IVOD_ID |
153008 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/153008 |
日期 |
2024-05-27 |
會議資料.會議代碼 |
委員會-11-1-26-19 |
會議資料.會議代碼:str |
第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
19 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-05-27T10:29:46+08:00 |
結束時間 |
2024-05-27T10:47:24+08:00 |
影片長度 |
00:17:38 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/536b9eee2a0ea5b3b8ad2f8a694fcef15186e4a1bc6f964e945ede7791f90b9e5681eeb3af1d310c5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
林淑芬 |
委員發言時間 |
10:29:46 - 10:47:24 |
會議時間 |
2024-05-27T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議(事由:一、審查
(一)委員林德福等19人擬具「就業服務法第四十六條條文修正草案」案。
(二)委員楊瓊瓔等16人擬具「就業服務法第四十六條條文修正草案」案。
(三)委員馬文君等25人擬具「就業服務法第四十六條條文修正草案」案。
(四)委員涂權吉等17人擬具「就業服務法部分條文修正草案」案。
(五)委員黃建賓等20人擬具「就業服務法第四十六條條文修正草案」案。
(六)委員呂玉玲等16人擬具「就業服務法第四十六條及第五十五條條文修正草案」案。
(七)委員盧縣一等17人擬具「就業服務法第四十六條條文修正草案」案。
(八)委員鄭正鈐等17人擬具「就業服務法第四十六條條文修正草案」案。
(九)委員王育敏等17人擬具「就業服務法第四十六條條文修正草案」案。
(十)委員張嘉郡等30人擬具「就業服務法第四十六條條文修正草案」案。
(十一)委員王鴻薇等22人擬具「就業服務法第四十六條條文修正草案」案。
二、審查
(一)委員萬美玲等36人擬具「勞動基準法第五十條條文修正草案」案。
(二)委員許宇甄等18人擬具「勞動基準法第五十條條文修正草案」案。
(三)委員馬文君等20人擬具「勞動基準法第五十條條文修正草案」案。
(四)委員邱若華等16人擬具「勞動基準法第五十條條文修正草案」案。
【一(九) :如未經各黨團簽署不復議同意書,則不予審查】
【一(十)、(十一) :如未經各黨團簽署不復議同意書,則不予審查】
【討論事項綜合詢答】
【5月27日、29日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
5.76846875 |
transcript.pyannote[0].end |
9.78471875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
10.49346875 |
transcript.pyannote[1].end |
11.45534375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
14.23971875 |
transcript.pyannote[2].end |
14.71221875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
15.16784375 |
transcript.pyannote[3].end |
70.11284375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
70.87221875 |
transcript.pyannote[4].end |
75.58034375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
76.06971875 |
transcript.pyannote[5].end |
79.76534375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
80.23784375 |
transcript.pyannote[6].end |
85.06409375 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
85.65471875 |
transcript.pyannote[7].end |
90.29534375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
90.73409375 |
transcript.pyannote[8].end |
116.16471875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
116.75534375 |
transcript.pyannote[9].end |
128.73659375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
129.39471875 |
transcript.pyannote[10].end |
130.06971875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
130.40721875 |
transcript.pyannote[11].end |
131.79096875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
132.14534375 |
transcript.pyannote[12].end |
148.71659375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
148.73346875 |
transcript.pyannote[13].end |
158.25096875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
158.67284375 |
transcript.pyannote[14].end |
161.79471875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
162.13221875 |
transcript.pyannote[15].end |
163.22909375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
164.25846875 |
transcript.pyannote[16].end |
168.32534375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
168.62909375 |
transcript.pyannote[17].end |
174.02909375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
174.60284375 |
transcript.pyannote[18].end |
183.34409375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
183.54659375 |
transcript.pyannote[19].end |
195.54471875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
195.98346875 |
transcript.pyannote[20].end |
197.23221875 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
197.58659375 |
transcript.pyannote[21].end |
198.34596875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
198.53159375 |
transcript.pyannote[22].end |
207.88034375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
208.87596875 |
transcript.pyannote[23].end |
