IVOD_ID |
152902 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/152902 |
日期 |
2024-05-23 |
會議資料.會議代碼 |
委員會-11-1-26-17 |
會議資料.會議代碼:str |
第11屆第1會期社會福利及衛生環境委員會第17次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
17 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第1會期社會福利及衛生環境委員會第17次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-05-23T10:59:39+08:00 |
結束時間 |
2024-05-23T11:06:59+08:00 |
影片長度 |
00:07:20 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d339c8d1909fa453de58227167c484a99f2fcaa3dc194f73d34e896d657c5e8377988f7de2833a605ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鄭天財Sra Kacaw |
委員發言時間 |
10:59:39 - 11:06:59 |
會議時間 |
2024-05-23T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期社會福利及衛生環境委員會第17次全體委員會議(事由:邀請勞動部部長列席報告業務概況,並備質詢。
【5月22日、23日二天一次會】) |
gazette.lineno |
644 |
gazette.blocks[0][0] |
鄭天財Sra Kacaw委員:(10時59分)主席、各位委員,有請部長。 |
gazette.blocks[1][0] |
主席:請何部長。 |
gazette.blocks[2][0] |
何部長佩珊:委員好。 |
gazette.blocks[3][0] |
鄭天財Sra Kacaw委員:部長,恭喜你。 |
gazette.blocks[4][0] |
何部長佩珊:謝謝。 |
gazette.blocks[5][0] |
鄭天財Sra Kacaw委員:我們看今天勞動部的報告,因為0403震災,要提供災區民眾臨時的工作機會,提供了2,000個工作機會,截至5月20號,用人單位提出需求已全數核定的只有527名,在這527名裡面,上工的只有356人,就以花蓮這麼大的震災,你的報告裡前面也提到有兩個大飯店提出……這個名稱叫什麼? |
gazette.blocks[6][0] |
何部長佩珊:僱獎措施。 |
gazette.blocks[7][0] |
鄭天財Sra Kacaw委員:大量解僱。 |
gazette.blocks[8][0] |
何部長佩珊:不好意思。 |
gazette.blocks[9][0] |
鄭天財Sra Kacaw委員:你的報告裡面提到大量解僱,所以這樣的人數就必須要去瞭解,提出臨時工的機會,結果只有356人,所以這個原因到底是什麼,這個部分是不是能夠事後去瞭解? |
gazette.blocks[10][0] |
何部長佩珊:好,跟委員解釋,這有時候都靠花蓮縣政府提供,所以我們可能要用我們分署的力量自己下去瞭解。 |
gazette.blocks[11][0] |
鄭天財Sra Kacaw委員:兩個單位其實都有合作啦!勞動部在花蓮也都有相關的機構。 |
gazette.blocks[12][0] |
何部長佩珊:是。 |
gazette.blocks[13][0] |
鄭天財Sra Kacaw委員:都有,所以這個部分我們要瞭解原因,並不是宣傳不足,可能不是啦!最起碼他已經提出需求要527,實際上工只有356,他是覺得不符合他的需求還是怎麼樣,所以這個部分要去瞭解原因,好不好? |
gazette.blocks[14][0] |
何部長佩珊:好。 |
gazette.blocks[15][0] |
鄭天財Sra Kacaw委員:回到老問題,原住民勞工無一定雇主的非常多,這個是105年的資料,當時沒有納入勞保,扣除軍公教農,三萬兩千多位勞工未加入勞保,我們看111年是三萬多,現在已經4萬553位原住民沒有參加勞保,扣除軍公教農那些,所以沒有勞保的有4萬553人,這是111年的。 |
gazette.blocks[15][1] |
112年原住民就業者參加勞保的狀況,原住民無勞保之勞工又增加到5萬2,712人,一直在成長。根據原住民族基本法第二十六條第二項政府對原住民參加社會保險無力負擔者,得予補助,這是法律明定的,為了要解決這些,本席之前在質詢,非常謝謝已經退休的石發基司長,後來他從勞保局局長退休。 |
gazette.blocks[15][2] |
106年4月13號,他開了第一次會議,針對補助原住民勞工參加勞工保險費的可行性,然後106年5月11號,他真的是很積極,連續開會,一個月內就開了,106年5月11號再開,邀請相關的部會就這個可行性來開會,後來106年7月10號又召開會議,會議結論綜合相關的這些資料之後,包括相關的這些數據以及需求,特別在會議結論第二點,相關勞保費補助經費部分,由勞動部配合編列預算支應,並協調主計單位納入108年度的預算辦理。非常明確,但是很遺憾、很可惜的沒有促成,沒有完成到現在。 |
gazette.blocks[15][3] |
所以這個部分是要去解決的,部長,你過去在立法院到行政院,我們也認識很多年了,所以這個部分是不是要重新檢討,就是這麼多人,而且一直是一個問題,尤其過去前任部長常常會提到反正已經有職災了,那是發生災害的時候,那是發生職災的時候,這個沒有辦法,頂多用最低的勞保來計算,跟實際上又不一樣,所以事實上有很多需要去探討的部分,是不是重新啟動之前已經開過的會議,可以嗎? |
gazette.blocks[16][0] |
何部長佩珊:委員,我們來努力好嗎?我們來努力看看。 |
gazette.blocks[17][0] |
鄭天財Sra Kacaw委員:這個沒有多少錢。 |
gazette.blocks[18][0] |
何部長佩珊:委員,我會請…… |
gazette.blocks[19][0] |
鄭天財Sra Kacaw委員:這個也不是錢的問題,我們可以怎麼樣去協助。 |
gazette.blocks[20][0] |
何部長佩珊:主要是原民會要發動,其實是…… |
gazette.blocks[21][0] |
鄭天財Sra Kacaw委員:不,因為勞工是你們的…… |
gazette.blocks[22][0] |
何部長佩珊:當然。 |
gazette.blocks[23][0] |
鄭天財Sra Kacaw委員:兩個單位都要。 |
gazette.blocks[24][0] |
何部長佩珊:我會來找原民會一起討論。 |
gazette.blocks[25][0] |
鄭天財Sra Kacaw委員:兩個單位都要,看怎麼樣去落實。 |
gazette.blocks[26][0] |
何部長佩珊:不過委員,因為這牽涉到原住民勞工的勞動跟僱傭型態,這樣子有沒有幫助原住民就業…… |
gazette.blocks[27][0] |
鄭天財Sra Kacaw委員:沒有勞保跟無勞保,我們就要針對來解決,他實際上是勞工,他的身份是勞工,卻沒有勞保…… |
gazette.blocks[28][0] |
何部長佩珊:我來找原民會研究、我來找原民會瞭解。 |
gazette.blocks[29][0] |
鄭天財Sra Kacaw委員:要去解決這個問題,好不好? |
gazette.blocks[30][0] |
何部長佩珊:好。 |
gazette.blocks[31][0] |
鄭天財Sra Kacaw委員:謝謝。 |
gazette.blocks[32][0] |
主席:謝謝鄭天財委員的發言。 |
gazette.blocks[32][1] |
