iVOD / 152902

Field Value
IVOD_ID 152902
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/152902
日期 2024-05-23
會議資料.會議代碼 委員會-11-1-26-17
會議資料.會議代碼:str 第11屆第1會期社會福利及衛生環境委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第1會期社會福利及衛生環境委員會第17次全體委員會議
影片種類 Clip
開始時間 2024-05-23T10:59:39+08:00
結束時間 2024-05-23T11:06:59+08:00
影片長度 00:07:20
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d339c8d1909fa453de58227167c484a99f2fcaa3dc194f73d34e896d657c5e8377988f7de2833a605ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 10:59:39 - 11:06:59
會議時間 2024-05-23T09:00:00+08:00
會議名稱 立法院第11屆第1會期社會福利及衛生環境委員會第17次全體委員會議(事由:邀請勞動部部長列席報告業務概況,並備質詢。 【5月22日、23日二天一次會】)
gazette.lineno 644
gazette.blocks[0][0] 鄭天財Sra Kacaw委員:(10時59分)主席、各位委員,有請部長。
gazette.blocks[1][0] 主席:請何部長。
gazette.blocks[2][0] 何部長佩珊:委員好。
gazette.blocks[3][0] 鄭天財Sra Kacaw委員:部長,恭喜你。
gazette.blocks[4][0] 何部長佩珊:謝謝。
gazette.blocks[5][0] 鄭天財Sra Kacaw委員:我們看今天勞動部的報告,因為0403震災,要提供災區民眾臨時的工作機會,提供了2,000個工作機會,截至5月20號,用人單位提出需求已全數核定的只有527名,在這527名裡面,上工的只有356人,就以花蓮這麼大的震災,你的報告裡前面也提到有兩個大飯店提出……這個名稱叫什麼?
gazette.blocks[6][0] 何部長佩珊:僱獎措施。
gazette.blocks[7][0] 鄭天財Sra Kacaw委員:大量解僱。
gazette.blocks[8][0] 何部長佩珊:不好意思。
gazette.blocks[9][0] 鄭天財Sra Kacaw委員:你的報告裡面提到大量解僱,所以這樣的人數就必須要去瞭解,提出臨時工的機會,結果只有356人,所以這個原因到底是什麼,這個部分是不是能夠事後去瞭解?
gazette.blocks[10][0] 何部長佩珊:好,跟委員解釋,這有時候都靠花蓮縣政府提供,所以我們可能要用我們分署的力量自己下去瞭解。
gazette.blocks[11][0] 鄭天財Sra Kacaw委員:兩個單位其實都有合作啦!勞動部在花蓮也都有相關的機構。
gazette.blocks[12][0] 何部長佩珊:是。
gazette.blocks[13][0] 鄭天財Sra Kacaw委員:都有,所以這個部分我們要瞭解原因,並不是宣傳不足,可能不是啦!最起碼他已經提出需求要527,實際上工只有356,他是覺得不符合他的需求還是怎麼樣,所以這個部分要去瞭解原因,好不好?
gazette.blocks[14][0] 何部長佩珊:好。
gazette.blocks[15][0] 鄭天財Sra Kacaw委員:回到老問題,原住民勞工無一定雇主的非常多,這個是105年的資料,當時沒有納入勞保,扣除軍公教農,三萬兩千多位勞工未加入勞保,我們看111年是三萬多,現在已經4萬553位原住民沒有參加勞保,扣除軍公教農那些,所以沒有勞保的有4萬553人,這是111年的。
gazette.blocks[15][1] 112年原住民就業者參加勞保的狀況,原住民無勞保之勞工又增加到5萬2,712人,一直在成長。根據原住民族基本法第二十六條第二項政府對原住民參加社會保險無力負擔者,得予補助,這是法律明定的,為了要解決這些,本席之前在質詢,非常謝謝已經退休的石發基司長,後來他從勞保局局長退休。
gazette.blocks[15][2] 106年4月13號,他開了第一次會議,針對補助原住民勞工參加勞工保險費的可行性,然後106年5月11號,他真的是很積極,連續開會,一個月內就開了,106年5月11號再開,邀請相關的部會就這個可行性來開會,後來106年7月10號又召開會議,會議結論綜合相關的這些資料之後,包括相關的這些數據以及需求,特別在會議結論第二點,相關勞保費補助經費部分,由勞動部配合編列預算支應,並協調主計單位納入108年度的預算辦理。非常明確,但是很遺憾、很可惜的沒有促成,沒有完成到現在。
gazette.blocks[15][3] 所以這個部分是要去解決的,部長,你過去在立法院到行政院,我們也認識很多年了,所以這個部分是不是要重新檢討,就是這麼多人,而且一直是一個問題,尤其過去前任部長常常會提到反正已經有職災了,那是發生災害的時候,那是發生職災的時候,這個沒有辦法,頂多用最低的勞保來計算,跟實際上又不一樣,所以事實上有很多需要去探討的部分,是不是重新啟動之前已經開過的會議,可以嗎?
