iVOD / 150906

Field Value
IVOD_ID 150906
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/150906
日期 2024-04-08
會議資料.會議代碼 委員會-11-1-26-11
會議資料.會議代碼:str 第11屆第1會期社會福利及衛生環境委員會第11次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第1會期社會福利及衛生環境委員會第11次全體委員會議
影片種類 Clip
開始時間 2024-04-08T11:09:21+08:00
結束時間 2024-04-08T11:17:08+08:00
影片長度 00:07:47
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/76e938165848398192ee78b7f6a3c4935942adc12f721acdf8ba9b0039caa7a6172f596e3a4508175ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 11:09:21 - 11:17:08
會議時間 2024-04-08T09:00:00+08:00
會議名稱 立法院第11屆第1會期社會福利及衛生環境委員會第11次全體委員會議(事由:邀請勞動部、行政院人事行政總處、銓敘部、教育部、國防部就「安心生養!試辦彈性育嬰假及如何提高男性育嬰留停比例」進行專題報告,並備質詢。 【4月8日及10日二天一次會】)
gazette.lineno 596
gazette.blocks[0][0] 鄭天財Sra Kacaw委員:(11時9分)主席、各位委員,有請部長。
gazette.blocks[1][0] 主席:請許部長。
gazette.blocks[2][0] 許部長銘春:鄭委員好。
gazette.blocks[3][0] 鄭天財Sra Kacaw委員:部長好。這次0403大地震,花蓮的災情非常慘重,這次勞動部還是依照往例,就針對災後重建工作啟動天災臨工的措施。當然,這個作業要點定很久了,相關的規定都是比較照往例。現在因為這次地震的時間正好是連續假期,所以你們原來的相關規定,24小時內要陳報本部,然後48小時內要洽鄉鎮市公所,因為正好都是連假……
gazette.blocks[4][0] 許部長銘春:都已經按照這個規定,我們都沒放假,報告委員,我們就是從4月3號……
gazette.blocks[5][0] 鄭天財Sra Kacaw委員:我知道你們沒有放假啦!但是有一些鄉鎮公所有放假,這個部分是……
gazette.blocks[6][0] 許部長銘春:我們有聯繫啦!我們會持續聯繫。
gazette.blocks[7][0] 鄭天財Sra Kacaw委員:對,我知道,這是事實,因為我都在災區啦!所以今天開始上班,要加速啟動跟鄉鎮市公所的聯繫,因為不是你們的人直接去找這些災民對不對?所以這個部分特別提出來是這個用意。
gazette.blocks[8][0] 許部長銘春:是。
gazette.blocks[9][0] 鄭天財Sra Kacaw委員:當然未來是不是需要再檢討還是要去考量。另外,勞工有的在工作期間發生了震災,無論是死亡或者是受傷都有,所以除了這個之外,你們當然都會提到勞保那些……
gazette.blocks[10][0] 許部長銘春:職保。
gazette.blocks[11][0] 鄭天財Sra Kacaw委員:還有職災保險,你們的措施大概就是這些吧!
gazette.blocks[12][0] 許部長銘春:對,因為花蓮是災區嘛!所以這些勞保、就保、職災保險的被保險人,我們就是提供6個月的保險費補助,然後另外他如果因為這些災害受傷,因為這樣不能工作,而且沒有薪資,我們就是從他受傷那一天開始就可以請領傷病給付。
gazette.blocks[13][0] 鄭天財Sra Kacaw委員:這個部分要請除了剛才講的就業的部分之外,怎麼樣去主動協助這些勞工……
gazette.blocks[14][0] 許部長銘春:會。
gazette.blocks[15][0] 鄭天財Sra Kacaw委員:申請相關的這些部分,當然我們所知道的,我們也會去協調、去協助。
gazette.blocks[16][0] 許部長銘春:是。
gazette.blocks[17][0] 鄭天財Sra Kacaw委員:那今天的議題,育嬰留職停薪的津貼,相關的規定都有,你們的報告裡面也提到,到去年12月止,較修法前同期,申請育嬰留職停薪的人數,女性增加了11%,男性增加61%,這個數字尤其是男性增加很多,但是我是希望能夠提供什麼數字呢?就是現在的嬰兒出生率的人數跟申請育嬰留職停薪的人數,有嗎?現在有這個數據,好,請說。
gazette.blocks[18][0] 許部長銘春:我們女性……
gazette.blocks[19][0] 鄭天財Sra Kacaw委員:大聲一點,由你來說。
gazette.blocks[20][0] 陳司長美女:鄭委員好,有領勞保的生育給付的人,後續有再領育嬰留職停薪津貼的比例,在去年(112年)是80.41%。
gazette.blocks[21][0] 鄭天財Sra Kacaw委員:好,男性呢?
