iVOD / 151278

Field Value
IVOD_ID 151278
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/151278
日期 2024-04-17
會議資料.會議代碼 委員會-11-1-20-8
會議資料.會議代碼:str 第11屆第1會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第8次全體委員會議
影片種類 Clip
開始時間 2024-04-17T11:27:34+08:00
結束時間 2024-04-17T11:40:53+08:00
影片長度 00:13:19
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/cfb4b12132f01627088d082fae3cdcb5cf744a9f110b3b1fc5dab72e655c1c94b5c8fdb204d45c695ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:27:34 - 11:40:53
會議時間 2024-04-17T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第8次全體委員會議(事由:邀請金融監督管理委員會黃主任委員天牧、財政部莊部長翠雲、經濟部、行政院消費者保護處就「如何改善我國融資公司因缺乏監管所衍生之社會亂象,以穩定金融市場並保障消費者權益」進行專題報告,並備質詢;另邀請內政部警政署、法務部列席備詢。)
gazette.lineno 685
gazette.blocks[0][0] 王委員世堅:(11時27分)主席,我請金管會主委、財政部長,還有我們今天來的公營行庫,是不是……
gazette.blocks[1][0] 主席:有請黃主委、莊部長。所有公股行庫嗎?
gazette.blocks[2][0] 王委員世堅:公股行庫董事長。
gazette.blocks[3][0] 主席:所有董事長請起立。
gazette.blocks[4][0] 王委員世堅:董事長站位置上好了,站位置上,好嗎?麻煩你站著,我等一下馬上要問。
gazette.blocks[5][0] 主席:先坐著吧,有需要的時候再站起來就好。
gazette.blocks[6][0] 黃主任委員天牧:委員好。
gazette.blocks[7][0] 莊部長翠雲:委員好。
gazette.blocks[8][0] 王委員世堅:黃主委、部長,我所瞭解到的這三大租賃公司中租迪和、和潤跟裕融,他們不但公司都已經股票上市,而且他們貸款給我們社會大眾的其實並不是來自於他們的資金,他們是大量的、大金額的跟我們銀行體系借的,我大概估計,各方面的資料加起來大概五千億。他向我們的銀行體系借了五千億低利貸款,然後放高利貸給我們全體需要的民眾,這才會引起這一次我們會議要討論的主題。這三大租賃公司,我姑且稱之為「薯條三兄弟」啦,關於這薯條三兄弟,我就問那38家銀行哪一些銀行借給他,讓他幹盡這種壞事,結果金管會銀行局答復我,因為民營銀行我們管不著,好啊!所以我們今天就請公營行庫來。公營行庫是個示範,是金融的代表,他要做很多很多的模範給全國的銀行看。莊部長,剛好這八大公營行庫董事長、總經理都是你任命的,我們國家對待這八大公營行庫董事長、總經理,我們待他們不薄,他們每年薪資待遇都很高,因為我們尊重他們的專業,我們希望他們能夠全心全力把我們公營行庫做好,這個待遇我們都沒話講,但是他們做錯事情、該打屁股的時候,部長,你可別心軟、可別手軟。
gazette.blocks[8][1] 我要請問這八大公營行庫,就我剛剛提的,薯條三兄弟向銀行借了5,000億,我請問你們八大公營行庫,我請八位董事長站起來一下好嗎?我請問你們公營行庫,第九位中國輸出入銀行,一開始我沒把你併入,抱歉!好,九大。我請問你們,有貸款給這三大租賃公司的請舉手。
gazette.blocks[8][2] 通通有,天啊!各位董事長,我請問你們,銀行貸款給借款方,最重要就是3C(信用、抵押品、還款來源),不是嗎?信用、抵押品就不談了,我就請問你,這三大租賃薯條三兄弟,他們是放高利貸的,結果你借款給他們,他們的還款來源是來自於高利貸,你們知道嗎?我請問你們知道嗎?知道的請舉手。你們都不知道?所以你們也是被薯條三兄弟騙了?你們跟我們千千萬萬的受害民眾一樣,你們也被騙了,是不是?你們把來自於社會大眾辛苦的存款、血汗錢借貸給這些不良的租賃公司,讓他去放高利貸。
gazette.blocks[8][3] 我上回質詢部長、主委的時候就說,這三大租賃公司叫做有牌的地下錢莊。天啊!這麼優質的九大公營行庫們,你們竟然還默默的、私下的把錢借給他們,這叫助紂為虐,不是嗎?他們的還款來源是來自借款人的血汗錢,他們變相向那些借款的民眾吸血,以高利貸來還給你們。
gazette.blocks[8][4] 第二點,我現在請問你們九位董事長,你們有錢借給這三大租賃公司,表示你們認定了是一個合理的消費貸款,不是嗎?那你們為什麼不直接把錢借給需要的民眾呢?為什麼?對一般民眾這麼摳,對這三家租賃公司就來個一問三不知!剛剛你們都沒舉手,通通說你們不知道他是放高利貸的,我不相信,是你們縱容他們的,不是嗎?為什麼不把資金直接放款給需要的民眾,為什麼?帶頭的臺銀金控、臺灣銀行董事長呂董事長,請你回答,為什麼?有需要資金的民眾這麼多,尤其是青年朋友們,為什麼九大公營行庫不把資金直接融資給需要的民眾們,而是借款給這三大租賃公司去放高利貸,為什麼?呂董事長,為什麼?
