IVOD_ID |
153034 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/153034 |
日期 |
2024-05-27 |
會議資料.會議代碼 |
委員會-11-1-26-19 |
會議資料.會議代碼:str |
第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
19 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-05-27T11:57:56+08:00 |
結束時間 |
2024-05-27T12:07:42+08:00 |
影片長度 |
00:09:46 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/536b9eee2a0ea5b3669b75a8938a79b35186e4a1bc6f964e945ede7791f90b9e5833b53648dc34095ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
黃秀芳 |
委員發言時間 |
11:57:56 - 12:07:42 |
會議時間 |
2024-05-27T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議(事由:一、審查
(一)委員林德福等19人擬具「就業服務法第四十六條條文修正草案」案。
(二)委員楊瓊瓔等16人擬具「就業服務法第四十六條條文修正草案」案。
(三)委員馬文君等25人擬具「就業服務法第四十六條條文修正草案」案。
(四)委員涂權吉等17人擬具「就業服務法部分條文修正草案」案。
(五)委員黃建賓等20人擬具「就業服務法第四十六條條文修正草案」案。
(六)委員呂玉玲等16人擬具「就業服務法第四十六條及第五十五條條文修正草案」案。
(七)委員盧縣一等17人擬具「就業服務法第四十六條條文修正草案」案。
(八)委員鄭正鈐等17人擬具「就業服務法第四十六條條文修正草案」案。
(九)委員王育敏等17人擬具「就業服務法第四十六條條文修正草案」案。
(十)委員張嘉郡等30人擬具「就業服務法第四十六條條文修正草案」案。
(十一)委員王鴻薇等22人擬具「就業服務法第四十六條條文修正草案」案。
二、審查
(一)委員萬美玲等36人擬具「勞動基準法第五十條條文修正草案」案。
(二)委員許宇甄等18人擬具「勞動基準法第五十條條文修正草案」案。
(三)委員馬文君等20人擬具「勞動基準法第五十條條文修正草案」案。
(四)委員邱若華等16人擬具「勞動基準法第五十條條文修正草案」案。
【一(九) :如未經各黨團簽署不復議同意書,則不予審查】
【一(十)、(十一) :如未經各黨團簽署不復議同意書,則不予審查】
【討論事項綜合詢答】
【5月27日、29日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
5.29596875 |
transcript.pyannote[0].end |
6.79784375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
6.94971875 |
transcript.pyannote[1].end |
7.79346875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
10.88159375 |
transcript.pyannote[2].end |
43.51784375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
43.88909375 |
transcript.pyannote[3].end |
54.73971875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
55.22909375 |
transcript.pyannote[4].end |
79.74846875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
62.70471875 |
transcript.pyannote[5].end |
62.75534375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
65.92784375 |
transcript.pyannote[6].end |
66.85596875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
71.76659375 |
transcript.pyannote[7].end |
72.71159375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
74.11221875 |
transcript.pyannote[8].end |
75.09096875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
77.50409375 |
transcript.pyannote[9].end |
78.33096875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
79.22534375 |
transcript.pyannote[10].end |
79.86659375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
80.22096875 |
transcript.pyannote[11].end |
93.28221875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
87.07221875 |
transcript.pyannote[12].end |
87.74721875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
89.40096875 |
transcript.pyannote[13].end |
93.31596875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
93.51846875 |
transcript.pyannote[14].end |
93.80534375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
94.37909375 |
transcript.pyannote[15].end |
108.95909375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
104.23409375 |
transcript.pyannote[16].end |
104.92596875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
106.24221875 |
transcript.pyannote[17].end |
107.44034375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
107.49096875 |
transcript.pyannote[18].end |
108.33471875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
108.95909375 |
transcript.pyannote[19].end |
136.41471875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
109.24596875 |
transcript.pyannote[20].end |
109.75221875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
110.05596875 |
transcript.pyannote[21].end |
110.46096875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
114.12284375 |
transcript.pyannote[22].end |
114.64596875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
115.75971875 |
transcript.pyannote[23].end |
117.51471875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
117.90284375 |
transcript.pyannote[24].end |
119.84346875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
130.00221875 |
transcript.pyannote[25].end |