gazette.blocks[16][0] 何部長佩珊:委員,我們來努力好嗎?我們來努力看看。
gazette.blocks[17][0] 鄭天財Sra Kacaw委員:這個沒有多少錢。
gazette.blocks[18][0] 何部長佩珊:委員,我會請……
gazette.blocks[19][0] 鄭天財Sra Kacaw委員:這個也不是錢的問題,我們可以怎麼樣去協助。
gazette.blocks[20][0] 何部長佩珊:主要是原民會要發動,其實是……
gazette.blocks[21][0] 鄭天財Sra Kacaw委員:不,因為勞工是你們的……
gazette.blocks[22][0] 何部長佩珊:當然。
gazette.blocks[23][0] 鄭天財Sra Kacaw委員:兩個單位都要。
gazette.blocks[24][0] 何部長佩珊:我會來找原民會一起討論。
gazette.blocks[25][0] 鄭天財Sra Kacaw委員:兩個單位都要,看怎麼樣去落實。
gazette.blocks[26][0] 何部長佩珊:不過委員,因為這牽涉到原住民勞工的勞動跟僱傭型態,這樣子有沒有幫助原住民就業……
gazette.blocks[27][0] 鄭天財Sra Kacaw委員:沒有勞保跟無勞保,我們就要針對來解決,他實際上是勞工,他的身份是勞工,卻沒有勞保……
gazette.blocks[28][0] 何部長佩珊:我來找原民會研究、我來找原民會瞭解。
gazette.blocks[29][0] 鄭天財Sra Kacaw委員:要去解決這個問題,好不好?
gazette.blocks[30][0] 何部長佩珊:好。
gazette.blocks[31][0] 鄭天財Sra Kacaw委員:謝謝。
gazette.blocks[32][0] 主席:謝謝鄭天財委員的發言。
gazette.blocks[32][1] 接下來請何欣純委員發言。
gazette.agenda.page_end 464
gazette.agenda.meet_id 委員會-11-1-26-17
gazette.agenda.speakers[0] 黃秀芳
gazette.agenda.speakers[1] 陳昭姿
gazette.agenda.speakers[2] 林月琴
gazette.agenda.speakers[3] 陳菁徽
gazette.agenda.speakers[4] 盧縣一
gazette.agenda.speakers[5] 蘇清泉
gazette.agenda.speakers[6] 王育敏
gazette.agenda.speakers[7] 涂權吉
gazette.agenda.speakers[8] 林淑芬
gazette.agenda.speakers[9] 王正旭
gazette.agenda.speakers[10] 鄭天財Sra Kacaw
gazette.agenda.speakers[11] 何欣純
gazette.agenda.speakers[12] 黃珊珊
gazette.agenda.speakers[13] 牛煦庭
gazette.agenda.speakers[14] 麥玉珍
gazette.agenda.speakers[15] 陳亭妃
gazette.agenda.speakers[16] 洪孟楷
gazette.agenda.speakers[17] 廖偉翔
gazette.agenda.speakers[18] 吳春城
gazette.agenda.speakers[19] 楊瓊瓔
gazette.agenda.speakers[20] 陳培瑜
gazette.agenda.speakers[21] 林國成
gazette.agenda.speakers[22] 陳瑩
gazette.agenda.speakers[23] 劉建國
gazette.agenda.speakers[24] 楊曜
gazette.agenda.speakers[25] 邱鎮軍
gazette.agenda.speakers[26] 李彥秀
gazette.agenda.speakers[27] 羅智強
gazette.agenda.speakers[28] 翁曉玲
gazette.agenda.page_start 383
gazette.agenda.meetingDate[0] 2024-05-23
gazette.agenda.gazette_id 1135001
gazette.agenda.agenda_lcidc_ids[0] 1135001_00006
gazette.agenda.meet_name 立法院第11屆第1會期社會福利及衛生環境委員會第17次全體委員會議紀錄
gazette.agenda.content 邀請勞動部部長列席報告業務概況,並備質詢
gazette.agenda.agenda_id 1135001_00005
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 1.02659375
transcript.pyannote[1].end 1.29659375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 18.50909375
transcript.pyannote[2].end 21.10784375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 21.25971875
transcript.pyannote[3].end 22.05284375
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 25.20846875
transcript.pyannote[4].end 25.71471875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 25.73159375
transcript.pyannote[5].end 25.74846875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 25.74846875
transcript.pyannote[6].end 27.14909375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 27.41909375
transcript.pyannote[7].end 28.26284375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 29.59596875
transcript.pyannote[8].end 32.81909375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 33.89909375
transcript.pyannote[9].end 34.69221875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 36.19409375
transcript.pyannote[10].end 43.77096875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 44.41221875
transcript.pyannote[11].end 48.29346875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 48.79971875
transcript.pyannote[12].end 55.26284375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 55.83659375
transcript.pyannote[13].end 57.42284375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 58.23284375
transcript.pyannote[14].end 60.39284375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 61.30409375
transcript.pyannote[15].end 62.46846875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 62.70471875
transcript.pyannote[16].end 64.25721875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 64.69596875
transcript.pyannote[17].end 67.36221875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 67.91909375
transcript.pyannote[18].end 70.97346875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 71.42909375
transcript.pyannote[19].end 72.98159375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 73.80846875
transcript.pyannote[20].end 74.29784375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 74.43284375
transcript.pyannote[21].end 74.83784375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 74.83784375
transcript.pyannote[22].end 75.02346875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 75.73221875
transcript.pyannote[23].end 77.70659375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 76.06971875