gazette.blocks[9][0] 呂董事長桔誠:委員好。跟委員報告,所有的租賃公司也扮演一定的金融中介的角色,事實上據我們所知,這裡面百分之九十五的資金都不是大家所顧慮的那些所謂BNPL的放款,而是他有……
gazette.blocks[10][0] 王委員世堅:我螢幕上放這麼多,很快速,這些怎麼都不是呢?你明知道嘛!
gazette.blocks[11][0] 呂董事長桔誠:就是說,這個BNPL大概占全體的五個percent,大多數還是在所謂的機器設備或是車輛之類的。
gazette.blocks[12][0] 王委員世堅:車貸就占了一半之多,你如果看這金額……
gazette.blocks[13][0] 呂董事長桔誠:車貸……
gazette.blocks[14][0] 王委員世堅:占了絕大多數!今天我們談到民間的金融公司,其實最主要我們談的是這三大,這三大就占了百分之九十,車貸這麼大的比例金額,你們竟然不曉得!那我就問,你有錢借他們,怎麼不借給民眾?你答復我這一點嘛!借給民眾有這麼困難嗎?
gazette.blocks[15][0] 呂董事長桔誠:我想每個銀行的業務有它的取向,以銀行而言,能夠做的能量就是……
gazette.blocks[15][1] 至於車輛的部分,據我所理解……
gazette.blocks[16][0] 王委員世堅:車輛占2,860億,我實在不想回答你這個金額,為什麼?因為時間有限,你把數字先看清楚了再說,我還說臺銀是模範生,BNPL是280億沒錯,車輛占了總融資6,700億的四成,2,800億;另外法人融資占了一半,3,560億。
gazette.blocks[17][0] 呂董事長桔誠:您是在講整個市場規模,但是……
gazette.blocks[18][0] 王委員世堅:對啊、對啊!
gazette.blocks[19][0] 呂董事長桔誠:但是臺銀大概是……
gazette.blocks[20][0] 王委員世堅:這拜九大公營行庫之賜,你們通通貸款給他們啊!
gazette.blocks[21][0] 呂董事長桔誠:這八大公股銀行大概是一千三百出頭億,臺銀本身大概一百七、八十億,而裡面大概只有五個percent是可能有涉及BNPL。
gazette.blocks[22][0] 王委員世堅:對啦,我知道你貸得不多啦!140億對你們而言就只有一點點。
gazette.blocks[23][0] 呂董事長桔誠:不、不、不,還是很多。
gazette.blocks[24][0] 王委員世堅:沒錯,是另外這八大的金額比較大,但是你是帶頭的,所以我問你,好不好?我問你的問題你一直沒回答我,為什麼不直接貸款給民眾?你想清楚再回答我啦!好不好?你私下弄個報告給我,你請回。
gazette.blocks[25][0] 呂董事長桔誠:我私下再來跟你面對面說明,好不好?
gazette.blocks[26][0] 王委員世堅:好,面對面說明。
gazette.blocks[27][0] 呂董事長桔誠:好,謝謝。
gazette.blocks[28][0] 王委員世堅:數字的部分,我們隔空這樣談都很清楚了啦!面對面時,我希望你給我正面的答復……
gazette.blocks[29][0] 呂董事長桔誠:委員,我再去看你,然後說明……
gazette.blocks[30][0] 王委員世堅:希望我們公銀行庫能夠善待需要貸款的民眾們,直接貸款給他們,不需要透過你剛剛講的,你說這薯條三兄弟是金融的仲介,貸款就貸款,大家直來直往就好了,不需要ブローカ(掮客)啦!ブローカ還是吸血的,縱容他們的存在,不是這樣嗎?董事長,我尊重你,你請回。
gazette.blocks[31][0] 呂董事長桔誠:理解,我們再跟你報告,謝謝。
gazette.blocks[32][0] 王委員世堅:部長、主委及幾位董事長,你們知不知道這三大的手法有多惡劣?他們現在的貸款,除了汽車貸款以外,他們另外其他的融資就假借商品,假借根本不存在的東西,我舉例比方說,有的餐廳要跟他們融資,他們不能直接貸款給這家餐廳,他就說,你跟我打買賣合約,假的合約喔!買賣什麼?既然是餐廳,不然買賣和牛好了。要借200萬,還要跟他先打一個合約說,我跟你買253萬的和牛,但根本沒有那個東西,是假的!然後第二層皮是什麼?就來了,53萬先扣掉,那是利息,再來80萬的保證金,再來10萬的手續費,和牛根本是假的、沒一個蹤影,這家需要貸款的餐廳就先被扒了三次皮啦!它本身就是那條和牛,被剝了三次皮!這個假的,這樣的貸款總共存在多少?你們去查,我剛剛跟你們講的,借給這些法人融資的,通通是以這樣子的方式。
gazette.blocks[32][1] 所以主席,我最後再提一句,部長、金管會和九位董事長,你們要注意這樣惡質的租賃公司,他們規避了三大法規:第一個、公司法,因為不能借錢給其他個人;第二個、規避了民法,利息超過百分之十六,契約應該無效;第三個、規避了刑法的重利罪。規避了這三大法規、重大的法律,結果金管會、財政部跟九大公營行庫的董事長、總經理,全然不知還互踢皮球,這就是臺灣民眾的悲哀!我認為這件事情你們沒有好好深思、反省的話,愧對你們的職務。
gazette.blocks[33][0] 主席:謝謝王世堅委員的質詢。
gazette.blocks[33][1] 接著請顏寬恒委員質詢。
gazette.agenda.page_end 148
gazette.agenda.meet_id 委員會-11-1-20-8
gazette.agenda.speakers[0] 郭國文
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 王鴻薇
gazette.agenda.speakers[5] 黃珊珊
gazette.agenda.speakers[6] 賴惠員
gazette.agenda.speakers[7] 李坤城
gazette.agenda.speakers[8] 李彥秀
gazette.agenda.speakers[9] 王世堅
gazette.agenda.speakers[10] 顏寬恒
gazette.agenda.speakers[11] 陳培瑜
gazette.agenda.speakers[12] 陳玉珍
gazette.agenda.speakers[13] 羅明才
gazette.agenda.speakers[14] 林楚茵
gazette.agenda.speakers[15] 洪孟楷
gazette.agenda.speakers[16] 黃國昌
gazette.agenda.speakers[17] 鄭天財Sra Kacaw
gazette.agenda.speakers[18] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[19] 鍾佳濱
gazette.agenda.speakers[20] 吳春城
gazette.agenda.speakers[21] 陳亭妃
gazette.agenda.speakers[22] 王定宇
gazette.agenda.speakers[23] 邱志偉
gazette.agenda.page_start 81
gazette.agenda.meetingDate[0] 2024-04-17
gazette.agenda.gazette_id 1132901
gazette.agenda.agenda_lcidc_ids[0] 1132901_00004
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第8次全體委員會議紀錄
gazette.agenda.content 邀請金融監督管理委員會黃主任委員天牧、財政部莊部長翠雲、經濟部、行政院消費者保護處就 「如何改善我國融資公司因缺乏監管所衍生之社會亂象,以穩定金融市場並保障消費者權益」進 行專題報告,並備質詢;另邀請內政部警政署、法務部列席備詢
gazette.agenda.agenda_id 1132901_00003
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 7.05096875
transcript.pyannote[0].end 7.35471875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 7.77659375
transcript.pyannote[1].end 8.21534375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 8.92409375
transcript.pyannote[2].end 10.32471875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 10.74659375
transcript.pyannote[3].end 11.64096875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 10.81409375
transcript.pyannote[4].end 11.52284375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 11.74221875
transcript.pyannote[5].end 12.55221875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 13.00784375
transcript.pyannote[6].end 13.37909375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 13.61534375
transcript.pyannote[7].end 16.87221875
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 17.74971875
transcript.pyannote[8].end 18.59346875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 20.95596875
transcript.pyannote[9].end 21.95159375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 22.39034375
transcript.pyannote[10].end 23.30159375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 25.19159375
transcript.pyannote[11].end 26.03534375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 26.17034375
transcript.pyannote[12].end 27.23346875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 27.75659375
transcript.pyannote[13].end 28.11096875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 28.80284375
transcript.pyannote[14].end 30.96284375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 30.65909375
transcript.pyannote[15].end 33.89909375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 33.89909375
transcript.pyannote[16].end 34.70909375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 34.06784375
transcript.pyannote[17].end 37.10534375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 35.89034375