gazette.blocks[22][0] 陳司長美女:因為男性沒有領生育給付,他不能領生育給付,所以沒有辦法……
gazette.blocks[23][0] 鄭天財Sra Kacaw委員:還是可以算比例啊!男性增加61%就表示有人數嘛!申請育嬰留職停薪的,然後跟整個出生的人數做比較。
gazette.blocks[24][0] 陳司長美女:那個61%是在110年7月1號以前跟以後做比較。
gazette.blocks[25][0] 鄭天財Sra Kacaw委員:對,我知道,我要的不是這個,我要接續,好,為什麼要這個東西?好,我接續談,重點,勞動部最清楚,現在缺工嘛!對不對?缺工很嚴重,對不對?我們的政策怎麼樣去因應臺灣缺工嚴重的事實?除了育嬰留職停薪繼續推動,因為嬰兒還是要照顧,但是缺工,我們鼓勵他上工,但是能夠非常安心的,有托嬰的地方,勞動部就必須跟衛福部去協調托嬰,然後讓他很放心地托嬰。我那個年代,我們夫妻一樣都上班,我在臺灣省政府上班,距離自己的父母親很遠很遠,孩子怎麼辦呢?就是托嬰。所以這個部分,尤其是缺工的年代,短期也沒辦法解決這個問題,所以這個政策還是要做一個調整,怎麼樣更放心去托嬰,然後他還可以正常地工作。
gazette.blocks[26][0] 許部長銘春:報告委員,的確啦!如何讓生養的環境更優化,除了我們這些措施鼓勵父母親都一起來育兒以外,其實托嬰、托兒措施也很重要,如果能夠完善的話,也可以讓父母親能夠續留職場。
gazette.blocks[27][0] 鄭天財Sra Kacaw委員:所以有這方面的協助,如果又有很好的托嬰環境的話,他願意……
gazette.blocks[28][0] 許部長銘春:對,就是各部會本於權責來共同架構這個友善的育兒環境。
gazette.blocks[29][0] 鄭天財Sra Kacaw委員:所以你們要跟衛福部共同合作。
gazette.blocks[30][0] 許部長銘春:包括衛福部和教育部都有。
gazette.blocks[31][0] 鄭天財Sra Kacaw委員:包括托嬰的經費要協助好不好?