transcript.pyannote[24].end 76.54221875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 77.87534375
transcript.pyannote[25].end 78.97221875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 79.03971875
transcript.pyannote[26].end 85.90784375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 80.87909375
transcript.pyannote[27].end 83.03909375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 83.03909375
transcript.pyannote[28].end 83.07284375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 83.07284375
transcript.pyannote[29].end 83.25846875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 83.25846875
transcript.pyannote[30].end 84.50721875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 85.30034375
transcript.pyannote[31].end 86.05971875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 86.05971875
transcript.pyannote[32].end 86.54909375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 87.03846875
transcript.pyannote[33].end 88.37159375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 89.13096875
transcript.pyannote[34].end 90.46409375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 91.17284375
transcript.pyannote[35].end 97.02846875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 97.16346875
transcript.pyannote[36].end 99.20534375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 99.17159375
transcript.pyannote[37].end 100.08284375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 99.74534375
transcript.pyannote[38].end 104.31846875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 103.12034375
transcript.pyannote[39].end 103.37346875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 103.37346875
transcript.pyannote[40].end 103.39034375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 103.39034375
transcript.pyannote[41].end 106.14096875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 106.57971875
transcript.pyannote[42].end 115.86096875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 115.86096875
transcript.pyannote[43].end 119.35409375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 116.63721875
transcript.pyannote[44].end 119.53971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 119.53971875
transcript.pyannote[45].end 134.27159375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 124.34909375
transcript.pyannote[46].end 126.08721875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 126.42471875
transcript.pyannote[47].end 126.72846875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 127.67346875
transcript.pyannote[48].end 128.12909375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 129.37784375
transcript.pyannote[49].end 130.37346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 134.81159375
transcript.pyannote[50].end 135.99284375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 136.87034375
transcript.pyannote[51].end 148.90221875
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 145.44284375
transcript.pyannote[52].end 146.10096875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 147.77159375
transcript.pyannote[53].end 148.09221875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 148.78409375
transcript.pyannote[54].end 149.07096875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 150.06659375
transcript.pyannote[55].end 150.42096875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 150.91034375
transcript.pyannote[56].end 153.20534375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 153.94784375
transcript.pyannote[57].end 155.51721875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 156.04034375
transcript.pyannote[58].end 158.60534375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 158.60534375
transcript.pyannote[59].end 159.07784375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 159.07784375
transcript.pyannote[60].end 172.20659375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 173.16846875
transcript.pyannote[61].end 178.07909375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 178.58534375
transcript.pyannote[62].end 180.10409375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 180.89721875
transcript.pyannote[63].end 182.83784375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 182.98971875
transcript.pyannote[64].end 183.37784375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 183.86721875
transcript.pyannote[65].end 186.44909375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 186.80346875
transcript.pyannote[66].end 199.59471875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 200.38784375
transcript.pyannote[67].end 201.82221875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 203.20596875