transcript.pyannote[18].end 38.75909375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 39.85596875
transcript.pyannote[19].end 40.48034375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 41.34096875
transcript.pyannote[20].end 42.64034375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 43.24784375
transcript.pyannote[21].end 43.95659375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 45.42471875
transcript.pyannote[22].end 46.08284375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 46.08284375
transcript.pyannote[23].end 46.11659375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 48.56346875
transcript.pyannote[24].end 48.58034375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 48.58034375
transcript.pyannote[25].end 50.31846875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 51.93846875
transcript.pyannote[26].end 61.21971875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 62.46846875
transcript.pyannote[27].end 63.14346875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 63.36284375
transcript.pyannote[28].end 70.34909375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 70.61909375
transcript.pyannote[29].end 72.07034375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 72.69471875
transcript.pyannote[30].end 77.89221875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 78.49971875
transcript.pyannote[31].end 85.85721875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 86.41409375
transcript.pyannote[32].end 91.35846875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 92.40471875
transcript.pyannote[33].end 97.80471875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 99.08721875
transcript.pyannote[34].end 101.19659375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 101.58471875
transcript.pyannote[35].end 103.10346875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 103.50846875
transcript.pyannote[36].end 105.14534375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 108.33471875
transcript.pyannote[37].end 117.05909375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 117.46409375
transcript.pyannote[38].end 118.18971875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 118.94909375
transcript.pyannote[39].end 126.07034375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 126.32346875
transcript.pyannote[40].end 128.34846875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 129.10784375
transcript.pyannote[41].end 130.42409375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 131.08221875
transcript.pyannote[42].end 131.70659375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 132.88784375
transcript.pyannote[43].end 134.25471875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 134.52471875
transcript.pyannote[44].end 135.38534375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 136.44846875
transcript.pyannote[45].end 139.45221875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 139.72221875
transcript.pyannote[46].end 140.07659375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 140.70096875
transcript.pyannote[47].end 142.15221875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 143.02971875
transcript.pyannote[48].end 143.62034375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 144.07596875
transcript.pyannote[49].end 144.46409375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 144.88596875
transcript.pyannote[50].end 145.35846875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 145.74659375
transcript.pyannote[51].end 151.55159375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 152.42909375
transcript.pyannote[52].end 155.09534375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 155.65221875
transcript.pyannote[53].end 156.51284375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 157.15409375
transcript.pyannote[54].end 159.83721875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 160.56284375
transcript.pyannote[55].end 163.12784375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 163.46534375
transcript.pyannote[56].end 170.99159375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 171.32909375
transcript.pyannote[57].end 173.03346875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 173.62409375
transcript.pyannote[58].end 175.42971875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 176.32409375
transcript.pyannote[59].end 177.87659375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 178.46721875
transcript.pyannote[60].end 179.07471875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 179.80034375
transcript.pyannote[61].end 182.19659375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 182.66909375
transcript.pyannote[62].end 185.85846875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 186.07784375
transcript.pyannote[63].end 187.27596875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 188.60909375
transcript.pyannote[64].end 192.42284375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 193.08096875
transcript.pyannote[65].end 195.37596875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 196.32096875
transcript.pyannote[66].end 196.99596875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 197.16471875
transcript.pyannote[67].end 199.51034375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 203.57721875
transcript.pyannote[68].end 205.16346875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 207.55971875
