IVOD_ID |
153039 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/153039 |
日期 |
2024-05-27 |
會議資料.會議代碼 |
委員會-11-1-26-19 |
會議資料.會議代碼:str |
第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
19 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-05-27T12:15:03+08:00 |
結束時間 |
2024-05-27T12:25:42+08:00 |
影片長度 |
00:10:39 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/536b9eee2a0ea5b3156e14c3b75cb6bd5186e4a1bc6f964e945ede7791f90b9e54ef5f70db4225095ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
廖偉翔 |
委員發言時間 |
12:15:03 - 12:25:42 |
會議時間 |
2024-05-27T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議(事由:一、審查
(一)委員林德福等19人擬具「就業服務法第四十六條條文修正草案」案。
(二)委員楊瓊瓔等16人擬具「就業服務法第四十六條條文修正草案」案。
(三)委員馬文君等25人擬具「就業服務法第四十六條條文修正草案」案。
(四)委員涂權吉等17人擬具「就業服務法部分條文修正草案」案。
(五)委員黃建賓等20人擬具「就業服務法第四十六條條文修正草案」案。
(六)委員呂玉玲等16人擬具「就業服務法第四十六條及第五十五條條文修正草案」案。
(七)委員盧縣一等17人擬具「就業服務法第四十六條條文修正草案」案。
(八)委員鄭正鈐等17人擬具「就業服務法第四十六條條文修正草案」案。
(九)委員王育敏等17人擬具「就業服務法第四十六條條文修正草案」案。
(十)委員張嘉郡等30人擬具「就業服務法第四十六條條文修正草案」案。
(十一)委員王鴻薇等22人擬具「就業服務法第四十六條條文修正草案」案。
二、審查
(一)委員萬美玲等36人擬具「勞動基準法第五十條條文修正草案」案。
(二)委員許宇甄等18人擬具「勞動基準法第五十條條文修正草案」案。
(三)委員馬文君等20人擬具「勞動基準法第五十條條文修正草案」案。
(四)委員邱若華等16人擬具「勞動基準法第五十條條文修正草案」案。
【一(九) :如未經各黨團簽署不復議同意書,則不予審查】
【一(十)、(十一) :如未經各黨團簽署不復議同意書,則不予審查】
【討論事項綜合詢答】
【5月27日、29日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
8.29971875 |
transcript.pyannote[0].end |
10.86471875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
11.26971875 |
transcript.pyannote[1].end |
11.99534375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
14.15534375 |
transcript.pyannote[2].end |
14.37471875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
14.50971875 |
transcript.pyannote[3].end |
16.82159375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
20.19659375 |
transcript.pyannote[4].end |
20.88846875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
21.34409375 |
transcript.pyannote[5].end |
27.36846875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
28.73534375 |
transcript.pyannote[6].end |
29.69721875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
30.16971875 |
transcript.pyannote[7].end |
33.49409375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
33.74721875 |
transcript.pyannote[8].end |
34.43909375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
35.04659375 |
transcript.pyannote[9].end |
35.89034375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
35.36721875 |
transcript.pyannote[10].end |
37.02096875 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
38.35409375 |
transcript.pyannote[11].end |
41.30721875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
41.37471875 |
transcript.pyannote[12].end |
42.40409375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
43.41659375 |
transcript.pyannote[13].end |
44.37846875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
45.03659375 |
transcript.pyannote[14].end |
45.37409375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
45.37409375 |
transcript.pyannote[15].end |
50.62221875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
46.18409375 |
transcript.pyannote[16].end |
46.74096875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
51.14534375 |
transcript.pyannote[17].end |
61.11846875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
61.35471875 |
transcript.pyannote[18].end |
64.72971875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
65.26971875 |
transcript.pyannote[19].end |
69.58971875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
72.52596875 |
transcript.pyannote[20].end |
73.03221875 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
79.42784375 |
transcript.pyannote[21].end |
80.50784375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
81.16596875 |
transcript.pyannote[22].end |
82.58346875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
84.65909375 |
transcript.pyannote[23].end |
85.90784375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
86.21159375 |
transcript.pyannote[24].end |
