iVOD / 151314

Field Value
IVOD_ID 151314
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/151314
日期 2024-04-17
會議資料.會議代碼 委員會-11-1-26-12
會議資料.會議代碼:str 第11屆第1會期社會福利及衛生環境委員會第12次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 12
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第1會期社會福利及衛生環境委員會第12次全體委員會議
影片種類 Clip
開始時間 2024-04-17T12:38:40+08:00
結束時間 2024-04-17T12:48:39+08:00
影片長度 00:09:59
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/cfb4b12132f0162766dc4887d3ffcb92b57f63d1b53b7532c5dab72e655c1c9431c2673164c3cee95ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 楊曜
委員發言時間 12:38:40 - 12:48:39
會議時間 2024-04-17T09:00:00+08:00
會議名稱 立法院第11屆第1會期社會福利及衛生環境委員會第12次全體委員會議(事由:邀請環境部部長、經濟部、行政院國家永續發展委員會就「限塑政策執行成效,及家戶與一般事業廢棄物減量之檢討與策進作為」進行專題報告,並備質詢。 【4月15日及17日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 4.57034375
transcript.pyannote[0].end 6.30846875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 6.66284375
transcript.pyannote[1].end 7.47284375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 11.23596875
transcript.pyannote[2].end 12.88971875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 12.97409375
transcript.pyannote[3].end 12.99096875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 12.99096875
transcript.pyannote[4].end 13.02471875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 13.02471875
transcript.pyannote[5].end 13.09221875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 13.09221875
transcript.pyannote[6].end 13.22721875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 13.22721875
transcript.pyannote[7].end 18.42471875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 19.21784375
transcript.pyannote[8].end 24.39846875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 24.53346875
transcript.pyannote[9].end 30.55784375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 27.50346875
transcript.pyannote[10].end 27.89159375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 31.28346875
transcript.pyannote[11].end 50.35221875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 49.30596875
transcript.pyannote[12].end 49.76159375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 51.09471875
transcript.pyannote[13].end 62.77221875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 63.95346875
transcript.pyannote[14].end 64.29096875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 64.76346875
transcript.pyannote[15].end 66.14721875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 66.26534375
transcript.pyannote[16].end 67.96971875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 68.50971875
transcript.pyannote[17].end 68.56034375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 68.56034375
transcript.pyannote[18].end 70.51784375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 71.63159375
transcript.pyannote[19].end 72.62721875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 73.30221875
transcript.pyannote[20].end 74.07846875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 74.60159375
transcript.pyannote[21].end 75.79971875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 76.33971875
transcript.pyannote[22].end 77.57159375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 78.16221875
transcript.pyannote[23].end 79.42784375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 80.44034375
transcript.pyannote[24].end 80.87909375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 81.58784375
transcript.pyannote[25].end 82.90409375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 83.54534375
transcript.pyannote[26].end 85.45221875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 85.97534375
transcript.pyannote[27].end 86.98784375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 87.37596875
transcript.pyannote[28].end 90.90284375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 91.12221875
transcript.pyannote[29].end 96.37034375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 97.11284375
transcript.pyannote[30].end 97.50096875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 97.68659375
transcript.pyannote[31].end 99.72846875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 99.96471875
transcript.pyannote[32].end 101.75346875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 102.61409375
transcript.pyannote[33].end 105.87096875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 106.46159375
transcript.pyannote[34].end 107.69346875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 108.11534375
transcript.pyannote[35].end 108.97596875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 109.97159375
transcript.pyannote[36].end 113.53221875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 113.43096875
transcript.pyannote[37].end 115.54034375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 115.99596875
transcript.pyannote[38].end 123.55596875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 117.90284375