130.39034375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
137.32596875 |
transcript.pyannote[26].end |
166.89096875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
166.92471875 |
transcript.pyannote[27].end |
167.95409375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
168.34221875 |
transcript.pyannote[28].end |
196.96221875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
197.08034375 |
transcript.pyannote[29].end |
207.40784375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
207.91409375 |
transcript.pyannote[30].end |
213.61784375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
208.60596875 |
transcript.pyannote[31].end |
208.99409375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
210.37784375 |
transcript.pyannote[32].end |
211.76159375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
214.07346875 |
transcript.pyannote[33].end |
214.54596875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
215.91284375 |
transcript.pyannote[34].end |
218.47784375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
218.10659375 |
transcript.pyannote[35].end |
223.57409375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
220.90784375 |
transcript.pyannote[36].end |
221.34659375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
224.60346875 |
transcript.pyannote[37].end |
227.89409375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
227.37096875 |
transcript.pyannote[38].end |
227.84346875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
227.89409375 |
transcript.pyannote[39].end |
227.97846875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
227.97846875 |
transcript.pyannote[40].end |
228.02909375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
228.02909375 |
transcript.pyannote[41].end |
228.09659375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
228.09659375 |
transcript.pyannote[42].end |
228.88971875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
228.88971875 |
transcript.pyannote[43].end |
228.90659375 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
228.90659375 |
transcript.pyannote[44].end |
228.97409375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
228.97409375 |
transcript.pyannote[45].end |
237.52971875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
232.24784375 |
transcript.pyannote[46].end |
232.97346875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
237.95159375 |
transcript.pyannote[47].end |
261.47534375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
258.03284375 |
transcript.pyannote[48].end |
258.35346875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
261.64409375 |
transcript.pyannote[49].end |
266.53784375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
264.73221875 |
transcript.pyannote[50].end |
269.81159375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
270.53721875 |
transcript.pyannote[51].end |
273.11909375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
270.72284375 |
transcript.pyannote[52].end |
272.89971875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
273.35534375 |
transcript.pyannote[53].end |
287.09159375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
275.86971875 |
transcript.pyannote[54].end |
275.88659375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
280.17284375 |
transcript.pyannote[55].end |
280.54409375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
282.60284375 |
transcript.pyannote[56].end |
283.27784375 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
285.70784375 |
transcript.pyannote[57].end |
299.88284375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
291.56346875 |
transcript.pyannote[58].end |
292.03596875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
297.60471875 |
transcript.pyannote[59].end |
300.77721875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
300.35534375 |
transcript.pyannote[60].end |
304.64159375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
301.11471875 |
transcript.pyannote[61].end |
302.11034375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
304.84409375 |