transcript.pyannote[69].end 208.35284375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 209.41596875
transcript.pyannote[70].end 210.98534375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 211.22159375
transcript.pyannote[71].end 213.14534375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 213.55034375
transcript.pyannote[72].end 214.07346875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 214.68096875
transcript.pyannote[73].end 215.10284375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 215.98034375
transcript.pyannote[74].end 216.63846875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 218.51159375
transcript.pyannote[75].end 219.49034375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 221.11034375
transcript.pyannote[76].end 224.87346875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 225.24471875
transcript.pyannote[77].end 225.98721875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 228.99096875
transcript.pyannote[78].end 229.78409375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 230.83034375
transcript.pyannote[79].end 231.70784375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 236.53409375
transcript.pyannote[80].end 237.34409375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 237.66471875
transcript.pyannote[81].end 238.40721875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 239.28471875
transcript.pyannote[82].end 240.26346875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 242.06909375
transcript.pyannote[83].end 242.98034375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 243.18284375
transcript.pyannote[84].end 244.68471875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 245.93346875
transcript.pyannote[85].end 246.20346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 247.18221875
transcript.pyannote[86].end 247.75596875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 248.90346875
transcript.pyannote[87].end 249.52784375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 249.81471875
transcript.pyannote[88].end 251.01284375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 251.60346875
transcript.pyannote[89].end 252.05909375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 253.81409375
transcript.pyannote[90].end 255.19784375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 256.26096875
transcript.pyannote[91].end 257.08784375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 258.84284375
transcript.pyannote[92].end 270.77346875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 271.80284375
transcript.pyannote[93].end 272.95034375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 273.82784375
transcript.pyannote[94].end 274.90784375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 275.71784375
transcript.pyannote[95].end 276.69659375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 278.55284375
transcript.pyannote[96].end 279.36284375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 281.25284375
transcript.pyannote[97].end 283.71659375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 285.92721875
transcript.pyannote[98].end 291.64784375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 293.21721875
transcript.pyannote[99].end 297.38534375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 297.65534375
transcript.pyannote[100].end 298.58346875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 299.17409375
transcript.pyannote[101].end 302.31284375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 303.00471875
transcript.pyannote[102].end 304.33784375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 305.43471875
transcript.pyannote[103].end 307.13909375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 307.71284375
transcript.pyannote[104].end 308.82659375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 310.44659375
transcript.pyannote[105].end 312.87659375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 313.28159375
transcript.pyannote[106].end 316.99409375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 317.77034375
transcript.pyannote[107].end 318.36096875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 320.09909375
transcript.pyannote[108].end 321.33096875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 322.52909375
transcript.pyannote[109].end 324.35159375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 325.02659375
transcript.pyannote[110].end 326.39346875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 327.76034375
transcript.pyannote[111].end 329.88659375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 330.54471875
transcript.pyannote[112].end 331.86096875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 332.68784375
transcript.pyannote[113].end 335.74221875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 337.64909375
transcript.pyannote[114].end 339.11721875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 339.96096875
transcript.pyannote[115].end 341.56409375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 342.67784375
transcript.pyannote[116].end 345.00659375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 345.78284375
transcript.pyannote[117].end 348.51659375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 349.44471875
transcript.pyannote[118].end 351.43596875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 353.08971875
