iVOD / 150750

Field Value
IVOD_ID 150750
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/150750
日期 2024-04-01
會議資料.會議代碼 委員會-11-1-20-6
會議資料.會議代碼:str 第11屆第1會期財政委員會第6次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 6
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第6次全體委員會議
影片種類 Clip
開始時間 2024-04-01T10:36:27+08:00
結束時間 2024-04-01T10:47:37+08:00
影片長度 00:11:10
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/01d093d00f1a07c03509ff8c858328f6ee14ad7ded5d841af8ba9b0039caa7a69f71be98fdbdd0de5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 10:36:27 - 10:47:37
會議時間 2024-04-01T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第6次全體委員會議(事由:邀請財政部莊部長翠雲、金融監督管理委員會黃主任委員天牧、內政部、國家發展委員會就「如何積極推動金融業投注國內公共建設,並達成社宅百萬戶之政策目標」進行專題報告,並備質詢。 【4月1日及3日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.31784375
transcript.pyannote[0].end 0.89159375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 1.81971875
transcript.pyannote[1].end 2.44409375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 1.97159375
transcript.pyannote[2].end 2.03909375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 2.71409375
transcript.pyannote[3].end 3.18659375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 4.01346875
transcript.pyannote[4].end 6.83159375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 7.00034375
transcript.pyannote[5].end 7.65846875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 12.51846875
transcript.pyannote[6].end 13.26096875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 13.73346875
transcript.pyannote[7].end 14.81346875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 15.03284375
transcript.pyannote[8].end 15.38721875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 15.38721875
transcript.pyannote[9].end 16.72034375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 15.40409375
transcript.pyannote[10].end 15.43784375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 17.05784375
transcript.pyannote[11].end 17.73284375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 18.23909375
transcript.pyannote[12].end 18.91409375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 19.04909375
transcript.pyannote[13].end 20.55096875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 20.68596875
transcript.pyannote[14].end 22.12034375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 22.30596875
transcript.pyannote[15].end 23.43659375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 23.72346875
transcript.pyannote[16].end 35.35034375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 36.39659375
transcript.pyannote[17].end 49.40721875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 49.98096875
transcript.pyannote[18].end 53.38971875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 53.86221875
transcript.pyannote[19].end 56.32596875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 56.74784375
transcript.pyannote[20].end 57.96284375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 59.16096875
transcript.pyannote[21].end 59.71784375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 60.62909375
transcript.pyannote[22].end 61.37159375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 62.02971875
transcript.pyannote[23].end 62.67096875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 63.34596875
transcript.pyannote[24].end 64.05471875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 64.39221875
transcript.pyannote[25].end 79.52909375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 81.25034375
transcript.pyannote[26].end 89.06346875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 89.28284375
transcript.pyannote[27].end 98.02409375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 98.02409375
transcript.pyannote[28].end 108.25034375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 107.45721875
transcript.pyannote[29].end 108.19971875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 108.25034375
transcript.pyannote[30].end 111.96284375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 108.82409375
transcript.pyannote[31].end 110.05596875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 111.96284375
transcript.pyannote[32].end 125.95221875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 124.87221875
transcript.pyannote[33].end 125.56409375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 125.95221875
transcript.pyannote[34].end 125.98596875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 125.98596875
transcript.pyannote[35].end 126.03659375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 126.03659375
transcript.pyannote[36].end 126.08721875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 126.08721875
transcript.pyannote[37].end 126.10409375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 126.10409375
transcript.pyannote[38].end 126.96471875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 126.96471875
transcript.pyannote[39].end 128.56784375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 128.93909375
transcript.pyannote[40].end 134.87909375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 134.25471875
transcript.pyannote[41].end 136.19534375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 135.21659375
transcript.pyannote[42].end 141.49409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 142.13534375
transcript.pyannote[43].end 146.15159375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 147.38346875
transcript.pyannote[44].end 153.50909375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 153.94784375
transcript.pyannote[45].end 157.98096875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 158.53784375
transcript.pyannote[46].end 167.02596875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 167.02596875
transcript.pyannote[47].end 167.21159375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 167.21159375
transcript.pyannote[48].end 167.22846875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 167.22846875
transcript.pyannote[49].end 167.59971875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 167.59971875
transcript.pyannote[50].end 167.78534375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 168.98346875
transcript.pyannote[51].end 169.00034375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 169.00034375
transcript.pyannote[52].end 185.89221875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 185.94284375
transcript.pyannote[53].end 186.01034375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 186.01034375
transcript.pyannote[54].end 188.37284375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 189.01409375
transcript.pyannote[55].end 194.34659375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 195.49409375
transcript.pyannote[56].end 219.27096875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 206.15909375
transcript.pyannote[57].end 207.72846875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 219.30471875
transcript.pyannote[58].end 220.04721875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 220.09784375