transcript.pyannote[39].end 118.27409375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 124.06221875
transcript.pyannote[40].end 128.93909375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 124.28159375
transcript.pyannote[41].end 124.46721875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 129.22596875
transcript.pyannote[42].end 132.28034375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 133.86659375
transcript.pyannote[43].end 134.20409375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 134.96346875
transcript.pyannote[44].end 136.58346875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 136.81971875
transcript.pyannote[45].end 145.37534375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 140.27909375
transcript.pyannote[46].end 142.28721875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 142.35471875
transcript.pyannote[47].end 142.84409375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 145.37534375
transcript.pyannote[48].end 145.81409375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 146.06721875
transcript.pyannote[49].end 163.41471875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 149.54346875
transcript.pyannote[50].end 151.87221875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 161.89596875
transcript.pyannote[51].end 162.82409375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 163.54971875
transcript.pyannote[52].end 167.34659375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 167.66721875
transcript.pyannote[53].end 168.73034375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 168.84846875
transcript.pyannote[54].end 170.80596875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 171.10971875
transcript.pyannote[55].end 176.76284375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 175.19346875
transcript.pyannote[56].end 191.95034375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 190.68471875
transcript.pyannote[57].end 194.05971875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 194.53221875
transcript.pyannote[58].end 196.00034375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 196.45596875
transcript.pyannote[59].end 197.85659375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 198.16034375
transcript.pyannote[60].end 201.23159375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 201.97409375
transcript.pyannote[61].end 203.99909375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 204.28596875
transcript.pyannote[62].end 205.72034375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 206.15909375
transcript.pyannote[63].end 210.78284375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 211.12034375
transcript.pyannote[64].end 212.13284375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 212.26784375
transcript.pyannote[65].end 217.43159375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 213.48284375
transcript.pyannote[66].end 214.02284375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 217.85346875
transcript.pyannote[67].end 220.01346875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 220.18221875
transcript.pyannote[68].end 221.75159375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 222.20721875
transcript.pyannote[69].end 225.71721875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 225.36284375
transcript.pyannote[70].end 225.80159375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 225.80159375
transcript.pyannote[71].end 225.85221875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 225.90284375
transcript.pyannote[72].end 229.04159375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 226.62846875
transcript.pyannote[73].end 226.72971875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 226.84784375
transcript.pyannote[74].end 227.05034375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 229.24409375
transcript.pyannote[75].end 230.45909375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 230.86409375
transcript.pyannote[76].end 231.45471875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 231.72471875
transcript.pyannote[77].end 232.61909375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 232.75409375
transcript.pyannote[78].end 233.56409375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 233.90159375
transcript.pyannote[79].end 236.63534375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 236.88846875
transcript.pyannote[80].end 238.39034375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 238.93034375
transcript.pyannote[81].end 240.68534375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 240.88784375
transcript.pyannote[82].end 243.57096875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 243.84096875
transcript.pyannote[83].end 244.97159375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 245.27534375
transcript.pyannote[84].end 251.08034375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 248.41409375