transcript.pyannote[119].end 354.20346875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 355.18221875
transcript.pyannote[120].end 356.16096875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 357.12284375
transcript.pyannote[121].end 359.83971875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 361.40909375
transcript.pyannote[122].end 362.79284375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 363.11346875
transcript.pyannote[123].end 364.98659375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 366.03284375
transcript.pyannote[124].end 371.97284375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 373.49159375
transcript.pyannote[125].end 375.06096875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 377.03534375
transcript.pyannote[126].end 378.65534375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 379.81971875
transcript.pyannote[127].end 380.15721875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 380.61284375
transcript.pyannote[128].end 382.14846875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 385.05096875
transcript.pyannote[129].end 386.87346875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 387.00846875
transcript.pyannote[130].end 387.49784375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 387.81846875
transcript.pyannote[131].end 389.80971875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 392.17221875
transcript.pyannote[132].end 392.94846875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 393.26909375
transcript.pyannote[133].end 395.22659375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 397.92659375
transcript.pyannote[134].end 398.68596875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 399.10784375
transcript.pyannote[135].end 404.18721875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 405.35159375
transcript.pyannote[136].end 406.06034375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 406.97159375
transcript.pyannote[137].end 407.81534375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 408.42284375
transcript.pyannote[138].end 408.79409375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 409.70534375
transcript.pyannote[139].end 410.61659375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 410.90346875
transcript.pyannote[140].end 411.59534375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 413.08034375
transcript.pyannote[141].end 413.83971875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 414.34596875
transcript.pyannote[142].end 415.45971875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 418.64909375
transcript.pyannote[143].end 420.70784375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 421.43346875
transcript.pyannote[144].end 422.73284375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 423.39096875
transcript.pyannote[145].end 424.47096875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 425.19659375
transcript.pyannote[146].end 435.77721875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 437.65034375
transcript.pyannote[147].end 437.85284375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 437.85284375
transcript.pyannote[148].end 437.86971875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 437.86971875
transcript.pyannote[149].end 437.88659375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 437.88659375
transcript.pyannote[150].end 438.03846875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 438.03846875
transcript.pyannote[151].end 438.74721875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 439.79346875
transcript.pyannote[152].end 463.97534375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 462.45659375
transcript.pyannote[153].end 468.02534375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 468.02534375
transcript.pyannote[154].end 468.73409375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 468.73409375
transcript.pyannote[155].end 468.76784375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 469.32471875
transcript.pyannote[156].end 480.96846875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 479.56784375
transcript.pyannote[157].end 479.77034375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 479.90534375
transcript.pyannote[158].end 480.09096875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 480.96846875
transcript.pyannote[159].end 488.44409375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 488.76471875
transcript.pyannote[160].end 489.49034375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 490.70534375
transcript.pyannote[161].end 497.86034375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 498.38346875
transcript.pyannote[162].end 502.09596875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 503.00721875
transcript.pyannote[163].end 507.19221875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 503.02409375
transcript.pyannote[164].end 503.47971875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 507.79971875
transcript.pyannote[165].end 509.60534375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 510.98909375
transcript.pyannote[166].end 523.22346875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 522.09284375
transcript.pyannote[167].end 533.48346875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 535.05284375
transcript.pyannote[168].end 545.76846875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 535.20471875
