375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 234.07034375
transcript.pyannote[104].end 239.33534375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 239.68971875
transcript.pyannote[105].end 241.71471875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 242.50784375
transcript.pyannote[106].end 243.09846875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 243.68909375
transcript.pyannote[107].end 246.32159375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 246.79409375
transcript.pyannote[108].end 247.72221875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 248.27909375
transcript.pyannote[109].end 248.85284375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 249.22409375
transcript.pyannote[110].end 249.74721875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 250.03409375
transcript.pyannote[111].end 254.86034375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 257.96534375
transcript.pyannote[112].end 258.40409375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 258.74159375
transcript.pyannote[113].end 261.23909375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 261.52596875
transcript.pyannote[114].end 264.00659375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 264.96846875
transcript.pyannote[115].end 265.42409375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 265.96409375
transcript.pyannote[116].end 266.43659375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 267.49971875
transcript.pyannote[117].end 268.90034375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 270.38534375
transcript.pyannote[118].end 271.09409375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 271.98846875
transcript.pyannote[119].end 272.79846875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 273.57471875
transcript.pyannote[120].end 275.19471875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 276.61221875
transcript.pyannote[121].end 277.42221875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 277.86096875
transcript.pyannote[122].end 278.75534375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 279.19409375
transcript.pyannote[123].end 280.34159375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 280.69596875
transcript.pyannote[124].end 282.21471875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 282.72096875
transcript.pyannote[125].end 285.40409375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 285.52221875
transcript.pyannote[126].end 286.16346875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 286.58534375
transcript.pyannote[127].end 287.91846875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 287.91846875
transcript.pyannote[128].end 289.77471875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 287.96909375
transcript.pyannote[129].end 288.55971875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 289.92659375
transcript.pyannote[130].end 290.65221875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 291.02346875
transcript.pyannote[131].end 293.09909375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 293.41971875
transcript.pyannote[132].end 296.54159375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 296.98034375
transcript.pyannote[133].end 298.07721875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 298.70159375
transcript.pyannote[134].end 299.42721875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 299.69721875
transcript.pyannote[135].end 302.41409375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 302.83596875
transcript.pyannote[136].end 303.10596875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 303.76409375
transcript.pyannote[137].end 304.25346875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 306.19409375
transcript.pyannote[138].end 306.76784375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 307.78034375
transcript.pyannote[139].end 309.40034375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 309.82221875
transcript.pyannote[140].end 310.53096875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 311.42534375
transcript.pyannote[141].end 311.99909375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 312.79221875
transcript.pyannote[142].end 315.93096875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 316.52159375