transcript.pyannote[68].end 207.00284375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 207.52596875
transcript.pyannote[69].end 210.12471875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 211.66034375
transcript.pyannote[70].end 212.77409375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 213.22971875
transcript.pyannote[71].end 215.54159375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 216.26721875
transcript.pyannote[72].end 218.91659375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 221.95409375
transcript.pyannote[73].end 223.91159375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 224.29971875
transcript.pyannote[74].end 225.93659375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 226.72971875
transcript.pyannote[75].end 229.91909375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 230.72909375
transcript.pyannote[76].end 236.36534375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 237.47909375
transcript.pyannote[77].end 240.66846875
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 240.53346875
transcript.pyannote[78].end 240.63471875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 240.66846875
transcript.pyannote[79].end 241.84971875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 242.55846875
transcript.pyannote[80].end 244.14471875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 244.33034375
transcript.pyannote[81].end 246.79409375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 247.62096875
transcript.pyannote[82].end 250.01721875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 250.57409375
transcript.pyannote[83].end 253.67909375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 250.79346875
transcript.pyannote[84].end 251.51909375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 253.79721875
transcript.pyannote[85].end 254.18534375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 254.18534375
transcript.pyannote[86].end 256.29471875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 257.52659375
transcript.pyannote[87].end 262.82534375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 263.71971875
transcript.pyannote[88].end 268.86659375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 269.87909375
transcript.pyannote[89].end 274.51971875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 275.07659375
transcript.pyannote[90].end 276.20721875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 276.64596875
transcript.pyannote[91].end 277.69221875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 278.14784375
transcript.pyannote[92].end 279.32909375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 279.85221875
transcript.pyannote[93].end 281.62409375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 282.58596875
transcript.pyannote[94].end 284.45909375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 285.01596875
transcript.pyannote[95].end 285.42096875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 285.06659375
transcript.pyannote[96].end 285.50534375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 285.87659375
transcript.pyannote[97].end 286.53471875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 287.61471875
transcript.pyannote[98].end 290.02784375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 288.91409375
transcript.pyannote[99].end 291.93471875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 292.27221875
transcript.pyannote[100].end 292.37346875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 292.37346875
transcript.pyannote[101].end 294.83721875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 292.39034375
transcript.pyannote[102].end 292.50846875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 295.54596875
transcript.pyannote[103].end 296.23784375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 297.99284375
transcript.pyannote[104].end 298.75221875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 298.85346875
transcript.pyannote[105].end 301.06409375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 302.12721875
transcript.pyannote[106].end 304.62471875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 304.77659375
transcript.pyannote[107].end 305.73846875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 307.07159375
transcript.pyannote[108].end 308.65784375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 309.75471875
transcript.pyannote[109].end 310.05846875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 310.86846875
transcript.pyannote[110].end 313.51784375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 313.75409375