transcript.pyannote[169].end 535.33971875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 543.64221875
transcript.pyannote[170].end 543.94596875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 545.93721875
transcript.pyannote[171].end 547.27034375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 546.03846875
transcript.pyannote[172].end 548.95784375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 548.95784375
transcript.pyannote[173].end 549.83534375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 549.41346875
transcript.pyannote[174].end 549.76784375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 549.83534375
transcript.pyannote[175].end 552.02909375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 552.34971875
transcript.pyannote[176].end 556.04534375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 556.21409375
transcript.pyannote[177].end 571.89096875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 569.91659375
transcript.pyannote[178].end 570.77721875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 571.89096875
transcript.pyannote[179].end 571.90784375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 571.90784375
transcript.pyannote[180].end 571.92471875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 571.92471875
transcript.pyannote[181].end 571.94159375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 571.94159375
transcript.pyannote[182].end 571.95846875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 571.95846875
transcript.pyannote[183].end 574.60784375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 572.92034375
transcript.pyannote[184].end 574.97909375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 575.45159375
transcript.pyannote[185].end 577.78034375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 578.53971875
transcript.pyannote[186].end 579.38346875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 579.70409375
transcript.pyannote[187].end 589.69409375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 590.16659375
transcript.pyannote[188].end 595.24596875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 594.85784375
transcript.pyannote[189].end 598.40159375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 595.26284375
transcript.pyannote[190].end 595.27971875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 597.91221875
transcript.pyannote[191].end 598.58721875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 598.58721875
transcript.pyannote[192].end 598.65471875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 598.65471875
transcript.pyannote[193].end 598.68846875
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 598.68846875
transcript.pyannote[194].end 598.77284375
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 598.77284375
transcript.pyannote[195].end 598.87409375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 598.87409375
transcript.pyannote[196].end 599.76846875
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 599.29596875
transcript.pyannote[197].end 600.44346875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 600.88221875
transcript.pyannote[198].end 612.34034375
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 604.27409375
transcript.pyannote[199].end 608.67846875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 609.38721875
transcript.pyannote[200].end 609.57284375
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 612.77909375
transcript.pyannote[201].end 618.02721875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 618.26346875
transcript.pyannote[202].end 618.41534375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 618.60096875
transcript.pyannote[203].end 622.00971875
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 622.95471875
transcript.pyannote[204].end 624.08534375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 624.50721875
transcript.pyannote[205].end 627.86534375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 628.13534375
transcript.pyannote[206].end 630.24471875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 630.75096875
transcript.pyannote[207].end 634.71659375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 633.95721875
transcript.pyannote[208].end 637.06221875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 636.13409375
transcript.pyannote[209].end 636.64034375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 636.84284375
transcript.pyannote[210].end 637.50096875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 638.27721875
transcript.pyannote[211].end 638.68221875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 639.17159375
transcript.pyannote[212].end 639.57659375
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 640.11659375
transcript.pyannote[213].end 640.79159375
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 641.14596875
transcript.pyannote[214].end 641.70284375
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 642.86721875
transcript.pyannote[215].end 648.97596875
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 649.70159375
transcript.pyannote[216].end 657.95346875
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 659.13471875
transcript.pyannote[217].end 663.53909375
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 664.09596875
transcript.pyannote[218].end 664.73721875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 665.47971875
