IVOD_ID |
152999 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/152999 |
日期 |
2024-05-27 |
會議資料.會議代碼 |
委員會-11-1-26-19 |
會議資料.會議代碼:str |
第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
19 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-05-27T10:08:56+08:00 |
結束時間 |
2024-05-27T10:17:12+08:00 |
影片長度 |
00:08:16 |
支援功能[0] |
ai-transcript |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/536b9eee2a0ea5b3050d84ebc29127365186e4a1bc6f964e945ede7791f90b9e0ed430b54b12589a5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
盧縣一 |
委員發言時間 |
10:08:56 - 10:17:12 |
會議時間 |
2024-05-27T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期社會福利及衛生環境委員會第19次全體委員會議(事由:一、審查
(一)委員林德福等19人擬具「就業服務法第四十六條條文修正草案」案。
(二)委員楊瓊瓔等16人擬具「就業服務法第四十六條條文修正草案」案。
(三)委員馬文君等25人擬具「就業服務法第四十六條條文修正草案」案。
(四)委員涂權吉等17人擬具「就業服務法部分條文修正草案」案。
(五)委員黃建賓等20人擬具「就業服務法第四十六條條文修正草案」案。
(六)委員呂玉玲等16人擬具「就業服務法第四十六條及第五十五條條文修正草案」案。
(七)委員盧縣一等17人擬具「就業服務法第四十六條條文修正草案」案。
(八)委員鄭正鈐等17人擬具「就業服務法第四十六條條文修正草案」案。
(九)委員王育敏等17人擬具「就業服務法第四十六條條文修正草案」案。
(十)委員張嘉郡等30人擬具「就業服務法第四十六條條文修正草案」案。
(十一)委員王鴻薇等22人擬具「就業服務法第四十六條條文修正草案」案。
二、審查
(一)委員萬美玲等36人擬具「勞動基準法第五十條條文修正草案」案。
(二)委員許宇甄等18人擬具「勞動基準法第五十條條文修正草案」案。
(三)委員馬文君等20人擬具「勞動基準法第五十條條文修正草案」案。
(四)委員邱若華等16人擬具「勞動基準法第五十條條文修正草案」案。
【一(九) :如未經各黨團簽署不復議同意書,則不予審查】
【一(十)、(十一) :如未經各黨團簽署不復議同意書,則不予審查】
【討論事項綜合詢答】
【5月27日、29日二天一次會】) |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
3.74346875 |
transcript.pyannote[0].end |
4.65471875 |
transcript.pyannote[1].speaker |
SPEAKER_02 |
transcript.pyannote[1].start |
5.76846875 |
transcript.pyannote[1].end |
5.98784375 |
transcript.pyannote[2].speaker |
SPEAKER_02 |
transcript.pyannote[2].start |
6.13971875 |
transcript.pyannote[2].end |
6.83159375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
8.60346875 |
transcript.pyannote[3].end |
9.59909375 |
transcript.pyannote[4].speaker |
SPEAKER_02 |
transcript.pyannote[4].start |
8.73846875 |
transcript.pyannote[4].end |
9.49784375 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
9.73409375 |
transcript.pyannote[5].end |
10.12221875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
9.95346875 |
transcript.pyannote[6].end |
14.12159375 |
transcript.pyannote[7].speaker |
SPEAKER_02 |
transcript.pyannote[7].start |
13.22721875 |
transcript.pyannote[7].end |
13.58159375 |
transcript.pyannote[8].speaker |
SPEAKER_02 |
transcript.pyannote[8].start |
13.75034375 |
transcript.pyannote[8].end |
13.93596875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
14.35784375 |
transcript.pyannote[9].end |
26.23784375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
26.50784375 |
transcript.pyannote[10].end |
27.36846875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
26.52471875 |
transcript.pyannote[11].end |
27.04784375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
28.71846875 |
transcript.pyannote[12].end |
28.73534375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
28.73534375 |
transcript.pyannote[13].end |
28.83659375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
28.83659375 |
transcript.pyannote[14].end |
28.97159375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
28.97159375 |
transcript.pyannote[15].end |
28.98846875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
28.98846875 |
transcript.pyannote[16].end |
29.35971875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
29.57909375 |
transcript.pyannote[17].end |
33.12284375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
30.94596875 |
transcript.pyannote[18].end |
31.63784375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
33.00471875 |
transcript.pyannote[19].end |
33.47721875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
33.25784375 |
transcript.pyannote[20].end |
41.25659375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
41.57721875 |
transcript.pyannote[21].end |