gazette.blocks[32][0] 許部長銘春:對,謝謝,謝謝委員。
gazette.blocks[33][0] 鄭天財Sra Kacaw委員:好,謝謝。
gazette.blocks[34][0] 主席:謝謝鄭天財委員。
gazette.blocks[34][1] 接下來請李坤城委員發言。
gazette.agenda.page_end 154
gazette.agenda.meet_id 委員會-11-1-26-11
gazette.agenda.speakers[0] 黃秀芳
gazette.agenda.speakers[1] 陳昭姿
gazette.agenda.speakers[2] 陳菁徽
gazette.agenda.speakers[3] 林月琴
gazette.agenda.speakers[4] 王育敏
gazette.agenda.speakers[5] 涂權吉
gazette.agenda.speakers[6] 邱鎮軍
gazette.agenda.speakers[7] 王正旭
gazette.agenda.speakers[8] 林淑芬
gazette.agenda.speakers[9] 鄭天財Sra Kacaw
gazette.agenda.speakers[10] 李坤城
gazette.agenda.speakers[11] 牛煦庭
gazette.agenda.speakers[12] 楊瓊瓔
gazette.agenda.speakers[13] 李彥秀
gazette.agenda.speakers[14] 陳培瑜
gazette.agenda.speakers[15] 黃國昌
gazette.agenda.speakers[16] 范雲
gazette.agenda.speakers[17] 張雅琳
gazette.agenda.speakers[18] 陳瑩
gazette.agenda.speakers[19] 劉建國
gazette.agenda.speakers[20] 洪申翰
gazette.agenda.speakers[21] 廖偉翔
gazette.agenda.speakers[22] 楊曜
gazette.agenda.speakers[23] 黃仁
gazette.agenda.speakers[24] 黃珊珊
gazette.agenda.speakers[25] 蘇清泉
gazette.agenda.speakers[26] 陳冠廷
gazette.agenda.page_start 73
gazette.agenda.meetingDate[0] 2024-04-08
gazette.agenda.gazette_id 1132601
gazette.agenda.agenda_lcidc_ids[0] 1132601_00003
gazette.agenda.meet_name 立法院第11屆第1會期社會福利及衛生環境委員會第11次全體委員會議紀錄
gazette.agenda.content 邀請勞動部、行政院人事行政總處、銓敘部、教育部、國防部就「安心生養!試辦彈性育嬰假及 如何提高男性育嬰留停比例」進行專題報告,並備質詢
gazette.agenda.agenda_id 1132601_00002
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 9.07596875
transcript.pyannote[0].end 10.94909375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 11.08409375
transcript.pyannote[1].end 11.91096875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 15.21846875
transcript.pyannote[2].end 15.72471875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 15.58971875
transcript.pyannote[3].end 16.75409375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 17.58096875
transcript.pyannote[4].end 18.42471875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 18.96471875
transcript.pyannote[5].end 20.36534375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 20.53409375
transcript.pyannote[6].end 22.22159375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 21.91784375
transcript.pyannote[7].end 22.17096875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 22.79534375
transcript.pyannote[8].end 25.83284375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 26.59221875
transcript.pyannote[9].end 28.02659375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 28.44846875
transcript.pyannote[10].end 33.39284375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 33.64596875
transcript.pyannote[11].end 42.58971875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 43.60221875
transcript.pyannote[12].end 46.65659375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 47.09534375
transcript.pyannote[13].end 48.15846875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 47.16284375
transcript.pyannote[14].end 47.39909375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 48.69846875
transcript.pyannote[15].end 54.03096875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 54.87471875
transcript.pyannote[16].end 56.64659375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 57.57471875
transcript.pyannote[17].end 58.43534375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 58.97534375
transcript.pyannote[18].end 60.39284375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 60.81471875
transcript.pyannote[19].end 62.38409375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 63.02534375
transcript.pyannote[20].end 65.20221875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 65.91096875
transcript.pyannote[21].end 79.24221875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 80.06909375
transcript.pyannote[22].end 82.46534375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 82.87034375
transcript.pyannote[23].end 88.21971875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 86.22846875
transcript.pyannote[24].end 91.22346875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 91.12221875
transcript.pyannote[25].end 91.54409375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 91.54409375
transcript.pyannote[26].end 94.09221875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 93.60284375
transcript.pyannote[27].end 95.91471875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 95.91471875
transcript.pyannote[28].end 98.41221875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 96.23534375
transcript.pyannote[29].end 96.58971875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 98.19284375
transcript.pyannote[30].end 98.81721875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 98.81721875
transcript.pyannote[31].end 103.17096875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 103.57596875
transcript.pyannote[32].end 116.13096875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 105.31409375
transcript.pyannote[33].end 105.76971875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 107.54159375
