iVOD / 152999

Field Value
IVOD_ID 152999
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/152999
日期 2024-05-27
會議資料.會議代碼 委員會-11-1-26-19
會議資料.會議代碼:str 第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 19
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議
影片種類 Clip
開始時間 2024-05-27T10:08:56+08:00
結束時間 2024-05-27T10:17:12+08:00
影片長度 00:08:16
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/536b9eee2a0ea5b3050d84ebc29127365186e4a1bc6f964e945ede7791f90b9e0ed430b54b12589a5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 盧縣一
委員發言時間 10:08:56 - 10:17:12
會議時間 2024-05-27T09:00:00+08:00
會議名稱 立法院第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議(事由:一、審查 (一)委員林德福等19人擬具「就業服務法第四十六條條文修正草案」案。 (二)委員楊瓊瓔等16人擬具「就業服務法第四十六條條文修正草案」案。 (三)委員馬文君等25人擬具「就業服務法第四十六條條文修正草案」案。 (四)委員涂權吉等17人擬具「就業服務法部分條文修正草案」案。 (五)委員黃建賓等20人擬具「就業服務法第四十六條條文修正草案」案。 (六)委員呂玉玲等16人擬具「就業服務法第四十六條及第五十五條條文修正草案」案。 (七)委員盧縣一等17人擬具「就業服務法第四十六條條文修正草案」案。 (八)委員鄭正鈐等17人擬具「就業服務法第四十六條條文修正草案」案。 (九)委員王育敏等17人擬具「就業服務法第四十六條條文修正草案」案。 (十)委員張嘉郡等30人擬具「就業服務法第四十六條條文修正草案」案。 (十一)委員王鴻薇等22人擬具「就業服務法第四十六條條文修正草案」案。 二、審查 (一)委員萬美玲等36人擬具「勞動基準法第五十條條文修正草案」案。 (二)委員許宇甄等18人擬具「勞動基準法第五十條條文修正草案」案。 (三)委員馬文君等20人擬具「勞動基準法第五十條條文修正草案」案。 (四)委員邱若華等16人擬具「勞動基準法第五十條條文修正草案」案。 【一(九) :如未經各黨團簽署不復議同意書,則不予審查】 【一(十)、(十一) :如未經各黨團簽署不復議同意書,則不予審查】 【討論事項綜合詢答】 【5月27日、29日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 3.74346875
transcript.pyannote[0].end 4.65471875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 5.76846875
transcript.pyannote[1].end 5.98784375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 6.13971875
transcript.pyannote[2].end 6.83159375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 8.60346875
transcript.pyannote[3].end 9.59909375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 8.73846875
transcript.pyannote[4].end 9.49784375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 9.73409375
transcript.pyannote[5].end 10.12221875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 9.95346875
transcript.pyannote[6].end 14.12159375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 13.22721875
transcript.pyannote[7].end 13.58159375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 13.75034375
transcript.pyannote[8].end 13.93596875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 14.35784375
transcript.pyannote[9].end 26.23784375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 26.50784375
transcript.pyannote[10].end 27.36846875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 26.52471875
transcript.pyannote[11].end 27.04784375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 28.71846875
transcript.pyannote[12].end 28.73534375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 28.73534375
transcript.pyannote[13].end 28.83659375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 28.83659375
transcript.pyannote[14].end 28.97159375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 28.97159375
transcript.pyannote[15].end 28.98846875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 28.98846875
transcript.pyannote[16].end 29.35971875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 29.57909375
transcript.pyannote[17].end 33.12284375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 30.94596875
transcript.pyannote[18].end 31.63784375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 33.00471875
transcript.pyannote[19].end 33.47721875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 33.25784375
transcript.pyannote[20].end 41.25659375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 41.57721875
transcript.pyannote[21].end 43.14659375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 43.14659375
transcript.pyannote[22].end 44.04096875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 43.18034375
transcript.pyannote[23].end 46.33596875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 45.28971875
transcript.pyannote[24].end 47.73659375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 47.60159375
transcript.pyannote[25].end 49.52534375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 49.57596875
transcript.pyannote[26].end 55.70159375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 50.13284375
transcript.pyannote[27].end 50.79096875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 50.97659375
transcript.pyannote[28].end 51.63471875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 56.03909375
transcript.pyannote[29].end 61.28721875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 61.77659375