transcript.pyannote[62].end |
316.25159375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
312.40409375 |
transcript.pyannote[63].end |
313.53471875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
315.28971875 |
transcript.pyannote[64].end |
323.49096875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
323.42346875 |
transcript.pyannote[65].end |
350.89596875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
337.39596875 |
transcript.pyannote[66].end |
337.64909375 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
348.76971875 |
transcript.pyannote[67].end |
349.86659375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
350.00159375 |
transcript.pyannote[68].end |
369.61034375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
355.67159375 |
transcript.pyannote[69].end |
356.31284375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
360.44721875 |
transcript.pyannote[70].end |
362.10096875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
368.46284375 |
transcript.pyannote[71].end |
369.10409375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
369.82971875 |
transcript.pyannote[72].end |
371.31471875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
371.75346875 |
transcript.pyannote[73].end |
412.57409375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
371.77034375 |
transcript.pyannote[74].end |
372.24284375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
372.95159375 |
transcript.pyannote[75].end |
373.74471875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
377.50784375 |
transcript.pyannote[76].end |
377.92971875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
385.11846875 |
transcript.pyannote[77].end |
385.54034375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
391.29471875 |
transcript.pyannote[78].end |
391.59846875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
393.47159375 |
transcript.pyannote[79].end |
393.91034375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
410.92034375 |
transcript.pyannote[80].end |
411.29159375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
413.01284375 |
transcript.pyannote[81].end |
422.61471875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
421.55159375 |
transcript.pyannote[82].end |
422.42909375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
422.61471875 |
transcript.pyannote[83].end |
422.64846875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
422.64846875 |
transcript.pyannote[84].end |
423.72846875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
423.72846875 |
transcript.pyannote[85].end |
423.96471875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
423.96471875 |
transcript.pyannote[86].end |
424.01534375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
424.01534375 |
transcript.pyannote[87].end |
424.87596875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
424.97721875 |
transcript.pyannote[88].end |
425.04471875 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
425.23034375 |
transcript.pyannote[89].end |
447.47159375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
427.15409375 |
transcript.pyannote[90].end |
427.57596875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
429.75284375 |
transcript.pyannote[91].end |
430.78221875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
447.97784375 |
transcript.pyannote[92].end |
456.53346875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
455.55471875 |
transcript.pyannote[93].end |
458.99721875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
458.99721875 |
transcript.pyannote[94].end |
466.30409375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
459.90846875 |
transcript.pyannote[95].end |
460.66784375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
460.81971875 |
transcript.pyannote[96].end |
461.81534375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
465.03846875 |
transcript.pyannote[97].end |
466.32096875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
466.32096875 |
transcript.pyannote[98].end |
466.33784375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