transcript.pyannote[143].end 317.33159375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 318.00659375
transcript.pyannote[144].end 319.54221875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 320.53784375
transcript.pyannote[145].end 321.70221875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 322.15784375
transcript.pyannote[146].end 323.44034375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 324.82409375
transcript.pyannote[147].end 325.95471875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 326.88284375
transcript.pyannote[148].end 327.70971875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 328.31721875
transcript.pyannote[149].end 330.35909375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 331.16909375
transcript.pyannote[150].end 332.60346875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 333.04221875
transcript.pyannote[151].end 334.71284375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 336.18096875
transcript.pyannote[152].end 338.37471875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 338.98221875
transcript.pyannote[153].end 340.72034375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 341.12534375
transcript.pyannote[154].end 344.19659375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 344.66909375
transcript.pyannote[155].end 346.86284375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 347.89221875
transcript.pyannote[156].end 350.49096875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 351.19971875
transcript.pyannote[157].end 351.73971875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 352.49909375
transcript.pyannote[158].end 360.07596875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 360.39659375
transcript.pyannote[159].end 360.93659375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 361.98284375
transcript.pyannote[160].end 362.80971875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 363.38346875
transcript.pyannote[161].end 367.63596875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 369.84659375
transcript.pyannote[162].end 370.62284375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 371.19659375
transcript.pyannote[163].end 371.75346875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 372.20909375
transcript.pyannote[164].end 373.81221875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 374.90909375
transcript.pyannote[165].end 376.46159375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 377.05221875
transcript.pyannote[166].end 377.60909375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 378.03096875
transcript.pyannote[167].end 379.43159375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 380.19096875
transcript.pyannote[168].end 380.91659375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 381.13596875
transcript.pyannote[169].end 383.39721875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 384.10596875
transcript.pyannote[170].end 385.11846875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 385.64159375
transcript.pyannote[171].end 386.01284375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 386.16471875
transcript.pyannote[172].end 387.16034375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 387.49784375
transcript.pyannote[173].end 387.53159375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 387.53159375
transcript.pyannote[174].end 388.47659375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 387.54846875
transcript.pyannote[175].end 387.70034375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 388.79721875
transcript.pyannote[176].end 390.02909375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 390.67034375
transcript.pyannote[177].end 393.47159375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 393.47159375
transcript.pyannote[178].end 394.85534375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 393.48846875
transcript.pyannote[179].end 393.52221875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 395.42909375
transcript.pyannote[180].end 398.78721875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 399.56346875
transcript.pyannote[181].end 402.97221875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 403.66409375
transcript.pyannote[182].end 404.49096875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 405.31784375
transcript.pyannote[183].end 407.27534375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 408.03471875