87.20721875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
87.32534375 |
transcript.pyannote[25].end |
94.21034375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
94.95284375 |
transcript.pyannote[26].end |
95.08784375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
96.06659375 |
transcript.pyannote[27].end |
96.82596875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
97.51784375 |
transcript.pyannote[28].end |
98.31096875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
99.77909375 |
transcript.pyannote[29].end |
103.79534375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
104.41971875 |
transcript.pyannote[30].end |
104.92596875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
105.71909375 |
transcript.pyannote[31].end |
122.59409375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
123.08346875 |
transcript.pyannote[32].end |
137.66346875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
137.83221875 |
transcript.pyannote[33].end |
142.99596875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
143.36721875 |
transcript.pyannote[34].end |
149.81346875 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
146.69159375 |
transcript.pyannote[35].end |
148.27784375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
149.27346875 |
transcript.pyannote[36].end |
152.36159375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
152.46284375 |
transcript.pyannote[37].end |
157.55909375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
158.13284375 |
transcript.pyannote[38].end |
164.49471875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
158.35221875 |
transcript.pyannote[39].end |
158.62221875 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
164.79846875 |
transcript.pyannote[40].end |
167.58284375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
164.89971875 |
transcript.pyannote[41].end |
165.03471875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
167.86971875 |
transcript.pyannote[42].end |
172.37534375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
170.08034375 |
transcript.pyannote[43].end |
179.86784375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
175.00784375 |
transcript.pyannote[44].end |
175.53096875 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
180.15471875 |
transcript.pyannote[45].end |
183.61409375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
184.18784375 |
transcript.pyannote[46].end |
188.35596875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
188.44034375 |
transcript.pyannote[47].end |
188.81159375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
188.77784375 |
transcript.pyannote[48].end |
193.23284375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
193.73909375 |
transcript.pyannote[49].end |
198.32909375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
198.56534375 |
transcript.pyannote[50].end |
205.82159375 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
204.57284375 |
transcript.pyannote[51].end |
204.80909375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
205.28159375 |
transcript.pyannote[52].end |
212.75721875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
208.38659375 |
transcript.pyannote[53].end |
208.70721875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
208.96034375 |
transcript.pyannote[54].end |
209.97284375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
212.95971875 |
transcript.pyannote[55].end |
230.32409375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
230.76284375 |
transcript.pyannote[56].end |
245.44409375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
243.97596875 |
transcript.pyannote[57].end |
244.53284375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
244.60034375 |
transcript.pyannote[58].end |
245.02221875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
245.71409375 |
transcript.pyannote[59].end |
250.23659375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
250.52346875 |