接下來請何欣純委員發言。 |
gazette.agenda.page_end |
464 |
gazette.agenda.meet_id |
委員會-11-1-26-17 |
gazette.agenda.speakers[0] |
黃秀芳 |
gazette.agenda.speakers[1] |
陳昭姿 |
gazette.agenda.speakers[2] |
林月琴 |
gazette.agenda.speakers[3] |
陳菁徽 |
gazette.agenda.speakers[4] |
盧縣一 |
gazette.agenda.speakers[5] |
蘇清泉 |
gazette.agenda.speakers[6] |
王育敏 |
gazette.agenda.speakers[7] |
涂權吉 |
gazette.agenda.speakers[8] |
林淑芬 |
gazette.agenda.speakers[9] |
王正旭 |
gazette.agenda.speakers[10] |
鄭天財Sra Kacaw |
gazette.agenda.speakers[11] |
何欣純 |
gazette.agenda.speakers[12] |
黃珊珊 |
gazette.agenda.speakers[13] |
牛煦庭 |
gazette.agenda.speakers[14] |
麥玉珍 |
gazette.agenda.speakers[15] |
陳亭妃 |
gazette.agenda.speakers[16] |
洪孟楷 |
gazette.agenda.speakers[17] |
廖偉翔 |
gazette.agenda.speakers[18] |
吳春城 |
gazette.agenda.speakers[19] |
楊瓊瓔 |
gazette.agenda.speakers[20] |
陳培瑜 |
gazette.agenda.speakers[21] |
林國成 |
gazette.agenda.speakers[22] |
陳瑩 |
gazette.agenda.speakers[23] |
劉建國 |
gazette.agenda.speakers[24] |
楊曜 |
gazette.agenda.speakers[25] |
邱鎮軍 |
gazette.agenda.speakers[26] |
李彥秀 |
gazette.agenda.speakers[27] |
羅智強 |
gazette.agenda.speakers[28] |
翁曉玲 |
gazette.agenda.page_start |
383 |
gazette.agenda.meetingDate[0] |
2024-05-23 |
gazette.agenda.gazette_id |
1135001 |
gazette.agenda.agenda_lcidc_ids[0] |
1135001_00006 |
gazette.agenda.meet_name |
立法院第11屆第1會期社會福利及衛生環境委員會第17次全體委員會議紀錄 |
gazette.agenda.content |
邀請勞動部部長列席報告業務概況,並備質詢 |
gazette.agenda.agenda_id |
1135001_00005 |
transcript.pyannote[0].speaker |
SPEAKER_02 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
1.02659375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
1.02659375 |
transcript.pyannote[1].end |
1.29659375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
18.50909375 |
transcript.pyannote[2].end |
21.10784375 |
transcript.pyannote[3].speaker |
SPEAKER_02 |
transcript.pyannote[3].start |
21.25971875 |
transcript.pyannote[3].end |
22.05284375 |
transcript.pyannote[4].speaker |
SPEAKER_03 |
transcript.pyannote[4].start |
25.20846875 |
transcript.pyannote[4].end |
25.71471875 |
transcript.pyannote[5].speaker |
SPEAKER_03 |
transcript.pyannote[5].start |
25.73159375 |
transcript.pyannote[5].end |
25.74846875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
25.74846875 |
transcript.pyannote[6].end |
27.14909375 |
transcript.pyannote[7].speaker |
SPEAKER_03 |
transcript.pyannote[7].start |
27.41909375 |
transcript.pyannote[7].end |
28.26284375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
29.59596875 |
transcript.pyannote[8].end |
32.81909375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
33.89909375 |
transcript.pyannote[9].end |
34.69221875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
36.19409375 |
transcript.pyannote[10].end |
43.77096875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
44.41221875 |
transcript.pyannote[11].end |
48.29346875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
48.79971875 |
transcript.pyannote[12].end |
55.26284375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
55.83659375 |
transcript.pyannote[13].end |
57.42284375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
58.23284375 |
transcript.pyannote[14].end |
60.39284375 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
61.30409375 |
transcript.pyannote[15].end |
62.46846875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
62.70471875 |
transcript.pyannote[16].end |
64.25721875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
64.69596875 |
transcript.pyannote[17].end |