transcript.pyannote[184].end 409.53659375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 409.41846875
transcript.pyannote[185].end 410.97096875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 410.97096875
transcript.pyannote[186].end 413.62034375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 413.70471875
transcript.pyannote[187].end 416.20221875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 416.97846875
transcript.pyannote[188].end 418.48034375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 418.81784375
transcript.pyannote[189].end 419.45909375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 420.03284375
transcript.pyannote[190].end 421.73721875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 424.06596875
transcript.pyannote[191].end 431.32221875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 431.44034375
transcript.pyannote[192].end 431.98034375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 432.04784375
transcript.pyannote[193].end 435.82784375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 435.91221875
transcript.pyannote[194].end 435.97971875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 435.97971875
transcript.pyannote[195].end 436.33409375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 436.33409375
transcript.pyannote[196].end 436.63784375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 437.11034375
transcript.pyannote[197].end 438.00471875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 439.06784375
transcript.pyannote[198].end 440.78909375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 441.88596875
transcript.pyannote[199].end 443.60721875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 442.13909375
transcript.pyannote[200].end 445.26096875
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 446.81346875
transcript.pyannote[201].end 447.80909375
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 447.99471875
transcript.pyannote[202].end 448.95659375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 449.00721875
transcript.pyannote[203].end 449.47971875
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 449.42909375
transcript.pyannote[204].end 450.84659375
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 451.50471875
transcript.pyannote[205].end 452.29784375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 453.07409375
transcript.pyannote[206].end 453.68159375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 453.76596875
transcript.pyannote[207].end 454.59284375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 455.50409375
transcript.pyannote[208].end 457.07346875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 457.36034375
transcript.pyannote[209].end 458.15346875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 458.45721875
transcript.pyannote[210].end 460.53284375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 461.74784375
transcript.pyannote[211].end 462.37221875
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 462.37221875
transcript.pyannote[212].end 464.11034375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 464.80221875
transcript.pyannote[213].end 465.20721875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 465.89909375
transcript.pyannote[214].end 466.81034375
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 467.33346875
transcript.pyannote[215].end 468.21096875
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 468.86909375
transcript.pyannote[216].end 469.57784375
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 471.53534375
transcript.pyannote[217].end 474.13409375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 474.47159375
transcript.pyannote[218].end 475.33221875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 475.58534375
transcript.pyannote[219].end 476.17596875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 476.49659375
transcript.pyannote[220].end 477.76221875
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 478.04909375
transcript.pyannote[221].end 480.39471875
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 480.39471875
transcript.pyannote[222].end 480.90096875
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 480.93471875
transcript.pyannote[223].end 484.73159375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 485.33909375