transcript.pyannote[85].end 248.85284375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 250.86096875
transcript.pyannote[86].end 270.21659375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 266.30159375
transcript.pyannote[87].end 266.48721875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 271.56659375
transcript.pyannote[88].end 281.74221875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 273.49034375
transcript.pyannote[89].end 273.50721875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 273.52409375
transcript.pyannote[90].end 273.60846875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 276.05534375
transcript.pyannote[91].end 276.61221875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 277.48971875
transcript.pyannote[92].end 277.57409375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 282.61971875
transcript.pyannote[93].end 286.29846875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 286.90596875
transcript.pyannote[94].end 288.71159375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 288.98159375
transcript.pyannote[95].end 294.09471875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 294.71909375
transcript.pyannote[96].end 299.17409375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 300.77721875
transcript.pyannote[97].end 302.19471875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 302.93721875
transcript.pyannote[98].end 310.24409375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 310.58159375
transcript.pyannote[99].end 310.66596875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 310.66596875
transcript.pyannote[100].end 310.71659375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 310.71659375
transcript.pyannote[101].end 310.73346875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 310.73346875
transcript.pyannote[102].end 310.83471875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 310.83471875
transcript.pyannote[103].end 310.85159375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 310.85159375
transcript.pyannote[104].end 310.93596875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 311.49284375
transcript.pyannote[105].end 314.56409375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 315.20534375
transcript.pyannote[106].end 315.64409375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 317.09534375
transcript.pyannote[107].end 317.71971875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 318.22596875
transcript.pyannote[108].end 321.39846875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 321.29721875
transcript.pyannote[109].end 321.90471875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 321.90471875
transcript.pyannote[110].end 328.51971875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 329.11034375
transcript.pyannote[111].end 332.46846875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 332.77221875
transcript.pyannote[112].end 337.98659375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 338.30721875
transcript.pyannote[113].end 339.50534375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 340.36596875
transcript.pyannote[114].end 342.37409375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 342.91409375
transcript.pyannote[115].end 344.46659375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 345.54659375
transcript.pyannote[116].end 347.72346875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 348.36471875
transcript.pyannote[117].end 349.07346875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 350.96346875
transcript.pyannote[118].end 351.53721875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 351.68909375
transcript.pyannote[119].end 352.93784375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 353.59596875
transcript.pyannote[120].end 357.35909375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 357.86534375
transcript.pyannote[121].end 360.83534375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 361.25721875
transcript.pyannote[122].end 362.94471875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 363.53534375
transcript.pyannote[123].end 365.94846875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 366.15096875
transcript.pyannote[124].end 366.72471875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 366.99471875
transcript.pyannote[125].end 384.22409375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 384.61221875
transcript.pyannote[126].end 388.13909375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 386.14784375
transcript.pyannote[127].end 386.21534375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 388.74659375
transcript.pyannote[128].end 389.30346875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 389.30346875
transcript.pyannote[129].end 389.64096875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 389.64096875
transcript.pyannote[130].end 392.86409375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 392.88096875