transcript.pyannote[111].end 316.50471875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 316.89284375
transcript.pyannote[112].end 321.87096875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 323.32221875
transcript.pyannote[113].end 324.40221875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 325.41471875
transcript.pyannote[114].end 328.26659375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 329.38034375
transcript.pyannote[115].end 330.22409375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 331.13534375
transcript.pyannote[116].end 332.50221875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 333.95346875
transcript.pyannote[117].end 334.91534375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 335.40471875
transcript.pyannote[118].end 336.68721875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 338.30721875
transcript.pyannote[119].end 338.76284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 339.52221875
transcript.pyannote[120].end 341.64846875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 342.84659375
transcript.pyannote[121].end 344.07846875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 344.29784375
transcript.pyannote[122].end 346.76159375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 346.54221875
transcript.pyannote[123].end 346.99784375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 347.33534375
transcript.pyannote[124].end 350.01846875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 350.98034375
transcript.pyannote[125].end 355.60409375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 356.12721875
transcript.pyannote[126].end 357.02159375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 357.61221875
transcript.pyannote[127].end 358.82721875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 359.26596875
transcript.pyannote[128].end 364.76721875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 365.05409375
transcript.pyannote[129].end 365.34096875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 365.23971875
transcript.pyannote[130].end 366.82596875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 369.45846875
transcript.pyannote[131].end 369.89721875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 370.43721875
transcript.pyannote[132].end 371.26409375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 371.70284375
transcript.pyannote[133].end 372.64784375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 372.91784375
transcript.pyannote[134].end 373.87971875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 373.98096875
transcript.pyannote[135].end 374.97659375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 375.71909375
transcript.pyannote[136].end 376.56284375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 376.98471875
transcript.pyannote[137].end 378.84096875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 379.14471875
transcript.pyannote[138].end 380.52846875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 381.00096875
transcript.pyannote[139].end 386.72159375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 386.97471875
transcript.pyannote[140].end 388.64534375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 389.03346875
transcript.pyannote[141].end 389.48909375
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 390.34971875
transcript.pyannote[142].end 393.79221875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 392.42534375
transcript.pyannote[143].end 392.69534375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 393.79221875
transcript.pyannote[144].end 395.24346875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 396.42471875
transcript.pyannote[145].end 397.06596875
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 396.50909375
transcript.pyannote[146].end 400.08659375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 398.53409375
transcript.pyannote[147].end 402.34784375
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 401.60534375
transcript.pyannote[148].end 402.28034375
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 403.03971875
transcript.pyannote[149].end 404.69346875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 405.11534375
transcript.pyannote[150].end 407.66346875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 405.23346875
transcript.pyannote[151].end 407.20784375
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 408.01784375
transcript.pyannote[152].end 413.87346875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 409.78971875
transcript.pyannote[153].end 411.00471875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 412.57409375
transcript.pyannote[154].end 416.37096875