211.20471875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
211.64346875 |
transcript.pyannote[24].end |
215.15346875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
215.60909375 |
transcript.pyannote[25].end |
218.98409375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
220.46909375 |
transcript.pyannote[26].end |
220.90784375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
220.90784375 |
transcript.pyannote[27].end |
220.94159375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
221.38034375 |
transcript.pyannote[28].end |
221.83596875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
221.83596875 |
transcript.pyannote[29].end |
221.88659375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
222.62909375 |
transcript.pyannote[30].end |
222.64596875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
222.64596875 |
transcript.pyannote[31].end |
248.09346875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
248.48159375 |
transcript.pyannote[32].end |
257.03721875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
256.05846875 |
transcript.pyannote[33].end |
256.71659375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
257.03721875 |
transcript.pyannote[34].end |
263.80409375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
264.00659375 |
transcript.pyannote[35].end |
264.02346875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
264.02346875 |
transcript.pyannote[36].end |
265.35659375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
265.35659375 |
transcript.pyannote[37].end |
269.17034375 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
265.37346875 |
transcript.pyannote[38].end |
272.20784375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
269.32221875 |
transcript.pyannote[39].end |
269.33909375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
269.35596875 |
transcript.pyannote[40].end |
277.99596875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
275.39721875 |
transcript.pyannote[41].end |
278.29971875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
278.29971875 |
transcript.pyannote[42].end |
296.18721875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
296.54159375 |
transcript.pyannote[43].end |
302.41409375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
302.81909375 |
transcript.pyannote[44].end |
304.86096875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
305.18159375 |
transcript.pyannote[45].end |
308.65784375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
310.12596875 |
transcript.pyannote[46].end |
313.19721875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
313.19721875 |
transcript.pyannote[47].end |
313.34909375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
313.34909375 |
transcript.pyannote[48].end |
313.68659375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
313.68659375 |
transcript.pyannote[49].end |
314.29409375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
313.82159375 |
transcript.pyannote[50].end |
314.14221875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
314.29409375 |
transcript.pyannote[51].end |
314.96909375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
314.96909375 |
transcript.pyannote[52].end |
325.68471875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
326.83221875 |
transcript.pyannote[53].end |
331.67534375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
332.35034375 |
transcript.pyannote[54].end |
333.73409375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
334.52721875 |
transcript.pyannote[55].end |
338.08784375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
336.02909375 |
transcript.pyannote[56].end |
337.17659375 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
338.08784375 |
transcript.pyannote[57].end |
338.10471875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
338.84721875 |
transcript.pyannote[58].end |