43.14659375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
43.14659375 |
transcript.pyannote[22].end |
44.04096875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
43.18034375 |
transcript.pyannote[23].end |
46.33596875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
45.28971875 |
transcript.pyannote[24].end |
47.73659375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
47.60159375 |
transcript.pyannote[25].end |
49.52534375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
49.57596875 |
transcript.pyannote[26].end |
55.70159375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
50.13284375 |
transcript.pyannote[27].end |
50.79096875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
50.97659375 |
transcript.pyannote[28].end |
51.63471875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
56.03909375 |
transcript.pyannote[29].end |
61.28721875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
61.77659375 |
transcript.pyannote[30].end |
62.56971875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
63.07596875 |
transcript.pyannote[31].end |
75.41159375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
75.96846875 |
transcript.pyannote[32].end |
103.08659375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
86.19471875 |
transcript.pyannote[33].end |
86.22846875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
103.47471875 |
transcript.pyannote[34].end |
114.29159375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
114.98346875 |
transcript.pyannote[35].end |
127.75784375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
128.36534375 |
transcript.pyannote[36].end |
142.10159375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
142.27034375 |
transcript.pyannote[37].end |
145.89846875 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
146.92784375 |
transcript.pyannote[38].end |
148.22721875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
148.53096875 |
transcript.pyannote[39].end |
150.97784375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
149.69534375 |
transcript.pyannote[40].end |
153.12096875 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
153.32346875 |
transcript.pyannote[41].end |
155.83784375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
153.93096875 |
transcript.pyannote[42].end |
154.48784375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
155.23034375 |
transcript.pyannote[43].end |
158.28471875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
155.88846875 |
transcript.pyannote[44].end |
155.97284375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
156.02346875 |
transcript.pyannote[45].end |
156.04034375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
156.05721875 |
transcript.pyannote[46].end |
157.64346875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
157.94721875 |
transcript.pyannote[47].end |
158.97659375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
158.97659375 |
transcript.pyannote[48].end |
168.12284375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
163.83659375 |
transcript.pyannote[49].end |
169.82721875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
170.21534375 |
transcript.pyannote[50].end |
174.34971875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
172.05471875 |
transcript.pyannote[51].end |
177.01596875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
175.15971875 |
transcript.pyannote[52].end |
179.54721875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
179.37846875 |
transcript.pyannote[53].end |
179.68221875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
179.64846875 |
transcript.pyannote[54].end |
182.88846875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
181.72409375 |
transcript.pyannote[55].end |
195.59534375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
183.56346875 |