transcript.pyannote[219].end 667.52159375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 668.19659375
transcript.pyannote[220].end 669.88409375
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 670.55909375
transcript.pyannote[221].end 671.04846875
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 671.65596875
transcript.pyannote[222].end 676.58346875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 677.42721875
transcript.pyannote[223].end 677.76471875
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 677.91659375
transcript.pyannote[224].end 681.89909375
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 682.62471875
transcript.pyannote[225].end 683.13096875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 683.75534375
transcript.pyannote[226].end 686.70846875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 687.24846875
transcript.pyannote[227].end 688.98659375
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 689.49284375
transcript.pyannote[228].end 690.50534375
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 691.73721875
transcript.pyannote[229].end 694.28534375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 694.65659375
transcript.pyannote[230].end 702.70596875
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 703.06034375
transcript.pyannote[231].end 705.81096875
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 706.90784375
transcript.pyannote[232].end 709.45596875
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 710.87346875
transcript.pyannote[233].end 713.53971875
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 714.34971875
transcript.pyannote[234].end 718.50096875
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 719.88471875
transcript.pyannote[235].end 720.64409375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 721.53846875
transcript.pyannote[236].end 722.78721875
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 723.14159375
transcript.pyannote[237].end 724.67721875
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 725.41971875
transcript.pyannote[238].end 726.06096875
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 726.51659375
transcript.pyannote[239].end 727.20846875
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 727.52909375
transcript.pyannote[240].end 728.72721875
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 730.11096875
transcript.pyannote[241].end 732.05159375
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 732.32159375
transcript.pyannote[242].end 734.43096875
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 735.10596875
transcript.pyannote[243].end 737.75534375
transcript.pyannote[244].speaker SPEAKER_02
transcript.pyannote[244].start 738.86909375
transcript.pyannote[244].end 739.27409375
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 739.72971875
transcript.pyannote[245].end 740.72534375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 741.78846875
transcript.pyannote[246].end 743.30721875
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 743.99909375
transcript.pyannote[247].end 750.14159375
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 750.90096875
transcript.pyannote[248].end 752.14971875
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 752.68971875
transcript.pyannote[249].end 753.06096875
transcript.pyannote[250].speaker SPEAKER_02
transcript.pyannote[250].start 753.38159375
transcript.pyannote[250].end 756.43596875
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 757.02659375
transcript.pyannote[251].end 766.71284375
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 767.62409375
transcript.pyannote[252].end 768.78846875
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 769.37909375
transcript.pyannote[253].end 770.32409375
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 770.79659375
transcript.pyannote[254].end 771.20159375
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 772.38284375
transcript.pyannote[255].end 773.02409375
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 773.39534375
transcript.pyannote[256].end 774.03659375
transcript.pyannote[257].speaker SPEAKER_02
transcript.pyannote[257].start 774.39096875
transcript.pyannote[257].end 774.81284375
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 775.18409375
transcript.pyannote[258].end 782.28846875
transcript.pyannote[259].speaker SPEAKER_02
transcript.pyannote[259].start 782.81159375
transcript.pyannote[259].end 783.25034375
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 784.53284375
transcript.pyannote[260].end 786.59159375
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 787.78971875
transcript.pyannote[261].end 788.49846875
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 788.90346875
transcript.pyannote[262].end 794.40471875
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 795.34971875
transcript.pyannote[263].end 795.90659375
transcript.pyannote[264].speaker SPEAKER_00
transcript.pyannote[264].start 797.34096875
transcript.pyannote[264].end 799.07909375
transcript.whisperx[0].start 7.843
transcript.whisperx[0].end 16.21
transcript.whisperx[0].text 主席我請金管會主委、財政部長我們今天來的公營航庫是不是所有公共航庫嗎公共航庫
transcript.whisperx[1].start 25.473
transcript.whisperx[1].end 43.907
transcript.whisperx[1].text 所有董事長請起立董事長站位置上好了站位置上好嗎麻煩你站著我等一下馬上要問問題有需要的時候再站起來就好市委員好那個黃主委部長這個我所了解到的
transcript.whisperx[2].start 52.394