transcript.pyannote[30].end 62.56971875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 63.07596875
transcript.pyannote[31].end 75.41159375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 75.96846875
transcript.pyannote[32].end 103.08659375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 86.19471875
transcript.pyannote[33].end 86.22846875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 103.47471875
transcript.pyannote[34].end 114.29159375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 114.98346875
transcript.pyannote[35].end 127.75784375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 128.36534375
transcript.pyannote[36].end 142.10159375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 142.27034375
transcript.pyannote[37].end 145.89846875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 146.92784375
transcript.pyannote[38].end 148.22721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 148.53096875
transcript.pyannote[39].end 150.97784375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 149.69534375
transcript.pyannote[40].end 153.12096875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 153.32346875
transcript.pyannote[41].end 155.83784375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 153.93096875
transcript.pyannote[42].end 154.48784375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 155.23034375
transcript.pyannote[43].end 158.28471875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 155.88846875
transcript.pyannote[44].end 155.97284375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 156.02346875
transcript.pyannote[45].end 156.04034375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 156.05721875
transcript.pyannote[46].end 157.64346875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 157.94721875
transcript.pyannote[47].end 158.97659375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 158.97659375
transcript.pyannote[48].end 168.12284375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 163.83659375
transcript.pyannote[49].end 169.82721875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 170.21534375
transcript.pyannote[50].end 174.34971875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 172.05471875
transcript.pyannote[51].end 177.01596875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 175.15971875
transcript.pyannote[52].end 179.54721875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 179.37846875
transcript.pyannote[53].end 179.68221875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 179.64846875
transcript.pyannote[54].end 182.88846875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 181.72409375
transcript.pyannote[55].end 195.59534375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 183.56346875
transcript.pyannote[56].end 184.77846875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 195.96659375
transcript.pyannote[57].end 198.91971875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 199.25721875
transcript.pyannote[58].end 201.83909375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 201.92346875
transcript.pyannote[59].end 202.54784375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 202.90221875
transcript.pyannote[60].end 224.36721875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 224.73846875
transcript.pyannote[61].end 248.19471875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 249.20721875
transcript.pyannote[62].end 262.65659375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 249.24096875
transcript.pyannote[63].end 250.70909375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 251.87346875
transcript.pyannote[64].end 252.48096875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 262.97721875
transcript.pyannote[65].end 268.39409375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 268.69784375
transcript.pyannote[66].end 285.45471875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 281.16846875
transcript.pyannote[67].end 283.42971875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 286.07909375
transcript.pyannote[68].end 288.62721875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 288.96471875
transcript.pyannote[69].end 295.84971875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 289.82534375
transcript.pyannote[70].end 290.53409375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 295.29284375
transcript.pyannote[71].end 300.05159375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 298.00971875
transcript.pyannote[72].end 308.13471875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 305.48534375