67.36221875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
67.91909375 |
transcript.pyannote[18].end |
70.97346875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
71.42909375 |
transcript.pyannote[19].end |
72.98159375 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
73.80846875 |
transcript.pyannote[20].end |
74.29784375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
74.43284375 |
transcript.pyannote[21].end |
74.83784375 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
74.83784375 |
transcript.pyannote[22].end |
75.02346875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
75.73221875 |
transcript.pyannote[23].end |
77.70659375 |
transcript.pyannote[24].speaker |
SPEAKER_02 |
transcript.pyannote[24].start |
76.06971875 |
transcript.pyannote[24].end |
76.54221875 |
transcript.pyannote[25].speaker |
SPEAKER_02 |
transcript.pyannote[25].start |
77.87534375 |
transcript.pyannote[25].end |
78.97221875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
79.03971875 |
transcript.pyannote[26].end |
85.90784375 |
transcript.pyannote[27].speaker |
SPEAKER_02 |
transcript.pyannote[27].start |
80.87909375 |
transcript.pyannote[27].end |
83.03909375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
83.03909375 |
transcript.pyannote[28].end |
83.07284375 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
83.07284375 |
transcript.pyannote[29].end |
83.25846875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
83.25846875 |
transcript.pyannote[30].end |
84.50721875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
85.30034375 |
transcript.pyannote[31].end |
86.05971875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
86.05971875 |
transcript.pyannote[32].end |
86.54909375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
87.03846875 |
transcript.pyannote[33].end |
88.37159375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
89.13096875 |
transcript.pyannote[34].end |
90.46409375 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
91.17284375 |
transcript.pyannote[35].end |
97.02846875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
97.16346875 |
transcript.pyannote[36].end |
99.20534375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
99.17159375 |
transcript.pyannote[37].end |
100.08284375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
99.74534375 |
transcript.pyannote[38].end |
104.31846875 |
transcript.pyannote[39].speaker |
SPEAKER_03 |
transcript.pyannote[39].start |
103.12034375 |
transcript.pyannote[39].end |
103.37346875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
103.37346875 |
transcript.pyannote[40].end |
103.39034375 |
transcript.pyannote[41].speaker |
SPEAKER_03 |
transcript.pyannote[41].start |
103.39034375 |
transcript.pyannote[41].end |
106.14096875 |
transcript.pyannote[42].speaker |
SPEAKER_03 |
transcript.pyannote[42].start |
106.57971875 |
transcript.pyannote[42].end |
115.86096875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
115.86096875 |
transcript.pyannote[43].end |
119.35409375 |
transcript.pyannote[44].speaker |
SPEAKER_03 |
transcript.pyannote[44].start |
116.63721875 |
transcript.pyannote[44].end |
119.53971875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
119.53971875 |
transcript.pyannote[45].end |
134.27159375 |
transcript.pyannote[46].speaker |
SPEAKER_03 |
transcript.pyannote[46].start |
124.34909375 |
transcript.pyannote[46].end |
126.08721875 |
transcript.pyannote[47].speaker |
SPEAKER_03 |
transcript.pyannote[47].start |