346.39034375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
340.02846875 |
transcript.pyannote[59].end |
341.85096875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
346.86284375 |
transcript.pyannote[60].end |
348.28034375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
347.41971875 |
transcript.pyannote[61].end |
350.64284375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
350.64284375 |
transcript.pyannote[62].end |
352.26284375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
352.95471875 |
transcript.pyannote[63].end |
353.64659375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
354.54096875 |
transcript.pyannote[64].end |
381.60846875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
382.11471875 |
transcript.pyannote[65].end |
388.03784375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
388.76346875 |
transcript.pyannote[66].end |
400.86284375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
401.20034375 |
transcript.pyannote[67].end |
403.98471875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
404.37284375 |
transcript.pyannote[68].end |
405.97596875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
406.80284375 |
transcript.pyannote[69].end |
408.59159375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
408.22034375 |
transcript.pyannote[70].end |
409.06409375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
409.06409375 |
transcript.pyannote[71].end |
409.38471875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
409.38471875 |
transcript.pyannote[72].end |
411.71346875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
412.08471875 |
transcript.pyannote[73].end |
412.65846875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
412.97909375 |
transcript.pyannote[74].end |
417.04596875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
417.14721875 |
transcript.pyannote[75].end |
430.78221875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
431.01846875 |
transcript.pyannote[76].end |
431.03534375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
431.10284375 |
transcript.pyannote[77].end |
434.05596875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
435.32159375 |
transcript.pyannote[78].end |
437.90346875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
438.12284375 |
transcript.pyannote[79].end |
440.40096875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
441.36284375 |
transcript.pyannote[80].end |
455.13284375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
456.43221875 |
transcript.pyannote[81].end |
499.10909375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
499.61534375 |
transcript.pyannote[82].end |
505.26846875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
506.09534375 |
transcript.pyannote[83].end |
514.56659375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
515.17409375 |
transcript.pyannote[84].end |
516.57471875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
517.48596875 |
transcript.pyannote[85].end |
532.06596875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
532.28534375 |
transcript.pyannote[86].end |
535.77846875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
536.52096875 |
transcript.pyannote[87].end |
540.33471875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
540.68909375 |
transcript.pyannote[88].end |
548.48534375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
548.58659375 |
transcript.pyannote[89].end |
569.41034375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
569.88284375 |
transcript.pyannote[90].end |
570.45659375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
570.57471875 |
transcript.pyannote[91].end |
574.75971875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
577.67909375 |
transcript.pyannote[92].end |
579.58596875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
580.88534375 |