transcript.pyannote[60].end |
264.46221875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
264.49596875 |
transcript.pyannote[61].end |
269.00159375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
269.49096875 |
transcript.pyannote[62].end |
276.30846875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
276.40971875 |
transcript.pyannote[63].end |
278.29971875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
278.73846875 |
transcript.pyannote[64].end |
282.99096875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
283.19346875 |
transcript.pyannote[65].end |
290.12909375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
290.73659375 |
transcript.pyannote[66].end |
298.24596875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
298.71846875 |
transcript.pyannote[67].end |
299.89971875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
300.32159375 |
transcript.pyannote[68].end |
307.24034375 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
307.62846875 |
transcript.pyannote[69].end |
310.86846875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
311.66159375 |
transcript.pyannote[70].end |
314.41221875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
315.54284375 |
transcript.pyannote[71].end |
319.42409375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
319.42409375 |
transcript.pyannote[72].end |
323.42346875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
321.97221875 |
transcript.pyannote[73].end |
322.68096875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
323.06909375 |
transcript.pyannote[74].end |
328.36784375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
325.66784375 |
transcript.pyannote[75].end |
350.86221875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
329.75159375 |
transcript.pyannote[76].end |
331.55721875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
332.72159375 |
transcript.pyannote[77].end |
332.97471875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
337.68284375 |
transcript.pyannote[78].end |
337.78409375 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
337.86846875 |
transcript.pyannote[79].end |
337.93596875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
337.95284375 |
transcript.pyannote[80].end |
338.17221875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
343.96034375 |
transcript.pyannote[81].end |
344.70284375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
344.90534375 |
transcript.pyannote[82].end |
345.32721875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
350.86221875 |
transcript.pyannote[83].end |
360.83534375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
360.49784375 |
transcript.pyannote[84].end |
360.78471875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
360.83534375 |
transcript.pyannote[85].end |
366.30284375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
365.34096875 |
transcript.pyannote[86].end |
368.86784375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
366.96096875 |
transcript.pyannote[87].end |
367.21409375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
368.04096875 |
transcript.pyannote[88].end |
382.21596875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
369.25596875 |
transcript.pyannote[89].end |
369.61034375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
370.99409375 |
transcript.pyannote[90].end |
371.28096875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
382.94159375 |
transcript.pyannote[91].end |
383.26221875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
383.26221875 |
transcript.pyannote[92].end |
384.12284375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
385.15221875 |
transcript.pyannote[93].end |
386.48534375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
386.85659375 |
transcript.pyannote[94].end |
405.58784375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
406.24596875 |
transcript.pyannote[95].end |
408.45659375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