126.42471875 |
transcript.pyannote[47].end |
126.72846875 |
transcript.pyannote[48].speaker |
SPEAKER_03 |
transcript.pyannote[48].start |
127.67346875 |
transcript.pyannote[48].end |
128.12909375 |
transcript.pyannote[49].speaker |
SPEAKER_03 |
transcript.pyannote[49].start |
129.37784375 |
transcript.pyannote[49].end |
130.37346875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
134.81159375 |
transcript.pyannote[50].end |
135.99284375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
136.87034375 |
transcript.pyannote[51].end |
148.90221875 |
transcript.pyannote[52].speaker |
SPEAKER_03 |
transcript.pyannote[52].start |
145.44284375 |
transcript.pyannote[52].end |
146.10096875 |
transcript.pyannote[53].speaker |
SPEAKER_03 |
transcript.pyannote[53].start |
147.77159375 |
transcript.pyannote[53].end |
148.09221875 |
transcript.pyannote[54].speaker |
SPEAKER_03 |
transcript.pyannote[54].start |
148.78409375 |
transcript.pyannote[54].end |
149.07096875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
150.06659375 |
transcript.pyannote[55].end |
150.42096875 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
150.91034375 |
transcript.pyannote[56].end |
153.20534375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
153.94784375 |
transcript.pyannote[57].end |
155.51721875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
156.04034375 |
transcript.pyannote[58].end |
158.60534375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
158.60534375 |
transcript.pyannote[59].end |
159.07784375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
159.07784375 |
transcript.pyannote[60].end |
172.20659375 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
173.16846875 |
transcript.pyannote[61].end |
178.07909375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
178.58534375 |
transcript.pyannote[62].end |
180.10409375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
180.89721875 |
transcript.pyannote[63].end |
182.83784375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
182.98971875 |
transcript.pyannote[64].end |
183.37784375 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
183.86721875 |
transcript.pyannote[65].end |
186.44909375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
186.80346875 |
transcript.pyannote[66].end |
199.59471875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
200.38784375 |
transcript.pyannote[67].end |
201.82221875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
203.20596875 |
transcript.pyannote[68].end |
207.00284375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
207.52596875 |
transcript.pyannote[69].end |
210.12471875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
211.66034375 |
transcript.pyannote[70].end |
212.77409375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
213.22971875 |
transcript.pyannote[71].end |
215.54159375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
216.26721875 |
transcript.pyannote[72].end |
218.91659375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
221.95409375 |
transcript.pyannote[73].end |
223.91159375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
224.29971875 |
transcript.pyannote[74].end |
225.93659375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
226.72971875 |
transcript.pyannote[75].end |
229.91909375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
230.72909375 |
transcript.pyannote[76].end |
236.36534375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
237.47909375 |