transcript.pyannote[93].end |
595.73534375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
596.02221875 |
transcript.pyannote[94].end |
613.45409375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
613.97721875 |
transcript.pyannote[95].end |
616.57596875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
617.11596875 |
transcript.pyannote[96].end |
637.92284375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
638.42909375 |
transcript.pyannote[97].end |
670.54221875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
671.75721875 |
transcript.pyannote[98].end |
671.77409375 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
671.77409375 |
transcript.pyannote[99].end |
684.48096875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
682.27034375 |
transcript.pyannote[100].end |
684.32909375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
684.48096875 |
transcript.pyannote[101].end |
684.68346875 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
684.68346875 |
transcript.pyannote[102].end |
684.98721875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
684.95346875 |
transcript.pyannote[103].end |
690.11721875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
690.94409375 |
transcript.pyannote[104].end |
706.94159375 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
706.97534375 |
transcript.pyannote[105].end |
707.38034375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
707.38034375 |
transcript.pyannote[106].end |
707.58284375 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
707.58284375 |
transcript.pyannote[107].end |
727.30971875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
724.44096875 |
transcript.pyannote[108].end |
727.00596875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
727.59659375 |
transcript.pyannote[109].end |
734.43096875 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
728.03534375 |
transcript.pyannote[110].end |
728.22096875 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
732.25409375 |
transcript.pyannote[111].end |
732.70971875 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
734.43096875 |
transcript.pyannote[112].end |
734.51534375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
734.51534375 |
transcript.pyannote[113].end |
734.97096875 |
transcript.pyannote[114].speaker |
SPEAKER_02 |
transcript.pyannote[114].start |
734.97096875 |
transcript.pyannote[114].end |
745.99034375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
745.99034375 |
transcript.pyannote[115].end |
762.37596875 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
762.37596875 |
transcript.pyannote[116].end |
762.62909375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
762.94971875 |
transcript.pyannote[117].end |
768.99096875 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
763.05096875 |
transcript.pyannote[118].end |
763.65846875 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
769.56471875 |
transcript.pyannote[119].end |
780.26346875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
770.72909375 |
transcript.pyannote[120].end |
771.74159375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
777.39471875 |
transcript.pyannote[121].end |
779.62221875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
780.26346875 |
transcript.pyannote[122].end |
782.38971875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
782.91284375 |
transcript.pyannote[123].end |
792.16034375 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
787.30034375 |
transcript.pyannote[124].end |
788.02596875 |
transcript.pyannote[125].speaker |
SPEAKER_02 |
transcript.pyannote[125].start |
788.16096875 |
transcript.pyannote[125].end |
788.39721875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
793.29096875 |
transcript.pyannote[126].end |
803.16284375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
804.31034375 |