409.06409375 |
transcript.pyannote[96].end |
415.30784375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
417.21471875 |
transcript.pyannote[97].end |
424.80846875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
425.58471875 |
transcript.pyannote[98].end |
426.93471875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
427.47471875 |
transcript.pyannote[99].end |
454.72784375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
430.36034375 |
transcript.pyannote[100].end |
430.69784375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
452.56784375 |
transcript.pyannote[101].end |
460.11096875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
460.11096875 |
transcript.pyannote[102].end |
460.34721875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
460.34721875 |
transcript.pyannote[103].end |
460.38096875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
460.38096875 |
transcript.pyannote[104].end |
460.39784375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
460.39784375 |
transcript.pyannote[105].end |
460.51596875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
460.51596875 |
transcript.pyannote[106].end |
460.61721875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
460.53284375 |
transcript.pyannote[107].end |
460.95471875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
461.15721875 |
transcript.pyannote[108].end |
461.61284375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
462.15284375 |
transcript.pyannote[109].end |
462.84471875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
462.94596875 |
transcript.pyannote[110].end |
475.28159375 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
466.91159375 |
transcript.pyannote[111].end |
467.08034375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
475.43346875 |
transcript.pyannote[112].end |
478.62284375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
475.48409375 |
transcript.pyannote[113].end |
479.65221875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
479.21346875 |
transcript.pyannote[114].end |
479.61846875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
479.65221875 |
transcript.pyannote[115].end |
480.85034375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
480.85034375 |
transcript.pyannote[116].end |
498.23159375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
481.23846875 |
transcript.pyannote[117].end |
481.86284375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
484.59659375 |
transcript.pyannote[118].end |
485.13659375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
498.73784375 |
transcript.pyannote[119].end |
502.45034375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
501.60659375 |
transcript.pyannote[120].end |
506.26409375 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
502.63596875 |
transcript.pyannote[121].end |
503.61471875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
505.09971875 |
transcript.pyannote[122].end |
505.55534375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
505.99409375 |
transcript.pyannote[123].end |
519.93284375 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
520.21971875 |
transcript.pyannote[124].end |
534.59721875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
535.00221875 |
transcript.pyannote[125].end |
537.49971875 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
537.83721875 |
transcript.pyannote[126].end |
540.85784375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
541.19534375 |
transcript.pyannote[127].end |
545.65034375 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
546.57846875 |
transcript.pyannote[128].end |
577.81409375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
578.47221875 |
transcript.pyannote[129].end |
580.31159375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
581.49284375 |
transcript.pyannote[130].end |
584.14221875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