transcript.pyannote[224].end 485.69346875
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 486.58784375
transcript.pyannote[225].end 487.49909375
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 487.90409375
transcript.pyannote[226].end 488.96721875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 489.33846875
transcript.pyannote[227].end 489.54096875
transcript.pyannote[228].speaker SPEAKER_00
transcript.pyannote[228].start 490.19909375
transcript.pyannote[228].end 491.70096875
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 492.35909375
transcript.pyannote[229].end 494.83971875
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 494.99159375
transcript.pyannote[230].end 510.21284375
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 509.82471875
transcript.pyannote[231].end 510.34784375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 510.48284375
transcript.pyannote[232].end 516.54096875
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 513.09846875
transcript.pyannote[233].end 513.94221875
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 517.24971875
transcript.pyannote[234].end 518.00909375
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 518.00909375
transcript.pyannote[235].end 518.31284375
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 518.49846875
transcript.pyannote[236].end 519.62909375
transcript.pyannote[237].speaker SPEAKER_00
transcript.pyannote[237].start 519.98346875
transcript.pyannote[237].end 522.10971875
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 521.48534375
transcript.pyannote[238].end 521.97471875
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 522.10971875
transcript.pyannote[239].end 522.12659375
transcript.pyannote[240].speaker SPEAKER_00
transcript.pyannote[240].start 522.12659375
transcript.pyannote[240].end 522.19409375
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 522.51471875
transcript.pyannote[241].end 526.29471875
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 526.32846875
transcript.pyannote[242].end 526.76721875
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 526.64909375
transcript.pyannote[243].end 527.12159375
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 527.29034375
transcript.pyannote[244].end 532.13346875
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 532.50471875
transcript.pyannote[245].end 534.96846875
transcript.pyannote[246].speaker SPEAKER_00
transcript.pyannote[246].start 535.44096875
transcript.pyannote[246].end 539.59221875
transcript.pyannote[247].speaker SPEAKER_01
transcript.pyannote[247].start 540.38534375
transcript.pyannote[247].end 540.50346875
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 541.46534375
transcript.pyannote[248].end 544.23284375
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 544.35096875
transcript.pyannote[249].end 551.84346875
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 544.60409375
transcript.pyannote[250].end 544.65471875
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 549.04221875
transcript.pyannote[251].end 549.48096875
transcript.pyannote[252].speaker SPEAKER_00
transcript.pyannote[252].start 552.26534375
transcript.pyannote[252].end 554.59409375
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 554.86409375
transcript.pyannote[253].end 555.03284375
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 555.25221875
transcript.pyannote[254].end 556.46721875
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 556.58534375
transcript.pyannote[255].end 559.50471875
transcript.pyannote[256].speaker SPEAKER_00
transcript.pyannote[256].start 559.26846875
transcript.pyannote[256].end 563.41971875
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 563.25096875
transcript.pyannote[257].end 563.79096875
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 563.79096875
transcript.pyannote[258].end 563.90909375
transcript.pyannote[259].speaker SPEAKER_00
transcript.pyannote[259].start 564.21284375
transcript.pyannote[259].end 573.62909375
transcript.pyannote[260].speaker SPEAKER_00
transcript.pyannote[260].start 574.42221875
transcript.pyannote[260].end 578.38784375
transcript.pyannote[261].speaker SPEAKER_01
transcript.pyannote[261].start 578.55659375
transcript.pyannote[261].end 578.89409375