transcript.whisperx[2].end 60.96
transcript.whisperx[2].text 這三大租賃公司.中租、迪和、合潤跟裕融.他們不但公司都已經股票上市
transcript.whisperx[3].start 62.52
transcript.whisperx[3].end 90.866
transcript.whisperx[3].text 而且他們貸款給我們社會大眾的其實並不是來自他們的資金他們是大量的大金額的跟我們銀行體系借了我大概估計各方面的資料加起來大概五千億啦他向我們的銀行體系借了五千億低利貸款然後放高利貸給我們全體需要的民眾
transcript.whisperx[4].start 92.458
transcript.whisperx[4].end 104.908
transcript.whisperx[4].text 那這債這才會引起我們這一次我們會議要討論的主題啦那這三大租賃公司啊我姑且稱他為鼠條三兄弟啦吼
transcript.whisperx[5].start 108.516
transcript.whisperx[5].end 110.037
transcript.whisperx[5].text 是金融的代表
transcript.whisperx[6].start 136.496
transcript.whisperx[6].end 151.425
transcript.whisperx[6].text 他要做很多很多的模範給全國的銀行來看那部長、總部長剛好這八大公營、航庫、董事長、總經理都是你任命的
transcript.whisperx[7].start 152.492
transcript.whisperx[7].end 175.191
transcript.whisperx[7].text 那我們國家對待這八大公營行庫董事長、總經理我們待他們不薄他們每年薪資待遇都很高因為我們尊重他們的專業我們希望他們能夠全心全力幫我們公營行庫做得好這個待遇我們都沒話講但是他們做錯事情
transcript.whisperx[8].start 176.625
transcript.whisperx[8].end 199.237
transcript.whisperx[8].text 該打屁股的時候部長你可別心軟可別手軟我要請問這八大公營行庫的就是說就我剛提的啊薯條三兄弟向銀行借了五千億那我請問你們八大公營行庫我請八位董事長你們站起來一下好嗎我請問你們公營行庫
transcript.whisperx[9].start 207.605
transcript.whisperx[9].end 216.572
transcript.whisperx[9].text 第九位中國輸出銀行一開始我們把你併入了喔抱歉好九大我請問你們有貸款給這三大租賃公司的請舉手通通有喔天吶
transcript.whisperx[10].start 236.567
transcript.whisperx[10].end 256.983
transcript.whisperx[10].text 各位董事長我請問你們銀行貸款給借款方最重要這3C信用抵押品還款來源不是嗎信用抵押品就不難啦我就請問你啊
transcript.whisperx[11].start 259.168
transcript.whisperx[11].end 276.552
transcript.whisperx[11].text 這三大主力鼠條三兄弟他們是放高利貸的耶結果你借款給他們他們的還款來源是來自於高利貸你們知道嗎我請問你們知道嗎知道了請舉手喔你們不知道所以你們也是被鼠條三兄弟騙了
transcript.whisperx[12].start 285.967
transcript.whisperx[12].end 308.441
transcript.whisperx[12].text 你們跟我們千千萬萬的受害民眾一樣你們也被騙是不是?你們把來自於社會大眾辛苦的存款、血汗錢借貸給這些不良的租賃公司讓他去放高利貸我上回質詢部長主委的時候我就說
transcript.whisperx[13].start 310.489
transcript.whisperx[13].end 318.076
transcript.whisperx[13].text 我說這三大租賃公司叫做有牌的地下錢莊天吶這麼優質的九大公營行庫們你們竟然還默默的私下的把錢借給他們這叫助紂為虐不是嗎
transcript.whisperx[14].start 337.688
transcript.whisperx[14].end 364.742
transcript.whisperx[14].text 他們的還款來源是來自借款人他們的血汗他們變相向我們這些借款的民眾吸血以高利貸來還給你們第二點我現在請問啊你們九位董事長你們有錢借給這三大租賃公司那表示你們認定了一個合理的消費貸款不是嗎
transcript.whisperx[15].start 366.069
transcript.whisperx[15].end 389.409
transcript.whisperx[15].text 那你們為什麼不直接把錢借給需要的民眾呢?為什麼對一般民眾這麼坑?對這三家註定公司就來個疑問善不知?剛剛你通媒局你通通說你不知道他是放高利貸
transcript.whisperx[16].start 392.216
transcript.whisperx[16].end 395.036
transcript.whisperx[16].text 我不相信,你們縱容他們嘛,不是嗎?為什麼不把資金直接放還給需要的民眾?為什麼?帶頭的,台銀金庫、台灣銀行董事長、呂董事長請你回答,為什麼?有需要資金的民眾這麼多
transcript.whisperx[17].start 421.496
transcript.whisperx[17].end 435.628
transcript.whisperx[17].text 尤其青年朋友們為什麼我們九大公營行庫你不把資金直接融資給需要的民眾們而去借款給這三大租賃公司放高利貸為什麼啦為什麼 呂董事啊
transcript.whisperx[18].start 440.387
transcript.whisperx[18].end 468.259
transcript.whisperx[18].text 委員好我想跟委員報告這一個所有的租賃公司他也扮演一定的這個金融中介的角色事實上就我們所知這裡面的資金95%都不是大家所顧慮的那一些所謂這BNPL的放款而是呢我一路上放這麼多很快速這怎麼都不是呢你明知道嘛
transcript.whisperx[19].start 469.58
transcript.whisperx[19].end 487.549
transcript.whisperx[19].text 例如說這個BMP大概佔全體的5%那大多數還是在所謂的機器設備或者是車輛之類的車代就佔了一半之多你如果看這句絕大多數你們今天我們談說這個
transcript.whisperx[20].start 490.945
transcript.whisperx[20].end 508.817
transcript.whisperx[20].text 民間的金融公司其實最主要我們談這三大啦這三大就佔了90%操帶這麼大的比例金額你們竟然不曉得我有說你有錢借他們怎麼不借給民眾我自己答覆我這一點嘛借給民眾有這麼困難嗎
transcript.whisperx[21].start 511.021
transcript.whisperx[21].end 532.836
transcript.whisperx[21].text 我想這個每個銀行他的業務有他的取向那以銀行而言能夠做的能量就是那至於這個車輛的部分呢車輛占2861我實在不想回答你這個金額啦為什麼因為時間有限你把數字先看清楚了再說我還說台銀是模範生
transcript.whisperx[22].start 535.22
transcript.whisperx[22].end 538.041
transcript.whisperx[22].text 你平時在講整個市場規模啊對啊對啊臺銀啊大概是這拜九大公營行戶之士你們通通貸款給他們啊
transcript.whisperx[23].start 556.606
transcript.whisperx[23].end 577.509
transcript.whisperx[23].text 這個八大公股銀行大概是一千三百出頭億那台銀本身大概一百七八十億所以並非而裡面大概只有五個percent是可能有涉及BMPL對啦我知道你帶的不多啦一百四十億對你們而言對啦還是還是很多啊一輸了就丟啦不不不還是很多沒錯
transcript.whisperx[24].start 578.507
transcript.whisperx[24].end 600.794
transcript.whisperx[24].text 議員議員議員
transcript.whisperx[25].start 600.934
transcript.whisperx[25].end 621.607
transcript.whisperx[25].text 那個我們隔空這樣談都很清楚了啦,面對面我希望你給我公平的答覆,希望我們公民行庫能夠善待需要貸款的民眾們,直接貸款給他們,不需要透過你剛剛講的,這數條三兄弟你說是金融的仲介!
transcript.whisperx[26].start 623.228
transcript.whisperx[26].end 641.443
transcript.whisperx[26].text 貸款就貸款,直接大家吃來吃往就好,不需要部落格啦,部落格還是吸血的,縱容他們存在嘛,不是這樣嗎?來董事長我真的領你請回。那理解,那我們再跟你報告,謝謝。那部長、主委、那個董事長。
transcript.whisperx[27].start 643.555
transcript.whisperx[27].end 670.868
transcript.whisperx[27].text 你們知不知道這三大有多惡劣他們的手法有多惡劣你知道嗎他們現在的貸款除了說汽車貸款以外他們另外其他的融資他們就假借欸商品假借根本不存在的比方說我舉例有的餐廳要跟他們融資他們啊不能直接貸款這個餐廳給這家公司他就說你啊
transcript.whisperx[28].start 671.824
transcript.whisperx[28].end 690.034
transcript.whisperx[28].text 給我打買賣合約假的合約買賣什麼餐廳喔買賣和牛欸要借200萬跟他先打一個合約說欸這個我跟你買253萬的和牛根本沒有那個東西啊假的就對
transcript.whisperx[29].start 691.789
transcript.whisperx[29].end 708.911
transcript.whisperx[29].text 然後再來第二層皮是什麼就來啦53萬先扣掉那是利息再來80萬的保證金再來10萬的手續費欸河流根本假的沒一個蹤影這家需要貸款的餐廳
transcript.whisperx[30].start 710.902
transcript.whisperx[30].end 737.364
transcript.whisperx[30].text 就先被扒了三次皮啦他本身就是那條和牛被剝了三次皮這個假的那這樣的貸款呢存在存在多少你們去查總共我剛剛跟你們講的啊借改這些法人融資的通通以這樣子的方式所以主席我最後再提一句說
transcript.whisperx[31].start 738.902
transcript.whisperx[31].end 749.907
transcript.whisperx[31].text 部長、金管委員你們九位董事長你們要注意這樣子的租賃公司遏制的他們規避了三大法規公私法
transcript.whisperx[32].start 750.95
transcript.whisperx[32].end 770.877
transcript.whisperx[32].text 因為不能借錢給其他個人規避了民法歷時超過16%應該契約無效規避了刑法的重力罪規避了這三大法規重大的法律結果金管會跟
transcript.whisperx[33].start 772.718
transcript.whisperx[33].end 773.639
transcript.whisperx[33].text 謝謝王世堅委員的質詢