transcript.pyannote[127].end |
818.67096875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
819.41346875 |
transcript.pyannote[128].end |
834.66846875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
835.49534375 |
transcript.pyannote[129].end |
838.93784375 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
839.41034375 |
transcript.pyannote[130].end |
845.72159375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
845.85659375 |
transcript.pyannote[131].end |
846.98721875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
847.61159375 |
transcript.pyannote[132].end |
852.62346875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
852.85971875 |
transcript.pyannote[133].end |
856.79159375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
857.82096875 |
transcript.pyannote[134].end |
861.33096875 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
860.94284375 |
transcript.pyannote[135].end |
861.51659375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
862.64721875 |
transcript.pyannote[136].end |
865.04346875 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
865.48221875 |
transcript.pyannote[137].end |
867.55784375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
866.15721875 |
transcript.pyannote[138].end |
870.17346875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
870.89909375 |
transcript.pyannote[139].end |
871.15221875 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
871.15221875 |
transcript.pyannote[140].end |
871.47284375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
871.47284375 |
transcript.pyannote[141].end |
888.21284375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
871.52346875 |
transcript.pyannote[142].end |
871.99596875 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
888.82034375 |
transcript.pyannote[143].end |
896.16096875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
896.39721875 |
transcript.pyannote[144].end |
900.58221875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
901.08846875 |
transcript.pyannote[145].end |
906.74159375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
909.72846875 |
transcript.pyannote[146].end |
913.98096875 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
914.28471875 |
transcript.pyannote[147].end |
927.59909375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
927.71721875 |
transcript.pyannote[148].end |
932.98221875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
933.48846875 |
transcript.pyannote[149].end |
939.95159375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
941.31846875 |
transcript.pyannote[150].end |
941.75721875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
942.16221875 |
transcript.pyannote[151].end |
947.81534375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
948.76034375 |
transcript.pyannote[152].end |
963.93096875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
964.31909375 |
transcript.pyannote[153].end |
965.60159375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
965.73659375 |
transcript.pyannote[154].end |
972.40221875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
972.79034375 |
transcript.pyannote[155].end |
982.45971875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
983.55659375 |
transcript.pyannote[156].end |
986.05409375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
986.59409375 |
transcript.pyannote[157].end |
990.82971875 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
991.63971875 |
transcript.pyannote[158].end |
993.85034375 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
994.82909375 |
transcript.pyannote[159].end |
999.87471875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
1000.34721875 |
transcript.pyannote[160].end |
1002.15284375 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
1002.77721875 |
transcript.pyannote[161].end |
1006.00034375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