transcript.pyannote[77].end |
240.66846875 |
transcript.pyannote[78].speaker |
SPEAKER_03 |
transcript.pyannote[78].start |
240.53346875 |
transcript.pyannote[78].end |
240.63471875 |
transcript.pyannote[79].speaker |
SPEAKER_03 |
transcript.pyannote[79].start |
240.66846875 |
transcript.pyannote[79].end |
241.84971875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
242.55846875 |
transcript.pyannote[80].end |
244.14471875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
244.33034375 |
transcript.pyannote[81].end |
246.79409375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
247.62096875 |
transcript.pyannote[82].end |
250.01721875 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
250.57409375 |
transcript.pyannote[83].end |
253.67909375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
250.79346875 |
transcript.pyannote[84].end |
251.51909375 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
253.79721875 |
transcript.pyannote[85].end |
254.18534375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
254.18534375 |
transcript.pyannote[86].end |
256.29471875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
257.52659375 |
transcript.pyannote[87].end |
262.82534375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
263.71971875 |
transcript.pyannote[88].end |
268.86659375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
269.87909375 |
transcript.pyannote[89].end |
274.51971875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
275.07659375 |
transcript.pyannote[90].end |
276.20721875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
276.64596875 |
transcript.pyannote[91].end |
277.69221875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
278.14784375 |
transcript.pyannote[92].end |
279.32909375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
279.85221875 |
transcript.pyannote[93].end |
281.62409375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
282.58596875 |
transcript.pyannote[94].end |
284.45909375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
285.01596875 |
transcript.pyannote[95].end |
285.42096875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
285.06659375 |
transcript.pyannote[96].end |
285.50534375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
285.87659375 |
transcript.pyannote[97].end |
286.53471875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
287.61471875 |
transcript.pyannote[98].end |
290.02784375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
288.91409375 |
transcript.pyannote[99].end |
291.93471875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
292.27221875 |
transcript.pyannote[100].end |
292.37346875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
292.37346875 |
transcript.pyannote[101].end |
294.83721875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
292.39034375 |
transcript.pyannote[102].end |
292.50846875 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
295.54596875 |
transcript.pyannote[103].end |
296.23784375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
297.99284375 |
transcript.pyannote[104].end |
298.75221875 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
298.85346875 |
transcript.pyannote[105].end |
301.06409375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
302.12721875 |
transcript.pyannote[106].end |
304.62471875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
304.77659375 |
transcript.pyannote[107].end |
305.73846875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