582.67409375 |
transcript.pyannote[131].end |
588.05721875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
588.05721875 |
transcript.pyannote[132].end |
590.01471875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
588.44534375 |
transcript.pyannote[133].end |
590.03159375 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
590.03159375 |
transcript.pyannote[134].end |
590.08221875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
590.08221875 |
transcript.pyannote[135].end |
590.09909375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
590.09909375 |
transcript.pyannote[136].end |
597.03471875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
597.03471875 |
transcript.pyannote[137].end |
598.41846875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
599.16096875 |
transcript.pyannote[138].end |
600.88221875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
601.55721875 |
transcript.pyannote[139].end |
607.64909375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
607.96971875 |
transcript.pyannote[140].end |
622.22909375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
622.22909375 |
transcript.pyannote[141].end |
630.26159375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
626.97096875 |
transcript.pyannote[142].end |
627.35909375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
627.93284375 |
transcript.pyannote[143].end |
628.60784375 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
630.43034375 |
transcript.pyannote[144].end |
632.55659375 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
630.44721875 |
transcript.pyannote[145].end |
633.97409375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
637.09596875 |
transcript.pyannote[146].end |
637.75409375 |
transcript.whisperx[0].start |
8.528 |
transcript.whisperx[0].end |
16.79 |
transcript.whisperx[0].text |
謝謝主席請問部長何部長請我們長期照顧時事長來部長司長今天審議的這個就業服務法那其中有一個重點就是巴士量表你知道巴士量表在醫界還有另外一個名稱嗎請示委員 |
transcript.whisperx[1].start |
38.51 |
transcript.whisperx[1].end |
42.078 |
transcript.whisperx[1].text |
副長巴斯亮表又被稱為功德亮表阿你知道原因嗎? |
transcript.whisperx[2].start |
43.459 |
transcript.whisperx[2].end |
69.265 |
transcript.whisperx[2].text |
嗯...是...不知道對不對?因為醫師開巴士量表是沒有一毛錢可以拿然後這裡這裡有寫啊沒開要被揍沒過會被揍開的出事要被拘提然後去你的巴士量表很多醫師恨透了這個功德量表這是一個醫師在在他的這個FB上面表達的態度喔那我們也看一下影片好了好不好等一下 |
transcript.whisperx[3].start |
79.445 |
transcript.whisperx[3].end |
93.271 |
transcript.whisperx[3].text |
好我們看一下這個影片這就是這個發射量表他沒有開成然後家屬很不滿然後就被揍這樣所以 |
transcript.whisperx[4].start |
105.782 |
transcript.whisperx[4].end |
121.518 |
transcript.whisperx[4].text |
部長你知道醫界除了這個健保點值被壓榨很不爽之外另外一件事就是這個巴氏量表啦那請教部長你認不認為放寬這個80歲以上的被看護者以及70到79歲患有癌症二期以上的國人可以免巴氏量表是可以解決這樣的狀況 |
transcript.whisperx[5].start |
123.554 |
transcript.whisperx[5].end |
142.75 |
transcript.whisperx[5].text |
我剛剛都已經強調就是我非常能夠支持這樣子的提案的精神所以我們在去年提出三個多元認定就是也是要幫忙解決這個巴士量表的困境那其實現在用多元認定的跟巴士量表比例已經一半一半了 |
transcript.whisperx[6].start |
143.67 |
transcript.whisperx[6].end |
156.989 |
transcript.whisperx[6].text |
有大量減低巴氏量表的使用啦。我相信醫界可能對這個應該是會有點感動。所以您還是不認同就是說希望可以就是直接放寬這80歲以上和這70到79歲的可以免巴氏量表的這個 |
transcript.whisperx[7].start |
158.471 |
transcript.whisperx[7].end |
183.274 |
transcript.whisperx[7].text |
不是說不認同啦,而是說主要是要考量80歲以上這個界限全放齁,裡面有那個你是說那個有癌症二期的嗎?對,部長、市長最重要的是其實這兩項政策的民意支持度都是極高喔尤其這兩種族群背後的家庭極度需要這個免罰式量表然後尤其有許多家庭成員也因此要 |
transcript.whisperx[8].start |
184.255 |
transcript.whisperx[8].end |
192.924 |
transcript.whisperx[8].text |
必須要放棄工作或者是有許多的增加許多的負擔對所以我覺得開放這個免貧才是真正的做功德不是嗎 |
transcript.whisperx[9].start |
194.023 |
transcript.whisperx[9].end |
214.843 |
transcript.whisperx[9].text |
對,其實我們可以來討論,就是那個多元認定也是免貧。那我們如果再多一些放寬的條件,我想在禮拜三主條我們可以來做一些討論好不好。對部長,因為我也要再次強調這真的很需要,所以你們勞動部自己在106年有做一個統計,每年有13萬人因為照顧要離職。 |
transcript.whisperx[10].start |
216.825 |
transcript.whisperx[10].end |
245.111 |
transcript.whisperx[10].text |
並且去年五月的主計總署也有統計這個25到64歲的未就業者有286.5萬人那其中因為照顧65歲以上家人無法工作者有5.25%那這個就是顯示離職人數每年大概有快15萬人所以部長我想降低照顧離職人數是勞動部跟衛福部都必須去加強跟努力的方向這樣才能夠讓我們勞動力可以釋放對不對但是 |
transcript.whisperx[11].start |
245.831 |