1006.37159375 |
transcript.pyannote[162].end |
1009.54409375 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
1010.06721875 |
transcript.pyannote[163].end |
1017.76221875 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
1018.26846875 |
transcript.pyannote[164].end |
1020.96846875 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
1021.69409375 |
transcript.pyannote[165].end |
1027.51596875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
1027.60034375 |
transcript.pyannote[166].end |
1046.21346875 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
1046.98971875 |
transcript.pyannote[167].end |
1053.63846875 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
1053.70596875 |
transcript.pyannote[168].end |
1053.72284375 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
1053.73971875 |
transcript.pyannote[169].end |
1054.46534375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
1054.12784375 |
transcript.pyannote[170].end |
1054.92096875 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
1055.00534375 |
transcript.pyannote[171].end |
1056.52409375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
1056.64221875 |
transcript.pyannote[172].end |
1056.96284375 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
1056.96284375 |
transcript.pyannote[173].end |
1057.67159375 |
transcript.whisperx[0].start |
6.26 |
transcript.whisperx[0].end |
11.245 |
transcript.whisperx[0].text |
主席,各位大家午安喔,是不是還是請我們何部長好,請何部長委員好 |
transcript.whisperx[1].start |
15.542 |
transcript.whisperx[1].end |
43.713 |
transcript.whisperx[1].text |
呃部長這個是曾委員所提的勞基法第五十條的修正草案喔新增一星期到五日的產假由僱主給新的規定喔你們的修法意見裡面提到說適用勞基法的女性勞工也可以改依勞工請假規則請普通傷病假一年內沒有超過30日部分喔工資則辦發給齁那為僱主不得因這個勞工產假請普通傷病假而扣發其全勤那你們後來又講說 |
transcript.whisperx[2].start |
45.414 |
transcript.whisperx[2].end |
68.699 |
transcript.whisperx[2].text |
為什麼你們反對呢?因為所增加的薪資費用整體雖有限但個別小型微型的企業仍有相當負擔為避免婦女受到隱性的就業歧視影響其工作權益建議審慎評估但是我要在這裡跟你講啊何部長條評司這種答覆真的是歧視我們女性你竟然強調說所增加的薪資費用整體來講有限 |
transcript.whisperx[3].start |
71.179 |
transcript.whisperx[3].end |
84.649 |
transcript.whisperx[3].text |
卻又說避免女性受到隱性的就業歧視你這就是假無心嘛打著怕你被歧視而訂出歧視的政策 |
transcript.whisperx[4].start |
85.731 |
transcript.whisperx[4].end |
101.005 |
transcript.whisperx[4].text |
那因為懷孕生產流產的都是女性在承擔半新的普通雙病假大家都有男女老少通通都有可是我們今天講是我們唯獨我們女性才會有的女性流產 |
transcript.whisperx[5].start |
101.986 |
transcript.whisperx[5].end |
124.022 |
transcript.whisperx[5].text |
你用我們跟大家都有的普通傷病假一樣,要扣自己的半薪病假。這顯然不公平。你都知道女性的生小孩是國家整體勞動力的再生產最重要的。而在今天女性為了整體勞動力的再生產而生出來,我們說生有過、生有出來,大家就給他產假。生沒出來, |
transcript.whisperx[6].start |
129.446 |
transcript.whisperx[6].end |
133.089 |
transcript.whisperx[6].text |
在這種狀況裡面我是要跟你講這個才是上個月我跟這個許明春部長質詢過然後他答應本席說他也認同而且要進行研議的政策今天你在這裡馬上打臉我打臉許明春然後反對我要再跟你分享一個就是說紐西蘭喔 |
transcript.whisperx[7].start |
152.963 |
transcript.whisperx[7].end |
162.903 |
transcript.whisperx[7].text |
紐西蘭在20212021年修法通過,流產的女性跟她的伴侶可以請三天的有薪的商假。 |
transcript.whisperx[8].start |
164.315 |
transcript.whisperx[8].end |
181.676 |
transcript.whisperx[8].text |
我們就不要講說這個價別的名稱啊流產的商價但給予有薪價有薪價不是叫我們請自己的扣自己的餒是看見我們女性流產她不只是生理上而且在心理上都需要時間調適 |
transcript.whisperx[9].start |
183.978 |
transcript.whisperx[9].end |
207.516 |
transcript.whisperx[9].text |
這個就是真正的母性保護你不該只是看見生產的美好然後都沒有看到我們女人對流產的失去心理上的調適的問題所以在這裡啊部長有心的流產價你說啊這個性供法已經有了性供法給價但沒有給薪啊勞基法要給薪 |
transcript.whisperx[10].start |
208.917 |
transcript.whisperx[10].end |
218.454 |
transcript.whisperx[10].text |
未滿三個月、兩個月以上沒有給薪啊你都說這個錢才一點點而已為什麼要打著反歧視然後定出歧視的反對呢? |
transcript.whisperx[11].start |
223.291 |
transcript.whisperx[11].end |
247.752 |
transcript.whisperx[11].text |
委員其實我知道您先前一直有在為這件事情在努力那我也很肯定那我並沒有打臉我剛剛也說了我們會來評估那比較重點是這樣定了要有用總點是今天的提案的委員的提案全部都是雇主給啦都是要雇主給事實上 |
transcript.whisperx[12].start |
248.913 |
transcript.whisperx[12].end |
257.54 |
transcript.whisperx[12].text |
這部分顧主能不能做得到這確實是一件要評估的事情而我會覺得如果真的要顯然你這樣說法是你同意給價給錢現在錢是顧主給還是這個基金給是這樣子的意思吧 |
transcript.whisperx[13].start |
264.125 |
transcript.whisperx[13].end |