transcript.pyannote[56].end |
184.77846875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
195.96659375 |
transcript.pyannote[57].end |
198.91971875 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
199.25721875 |
transcript.pyannote[58].end |
201.83909375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
201.92346875 |
transcript.pyannote[59].end |
202.54784375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
202.90221875 |
transcript.pyannote[60].end |
224.36721875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
224.73846875 |
transcript.pyannote[61].end |
248.19471875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
249.20721875 |
transcript.pyannote[62].end |
262.65659375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
249.24096875 |
transcript.pyannote[63].end |
250.70909375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
251.87346875 |
transcript.pyannote[64].end |
252.48096875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
262.97721875 |
transcript.pyannote[65].end |
268.39409375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
268.69784375 |
transcript.pyannote[66].end |
285.45471875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
281.16846875 |
transcript.pyannote[67].end |
283.42971875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
286.07909375 |
transcript.pyannote[68].end |
288.62721875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
288.96471875 |
transcript.pyannote[69].end |
295.84971875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
289.82534375 |
transcript.pyannote[70].end |
290.53409375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
295.29284375 |
transcript.pyannote[71].end |
300.05159375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
298.00971875 |
transcript.pyannote[72].end |
308.13471875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
305.48534375 |
transcript.pyannote[73].end |
306.24471875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
308.16846875 |
transcript.pyannote[74].end |
308.80971875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
308.82659375 |
transcript.pyannote[75].end |
318.69846875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
314.61471875 |
transcript.pyannote[76].end |
315.10409375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
318.12471875 |
transcript.pyannote[77].end |
324.50346875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
324.63846875 |
transcript.pyannote[78].end |
328.89096875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
327.72659375 |
transcript.pyannote[79].end |
329.73471875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
329.73471875 |
transcript.pyannote[80].end |
330.42659375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
329.76846875 |
transcript.pyannote[81].end |
331.23659375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
330.66284375 |
transcript.pyannote[82].end |
349.64721875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
334.49346875 |
transcript.pyannote[83].end |
335.32034375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
349.19159375 |
transcript.pyannote[84].end |
350.59221875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
350.01846875 |
transcript.pyannote[85].end |
368.61471875 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
357.40971875 |
transcript.pyannote[86].end |
358.40534375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
364.68284375 |
transcript.pyannote[87].end |
367.16346875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
368.02409375 |
transcript.pyannote[88].end |
369.57659375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
369.71159375 |
transcript.pyannote[89].end |
371.48346875 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
371.58471875 |
transcript.pyannote[90].end |