transcript.pyannote[131].end 392.89784375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 392.89784375
transcript.pyannote[132].end 393.87659375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 393.87659375
transcript.pyannote[133].end 395.04096875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 394.51784375
transcript.pyannote[134].end 402.09471875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 402.43221875
transcript.pyannote[135].end 403.00596875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 403.00596875
transcript.pyannote[136].end 408.01784375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 408.16971875
transcript.pyannote[137].end 408.69284375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 408.97971875
transcript.pyannote[138].end 410.44784375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 410.54909375
transcript.pyannote[139].end 412.82721875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 413.29971875
transcript.pyannote[140].end 414.46409375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 414.91971875
transcript.pyannote[141].end 418.71659375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 419.30721875
transcript.pyannote[142].end 420.60659375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 420.94409375
transcript.pyannote[143].end 424.43721875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 424.80846875
transcript.pyannote[144].end 425.56784375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 425.80409375
transcript.pyannote[145].end 428.47034375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 428.55471875
transcript.pyannote[146].end 429.80346875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 430.22534375
transcript.pyannote[147].end 432.48659375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 431.13659375
transcript.pyannote[148].end 431.71034375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 432.08159375
transcript.pyannote[149].end 432.60471875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 432.80721875
transcript.pyannote[150].end 437.71784375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 438.10596875
transcript.pyannote[151].end 439.35471875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 439.72596875
transcript.pyannote[152].end 441.93659375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 442.37534375
transcript.pyannote[153].end 461.78159375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 462.35534375
transcript.pyannote[154].end 467.21534375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 467.53596875
transcript.pyannote[155].end 471.28221875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 471.51846875
transcript.pyannote[156].end 475.09596875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 471.65346875
transcript.pyannote[157].end 471.77159375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 476.22659375
transcript.pyannote[158].end 480.31034375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 480.31034375
transcript.pyannote[159].end 480.34409375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 480.37784375
transcript.pyannote[160].end 480.76596875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 481.05284375
transcript.pyannote[161].end 490.21596875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 483.49971875
transcript.pyannote[162].end 484.88346875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 490.21596875
transcript.pyannote[163].end 490.60409375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 490.24971875
transcript.pyannote[164].end 490.26659375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 490.50284375
transcript.pyannote[165].end 497.62409375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 492.79784375
transcript.pyannote[166].end 493.03409375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 496.98284375
transcript.pyannote[167].end 498.26534375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 498.48471875
transcript.pyannote[168].end 505.69034375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 506.14596875
transcript.pyannote[169].end 519.91596875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 520.65846875
transcript.pyannote[170].end 535.47471875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 529.70346875
transcript.pyannote[171].end 531.89721875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 534.74909375
transcript.pyannote[172].end 537.04409375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 535.89659375
transcript.pyannote[173].end 560.23034375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 537.33096875
transcript.pyannote[174].end 537.82034375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 560.38221875
transcript.pyannote[175].end 570.76034375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 569.30909375
transcript.pyannote[176].end 569.35971875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 569.44409375