transcript.pyannote[34].end 108.25034375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 115.21971875
transcript.pyannote[35].end 115.62471875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 117.02534375
transcript.pyannote[36].end 120.02909375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 118.15596875
transcript.pyannote[37].end 119.89409375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 120.53534375
transcript.pyannote[38].end 126.42471875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 127.06596875
transcript.pyannote[39].end 128.78721875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 130.39034375
transcript.pyannote[40].end 131.36909375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 132.01034375
transcript.pyannote[41].end 135.31784375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 135.89159375
transcript.pyannote[42].end 136.98846875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 137.44409375
transcript.pyannote[43].end 138.32159375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 138.82784375
transcript.pyannote[44].end 140.04284375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 140.41409375
transcript.pyannote[45].end 142.20284375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 142.60784375
transcript.pyannote[46].end 143.51909375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 143.55284375
transcript.pyannote[47].end 150.28596875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 151.29846875
transcript.pyannote[48].end 153.52596875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 153.25596875
transcript.pyannote[49].end 153.84659375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 153.84659375
transcript.pyannote[50].end 153.86346875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 153.91409375
transcript.pyannote[51].end 154.40346875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 154.40346875
transcript.pyannote[52].end 155.06159375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 155.06159375
transcript.pyannote[53].end 156.05721875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 156.05721875
transcript.pyannote[54].end 156.17534375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 156.17534375
transcript.pyannote[55].end 157.28909375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 157.28909375
transcript.pyannote[56].end 157.91346875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 157.81221875
transcript.pyannote[57].end 161.32221875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 161.32221875
transcript.pyannote[58].end 164.37659375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 164.69721875
transcript.pyannote[59].end 166.03034375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 166.18221875
transcript.pyannote[60].end 170.18159375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 170.53596875
transcript.pyannote[61].end 174.82221875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 175.22721875
transcript.pyannote[62].end 178.43346875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 178.82159375
transcript.pyannote[63].end 183.76596875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 184.06971875
transcript.pyannote[64].end 186.73596875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 187.14096875
transcript.pyannote[65].end 187.25909375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 187.64721875
transcript.pyannote[66].end 193.36784375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 193.85721875
transcript.pyannote[67].end 203.34096875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 195.47721875
transcript.pyannote[68].end 195.86534375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 198.85221875
transcript.pyannote[69].end 199.47659375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 202.51409375
transcript.pyannote[70].end 202.86846875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 203.91471875
transcript.pyannote[71].end 206.95221875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 206.41221875
transcript.pyannote[72].end 206.90159375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 207.66096875
transcript.pyannote[73].end 209.33159375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 210.20909375
transcript.pyannote[74].end 211.12034375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 211.67721875
transcript.pyannote[75].end 213.41534375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 214.02284375
transcript.pyannote[76].end 217.26284375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 217.31346875
transcript.pyannote[77].end 217.70159375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 217.80284375
transcript.pyannote[78].end 220.67159375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 220.97534375
transcript.pyannote[79].end 221.95409375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 223.38846875