transcript.whisperx[11].end |
267.724 |
transcript.whisperx[11].text |
我覺得看到今天的報告真的是還沒有看到你們想要努力的作為啦因為你說要禮拜三再好好的討論可是我覺得沒有更積極的作為因為你們今天的說明是非常簡陋喔其實只有簡單的四行字那重點就是說勞動部要跟衛福部等跨部會還有專科醫學會學者專家跟相關團體充分討論 |
transcript.whisperx[12].start |
269.545 |
transcript.whisperx[12].end |
284.674 |
transcript.whisperx[12].text |
那這部份我當然是很認同要充分的討論喔。但是,協調部長因為去年衛福部跟勞動部針對這些族群免巴適量表的議題。其實在上一年的9月12號共同召開諮詢會議。那這9月12號其實有距離在野黨當時的總統候選人在8月29號提出這項政見中。 |
transcript.whisperx[13].start |
290.817 |
transcript.whisperx[13].end |
312.942 |
transcript.whisperx[13].text |
中間只有隔了兩個星期也就是隔了14天喔那也就是說14天其實你們就可以跨部會動起來但是現在這個法案已經一讀通過多久了我覺得看不到你們的效率看不到你們想要改善這件事情的積極度那我想是因為過去上一年是有選舉的壓力嗎所以因為有選舉壓力大家才會這麼積極嗎 |
transcript.whisperx[14].start |
315.892 |
transcript.whisperx[14].end |
343.634 |
transcript.whisperx[14].text |
沒有委員其實這個法案今天才開始這個排審啊但是之前一讀已經通過了嘛對不對一讀所以才進來委員會啊一讀並沒有討論啊是今天委員會才開始審查討論你知道這個事情其實已經有一段時間了那當然我想要講的是部長你520才上任啦我剛剛要表達就是你上任其實到現在一個星期我也沒有要怪你的意思但是的確不能怪你喔可是我想要表達的事情是我們在上一年看到這個14天的這樣的效能和效率 |
transcript.whisperx[15].start |
344.835 |
transcript.whisperx[15].end |
359.869 |
transcript.whisperx[15].text |
接下來我們再真的認真在討論這件事情可不可以拜託你們跨部會的效能動起來有有有當然我們針對今天委員的審查以及禮拜三的主條我們是有跨部會在已經積極討論的那我們是可以具體提出一些建議啦對 |
transcript.whisperx[16].start |
361.01 |
transcript.whisperx[16].end |
383.281 |
transcript.whisperx[16].text |
好,因為我們今天看到你們的報告是感覺到很多的理由是像是在復原﹖因為只是先講方向啦我們其實是支持的啦所以本席在這裡對本席在這裡就是要訴求請你們盡速的動起來真的把這個扶國立民的法案推動過去或是放寬更多讓這些需要被照顧的人以及這些需要的家庭真的可以充分獲利好不好好謝謝 |
transcript.whisperx[17].start |
385.202 |
transcript.whisperx[17].end |
407.421 |
transcript.whisperx[17].text |
那部長第二個是再來就是有關延長產產價的部分對不對那你們自己的報告都顯明喔認為爲目前產價我看到這上面你們的報告嘛那產價8週已經足夠者將近44趴那認為產價週數不足夠者有56趴基本上也就是超過半數以上都認為產價不夠 |
transcript.whisperx[18].start |
409.122 |
transcript.whisperx[18].end |
424.398 |
transcript.whisperx[18].text |
而且請教部長,你知道受調查的母體都是最近一年有申請產嫁的產嫁者。很多都是新手媽媽嗎?是。對,部長有生育經驗的媽媽過半數都認為這個產嫁不足。這個是很精準的母體喔。為何不能夠增加產嫁的天數? |
transcript.whisperx[19].start |
426.049 |
transcript.whisperx[19].end |
453.72 |
transcript.whisperx[19].text |
委員就是說不是不能增加而是我們也很希望增加可是真的是要考慮實務上會不會增加女性的反而隱形的就業再就業歧視啦是不是有這個真的是要考慮然後牢固雙方的意願齁牢固雙方的那個然後還有包括說要做的話就要就要有用啦就要能夠用啦對所以你們報告裡面 |
transcript.whisperx[20].start |
454.42 |
transcript.whisperx[20].end |
468.837 |
transcript.whisperx[20].text |
有說女性這個針對這個部分因為需求不宜所以你們就是要考量嘛對不對好那我覺得而且那個委員跟委員報告勞基法是一個很硬的法啦你要是現在給他延長這種快撞的從8週到12週他是怎樣的他一請他就不能那個不能回來 |
transcript.whisperx[21].start |
475.524 |
transcript.whisperx[21].end |
497.759 |
transcript.whisperx[21].text |
他回來都不行,他一定要12週都全部修完。所以反而會造成那個...部長我告訴你,因為你們現在大多數你們從民調就看到民意上面56%認為不足。好,所以民意是希望延長。那你們就算你覺得12週太長,或至少應該也要可以討論嘛,到底是多久是夠的。那現在感覺都不討論,你就留下一句說這個要研議。 |
transcript.whisperx[22].start |
498.8 |
transcript.whisperx[22].end |
523.257 |
transcript.whisperx[22].text |
建議評估考量這個是我覺得不是一個我們可以來再更積極的評估好不好好部長而且你報告裡面還有提到一個我覺得很扯的啦就是你剛剛有提到這個所謂的影響到在就業的這個女性的一些歧視的問題喔你這報告裡面有提到對於事業單位的人力調度這上面及運作人有負擔是否間接影響雇用 |
transcript.whisperx[23].start |
524.257 |
transcript.whisperx[23].end |
545.324 |
transcript.whisperx[23].text |
這個育齡女性之意願應該一併考量我覺得這句話在勞動部的立場很奇怪感覺很像是站在資方的立場幫資方講話然後就說他這樣子就會被歧視所以你們這句話的潛台詞不就是僱主不會僱用懷孕女性而且可能因為這樣子會不想要僱用女性 |
transcript.whisperx[24].start |
546.661 |
transcript.whisperx[24].end |
563.623 |
transcript.whisperx[24].text |
所以我覺得這句話很奇怪也充滿歧視我覺得這樣不太合適因為你這樣的意思就是你們按照你們這樣的邏輯就是任何增加勞工權益的政策都會增加資方的負擔可能會讓他們歧視或是讓他們不想要聘請這個勞工所以不要修這個法 |
transcript.whisperx[25].start |
564.244 |
transcript.whisperx[25].end |
579.776 |
transcript.whisperx[25].text |
我覺得這個邏輯我真的很想要跟部長說你們要回去好好檢討你的報告為什麼這樣寫因為你這個邏輯你知道大家在外面會怎麼看嗎就是勞動部你應該站在勞工的權益上面幫他增加權益但是你用這個說法是不是要改名叫做自動部 |
transcript.whisperx[26].start |
580.737 |
transcript.whisperx[26].end |
599.955 |
transcript.whisperx[26].text |
就是你的講法完全的有問題。我們以後要修改這種用語。我們以後應該要修改這個用語。你用這個角度去思考你就不用想說任何勞工權益要增加啦。倒不是說不思考而是說對就是說 |
transcript.whisperx[27].start |
601.476 |
transcript.whisperx[27].end |
622.261 |
transcript.whisperx[27].text |
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ |
transcript.whisperx[28].start |
622.341 |
transcript.whisperx[28].end |
633.711 |
transcript.whisperx[28].text |
»: 用語之外,最主要是針對這個產價的部分,你們應該也是要充分的去演繹說現在不足的部分。你自己都做了這麼精準的民調了,這麼精準的調查了。 »: 好,謝謝委員提醒。 |