transcript.pyannote[177].end 569.49471875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 571.65471875
transcript.pyannote[178].end 590.20034375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 589.37346875
transcript.pyannote[179].end 595.78596875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 596.02221875
transcript.pyannote[180].end 596.86596875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 597.30471875
transcript.pyannote[181].end 598.97534375
transcript.whisperx[0].start 4.754
transcript.whisperx[0].end 28.647
transcript.whisperx[0].text 謝謝主席。主席請一下薛部長。好,請薛部長。好,楊委員好。部長好。部長,我們在減塑政策下呢,就是雖然使用量加降了,但是我這邊在看就是塑膠袋的內銷量其實是增加的。根據
transcript.whisperx[1].start 31.88
transcript.whisperx[1].end 42.223
transcript.whisperx[1].text 議員提供的資料是這樣子就是我們從20年前開始執行減塑的政策從2002年的200億個塑膠袋大概減到2022就是20年裡面我們減了一半
transcript.whisperx[2].start 51.215
transcript.whisperx[2].end 60.697
transcript.whisperx[2].text 剪輔一半這個算是一個很好的現象可是呢經濟部的統計卻是這樣子就是說他說台灣的塑膠袋的內銷量在2022是14萬噸到了2023卻提升到20萬噸也就是說垃圾袋的個數減了50%那
transcript.whisperx[3].start 81.958
transcript.whisperx[3].end 108.535
transcript.whisperx[3].text 經濟部的統計塑膠袋的內銷量的重量卻是增加了這個到底問題在哪裡?事實上因為包括我們這個包裝的使用以及在疫情期間大家這個透過外賣啦透過電商等等的各式各樣的活動
transcript.whisperx[4].start 110.511
transcript.whisperx[4].end 132.036
transcript.whisperx[4].text 我們在塑膠的使用量反而增加可是這個在理論上個數也會增加可是我們的個數在20年裡面是減掉50%的是一個很好的成績而重量上我不知道到底問題相關聯性是怎麼樣最主要是我們的塑膠量的使用
transcript.whisperx[5].start 135.975
transcript.whisperx[5].end 162.956
transcript.whisperx[5].text 對剛剛講的楊文講從200個到100個所以是92億那個是購物用的塑膠袋但是我們現在經濟部提供的數據是我們整個國內塑膠的使用量真的是太多了包括我們說海洋的廢棄物裡面的儀網等等這些事實上有都是鈕都是塑膠
transcript.whisperx[6].start 164.137
transcript.whisperx[6].end 190.691
transcript.whisperx[6].text 當然塑膠是台灣很重要的一個產業我們過去經濟的整個發展事實上這個塑膠產業、化工產業也貢獻很大那我大概知道那就是請部裡面這邊除了塑膠袋的部分以外可以檢塑的方面向很多大概都必須要去做
transcript.whisperx[7].start 191.311
transcript.whisperx[7].end 204.92
transcript.whisperx[7].text 事實上今年就是聯合國他們要推動全球的一個檢塑工業的這個擬定而且要實施
transcript.whisperx[8].start 206.221
transcript.whisperx[8].end 221.161
transcript.whisperx[8].text 那等他這個草案能夠確定之後我想全世界將來就會風起雲湧跟我們在談減碳的概念幾乎一樣因為現在塑膠各位我們千萬不要輕忽就是說事實上現在塑膠為例
transcript.whisperx[9].start 222.982
transcript.whisperx[9].end 245.592
transcript.whisperx[9].text 對環境、對我們人體的健康造成很大的影響了那很多人或許都還不了解這個塑膠圍裏它真的會跟我們人體的健康生活息息相關所以我個人的感覺是減碳正在推那下一個階段應該是減塑會如火如荼的來推動
transcript.whisperx[10].start 246.232
transcript.whisperx[10].end 269.424
transcript.whisperx[10].text 因為它的塑膠為例真的對環境、對我們的健康產生太大的影響對,這也就是其實我們光是從可能部長剛剛講的概念也漸漸的讓國人接受了所以我們才能夠在20年裡面塑膠袋的就是家戶的使用、個人的使用的部分檢討的成績其實算是不錯
transcript.whisperx[11].start 271.616
transcript.whisperx[11].end 298.834
transcript.whisperx[11].text 部長我還有一點時間我們還是要來談一下澎湖的垃圾因為澎湖的垃圾呢佔質量居高不下所以縣長都跑到垃圾場去過了一夜這個是一件很對澎湖來講是一件很嚴肅然後也很重要的事情
transcript.whisperx[12].start 300.879
transcript.whisperx[12].end 304.68
transcript.whisperx[12].text 市長大概是這樣子齁 紅樓垃圾掩埋場2022年的佔滯量是9800噸到2024就是今年的4月還
transcript.whisperx[13].start 317.31
transcript.whisperx[13].end 325.632
transcript.whisperx[13].text 還有9300噸的廢棄物佔滯在那邊也就是說在這一兩年裡面其實就是佔滯的噸數大概只減了500噸那我這邊有一個數據就是澎湖縣2022年垃圾轉運回台的數量是18000噸
transcript.whisperx[14].start 345.575
transcript.whisperx[14].end 361.171
transcript.whisperx[14].text 到了2023反而降到降成11000噸左右也就是說我看到的數據是假如說澎湖可以維持在2022年轉運回台數的18000噸
transcript.whisperx[15].start 367.497
transcript.whisperx[15].end 381.59
transcript.whisperx[15].text 我們大概在兩年之內就可以把所有的戰制的垃圾全部處理完畢我不知道為什麼2022可以轉運回台18000噸到了2023反而只剩下11000我跟楊委員報告 這個問題我們要現在積極來
transcript.whisperx[16].start 389.7
transcript.whisperx[16].end 406.887
transcript.whisperx[16].text 大概現在是嘉義跟高雄市有在協助噴霧處理每天大概每週大概嘉義縣的部分處理了460然後高雄市是140也就是每週可以處理600噸
transcript.whisperx[17].start 408.208
transcript.whisperx[17].end 431.215
transcript.whisperx[17].text OK 那我們現在有環境部這邊正好有一些可以掌控來請各縣市來協助的部分我想我也請我們環管署的嚴署長特別針對這一塊來緊述的幫忙澎湖來做垃圾的處理因為澎湖跟金門、馬祖離島的基本上都沒有混化的設備
transcript.whisperx[18].start 432.876
transcript.whisperx[18].end 460.217
transcript.whisperx[18].text 那這個優先我們會來考量特別是把那些戰事的看看能不能也順便盡快的把它處理掉部長我其實一直有感受到部裡面跟環環署對噴霧垃圾的處理的重視不過離島確實它有特殊性我不知道是不是嚴署長可以回答一下就是說為什麼2022
transcript.whisperx[19].start 462.999
transcript.whisperx[19].end 474.923
transcript.whisperx[19].text 我看2022的垃圾轉運回來數量已經到了1萬8那到去年反而又降到1萬1到底是打包速度的問題還是本島縣市處理量的問題還是經費的問題
transcript.whisperx[20].start 481.341
transcript.whisperx[20].end 505.529
transcript.whisperx[20].text 就經費上面來講沒有問題所有澎湖的轉運費用我們都全額補助每年大概有五千萬左右那會減少的原因最主要是在高雄這個部分它的處理量有減少所以在國內部分我們還是盡量幫澎湖這裡來調度其他縣市我們目前正在努力
transcript.whisperx[21].start 506.412
transcript.whisperx[21].end 530.058
transcript.whisperx[21].text 我最後還是講一下因為我們看到2022的垃圾轉運回台的數量其實假如說以這個我還是講以這樣子的量跟澎湖每年製造的垃圾量來看大概我們只要連續兩年可以維持在18000就可以
transcript.whisperx[22].start 532.939
transcript.whisperx[22].end 558.657
transcript.whisperx[22].text 處理掉好那這個問題還是我們朝這個目標來努力啦好還是請部裡面這邊那個最後還是謝謝部長對本府離島啦離島其實我今天也原本還有還有一個就是循環循環被使用的也在離島做做做推廣不過循環循環就是環保杯的循環在利用的的
transcript.whisperx[23].start 560.638
transcript.whisperx[23].end 588.657
transcript.whisperx[23].text 的這個問題在澎湖其實在離島推廣的並沒有很好我其他再找時間來做跟你們做探討不過還是要感謝部長對離島環保各包括海底城網剛剛講到的向海致敬等等對在任期中對離島的做出的努力謝謝部長
transcript.whisperx[24].start 590.298
transcript.whisperx[24].end 594.624
transcript.whisperx[24].text 謝謝楊委員也謝謝楊委員對環境部的一個指導跟支持好謝謝