371.60159375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
371.60159375 |
transcript.pyannote[91].end |
372.42846875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
372.91784375 |
transcript.pyannote[92].end |
373.59284375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
387.70034375 |
transcript.pyannote[93].end |
388.32471875 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
389.55659375 |
transcript.pyannote[94].end |
391.48034375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
391.90221875 |
transcript.pyannote[95].end |
392.34096875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
392.40846875 |
transcript.pyannote[96].end |
404.01846875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
404.49096875 |
transcript.pyannote[97].end |
405.46971875 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
405.85784375 |
transcript.pyannote[98].end |
411.66284375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
412.10159375 |
transcript.pyannote[99].end |
413.02971875 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
413.83971875 |
transcript.pyannote[100].end |
428.13284375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
426.90096875 |
transcript.pyannote[101].end |
429.44909375 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
429.92159375 |
transcript.pyannote[102].end |
435.50721875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
433.92096875 |
transcript.pyannote[103].end |
435.27096875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
435.50721875 |
transcript.pyannote[104].end |
435.54096875 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
436.09784375 |
transcript.pyannote[105].end |
438.00471875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
438.00471875 |
transcript.pyannote[106].end |
438.07221875 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
438.07221875 |
transcript.pyannote[107].end |
441.17721875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
441.17721875 |
transcript.pyannote[108].end |
443.06721875 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
441.19409375 |
transcript.pyannote[109].end |
441.53159375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
443.32034375 |
transcript.pyannote[110].end |
446.79659375 |
transcript.pyannote[111].speaker |
SPEAKER_02 |
transcript.pyannote[111].start |
448.95659375 |
transcript.pyannote[111].end |
450.22221875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
449.81721875 |
transcript.pyannote[112].end |
449.96909375 |
transcript.pyannote[113].speaker |
SPEAKER_02 |
transcript.pyannote[113].start |
450.81284375 |
transcript.pyannote[113].end |
455.57159375 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
455.57159375 |
transcript.pyannote[114].end |
466.67534375 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
466.67534375 |
transcript.pyannote[115].end |
474.03284375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
474.03284375 |
transcript.pyannote[116].end |
486.55409375 |
transcript.pyannote[117].speaker |
SPEAKER_02 |
transcript.pyannote[117].start |
474.10034375 |
transcript.pyannote[117].end |
475.26471875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
487.16159375 |
transcript.pyannote[118].end |
488.98409375 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
487.58346875 |
transcript.pyannote[119].end |
493.27034375 |
transcript.whisperx[0].start |
3.895 |
transcript.whisperx[0].end |
24.809 |
transcript.whisperx[0].text |
有請何部長。請部長。部長早安。這個禮拜六我有去屏東就業博覽會。是。謝謝勞動部在那邊的活動很成功。不過我當時有說,有跟當時的年輕人說現在的那個平均薪資是最低薪資是183塊對不對?那韓國呢? |
transcript.whisperx[1].start |
29.71 |
transcript.whisperx[1].end |
49.182 |
transcript.whisperx[1].text |
大概是兩百塊日本大概是兩百一十塊我是希望說有沒有一個機制可以比照軍公教如果是逐年條條的話是不是有這個機會您講的是時薪嘛那當然我們基本工資已經條八年了那今年最低工資元年 |
transcript.whisperx[2].start |
49.862 |
transcript.whisperx[2].end |
74.567 |