transcript.pyannote[80].end 228.26534375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 228.51846875
transcript.pyannote[81].end 242.11971875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 243.23346875
transcript.pyannote[82].end 245.93346875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 246.62534375
transcript.pyannote[83].end 247.23284375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 247.40159375
transcript.pyannote[84].end 248.66721875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 249.54471875
transcript.pyannote[85].end 250.79346875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 252.05909375
transcript.pyannote[86].end 252.98721875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 253.76346875
transcript.pyannote[87].end 255.40034375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 256.24409375
transcript.pyannote[88].end 257.10471875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 257.57721875
transcript.pyannote[89].end 259.26471875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 259.45034375
transcript.pyannote[90].end 259.58534375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 259.58534375
transcript.pyannote[91].end 262.31909375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 261.74534375
transcript.pyannote[92].end 264.31034375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 265.45784375
transcript.pyannote[93].end 268.57971875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 266.14971875
transcript.pyannote[94].end 267.04409375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 267.07784375
transcript.pyannote[95].end 267.11159375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 267.87096875
transcript.pyannote[96].end 270.19971875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 270.08159375
transcript.pyannote[97].end 270.46971875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 270.21659375
transcript.pyannote[98].end 270.25034375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 270.46971875
transcript.pyannote[99].end 270.50346875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 270.50346875
transcript.pyannote[100].end 270.53721875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 271.43159375
transcript.pyannote[101].end 272.79846875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 271.49909375
transcript.pyannote[102].end 271.63409375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 271.63409375
transcript.pyannote[103].end 271.80284375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 271.80284375
transcript.pyannote[104].end 271.97159375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 273.37221875
transcript.pyannote[105].end 275.83596875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 275.02596875
transcript.pyannote[106].end 276.83159375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 276.86534375
transcript.pyannote[107].end 277.15221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 277.15221875
transcript.pyannote[108].end 287.44596875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 288.25596875
transcript.pyannote[109].end 289.43721875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 289.74096875
transcript.pyannote[110].end 290.68596875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 290.97284375
transcript.pyannote[111].end 294.88784375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 293.72346875
transcript.pyannote[112].end 295.66409375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 296.18721875
transcript.pyannote[113].end 299.10659375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 299.49471875
transcript.pyannote[114].end 300.30471875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 299.52846875
transcript.pyannote[115].end 300.01784375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 300.55784375
transcript.pyannote[116].end 305.70471875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 303.13971875
transcript.pyannote[117].end 303.54471875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 304.77659375
transcript.pyannote[118].end 304.86096875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 305.99159375
transcript.pyannote[119].end 308.21909375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 306.81846875
transcript.pyannote[120].end 312.31971875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 312.50534375
transcript.pyannote[121].end 319.47471875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 317.55096875
transcript.pyannote[122].end 318.91784375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 318.95159375
transcript.pyannote[123].end 320.26784375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 320.40284375
transcript.pyannote[124].end 320.77409375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 320.77409375
transcript.pyannote[125].end 323.67659375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 324.21659375
transcript.pyannote[126].end 325.46534375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 325.65096875