307.07159375 |
transcript.pyannote[108].end |
308.65784375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
309.75471875 |
transcript.pyannote[109].end |
310.05846875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
310.86846875 |
transcript.pyannote[110].end |
313.51784375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
313.75409375 |
transcript.pyannote[111].end |
316.50471875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
316.89284375 |
transcript.pyannote[112].end |
321.87096875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
323.32221875 |
transcript.pyannote[113].end |
324.40221875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
325.41471875 |
transcript.pyannote[114].end |
328.26659375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
329.38034375 |
transcript.pyannote[115].end |
330.22409375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
331.13534375 |
transcript.pyannote[116].end |
332.50221875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
333.95346875 |
transcript.pyannote[117].end |
334.91534375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
335.40471875 |
transcript.pyannote[118].end |
336.68721875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
338.30721875 |
transcript.pyannote[119].end |
338.76284375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
339.52221875 |
transcript.pyannote[120].end |
341.64846875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
342.84659375 |
transcript.pyannote[121].end |
344.07846875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
344.29784375 |
transcript.pyannote[122].end |
346.76159375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
346.54221875 |
transcript.pyannote[123].end |
346.99784375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
347.33534375 |
transcript.pyannote[124].end |
350.01846875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
350.98034375 |
transcript.pyannote[125].end |
355.60409375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
356.12721875 |
transcript.pyannote[126].end |
357.02159375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
357.61221875 |
transcript.pyannote[127].end |
358.82721875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
359.26596875 |
transcript.pyannote[128].end |
364.76721875 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
365.05409375 |
transcript.pyannote[129].end |
365.34096875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
365.23971875 |
transcript.pyannote[130].end |
366.82596875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
369.45846875 |
transcript.pyannote[131].end |
369.89721875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
370.43721875 |
transcript.pyannote[132].end |
371.26409375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
371.70284375 |
transcript.pyannote[133].end |
372.64784375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
372.91784375 |
transcript.pyannote[134].end |
373.87971875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
373.98096875 |
transcript.pyannote[135].end |
374.97659375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
375.71909375 |
transcript.pyannote[136].end |
376.56284375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
376.98471875 |
transcript.pyannote[137].end |
378.84096875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
379.14471875 |
transcript.pyannote[138].end |
380.52846875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
381.00096875 |