466.33784375 |
transcript.pyannote[99].end |
466.38846875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
466.55721875 |
transcript.pyannote[100].end |
482.03159375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
482.47034375 |
transcript.pyannote[101].end |
488.42721875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
486.52034375 |
transcript.pyannote[102].end |
493.77659375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
494.01284375 |
transcript.pyannote[103].end |
501.74159375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
499.22721875 |
transcript.pyannote[104].end |
499.71659375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
500.49284375 |
transcript.pyannote[105].end |
502.72034375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
502.72034375 |
transcript.pyannote[106].end |
502.75409375 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
502.75409375 |
transcript.pyannote[107].end |
502.78784375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
502.78784375 |
transcript.pyannote[108].end |
503.59784375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
503.59784375 |
transcript.pyannote[109].end |
503.71596875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
503.71596875 |
transcript.pyannote[110].end |
503.96909375 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
503.96909375 |
transcript.pyannote[111].end |
506.39909375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
506.66909375 |
transcript.pyannote[112].end |
513.35159375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
511.95096875 |
transcript.pyannote[113].end |
525.11346875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
518.61659375 |
transcript.pyannote[114].end |
519.30846875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
525.41721875 |
transcript.pyannote[115].end |
527.10471875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
527.44221875 |
transcript.pyannote[116].end |
545.48159375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
534.83346875 |
transcript.pyannote[117].end |
535.52534375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
544.01346875 |
transcript.pyannote[118].end |
544.50284375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
544.51971875 |
transcript.pyannote[119].end |
544.55346875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
544.63784375 |
transcript.pyannote[120].end |
566.00159375 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
555.18471875 |
transcript.pyannote[121].end |
555.53909375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
565.05659375 |
transcript.pyannote[122].end |
576.86909375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
571.09784375 |
transcript.pyannote[123].end |
572.85284375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
576.00846875 |
transcript.pyannote[124].end |
577.62846875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
577.17284375 |
transcript.pyannote[125].end |
577.96596875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
577.96596875 |
transcript.pyannote[126].end |
582.48846875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
579.68721875 |
transcript.pyannote[127].end |
582.65721875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
584.42909375 |
transcript.pyannote[128].end |
585.27284375 |
transcript.whisperx[0].start |
5.585 |
transcript.whisperx[0].end |
30.763 |
transcript.whisperx[0].text |
謝謝主席,我們請部長。好,請部長。部長好。部長,在這一陣子,國內的這個腸病毒是持續在上升當中。那我們也看到這個腸病毒是創下十年來的新高。那我想請教就是說,我們現在這個勞工的一年有七天的家庭照顧假。 |
transcript.whisperx[1].start |
31.724 |
transcript.whisperx[1].end |
51.634 |
transcript.whisperx[1].text |
那你們有沒有特別去做一個統計就是在最近這幾年當中就是我們這個勞工請的這個家庭照顧假到底有多少人申請那是不是有的勞工要申請這個家庭照顧假有他的 |
transcript.whisperx[2].start |
52.056 |
transcript.whisperx[2].end |
80.179 |
transcript.whisperx[2].text |
﹝﹝﹝ |
transcript.whisperx[3].start |
80.339 |
transcript.whisperx[3].end |
90.371 |
transcript.whisperx[3].text |
所以沒有特別去針對這個勞工請家庭照顧假這樣的一個這個狀況去做一個統計目前沒有做這樣的統計目前沒有做這樣的統計那未來是不是 |
transcript.whisperx[4].start |
94.44 |
transcript.whisperx[4].end |
113.787 |