transcript.pyannote[73].end 306.24471875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 308.16846875
transcript.pyannote[74].end 308.80971875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 308.82659375
transcript.pyannote[75].end 318.69846875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 314.61471875
transcript.pyannote[76].end 315.10409375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 318.12471875
transcript.pyannote[77].end 324.50346875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 324.63846875
transcript.pyannote[78].end 328.89096875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 327.72659375
transcript.pyannote[79].end 329.73471875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 329.73471875
transcript.pyannote[80].end 330.42659375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 329.76846875
transcript.pyannote[81].end 331.23659375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 330.66284375
transcript.pyannote[82].end 349.64721875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 334.49346875
transcript.pyannote[83].end 335.32034375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 349.19159375
transcript.pyannote[84].end 350.59221875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 350.01846875
transcript.pyannote[85].end 368.61471875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 357.40971875
transcript.pyannote[86].end 358.40534375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 364.68284375
transcript.pyannote[87].end 367.16346875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 368.02409375
transcript.pyannote[88].end 369.57659375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 369.71159375
transcript.pyannote[89].end 371.48346875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 371.58471875
transcript.pyannote[90].end 371.60159375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 371.60159375
transcript.pyannote[91].end 372.42846875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 372.91784375
transcript.pyannote[92].end 373.59284375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 387.70034375
transcript.pyannote[93].end 388.32471875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 389.55659375
transcript.pyannote[94].end 391.48034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 391.90221875
transcript.pyannote[95].end 392.34096875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 392.40846875
transcript.pyannote[96].end 404.01846875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 404.49096875
transcript.pyannote[97].end 405.46971875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 405.85784375
transcript.pyannote[98].end 411.66284375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 412.10159375
transcript.pyannote[99].end 413.02971875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 413.83971875
transcript.pyannote[100].end 428.13284375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 426.90096875
transcript.pyannote[101].end 429.44909375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 429.92159375
transcript.pyannote[102].end 435.50721875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 433.92096875
transcript.pyannote[103].end 435.27096875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 435.50721875
transcript.pyannote[104].end 435.54096875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 436.09784375
transcript.pyannote[105].end 438.00471875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 438.00471875
transcript.pyannote[106].end 438.07221875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 438.07221875
transcript.pyannote[107].end 441.17721875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 441.17721875
transcript.pyannote[108].end 443.06721875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 441.19409375
transcript.pyannote[109].end 441.53159375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 443.32034375
transcript.pyannote[110].end 446.79659375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 448.95659375
transcript.pyannote[111].end 450.22221875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 449.81721875
transcript.pyannote[112].end 449.96909375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 450.81284375
transcript.pyannote[113].end 455.57159375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 455.57159375
transcript.pyannote[114].end 466.67534375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 466.67534375