267.268 |
transcript.whisperx[13].text |
其實重點會是在這裡,如果你要做的話可能要公共化處理。錢公共化處理。我覺得你要看到我們女性為國家的勞動力在生產。那我現在就要講說大家還要放寬聘僱的門檻。 |
transcript.whisperx[14].start |
283.643 |
transcript.whisperx[14].end |
308.428 |
transcript.whisperx[14].text |
救福法第46條的修正條文希望以年齡作為聘僱外籍看護的條件但是我們都知道外籍看護他的提供的是24小時的照顧但是大家所值的理由大概就是說需要有人陪伴需要有人看著他但是提這個他們預估這些委員提案大概預估是要增加多少的外籍人力 |
transcript.whisperx[15].start |
310.394 |
transcript.whisperx[15].end |
322.778 |
transcript.whisperx[15].text |
這樣的話會增加到五十二萬喔五十二萬那我要問一個問題是請問有沒有遠遠不覺得移工輸出國願意輸出這麼大量的移工然後到台灣來因為大家都覺得通通放寬很好如果有遠遠不覺得外籍移工可以來台灣我也贊成請問有沒有這是一個請問有沒有考慮的問題啊 |
transcript.whisperx[16].start |
338.911 |
transcript.whisperx[16].end |
358.379 |
transcript.whisperx[16].text |
不是啦我在問你因為現實政策上移工輸入有沒有移工輸出國有沒有這麼大量的勞動力可以輸出?其實現在全球都在搶工啦真的是還蠻困難的為什麼我要講這個是因為八十歲以上的長者生活起居可能需要旁人協助 |
transcript.whisperx[17].start |
359.178 |
transcript.whisperx[17].end |
381.066 |
transcript.whisperx[17].text |
但是是不是需要24小時的看護就有待商榷了。那我們現在以年齡劃分恐怕會排擠到真正照顧者的被看需要照顧的被看護者讓現在挑工的尤其是重症的缺乏照顧人力的問題更惡劣惡化就大家都覺得我要去照顧輕症的啊這個好看護的啊 |
transcript.whisperx[18].start |
388.789 |
transcript.whisperx[18].end |
389.029 |
transcript.whisperx[18].text |
他們不想顧了吧? |
transcript.whisperx[19].start |
389.029 |
transcript.whisperx[19].end |
389.45 |
transcript.whisperx[19].text |
不想顧會怎麼樣?保證? |
transcript.whisperx[20].start |
389.45 |
transcript.whisperx[20].end |
389.75 |
transcript.whisperx[20].text |
他們不想顧會怎麼樣? |
transcript.whisperx[21].start |
406.986 |
transcript.whisperx[21].end |
430.134 |
transcript.whisperx[21].text |
所以委員這就是我們擔心的。會完結啊。完結了喔。勞僱雙方吵架。就會就容易言語、肢體然後就說這個威脅要轉換僱主了。所以你知道現在僱主尤其是重度失能的僱主身心俱疲啊。有移工也是很身心俱疲。因為大家要去顧好顧的。要不然就是要去工廠賺更多錢的。 |
transcript.whisperx[22].start |
435.473 |
transcript.whisperx[22].end |
454.426 |
transcript.whisperx[22].text |
所以我在講說大家都要當好人大家都要當這個當這個容易請容易的都可以來來看申請看護那我們要有一個前提要一個前提是移工必須要有源源不絕的移工可是有嗎 |
transcript.whisperx[23].start |
456.462 |
transcript.whisperx[23].end |
472.496 |
transcript.whisperx[23].text |
那我現在在跟你分享就是說衛福部111年進行老人狀況生活調查報告80歲以上的人口不需要他人協助的有51.93%需要他人協助及項目數比例是48.07%其中 |
transcript.whisperx[24].start |
475.558 |
transcript.whisperx[24].end |
498.779 |
transcript.whisperx[24].text |
累計四個項目就是說他的這個需要需求性比較高的是38%所以以年齡作為聘僱外籍看護的資格在現行外籍看護還有仲介也在挑工的媒合的狀況裡面恐怕這樣子下去會排擠真正需要24小時重症照顧的需求 |
transcript.whisperx[25].start |
499.619 |
transcript.whisperx[25].end |
504.202 |
transcript.whisperx[25].text |
但是我雖然是這麼說你這樣子80歲就通通可以申請然後呢會排擠到重症可是你也不能否定啊輕度中度的照顧需求也存在那這些人要怎麼樣 |
transcript.whisperx[26].start |
517.543 |
transcript.whisperx[26].end |
535.521 |
transcript.whisperx[26].text |
這就是長照2.0我們不是在講長照嗎?長照2.0要邁向3.0但是仍然趕不上國人的照顧需求所以這就衛福部的責任就來了你在外籍移工上你沒有全部開放 |
transcript.whisperx[27].start |
536.442 |
transcript.whisperx[27].end |
554.172 |
transcript.whisperx[27].text |
﹏﹏﹏ |
transcript.whisperx[28].start |
554.292 |
transcript.whisperx[28].end |
573.823 |
transcript.whisperx[28].text |
所以在還沒有完全達到失能以前你就讓這些老人家輕度的、中度的就導入24小時的外籍看護反而會有可能會加速退化不利於健康老化可是那衛福部你要做什麼衛福部衛福部3.0衛福部誰來衛福部3.0在哪裡啊 |
transcript.whisperx[29].start |
581.096 |
transcript.whisperx[29].end |
595.424 |
transcript.whisperx[29].text |
一有照顧需求就想到直接聘僱外勞外籍醫工、外籍看護24小時的照顧又便宜又方便但這個對沒有完全失能的老人延緩老化不是一件好事啊 |
transcript.whisperx[30].start |
596.124 |
transcript.whisperx[30].end |
612.976 |
transcript.whisperx[30].text |
所以這也是我們長照2.0一直在推的日照中心拖老服務最核心的服務可是呢我們現在大家優先想到就一對一24小時的外籍看護優先與長照政策以至於我們要改變社會照顧的觀念真的是很難啦但我現在要問衛福部啦我們總統 |
transcript.whisperx[31].start |
618.42 |
transcript.whisperx[31].end |
636.872 |
transcript.whisperx[31].text |
來總統當初提出了長照3.0的政見比如說要新增居家或社區晚間到宅照顧夜間緊急服務建立24小時的重度失能者的支持服務還有 |
transcript.whisperx[32].start |
638.473 |
transcript.whisperx[32].end |
652.442 |
transcript.whisperx[32].text |
提高一對多的社區照顧服務比例,增加人力運用效率。提高一對多的社區照顧服務比例,增加人力運用效率。提高一對多的社區照顧服務比例,增加人力運用效率。提高一對多的社區照顧服務比例,增加人力運用效率。提高一對多的社區照顧服務比例,增加人力運用效率。 |
transcript.whisperx[33].start |
668.653 |
transcript.whisperx[33].end |
689.099 |
transcript.whisperx[33].text |
衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部,你先來做到哪裡?衛福部, |