transcript.pyannote[127].end 326.46096875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 327.87846875
transcript.pyannote[128].end 328.60409375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 329.27909375
transcript.pyannote[129].end 330.49409375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 331.64159375
transcript.pyannote[130].end 333.29534375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 333.85221875
transcript.pyannote[131].end 334.27409375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 334.88159375
transcript.pyannote[132].end 335.48909375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 336.70409375
transcript.pyannote[133].end 337.29471875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 338.25659375
transcript.pyannote[134].end 338.67846875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 339.35346875
transcript.pyannote[135].end 342.35721875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 343.50471875
transcript.pyannote[136].end 345.86721875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 347.35221875
transcript.pyannote[137].end 348.02721875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 349.76534375
transcript.pyannote[138].end 350.76096875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 351.06471875
transcript.pyannote[139].end 352.04346875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 352.60034375
transcript.pyannote[140].end 353.59596875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 354.33846875
transcript.pyannote[141].end 355.23284375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 356.38034375
transcript.pyannote[142].end 357.51096875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 358.60784375
transcript.pyannote[143].end 360.22784375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 361.39221875
transcript.pyannote[144].end 362.42159375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 362.74221875
transcript.pyannote[145].end 365.30721875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 365.66159375
transcript.pyannote[146].end 366.79221875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 367.92284375
transcript.pyannote[147].end 370.31909375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 371.24721875
transcript.pyannote[148].end 373.33971875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 373.91346875
transcript.pyannote[149].end 374.94284375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 375.68534375
transcript.pyannote[150].end 376.47846875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 377.60909375
transcript.pyannote[151].end 380.52846875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 381.70971875
transcript.pyannote[152].end 382.03034375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 383.58284375
transcript.pyannote[153].end 386.04659375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 386.41784375
transcript.pyannote[154].end 388.18971875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 388.56096875
transcript.pyannote[155].end 391.76721875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 392.61096875
transcript.pyannote[156].end 396.57659375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 397.13346875
transcript.pyannote[157].end 397.97721875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 399.02346875
transcript.pyannote[158].end 402.44909375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 403.24221875
transcript.pyannote[159].end 404.03534375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 404.05221875
transcript.pyannote[160].end 405.38534375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 406.09409375
transcript.pyannote[161].end 407.12346875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 407.84909375
transcript.pyannote[162].end 408.59159375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 408.91221875
transcript.pyannote[163].end 411.47721875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 411.81471875
transcript.pyannote[164].end 413.65409375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 414.90284375
transcript.pyannote[165].end 416.87721875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 416.89409375
transcript.pyannote[166].end 417.46784375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 418.10909375
transcript.pyannote[167].end 419.47596875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 419.99909375
transcript.pyannote[168].end 421.07909375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 421.48409375
transcript.pyannote[169].end 421.53471875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 421.53471875
transcript.pyannote[170].end 422.00721875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 422.05784375
transcript.pyannote[171].end 422.36159375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 422.95221875
transcript.pyannote[172].end 428.36909375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 428.53784375