transcript.pyannote[139].end |
386.72159375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
386.97471875 |
transcript.pyannote[140].end |
388.64534375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
389.03346875 |
transcript.pyannote[141].end |
389.48909375 |
transcript.pyannote[142].speaker |
SPEAKER_03 |
transcript.pyannote[142].start |
390.34971875 |
transcript.pyannote[142].end |
393.79221875 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
392.42534375 |
transcript.pyannote[143].end |
392.69534375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
393.79221875 |
transcript.pyannote[144].end |
395.24346875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
396.42471875 |
transcript.pyannote[145].end |
397.06596875 |
transcript.pyannote[146].speaker |
SPEAKER_03 |
transcript.pyannote[146].start |
396.50909375 |
transcript.pyannote[146].end |
400.08659375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
398.53409375 |
transcript.pyannote[147].end |
402.34784375 |
transcript.pyannote[148].speaker |
SPEAKER_03 |
transcript.pyannote[148].start |
401.60534375 |
transcript.pyannote[148].end |
402.28034375 |
transcript.pyannote[149].speaker |
SPEAKER_03 |
transcript.pyannote[149].start |
403.03971875 |
transcript.pyannote[149].end |
404.69346875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
405.11534375 |
transcript.pyannote[150].end |
407.66346875 |
transcript.pyannote[151].speaker |
SPEAKER_03 |
transcript.pyannote[151].start |
405.23346875 |
transcript.pyannote[151].end |
407.20784375 |
transcript.pyannote[152].speaker |
SPEAKER_03 |
transcript.pyannote[152].start |
408.01784375 |
transcript.pyannote[152].end |
413.87346875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
409.78971875 |
transcript.pyannote[153].end |
411.00471875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
412.57409375 |
transcript.pyannote[154].end |
416.37096875 |
transcript.pyannote[155].speaker |
SPEAKER_03 |
transcript.pyannote[155].start |
415.22346875 |
transcript.pyannote[155].end |
420.43784375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
420.40409375 |
transcript.pyannote[156].end |
420.65721875 |
transcript.pyannote[157].speaker |
SPEAKER_03 |
transcript.pyannote[157].start |
420.65721875 |
transcript.pyannote[157].end |
422.24346875 |
transcript.pyannote[158].speaker |
SPEAKER_03 |
transcript.pyannote[158].start |
422.56409375 |
transcript.pyannote[158].end |
426.19221875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
425.12909375 |
transcript.pyannote[159].end |
430.95096875 |
transcript.pyannote[160].speaker |
SPEAKER_03 |
transcript.pyannote[160].start |
429.98909375 |
transcript.pyannote[160].end |
430.73159375 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
431.22096875 |
transcript.pyannote[161].end |
436.97534375 |
transcript.pyannote[162].speaker |
SPEAKER_03 |
transcript.pyannote[162].start |
431.23784375 |
transcript.pyannote[162].end |
436.97534375 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
436.97534375 |
transcript.pyannote[163].end |
437.73471875 |
transcript.pyannote[164].speaker |
SPEAKER_03 |
transcript.pyannote[164].start |
437.61659375 |
transcript.pyannote[164].end |
437.70096875 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
437.73471875 |
transcript.pyannote[165].end |
437.92034375 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
437.92034375 |
transcript.pyannote[166].end |
438.03846875 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
439.32096875 |