transcript.pyannote[262].speaker SPEAKER_00
transcript.pyannote[262].start 580.49721875
transcript.pyannote[262].end 583.53471875
transcript.pyannote[263].speaker SPEAKER_00
transcript.pyannote[263].start 583.97346875
transcript.pyannote[263].end 585.79596875
transcript.pyannote[264].speaker SPEAKER_00
transcript.pyannote[264].start 586.38659375
transcript.pyannote[264].end 588.71534375
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 589.18784375
transcript.pyannote[265].end 591.88784375
transcript.pyannote[266].speaker SPEAKER_01
transcript.pyannote[266].start 592.05659375
transcript.pyannote[266].end 592.46159375
transcript.pyannote[267].speaker SPEAKER_00
transcript.pyannote[267].start 593.32221875
transcript.pyannote[267].end 594.14909375
transcript.pyannote[268].speaker SPEAKER_00
transcript.pyannote[268].start 594.28409375
transcript.pyannote[268].end 595.44846875
transcript.pyannote[269].speaker SPEAKER_00
transcript.pyannote[269].start 596.02221875
transcript.pyannote[269].end 597.18659375
transcript.pyannote[270].speaker SPEAKER_01
transcript.pyannote[270].start 597.76034375
transcript.pyannote[270].end 598.04721875
transcript.pyannote[271].speaker SPEAKER_00
transcript.pyannote[271].start 598.04721875
transcript.pyannote[271].end 600.49409375
transcript.pyannote[272].speaker SPEAKER_01
transcript.pyannote[272].start 598.06409375
transcript.pyannote[272].end 598.09784375
transcript.pyannote[273].speaker SPEAKER_00
transcript.pyannote[273].start 600.76409375
transcript.pyannote[273].end 601.27034375
transcript.pyannote[274].speaker SPEAKER_00
transcript.pyannote[274].start 601.50659375
transcript.pyannote[274].end 602.94096875
transcript.pyannote[275].speaker SPEAKER_00
transcript.pyannote[275].start 603.27846875
transcript.pyannote[275].end 603.90284375
transcript.pyannote[276].speaker SPEAKER_00
transcript.pyannote[276].start 604.17284375
transcript.pyannote[276].end 606.60284375
transcript.pyannote[277].speaker SPEAKER_01
transcript.pyannote[277].start 606.85596875
transcript.pyannote[277].end 607.44659375
transcript.pyannote[278].speaker SPEAKER_00
transcript.pyannote[278].start 607.44659375
transcript.pyannote[278].end 608.02034375
transcript.pyannote[279].speaker SPEAKER_01
transcript.pyannote[279].start 607.46346875
transcript.pyannote[279].end 607.48034375
transcript.pyannote[280].speaker SPEAKER_00
transcript.pyannote[280].start 608.61096875
transcript.pyannote[280].end 609.67409375
transcript.pyannote[281].speaker SPEAKER_01
transcript.pyannote[281].start 609.67409375
transcript.pyannote[281].end 610.12971875
transcript.pyannote[282].speaker SPEAKER_00
transcript.pyannote[282].start 610.16346875
transcript.pyannote[282].end 613.11659375
transcript.pyannote[283].speaker SPEAKER_00
transcript.pyannote[283].start 613.79159375
transcript.pyannote[283].end 614.11221875
transcript.pyannote[284].speaker SPEAKER_00
transcript.pyannote[284].start 615.10784375
transcript.pyannote[284].end 615.78284375
transcript.pyannote[285].speaker SPEAKER_00
transcript.pyannote[285].start 616.05284375
transcript.pyannote[285].end 620.11971875
transcript.pyannote[286].speaker SPEAKER_00
transcript.pyannote[286].start 620.96346875
transcript.pyannote[286].end 625.30034375
transcript.pyannote[287].speaker SPEAKER_00
transcript.pyannote[287].start 626.12721875
transcript.pyannote[287].end 628.75971875
transcript.pyannote[288].speaker SPEAKER_00
transcript.pyannote[288].start 629.51909375
transcript.pyannote[288].end 633.85596875
transcript.pyannote[289].speaker SPEAKER_00
transcript.pyannote[289].start 634.22721875
transcript.pyannote[289].end 640.47096875
transcript.pyannote[290].speaker SPEAKER_00
transcript.pyannote[290].start 641.56784375
transcript.pyannote[290].end 642.02346875
transcript.pyannote[291].speaker SPEAKER_02
transcript.pyannote[291].start 642.20909375
transcript.pyannote[291].end 643.98096875
transcript.pyannote[292].speaker SPEAKER_00
transcript.pyannote[292].start 645.22971875
transcript.pyannote[292].end 645.76971875
transcript.pyannote[293].speaker SPEAKER_02
transcript.pyannote[293].start 645.68534375
transcript.pyannote[293].end 647.57534375
transcript.pyannote[294].speaker SPEAKER_00
transcript.pyannote[294].start 646.19159375
transcript.pyannote[294].end 649.75221875
transcript.whisperx[0].start 2.091
transcript.whisperx[0].end 26.911