transcript.whisperx[34].start |
691.239 |
transcript.whisperx[34].end |
702.184 |
transcript.whisperx[34].text |
舉家或社區的晚間到宅照顧、夜間緊急服務、建立24小時的重度失能者的支持服務。我不要談我剛才講那麼多,就談這三項好了。這三項你們的規劃是什麼時候要開始做? |
transcript.whisperx[35].start |
707.466 |
transcript.whisperx[35].end |
726.47 |
transcript.whisperx[35].text |
是。跟我委員也報告。剛剛其實你也提到就是因為國人聘請移工其實是民國78年就開始。所以遠遠早於國家推動長照政策之前。所以這個部分怎麼樣能夠翻轉國人的觀念而不是所有的長照都要24小時。你可不可以就我的問題回答就好了。那我們在講的是長照啦。我沒有跟你談這個移工服務啦。政策啦。我現在跟你講長照。是。 |
transcript.whisperx[36].start |
734.952 |
transcript.whisperx[36].end |
761.671 |
transcript.whisperx[36].text |
那所以因為這個會關聯因為要帶到24小時目前在長照政策是沒有辦法用一對一到宅去提供24小時的照顧服務這個是賴總統的政見他講新增我沒有叫你24小時他在講居家或社區的晚間到宅照顧夜間緊急服務24小時的支持服務又不是叫你整天看著他支持服務餒 |
transcript.whisperx[37].start |
763.172 |
transcript.whisperx[37].end |
769.597 |
transcript.whisperx[37].text |
您們都沒有認真的看待賴總統的這個長照3.0喔? |
transcript.whisperx[38].start |
769.597 |
transcript.whisperx[38].end |
791.593 |
transcript.whisperx[38].text |
有,我們其實目前... 有沒有做準備?因為2.0是到115年,所以我們大概就是...115年很快捏。今天113年捏。你現在沒有準備115年就要憑空就掉下來嗎?所以我們才說為什麼這麼多委員要提案要直接這樣做? |
transcript.whisperx[39].start |
793.325 |
transcript.whisperx[39].end |
802.571 |
transcript.whisperx[39].text |
因為你的長照制度銜接不來啊配套沒有來啊所以大家才會說乾脆大家都聘外勞外籍看護就好了啊好那請回主席我說最後一個重整啦外界不斷的倡議要鬆綁聘顧外籍看護門檻但我要講說部長政府更應該關心這個照顧品質 |
transcript.whisperx[40].start |
819.471 |
transcript.whisperx[40].end |
834.356 |
transcript.whisperx[40].text |
在沒有辦法確實檢核來台前90個小時的照顧訓練那來台後的補充訓練實體課程的成效非常差顧主對於看護技術的滿意度七成八 |
transcript.whisperx[41].start |
835.586 |
transcript.whisperx[41].end |
856.628 |
transcript.whisperx[41].text |
所以我們在這裡一直在講說第一個可望禁訴填補照顧人力的需求下還有法規沒有強制的這個規定下你的這個事後的補充訓練當然提升照顧品質的成效是有限的啊 |
transcript.whisperx[42].start |
857.944 |
transcript.whisperx[42].end |
859.006 |
transcript.whisperx[42].text |
這樣要怎麼辦? |
transcript.whisperx[43].start |
859.006 |
transcript.whisperx[43].end |
860.849 |
transcript.whisperx[43].text |
你的實體課程你知道上得多爛嗎? |
transcript.whisperx[44].start |
860.849 |
transcript.whisperx[44].end |
868.74 |
transcript.whisperx[44].text |
那是長照服務法那是長照服務法裡面的規定我是在講外籍看護來台的訓練 我是在講外籍看護來台的訓練 |
transcript.whisperx[45].start |
871.597 |
transcript.whisperx[45].end |
879.708 |
transcript.whisperx[45].text |
我再講的是拼顧外籍看護來台他必須要照顧訓練外國受訓了九十小時怎麼訓練我們檢核不出來啦但是來台以後要補充訓練你們實體課還有線上課你知道你們實體課開的多差嗎 |
transcript.whisperx[46].start |
888.88 |
transcript.whisperx[46].end |
899.987 |
transcript.whisperx[46].text |
你們開課量能一百班以上五百人以上但實體課程2022年關成功開辦一班一百班以上的準備只成功開一班六個人參訓倒載訓練則是2020以後沒有任何人申請 |
transcript.whisperx[47].start |
909.915 |
transcript.whisperx[47].end |
932.758 |
transcript.whisperx[47].text |
我們的意思是說其實長照不是給他聘一個外籍看護來照顧。外籍看護來,你們就沒有管了。當然長照品質是衛福部了。但是呢我們外籍看護這個雇傭關係不好有時候是來自於照顧品質不好、雇主不滿意嘛。那現在在這種狀況裡面我們也把長照的喘息服務計畫也納入了。 |
transcript.whisperx[48].start |
934.02 |
transcript.whisperx[48].end |
939.727 |
transcript.whisperx[48].text |
創造cover到我們的外籍看護讓他一個一年有幾天的喘息天數你知道嗎?五十二天那是漸漸增加五十二天等於是國家幫他買單休息日啊 |
transcript.whisperx[49].start |
949.077 |
transcript.whisperx[49].end |
963.554 |
transcript.whisperx[49].text |
國家幫他們買單休息日但是你不可以政府提供的經費讓你喘息結果其實僱主政府幫你買單了然後你對於這個照顧品質僱主也是獲利者啊 |
transcript.whisperx[50].start |
964.375 |
transcript.whisperx[50].end |
964.515 |
transcript.whisperx[50].text |
議員:林淑芬: |
transcript.whisperx[51].start |
984.542 |
transcript.whisperx[51].end |
1001.821 |
transcript.whisperx[51].text |
60%部長我知道你不知道我告訴你就好有放假平均一個月放假幾天放假幾次你知道嗎一次57.7%然後二到三次的是25.6%都不放假了幾乎四成原因是原因是 |
transcript.whisperx[52].start |
1002.862 |
transcript.whisperx[52].end |
1020.768 |
transcript.whisperx[52].text |
你們說的他們想要賺加班費啦其實呢還有家中無替代照顧人力啦那不放假的話雇主發的加班費大概都有九成五有發啦但是是很少很少很少的啦其實簡單的講是雇主也不想要他放啦 |
transcript.whisperx[53].start |
1021.921 |
transcript.whisperx[53].end |
1034.149 |
transcript.whisperx[53].text |
護主也不想要她放。即便我們有長照喘息服務了,護主也懶得申請啦。52天護主也不想申請啦。我就是要這一個一直用一直用一年全年365天都無休我也不需要你給我喘息雖然政府有喘息所以我跟你講就是說其實問題還蠻嚴重的照顧的品質啦還有 |
transcript.whisperx[54].start |
1047.326 |
transcript.whisperx[54].end |
1050.311 |
transcript.whisperx[54].text |
關乎者的勞動休息也很重要啦。這個真的是問題重重。好,謝謝林委員。 |