transcript.whisperx[2].text |
一百八十三塊嗎?好,那我們針對今天的問題,因為本身是醫生。那,常常我們在地方服務的時候,就是巴士量表的問題是照顧著最痛苦的一件事情。比如說我們在訪寮,然後他就說必須要到屏東。那訪寮到屏東大概一個小時的距離,那這只是平地的部分。 |
transcript.whisperx[3].start |
76.047 |
transcript.whisperx[3].end |
76.227 |
transcript.whisperx[3].text |
盧縣一盧縣一盧縣一盧縣一盧縣一盧 |
transcript.whisperx[4].start |
103.636 |
transcript.whisperx[4].end |
126.884 |
transcript.whisperx[4].text |
相對衍生了很多這方面的一個困擾那是不是在嚴案就在嚴厲的時候是不是把醫生一般的醫生證明就可以當作是他的一個申請需求我是指八十歲以上那如果說他本來就有這些既定的疾病他不也不可能也不可能好轉那就按照他原本的一個疾病的形態去申請就好了不用再舟車老頓去去特別申請這張你覺得呢 |
transcript.whisperx[5].start |
128.593 |
transcript.whisperx[5].end |
145.476 |
transcript.whisperx[5].text |
對,我也完全敬佩你們提案的精神。您剛剛講的週車勞頓,其實我們也透過各種行政措施來改良。比如現在其實已經發展到居家醫療,可以到家裡。 |
transcript.whisperx[6].start |
146.998 |
transcript.whisperx[6].end |
169.455 |
transcript.whisperx[6].text |
道宅評估那第二個我們準備我想知道現在的申請比率成功的居家醫療嗎對我是覺得他的困難度還是很高對對對對對所以我是希望能夠減便當然是如果是居家醫療的醫生可以開也OK可以可以現在可以開要廣為推行是是是對還有包括說像未來可不可能 |
transcript.whisperx[7].start |
170.296 |
transcript.whisperx[7].end |
185.619 |
transcript.whisperx[7].text |
我們就到鄰近的社區診所讓他開我看到這樣是OK的齁如果是未來是這樣是OK的對我覺得可能用這種行政措施的改良會比我們用整個大的制度型的對各地區的衛生所或是醫療院所如果可以開就好了 |
transcript.whisperx[8].start |
185.759 |
transcript.whisperx[8].end |
202.91 |
transcript.whisperx[8].text |
﹏﹏﹏﹏ |
transcript.whisperx[9].start |
203.37 |
transcript.whisperx[9].end |
226.706 |
transcript.whisperx[9].text |
閒置嗎?比如說我們現在是爭取重度、中度而已。那輕度跟陪伴的話就給我們國人的看護工。這樣會不會就可以避免他們的一個逃跑?比如說我怎麼說呢?如果現在的他們的薪資是兩萬多塊,那如果現在按照一般薪資是一百八十三塊,如果這樣算的話,他們應該要拿十三萬的。那對啊,那如果說你可以把它 |
transcript.whisperx[10].start |
227.086 |
transcript.whisperx[10].end |
227.526 |
transcript.whisperx[10].text |
一﹑一﹑一﹑一﹑一﹑一﹑ |
transcript.whisperx[11].start |
249.281 |
transcript.whisperx[11].end |
267.922 |
transcript.whisperx[11].text |
因為我常常看到逃跑率很高的是怎麼樣?因為我在訪寮地區服務。有的時候一個移工來,他連一句國語都不會聽,更何況是台語。來了以後,他到了那個家裡才發現他要照顧兩個人。就是照顧一個比較輕度做輪椅的阿公,然後臥床的阿嬤。 |
transcript.whisperx[12].start |
268.643 |
transcript.whisperx[12].end |
286.015 |
transcript.whisperx[12].text |
﹏﹏﹏ |
transcript.whisperx[13].start |
286.101 |
transcript.whisperx[13].end |
311.647 |
transcript.whisperx[13].text |
議員:盧縣 |
transcript.whisperx[14].start |
312.047 |
transcript.whisperx[14].end |
325.311 |
transcript.whisperx[14].text |
因此這樣子開會排擠啦,排擠重度失能者的被照顧的需求。 那你知道民原住民的,照顧民原住民的那些外籍移工的逃跑率很低嗎?你知道嗎? |
transcript.whisperx[15].start |
325.311 |
transcript.whisperx[15].end |
327.991 |
transcript.whisperx[15].text |
我幾乎沒有看過逃跑的移工。 那為什麼叫為什麼? |
transcript.whisperx[16].start |
330.832 |
transcript.whisperx[16].end |
357.017 |
transcript.whisperx[16].text |
我們會把他當作是家人一樣。第一個,第二個是我們的文化很接近。他甚至有時候會學到比我們還要程度還要高的一個程度,因為他們都是跟老人家在一起嘛。結果他們後來在講族裔的社會覺得比一般小朋友講得還要好。因為我們是南島語系國家嘛。然後相對在生活上面就很像比較一致。所以讓他的文化的一個尊崇度就會比較高。 |
transcript.whisperx[17].start |
357.517 |
transcript.whisperx[17].end |
373.643 |
transcript.whisperx[17].text |
﹏﹏﹏ |
transcript.whisperx[18].start |
387.808 |
transcript.whisperx[18].end |
412.609 |
transcript.whisperx[18].text |
護士長齁我想問的就是說我們那個通常有人跟我反應就是說他們要去職業訓練比如說大客車駕駛或者是大貨車駕駛的時候沒有班別那如果有班別的時候會覺得說很像很像那個像他會考量叫做什麼媒合的就業就業率來來審核是不是你大概可以說明一下嗎 |
transcript.whisperx[19].start |
414.551 |
transcript.whisperx[19].end |
428.537 |
transcript.whisperx[19].text |
我們每年的那個職業訓練的班別都會在我們的網站上公告。然後如果我們族人有需要的話就可以來報名。我想知道他的經費來源是哪裡? |
transcript.whisperx[20].start |
431.579 |
transcript.whisperx[20].end |
446.308 |
transcript.whisperx[20].text |
有的是從我們的公益彩券回饋。那為什麼不是從勞動部?勞動部也有。我們也有跟勞動部合作。他們說常常是因為他們被評比的時候不及格,所以會被扣錢。 |
transcript.whisperx[21].start |
448.993 |
transcript.whisperx[21].end |
473.884 |
transcript.whisperx[21].text |
老公部的部分嗎?那這部分我們再了解一下。那我們本身也是都有開。我說承作單位可能因為他的每合的一個就業的機率如果說沒有到達一定的%的話他會把他原本應該給的那個費用是會打折扣的是有這個情形?對就是如果說我們本來是補助40萬然後他整個人數啊 |
transcript.whisperx[22].start |
474.164 |
transcript.whisperx[22].end |
492.297 |
transcript.whisperx[22].text |
我是希望原住民的部分不要因爲這樣子就做折扣,因爲就已經很困難進行職業訓練了,然後好不容易得到執照,你又把它扣掉的話,會造成一些想要做的人沒有辦法...會...怎麼講?報告委員,我們從113年開始就不扣這個部分了。那我知道了,謝謝。 |