transcript.whisperx[0].text 有請陳主計長陳主計長你好你可以說是最重要的管錢的財神爺每個人看到你特別是每縣市都是嗷嗷待哺剛剛有委員陳玉珍成員講到金門金門是離島要多多照顧
transcript.whisperx[1].start 29.161
transcript.whisperx[1].end 51.915
transcript.whisperx[1].text 有您多照顧明天才會變得更好因為李導過去資源不多然後物產也不豐都靠自給自足要多補助一點那像全國這樣22縣市來說主席還有哪一個地方應該多補助一點
transcript.whisperx[2].start 53.703
transcript.whisperx[2].end 75.308
transcript.whisperx[2].text 因為要補助的縣市也很多那每個縣市都喊窮說沒有錢我看大部分所以這個部分我們一般我們在一般性的補助我們都有給他說一個保證保證的產品就是說會成長這樣子所以我們每一年在分配的時候都有跟他有一個是保證說每一年固定成長2%到3%這樣子
transcript.whisperx[3].start 79.535
transcript.whisperx[3].end 103.465
transcript.whisperx[3].text 對,但是因為你是新來的啦先擔任這個職務就這二三十年來看我覺得這個職務是相當重要的啦因為運籌帷幄那怎麼樣來讓地方自主性可以增加以前他在講說一鄉一特色
transcript.whisperx[4].start 104.875
transcript.whisperx[4].end 128.747
transcript.whisperx[4].text 或者運用什麼樣的加持的力量讓他可以有一個自主性的發展比如說我看到也是臺灣之光這個NVIDIA傑森黃仁勳他現在回來臺灣那要在高雄
transcript.whisperx[5].start 129.893
transcript.whisperx[5].end 156.951
transcript.whisperx[5].text 要設廠其實他本來在台灣他們就有公司了啦那員工也上千人都有在做那我覺得中央應該統籌一個力量怎麼樣平均的來分配比如說新竹是半導體的重鎮他就有一個特色所以在過去
transcript.whisperx[6].start 158.717
transcript.whisperx[6].end 184.132
transcript.whisperx[6].text 民國七十幾年的時候因為有打這樣的一個基礎所以他開枝散葉半導體核心整個就廣布很平均的上下有這個鏈生成的我覺得主計長你的位置重要性就是說農林漁牧或者是觀光也好像剛剛講的離島你要賦予他離島
transcript.whisperx[7].start 188.206
transcript.whisperx[7].end 215.789
transcript.whisperx[7].text 當然每個人都要錢當然錢是越多越好可是你在給錢的給預算的同時也希望能多多跟他們聊聊看當地的教育文化過去的歷史特性有沒有什麼可以重點支持的比如說泰國好了講到泰國主席長你最先想到的是
transcript.whisperx[8].start 216.8
transcript.whisperx[8].end 217.84
transcript.whisperx[8].text 一般性補助或者是有特別補助
transcript.whisperx[9].start 242.557
transcript.whisperx[9].end 270.837
transcript.whisperx[9].text 你們在統籌統治中央的立場在分配的時候是可以除了照顧之外另外還可以求未來性的一個發展那接下來我們就有遇到那個財化法的問題最近單位已經等了25年了地方都
transcript.whisperx[10].start 272.008
transcript.whisperx[10].end 297.668
transcript.whisperx[10].text 歐歐代補本席也是希望多聽聽主計長你多年來在公務生涯的經驗你住在台南待過嗎還在那邊待過省政府也待過行政院主計總處也待過都待過齁所以你的經驗數字你趕快準備出來齁那希望你能給予大家一個比較
transcript.whisperx[11].start 298.772
transcript.whisperx[11].end 325.033
transcript.whisperx[11].text 公平給大家一個比較有建設性的建議讓第一個貧富懸殊不要越來越大第二個給錢的同時你要叫他釣魚要怎麼樣帶動他地方的發展或者是缺的部分你們就要媒合啊拜託經濟部啊
transcript.whisperx[12].start 326.943
transcript.whisperx[12].end 351.268
transcript.whisperx[12].text 上次我跟過去的省部長後來行政院副院長我覺得他對台灣貢獻就很大當初他就是跟這些AI的這些很成功的全世界大概前四大他大概每個都有接觸過然後來台灣的時候都跟他們探討怎麼樣
transcript.whisperx[13].start 352.537
transcript.whisperx[13].end 379.127
transcript.whisperx[13].text 把這些技術或者他們缺晶片他馬上來把管道讓他連接上所以希望主計長可以辦演好為每個地方為國家多多來做事的這樣的一個重責大任另外就是過去主計的預測好像都失真失準準確度都不高
transcript.whisperx[14].start 380.373
transcript.whisperx[14].end 404.052
transcript.whisperx[14].text 比如說今年經濟成長率你們估計多少3.43去年估的時候呢去年估2點多然後2點多到3點差很多因為你差一個0.1的百分比就差多少多少的數字
transcript.whisperx[15].start 405.393
transcript.whisperx[15].end 415.875
transcript.whisperx[15].text 他0.1的百分比他是用GDP的1%是多少?代表多少?200多億所以這個金額都是很大的那我也期許主計長就是把餅做大希望在你的資源裡面稍微盤點一下然後多多注重民生大家關心的議題
transcript.whisperx[16].start 432.728
transcript.whisperx[16].end 460.26
transcript.whisperx[16].text 譬如說有些產業你們跟各部份要聊一下譬如說ToroToro的價格最近怎麼樣生魚片鮪魚啊降到兩百塊啊他是降到兩百塊更低了更低喔更低了以前是一小片可能就是兩百三百還到五百
transcript.whisperx[17].start 462.576
transcript.whisperx[17].end 488.377
transcript.whisperx[17].text 現在是那麼大片多了一片價格也變降很多所以這名稱的數字你們希望也多多瞭解農民的辛苦漁民的困難因為他量多嘛量多你就可以請其他單位未雨綢繆多多促銷
transcript.whisperx[18].start 490.273
transcript.whisperx[18].end 511.498
transcript.whisperx[18].text 比如說現在一個便當好了我們吃的便當現在一個多少錢?雞腿便當我最近在火車站那邊買他有85到120然後85和100的排骨便當他裡面的內容還是不太一樣所以他還是有各種不同的價格那雞排便當的話大概要120台鐵便當現在一個大概100塊你要雞腿都變成是120
transcript.whisperx[19].start 518.542
transcript.whisperx[19].end 538.997
transcript.whisperx[19].text 120那以前大概60、80塊都可以就是可以吃得到現在開始都一直飆漲那主計長其實你可以在漲的同時你們可以有另外一個機制宣布出來說欸民眾注意阿現在Toro很便宜阿你們要促銷阿
transcript.whisperx[20].start 541.533
transcript.whisperx[20].end 556.061
transcript.whisperx[20].text 所以你們第一線去查的這些數字不是放在辦公室吹冷氣是要把這些數字有效精準的給其他單位這點可以做得到嗎
transcript.whisperx[21].start 556.95
transcript.whisperx[21].end 577.667
transcript.whisperx[21].text 我們盡量,我們一定努力然後你可以跟教育部阿這邊互相聯繫好阿因為小朋友營養午餐等等要吃得好吃得飽阿你就把這個鮪魚比較低的叫他們多使用鮪魚阿香蕉量產太多的時候大家都多吃香蕉阿
transcript.whisperx[22].start 580.983
transcript.whisperx[22].end 607.735
transcript.whisperx[22].text 反正這些民生物資的我看以前彭淮仁總裁他貴為央行的總裁常常為福出巡希望主席長你也可以多多比照多了解一下民間苦人何其多可以多多站在他們立場來想事情最後
transcript.whisperx[23].start 608.826
transcript.whisperx[23].end 628.438
transcript.whisperx[23].text 提醒你新北市人口400多萬人以前升格到現在中央欠新北市很多錢該給的統籌分配稅款一般補助專案補助都比期待值差很多
transcript.whisperx[24].start 629.571
transcript.whisperx[24].end 629.991
transcript.whisperx[24].text 請鄭天才文質詢