transcript.pyannote[115].end 474.03284375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 474.03284375
transcript.pyannote[116].end 486.55409375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 474.10034375
transcript.pyannote[117].end 475.26471875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 487.16159375
transcript.pyannote[118].end 488.98409375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 487.58346875
transcript.pyannote[119].end 493.27034375
transcript.whisperx[0].start 3.895
transcript.whisperx[0].end 24.809
transcript.whisperx[0].text 有請何部長。請部長。部長早安。這個禮拜六我有去屏東就業博覽會。是。謝謝勞動部在那邊的活動很成功。不過我當時有說,有跟當時的年輕人說現在的那個平均薪資是最低薪資是183塊對不對?那韓國呢?
transcript.whisperx[1].start 29.71
transcript.whisperx[1].end 49.182
transcript.whisperx[1].text 大概是兩百塊日本大概是兩百一十塊我是希望說有沒有一個機制可以比照軍公教如果是逐年條條的話是不是有這個機會您講的是時薪嘛那當然我們基本工資已經條八年了那今年最低工資元年
transcript.whisperx[2].start 49.862
transcript.whisperx[2].end 74.567
transcript.whisperx[2].text 一百八十三塊嗎?好,那我們針對今天的問題,因為本身是醫生。那,常常我們在地方服務的時候,就是巴士量表的問題是照顧著最痛苦的一件事情。比如說我們在訪寮,然後他就說必須要到屏東。那訪寮到屏東大概一個小時的距離,那這只是平地的部分。
transcript.whisperx[3].start 76.047
transcript.whisperx[3].end 76.227
transcript.whisperx[3].text 盧縣一盧縣一盧縣一盧縣一盧縣一盧
transcript.whisperx[4].start 103.636
transcript.whisperx[4].end 126.884
transcript.whisperx[4].text 相對衍生了很多這方面的一個困擾那是不是在嚴案就在嚴厲的時候是不是把醫生一般的醫生證明就可以當作是他的一個申請需求我是指八十歲以上那如果說他本來就有這些既定的疾病他不也不可能也不可能好轉那就按照他原本的一個疾病的形態去申請就好了不用再舟車老頓去去特別申請這張你覺得呢
transcript.whisperx[5].start 128.593
transcript.whisperx[5].end 145.476
transcript.whisperx[5].text 對,我也完全敬佩你們提案的精神。您剛剛講的週車勞頓,其實我們也透過各種行政措施來改良。比如現在其實已經發展到居家醫療,可以到家裡。
transcript.whisperx[6].start 146.998
transcript.whisperx[6].end 169.455
transcript.whisperx[6].text 道宅評估那第二個我們準備我想知道現在的申請比率成功的居家醫療嗎對我是覺得他的困難度還是很高對對對對對所以我是希望能夠減便當然是如果是居家醫療的醫生可以開也OK可以可以現在可以開要廣為推行是是是對還有包括說像未來可不可能
transcript.whisperx[7].start 170.296
transcript.whisperx[7].end 185.619
transcript.whisperx[7].text 我們就到鄰近的社區診所讓他開我看到這樣是OK的齁如果是未來是這樣是OK的對我覺得可能用這種行政措施的改良會比我們用整個大的制度型的對各地區的衛生所或是醫療院所如果可以開就好了
transcript.whisperx[8].start 185.759
transcript.whisperx[8].end 202.91
transcript.whisperx[8].text ﹏﹏﹏﹏
transcript.whisperx[9].start 203.37
transcript.whisperx[9].end 226.706
transcript.whisperx[9].text 閒置嗎?比如說我們現在是爭取重度、中度而已。那輕度跟陪伴的話就給我們國人的看護工。這樣會不會就可以避免他們的一個逃跑?比如說我怎麼說呢?如果現在的他們的薪資是兩萬多塊,那如果現在按照一般薪資是一百八十三塊,如果這樣算的話,他們應該要拿十三萬的。那對啊,那如果說你可以把它
transcript.whisperx[10].start 227.086
transcript.whisperx[10].end 227.526
transcript.whisperx[10].text 一﹑一﹑一﹑一﹑一﹑一﹑
transcript.whisperx[11].start 249.281
transcript.whisperx[11].end 267.922
transcript.whisperx[11].text 因為我常常看到逃跑率很高的是怎麼樣?因為我在訪寮地區服務。有的時候一個移工來,他連一句國語都不會聽,更何況是台語。來了以後,他到了那個家裡才發現他要照顧兩個人。就是照顧一個比較輕度做輪椅的阿公,然後臥床的阿嬤。
transcript.whisperx[12].start 268.643
transcript.whisperx[12].end 286.015
transcript.whisperx[12].text ﹏﹏﹏
transcript.whisperx[13].start 286.101
transcript.whisperx[13].end 311.647
transcript.whisperx[13].text 議員:盧縣
transcript.whisperx[14].start 312.047
transcript.whisperx[14].end 325.311
transcript.whisperx[14].text 因此這樣子開會排擠啦,排擠重度失能者的被照顧的需求。 那你知道民原住民的,照顧民原住民的那些外籍移工的逃跑率很低嗎?你知道嗎?
transcript.whisperx[15].start 325.311
transcript.whisperx[15].end 327.991
transcript.whisperx[15].text 我幾乎沒有看過逃跑的移工。 那為什麼叫為什麼?
transcript.whisperx[16].start 330.832
transcript.whisperx[16].end 357.017
transcript.whisperx[16].text 我們會把他當作是家人一樣。第一個,第二個是我們的文化很接近。他甚至有時候會學到比我們還要程度還要高的一個程度,因為他們都是跟老人家在一起嘛。結果他們後來在講族裔的社會覺得比一般小朋友講得還要好。因為我們是南島語系國家嘛。然後相對在生活上面就很像比較一致。所以讓他的文化的一個尊崇度就會比較高。
transcript.whisperx[17].start 357.517
transcript.whisperx[17].end 373.643
transcript.whisperx[17].text ﹏﹏﹏
transcript.whisperx[18].start 387.808
transcript.whisperx[18].end 412.609
transcript.whisperx[18].text 護士長齁我想問的就是說我們那個通常有人跟我反應就是說他們要去職業訓練比如說大客車駕駛或者是大貨車駕駛的時候沒有班別那如果有班別的時候會覺得說很像很像那個像他會考量叫做什麼媒合的就業就業率來來審核是不是你大概可以說明一下嗎
transcript.whisperx[19].start 414.551
transcript.whisperx[19].end 428.537
transcript.whisperx[19].text 我們每年的那個職業訓練的班別都會在我們的網站上公告。然後如果我們族人有需要的話就可以來報名。我想知道他的經費來源是哪裡?
transcript.whisperx[20].start 431.579
transcript.whisperx[20].end 446.308
transcript.whisperx[20].text 有的是從我們的公益彩券回饋。那為什麼不是從勞動部?勞動部也有。我們也有跟勞動部合作。他們說常常是因為他們被評比的時候不及格,所以會被扣錢。
transcript.whisperx[21].start 448.993
transcript.whisperx[21].end 473.884
transcript.whisperx[21].text 老公部的部分嗎?那這部分我們再了解一下。那我們本身也是都有開。我說承作單位可能因為他的每合的一個就業的機率如果說沒有到達一定的%的話他會把他原本應該給的那個費用是會打折扣的是有這個情形?對就是如果說我們本來是補助40萬然後他整個人數啊
transcript.whisperx[22].start 474.164
transcript.whisperx[22].end 492.297
transcript.whisperx[22].text 我是希望原住民的部分不要因爲這樣子就做折扣,因爲就已經很困難進行職業訓練了,然後好不容易得到執照,你又把它扣掉的話,會造成一些想要做的人沒有辦法...會...怎麼講?報告委員,我們從113年開始就不扣這個部分了。那我知道了,謝謝。