transcript.pyannote[173].end 434.79846875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 428.58846875
transcript.pyannote[174].end 428.95971875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 434.91659375
transcript.pyannote[175].end 442.79721875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 441.98721875
transcript.pyannote[176].end 447.87659375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 443.89409375
transcript.pyannote[177].end 450.69471875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 449.56409375
transcript.pyannote[178].end 452.23034375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 451.03221875
transcript.pyannote[179].end 452.66909375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 453.12471875
transcript.pyannote[180].end 458.38971875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 454.15409375
transcript.pyannote[181].end 454.79534375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 458.52471875
transcript.pyannote[182].end 461.08971875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 460.14471875
transcript.pyannote[183].end 460.44846875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 461.08971875
transcript.pyannote[184].end 461.44409375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 461.39346875
transcript.pyannote[185].end 464.04284375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 462.22034375
transcript.pyannote[186].end 463.33409375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 465.27471875
transcript.pyannote[187].end 465.96659375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 465.96659375
transcript.pyannote[188].end 466.96221875
transcript.whisperx[0].start 9.31
transcript.whisperx[0].end 11.674
transcript.whisperx[0].text 主席、各位委員、有請部長。請許部長。政委好。部長好。這次這個零四、零三大地震,這個花蓮的災情非常的慘重。
transcript.whisperx[1].start 26.636
transcript.whisperx[1].end 53.686
transcript.whisperx[1].text 那這次這個我們勞動部還是依照過去的往例就針對這個災後重建工作這個啟動這個天災零工的一個措施當然這個最要點也定很久了這個相關的規定都是比較照屬於往例的那個部分
transcript.whisperx[2].start 54.912
transcript.whisperx[2].end 82.242
transcript.whisperx[2].text 那現在就是說因為這一次這個地震的時間地震的時間正好連假連續假期所以你們原來的一個相關的這些規定24小時內要呈報本部然後這個48小時內要洽向正式公所那因為正好都是連假
transcript.whisperx[3].start 82.91
transcript.whisperx[3].end 97.841
transcript.whisperx[3].text 都已經都按照這個規定我們都沒放假報告委員我說你們沒有放假啦但是有一些鄉鎮公所有放假這個部分是我們有聯繫啦我們會持續聯繫對我知道這是事實因為我都在災區啦
transcript.whisperx[4].start 99.242
transcript.whisperx[4].end 125.925
transcript.whisperx[4].text 我都在災期所以還是要去今天開始上班要加速的啟動跟鄉鎮施工所的因為不是你們的人直接去找這些災民的所以這個部分特別提出來是這個用意當然這個未來是不是需要再檢討還是要去考量
transcript.whisperx[5].start 127.13
transcript.whisperx[5].end 149.365
transcript.whisperx[5].text 那另外就是說這個勞工有的在工作期間發生了這個震災無論是他這個死亡或是受傷都有都有所以除了這些這個之外你們當然都會提到這個跟這個
transcript.whisperx[6].start 151.643
transcript.whisperx[6].end 154.746
transcript.whisperx[6].text 我們就是提供6個月的保險費的補助
transcript.whisperx[7].start 174.123
transcript.whisperx[7].end 186.494
transcript.whisperx[7].text 他如果因為這些災害受傷我們就是從他因為這樣不能工作而且沒有薪資那我們就是從他受傷那一天開始就可以請你傷病給付
transcript.whisperx[8].start 187.711
transcript.whisperx[8].end 188.071
transcript.whisperx[8].text 好,那今天的議題
transcript.whisperx[9].start 211.775
transcript.whisperx[9].end 220.163
transcript.whisperx[9].text 這個一因留職停薪的津貼這個相關的規定都有那你們的報告裡面也提到這個
transcript.whisperx[10].start 223.424
transcript.whisperx[10].end 250.618
transcript.whisperx[10].text 到去年12月子叫修法前同期申請應留職停薪的人數女性增加了11%男性增加61%這個數字是尤其是男性增加很多但是我是希望能夠提供什麼數字呢就是說跟現在的嬰兒出生率
transcript.whisperx[11].start 252.113
transcript.whisperx[11].end 260.341
transcript.whisperx[11].text 的人數啊跟申請役因的人數留職停薪的人數有嗎?現在有這個數據好請說我們
transcript.whisperx[12].start 265.546
transcript.whisperx[12].end 266.687
transcript.whisperx[12].text 好,男性呢?
transcript.whisperx[13].start 289.793
transcript.whisperx[13].end 311.906
transcript.whisperx[13].text 男性因為男性沒有領生意給戶他不能領生意給戶吧所以沒有辦法所以你的人數就還是可以做算比例啊就是他男性增加61%就表示有人數嘛申請育嬰留子平薪的然後跟我們的那個整個出生的人數做比較
transcript.whisperx[14].start 312.737
transcript.whisperx[14].end 337.063
transcript.whisperx[14].text 那個61%是在110年7月1號以前跟以後做比較對 我知道 我知道我要的不是這個好 我要接氣好為什麼要這個東西啊好 我接氣談重點這個勞動部最清楚現在切工嘛 對不對切工很嚴重
transcript.whisperx[15].start 338.308
transcript.whisperx[15].end 366.522
transcript.whisperx[15].text 對不對那我們的政策怎麼樣去因應這個臺灣切工嚴重的事實除了因應留留職停薪繼續推動是不是怎麼樣在這個這個嬰兒還是要照顧啊但是切工啊我們鼓勵他上工但是他的那個很能夠非常
transcript.whisperx[16].start 367.947
transcript.whisperx[16].end 391.608
transcript.whisperx[16].text 安心的有拖音的地方。勞動部就必須跟衛福部去協調拖音。然後他那個很放心的拖音。我那個年代我們夫妻一樣都上班了。而且是遠離我在台灣省政府上班了。
transcript.whisperx[17].start 393.097
transcript.whisperx[17].end 420.883
transcript.whisperx[17].text 遠離自己的父母親很遠很遠的孩子怎麼辦呢?就是拖嬰啊就是拖嬰所以這個部分尤其是切工的年代這個短期也沒辦法解決這個問題所以這個政策還是要做一個調整怎麼樣去有更放心可以去拖嬰然後他還可以正常的工作
transcript.whisperx[18].start 421.493
transcript.whisperx[18].end 422.756
transcript.whisperx[18].text 對﹖
transcript.whisperx[19].start 423.004
transcript.whisperx[19].end 448.121
transcript.whisperx[19].text 報告委員的確就是說如何有讓這個生養的環境更優化除了說我們這些措施鼓勵父母親都一起來育兒以外那其實托嬰托兒的措施也很重要如果這個能夠完善的話也可以讓這個父母親能夠蓄留職場所以有這方面的協助的話他如果有托嬰很好的環境的話他就願意托嬰所以你們要跟衛福部共同的合作
transcript.whisperx[20].start 453.344
transcript.whisperx[20].end 453.484
transcript.whisperx[20].text 謝謝鄭天財委員