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 415.22346875
transcript.pyannote[155].end 420.43784375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 420.40409375
transcript.pyannote[156].end 420.65721875
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 420.65721875
transcript.pyannote[157].end 422.24346875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 422.56409375
transcript.pyannote[158].end 426.19221875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 425.12909375
transcript.pyannote[159].end 430.95096875
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 429.98909375
transcript.pyannote[160].end 430.73159375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 431.22096875
transcript.pyannote[161].end 436.97534375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 431.23784375
transcript.pyannote[162].end 436.97534375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 436.97534375
transcript.pyannote[163].end 437.73471875
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 437.61659375
transcript.pyannote[164].end 437.70096875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 437.73471875
transcript.pyannote[165].end 437.92034375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 437.92034375
transcript.pyannote[166].end 438.03846875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 439.32096875
transcript.pyannote[167].end 440.21534375
transcript.whisperx[0].start 18.725
transcript.whisperx[0].end 27.012
transcript.whisperx[0].text 主席、各位委員、有請部長。請何部長。委員好。部長恭喜你。謝謝。
transcript.whisperx[1].start 29.636
transcript.whisperx[1].end 32.661
transcript.whisperx[1].text 好,我們看這個今天勞動部的報告哈這個
transcript.whisperx[2].start 36.594
transcript.whisperx[2].end 53.923
transcript.whisperx[2].text 因為04、03正災﹖提供災期民眾臨時工作機會提供2000個工作機會但是到5月20日用人單位提出需求以全數核定只有527名527名裡面上工的只有356人
transcript.whisperx[3].start 61.386
transcript.whisperx[3].end 90.228
transcript.whisperx[3].text 就以花蓮這麼大的震災然後你的報告裡面前面也提到這個很多有兩個飯店大飯店他提出這個顧獎那個名稱叫什麼顧獎措施前面解雇那個大量解雇大量解雇你的報告裡面提到大量解雇所以這樣的人數就必須要去了解
transcript.whisperx[4].start 91.226
transcript.whisperx[4].end 112.501
transcript.whisperx[4].text 提出臨時工的一個機會臨時工結果只有356人所以這個到底原因是什麼所以這個部分是不是那個事後去了解我就跟委員解釋這有時候都靠花蓮縣政府提供所以我們可能要用我們自己分屬的力量
transcript.whisperx[5].start 113.241
transcript.whisperx[5].end 135.631
transcript.whisperx[5].text 下趣自己瞭解這樣子。兩個單位都在,其實都有合作。這個勞動部在花蓮也都有相關的機構。都有都有。所以這個部分,我們要瞭解原因。並不是說這個宣傳不足,可能不是。我們最起碼看
transcript.whisperx[6].start 136.906
transcript.whisperx[6].end 152.021
transcript.whisperx[6].text 他已經提出需求量527啊,實際上工只有356,他覺得說不符合他的需求還怎麼樣,所以這個部分是瞭解也很重要。好,回到這個老問題。
transcript.whisperx[7].start 154.045
transcript.whisperx[7].end 170.215
transcript.whisperx[7].text 原住民勞工這個無一定僱主的非常多這個是105年的資料當時沒有勞保沒有納入勞保的擴除軍工教農3萬2000多勞工為加入勞保我們看這個111年剛才是3萬多現在是已經4萬553人
transcript.whisperx[8].start 183.942
transcript.whisperx[8].end 197.393
transcript.whisperx[8].text 原住民沒有參加勞保的,擴除中共教農所以沒有勞保的40553人,這是111年。112年,原住民就業者參加勞保的狀況,原住民無勞保之勞工
transcript.whisperx[9].start 211.771
transcript.whisperx[9].end 236.17
transcript.whisperx[9].text 又增加到五萬兩千零二人一直在成長一直在成長根據原住民族基本法第26條第二項政府對原住民參加社會保險無力負擔者得以補助法律明定法律明定
transcript.whisperx[10].start 238.798
transcript.whisperx[10].end 254.628
transcript.whisperx[10].text 為了要解決這些本席之前在就質詢然後非常謝謝已經退休的施法基師長後來他從勞保級級長退休106年4月13號他開了第一次的會議針對
transcript.whisperx[11].start 264.049
transcript.whisperx[11].end 273.997
transcript.whisperx[11].text 補助原住民勞工參加勞工保險費的可行性然後106年5月11號他真的是很積極聯繫開一個月就開了106年5月11號再開邀請相關的部會來開這個就可行性後來
transcript.whisperx[12].start 292.801
transcript.whisperx[12].end 314.059
transcript.whisperx[12].text 106年7月10日又召開。會議結論綜合相關的這些資料之後包括相關的這些數據以及需求特別在會議結論第二點有關勞保費補助經費部分由勞動部配合編列預算之應並協調主計單位納入108年度的預算辦理
transcript.whisperx[13].start 323.576
transcript.whisperx[13].end 341.395
transcript.whisperx[13].text 非常明確但是很遺憾的很可惜的沒有促成沒有完成到現在所以這個部分呢是要去解決的部長這個你從過去在立法院
transcript.whisperx[14].start 342.878
transcript.whisperx[14].end 365.91
transcript.whisperx[14].text 到行政院我們也認識很多年了所以這個部分是不是能夠重新檢討就是這麼多人而且一直是一個問題尤其是常常過去前任部長會提到說反正已經有職災了那是發生災害的時候那是發生職災的時候
transcript.whisperx[15].start 370.506
transcript.whisperx[15].end 387.82
transcript.whisperx[15].text 這個沒辦法用變成用頂多用最低的最低的勞保的那個去計算跟實際上又不一樣所以事實上當然很多都需要去去探討的部分是不是重新啟動這個之前已經開過的會議可以嗎
transcript.whisperx[16].start 390.427
transcript.whisperx[16].end 404.043
transcript.whisperx[16].text 委員,我們來努力好嗎?我們來努力看看。這個沒有多少錢啊。其實,委員喔,這個也不是錢我補助,我們可以怎麼樣去協助。主要是原民會要發動啦。其實是,對。
transcript.whisperx[17].start 408.467
transcript.whisperx[17].end 428.238
transcript.whisperx[17].text 當然當然當然當然我會來找原民會一起討論不過我也因為牽涉到那個原住民勞工的勞動跟僱傭型態啦這樣子有沒有幫助原住民就業沒有勞保跟無勞保到底我們就要針對解決他實際上是勞工
transcript.whisperx[18].start 431.44
transcript.whisperx[18].end 437.624
transcript.whisperx[18].text 我來找人民會研究我來找人民會瞭解是是是是是好好好謝謝