transcript.whisperx[4].text |
所以不需要對他也比較沒辦法掌握數據啦除非我去做民調吧或是做對因為他因為像大量解雇那個雇主要通報來的可是像這個他是不用是或是對所以比較難掌握這樣比較難掌握那未來有沒有可能針對這一部分去做一個瞭解 |
transcript.whisperx[5].start |
114.107 |
transcript.whisperx[5].end |
115.068 |
transcript.whisperx[5].text |
關於勞動基準法第五十條條文修正草案案。 |
transcript.whisperx[6].start |
137.649 |
transcript.whisperx[6].end |
165.117 |
transcript.whisperx[6].text |
聽到也有看到很多的長輩我碰到可能有很多長輩他確實有需要這樣的一個這個聘請外籍看護來家裡面幫忙那有時候確實又要到這個醫院去去申請這個巴士量表確實有他的困難那我們又看到就是說如果如果是用這個年齡去切這個申請 |
transcript.whisperx[7].start |
166.276 |
transcript.whisperx[7].end |
181.008 |
transcript.whisperx[7].text |
外籍看護會不會造成實際上有需求的人反而可能會有他的困難所以我是請勞動部是不是可以針對這部分你們來說明未來剛剛我有聽部長講就是說會有這個外展 |
transcript.whisperx[8].start |
187.313 |
transcript.whisperx[8].end |
212.46 |
transcript.whisperx[8].text |
這個外籍移工的這個家庭看護工的這個外展計畫那你們目前有做這樣的一個計畫那預計是什麼時候上路對委員就是這個計畫其實現在已經在研擬然後而且要開始試辦了下半年就會上就會開始試辦上路然後對下半年對現在已經五月五月底了欸你們是幾月預計是幾月九月 |
transcript.whisperx[9].start |
215.973 |
transcript.whisperx[9].end |
225.598 |
transcript.whisperx[9].text |
我們下半年就會開始試辦上路。對。下半年會開始試辦。那你會從哪一方面,你會從你們會怎麼試辦? |
transcript.whisperx[10].start |
225.598 |
transcript.whisperx[10].end |
238.805 |
transcript.whisperx[10].text |
這個是不是可以在這邊先?那就跟委員解釋。它是一個這樣的就是說用NGO跟NGO合作。是。好。那麼然後我們請NGO跟仲介合組一個team。然後呢他們我們會進行評選。 |
transcript.whisperx[11].start |
240.486 |
transcript.whisperx[11].end |
270.247 |
transcript.whisperx[11].text |
️﹏﹏﹏﹏ |
transcript.whisperx[12].start |
270.58 |
transcript.whisperx[12].end |
297.786 |
transcript.whisperx[12].text |
就是比較像那個NGO單位,我們那個NGO單位到時候應該會很多啦。就是比如說像我們現在長照體系裡面有很多NGO團體,其實當然他們都會可以是潛在的對象。對,那其實他們都已經散佈在台灣各地方了。那你預計是這個下半年度你們就要開始試辦的話,那你們現在應該什麼NGO的這個一些組織跟你們有合作,你們應該目前該都確定了嗎? |
transcript.whisperx[13].start |
297.786 |
transcript.whisperx[13].end |
299.987 |
transcript.whisperx[13].text |
有,有合作,對,有有有。 |
transcript.whisperx[14].start |
300.367 |
transcript.whisperx[14].end |
323.473 |
transcript.whisperx[14].text |
對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對,對 |
transcript.whisperx[15].start |
323.493 |
transcript.whisperx[15].end |
348.034 |
transcript.whisperx[15].text |
委員我這個部分我可不可以找一個比較我看甚至我們可以來委員會做專案報告給我一點時間因為我們這個是必須要有完整的來報告比較好啦你說哪些縣市或哪些團體這些都比較是屬於我們現在還在規劃中的東西那現在就貿然跟您報告對我想也不是很妥當 |
transcript.whisperx[16].start |
348.955 |
transcript.whisperx[16].end |
356.203 |
transcript.whisperx[16].text |
我擔心因為你剛跟我講說下半年度要試辦應該整個計劃也逐漸有一個成型了所以我才會問說那你們未來因為下半年度現在已經五月底了即將就邁入第六 |
transcript.whisperx[17].start |
372.058 |
transcript.whisperx[17].end |
397.75 |
transcript.whisperx[17].text |
一﹑ 六月嘛。那下半年度應該就是開始。下半年度的開始。所以我是希望就是說因為地方這個民眾有這樣的一個需求。那當然說我希望你們推出來的這個方式應該是讓民眾申請也方便。有它的可敬性啦。就是說方便那整個流程或者是文件的這個 |
transcript.whisperx[18].start |
398.831 |
transcript.whisperx[18].end |
415.828 |
transcript.whisperx[18].text |
﹝﹞ |
transcript.whisperx[19].start |
415.828 |
transcript.whisperx[19].end |
432.142 |
transcript.whisperx[19].text |
﹝﹝﹞ |
transcript.whisperx[20].start |
432.142 |
transcript.whisperx[20].end |
447.875 |
transcript.whisperx[20].text |
﹏﹏﹏ |
transcript.whisperx[21].start |
447.875 |
transcript.whisperx[21].end |
470.452 |
transcript.whisperx[21].text |
️﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏� |
transcript.whisperx[22].start |
470.712 |
transcript.whisperx[22].end |
493.215 |
transcript.whisperx[22].text |
的家庭照顧假。那我在上禮拜我有特別提到就是說有關這一個照顧留職停薪。是不是未來有可能朝著這個方向就是說比照這個育嬰、育嬰留庭的這樣的一個方式。不知道有沒有可能是朝著這個方向去做。謝謝委員支持。我確實有這個想法。然後當然這部分可是這部分也牽涉到 |
transcript.whisperx[23].start |
494.156 |
transcript.whisperx[23].end |
502.8 |
transcript.whisperx[23].text |
要不要給新等等這些規劃要需要一點時間好不好對是是我們會來規劃預計什麼時候總是你們要規劃要給一個期程吧對我盡快來規劃然後對其實已經在開始在思考這些了對因為如果未來你剛剛講的我們我們的這個有更多元的這個方式對那其實如果說可能兩三個月也許 |
transcript.whisperx[24].start |
523.609 |
transcript.whisperx[24].end |
544.718 |
transcript.whisperx[24].text |
﹝﹏﹏﹏ |
transcript.whisperx[25].start |
545.259 |
transcript.whisperx[25].end |
564.319 |
transcript.whisperx[25].text |
對,我們希望能夠讓婦女能夠更多的,因為有的企業她會,有的女性啦,就是因為要照顧嘛,她就不敢出去工作。那如果有照顧流行這種來輔助的話,man比她的那個出外工作的意願會比較高。我們可以因此更提升婦女的就業率這樣子,對。 |
transcript.whisperx[26].start |
566.501 |
transcript.whisperx[26].end |
580.868 |
transcript.whisperx[26].text |
﹖我希望說這個部分是不是也要一併﹖也一併要去競述﹖會﹖跟這個我們今天討論的這樣才有辦法銜接﹖沒錯﹖還有移工就是我們外長服務進入家庭服務﹖謝謝﹖ |