transcript.pyannote[167].end |
440.21534375 |
transcript.whisperx[0].start |
18.725 |
transcript.whisperx[0].end |
27.012 |
transcript.whisperx[0].text |
主席、各位委員、有請部長。請何部長。委員好。部長恭喜你。謝謝。 |
transcript.whisperx[1].start |
29.636 |
transcript.whisperx[1].end |
32.661 |
transcript.whisperx[1].text |
好,我們看這個今天勞動部的報告哈這個 |
transcript.whisperx[2].start |
36.594 |
transcript.whisperx[2].end |
53.923 |
transcript.whisperx[2].text |
因為04、03正災﹖提供災期民眾臨時工作機會提供2000個工作機會但是到5月20日用人單位提出需求以全數核定只有527名527名裡面上工的只有356人 |
transcript.whisperx[3].start |
61.386 |
transcript.whisperx[3].end |
90.228 |
transcript.whisperx[3].text |
就以花蓮這麼大的震災然後你的報告裡面前面也提到這個很多有兩個飯店大飯店他提出這個顧獎那個名稱叫什麼顧獎措施前面解雇那個大量解雇大量解雇你的報告裡面提到大量解雇所以這樣的人數就必須要去了解 |
transcript.whisperx[4].start |
91.226 |
transcript.whisperx[4].end |
112.501 |
transcript.whisperx[4].text |
提出臨時工的一個機會臨時工結果只有356人所以這個到底原因是什麼所以這個部分是不是那個事後去了解我就跟委員解釋這有時候都靠花蓮縣政府提供所以我們可能要用我們自己分屬的力量 |
transcript.whisperx[5].start |
113.241 |
transcript.whisperx[5].end |
135.631 |
transcript.whisperx[5].text |
下趣自己瞭解這樣子。兩個單位都在,其實都有合作。這個勞動部在花蓮也都有相關的機構。都有都有。所以這個部分,我們要瞭解原因。並不是說這個宣傳不足,可能不是。我們最起碼看 |
transcript.whisperx[6].start |
136.906 |
transcript.whisperx[6].end |
152.021 |
transcript.whisperx[6].text |
他已經提出需求量527啊,實際上工只有356,他覺得說不符合他的需求還怎麼樣,所以這個部分是瞭解也很重要。好,回到這個老問題。 |
transcript.whisperx[7].start |
154.045 |
transcript.whisperx[7].end |
170.215 |
transcript.whisperx[7].text |
原住民勞工這個無一定僱主的非常多這個是105年的資料當時沒有勞保沒有納入勞保的擴除軍工教農3萬2000多勞工為加入勞保我們看這個111年剛才是3萬多現在是已經4萬553人 |
transcript.whisperx[8].start |
183.942 |
transcript.whisperx[8].end |
197.393 |
transcript.whisperx[8].text |
原住民沒有參加勞保的,擴除中共教農所以沒有勞保的40553人,這是111年。112年,原住民就業者參加勞保的狀況,原住民無勞保之勞工 |
transcript.whisperx[9].start |
211.771 |
transcript.whisperx[9].end |
236.17 |
transcript.whisperx[9].text |
又增加到五萬兩千零二人一直在成長一直在成長根據原住民族基本法第26條第二項政府對原住民參加社會保險無力負擔者得以補助法律明定法律明定 |
transcript.whisperx[10].start |
238.798 |
transcript.whisperx[10].end |
254.628 |
transcript.whisperx[10].text |
為了要解決這些本席之前在就質詢然後非常謝謝已經退休的施法基師長後來他從勞保級級長退休106年4月13號他開了第一次的會議針對 |
transcript.whisperx[11].start |
264.049 |
transcript.whisperx[11].end |
273.997 |
transcript.whisperx[11].text |
補助原住民勞工參加勞工保險費的可行性然後106年5月11號他真的是很積極聯繫開一個月就開了106年5月11號再開邀請相關的部會來開這個就可行性後來 |
transcript.whisperx[12].start |
292.801 |
transcript.whisperx[12].end |
314.059 |
transcript.whisperx[12].text |
106年7月10日又召開。會議結論綜合相關的這些資料之後包括相關的這些數據以及需求特別在會議結論第二點有關勞保費補助經費部分由勞動部配合編列預算之應並協調主計單位納入108年度的預算辦理 |
transcript.whisperx[13].start |
323.576 |
transcript.whisperx[13].end |
341.395 |
transcript.whisperx[13].text |
非常明確但是很遺憾的很可惜的沒有促成沒有完成到現在所以這個部分呢是要去解決的部長這個你從過去在立法院 |
transcript.whisperx[14].start |
342.878 |
transcript.whisperx[14].end |
365.91 |
transcript.whisperx[14].text |
到行政院我們也認識很多年了所以這個部分是不是能夠重新檢討就是這麼多人而且一直是一個問題尤其是常常過去前任部長會提到說反正已經有職災了那是發生災害的時候那是發生職災的時候 |
transcript.whisperx[15].start |
370.506 |
transcript.whisperx[15].end |
387.82 |
transcript.whisperx[15].text |
這個沒辦法用變成用頂多用最低的最低的勞保的那個去計算跟實際上又不一樣所以事實上當然很多都需要去去探討的部分是不是重新啟動這個之前已經開過的會議可以嗎 |
transcript.whisperx[16].start |
390.427 |
transcript.whisperx[16].end |
404.043 |
transcript.whisperx[16].text |
委員,我們來努力好嗎?我們來努力看看。這個沒有多少錢啊。其實,委員喔,這個也不是錢我補助,我們可以怎麼樣去協助。主要是原民會要發動啦。其實是,對。 |
transcript.whisperx[17].start |
408.467 |
transcript.whisperx[17].end |
428.238 |
transcript.whisperx[17].text |
當然當然當然當然我會來找原民會一起討論不過我也因為牽涉到那個原住民勞工的勞動跟僱傭型態啦這樣子有沒有幫助原住民就業沒有勞保跟無勞保到底我們就要針對解決他實際上是勞工 |
transcript.whisperx[18].start |
431.44 |
transcript.whisperx[18].end |
437.624 |
transcript.whisperx[18].text |
我來找人民會研究我來找人民會瞭解是是是是是好好好謝謝 |