transcript.pyannote[59].end 220.16534375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 220.16534375
transcript.pyannote[60].end 222.62909375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 222.62909375
transcript.pyannote[61].end 222.89909375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 222.89909375
transcript.pyannote[62].end 224.01284375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 222.96659375
transcript.pyannote[63].end 223.00034375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 224.68784375
transcript.pyannote[64].end 233.14221875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 233.14221875
transcript.pyannote[65].end 238.59284375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 239.18346875
transcript.pyannote[66].end 240.66846875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 240.95534375
transcript.pyannote[67].end 241.02284375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 241.02284375
transcript.pyannote[68].end 241.71471875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 242.11971875
transcript.pyannote[69].end 242.57534375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 242.76096875
transcript.pyannote[70].end 243.40221875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 244.07721875
transcript.pyannote[71].end 244.66784375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 245.08971875
transcript.pyannote[72].end 246.28784375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 246.87846875
transcript.pyannote[73].end 248.14409375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 248.14409375
transcript.pyannote[74].end 248.16096875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 248.39721875
transcript.pyannote[75].end 249.24096875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 249.24096875
transcript.pyannote[76].end 249.25784375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 249.54471875
transcript.pyannote[77].end 250.60784375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 251.11409375
transcript.pyannote[78].end 267.22971875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 260.73284375
transcript.pyannote[79].end 261.96471875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 262.55534375
transcript.pyannote[80].end 264.44534375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 265.79534375
transcript.pyannote[81].end 267.19596875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 267.22971875
transcript.pyannote[82].end 269.03534375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 269.03534375
transcript.pyannote[83].end 269.52471875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 269.52471875
transcript.pyannote[84].end 269.54159375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 269.54159375
transcript.pyannote[85].end 280.05471875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 279.73409375
transcript.pyannote[86].end 280.94909375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 280.94909375
transcript.pyannote[87].end 280.96596875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 280.96596875
transcript.pyannote[88].end 281.67471875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 282.24846875
transcript.pyannote[89].end 283.61534375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 284.18909375
transcript.pyannote[90].end 284.66159375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 285.20159375
transcript.pyannote[91].end 286.73721875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 287.10846875
transcript.pyannote[92].end 288.98159375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 290.14596875
transcript.pyannote[93].end 292.23846875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 290.75346875
transcript.pyannote[94].end 292.17096875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 293.85846875
transcript.pyannote[95].end 295.09034375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 295.09034375
transcript.pyannote[96].end 298.76909375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 298.90409375
transcript.pyannote[97].end 300.65909375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 299.52846875
transcript.pyannote[98].end 300.30471875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 300.65909375
transcript.pyannote[99].end 300.67596875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 300.67596875
transcript.pyannote[100].end 300.70971875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 300.70971875
transcript.pyannote[101].end 303.78096875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 304.03409375
transcript.pyannote[102].end 304.45596875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 304.82721875
transcript.pyannote[103].end 306.83534375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 307.15596875
transcript.pyannote[104].end 311.72909375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 311.98221875
transcript.pyannote[105].end 316.89284375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 316.96034375
transcript.pyannote[106].end 321.44909375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 321.76971875
transcript.pyannote[107].end 323.40659375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 323.76096875
transcript.pyannote[108].end 325.12784375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 325.43159375
transcript.pyannote[109].end 330.34221875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 330.66284375
transcript.pyannote[110].end 334.62846875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 335.15159375
transcript.pyannote[111].end 343.18409375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 343.87596875
transcript.pyannote[112].end 347.18346875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 347.74034375
transcript.pyannote[113].end 348.71909375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 349.46159375
transcript.pyannote[114].end 355.57034375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 356.09346875
transcript.pyannote[115].end 356.97096875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 357.05534375
transcript.pyannote[116].end 362.53971875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 362.77596875
transcript.pyannote[117].end 364.49721875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 364.96971875
transcript.pyannote[118].end 366.20159375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 366.60659375
transcript.pyannote[119].end 368.56409375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 368.86784375
transcript.pyannote[120].end 370.65659375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 372.25971875
transcript.pyannote[121].end 386.72159375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 386.89034375
transcript.pyannote[122].end 389.60721875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 389.94471875
transcript.pyannote[123].end 390.41721875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 390.83909375
transcript.pyannote[124].end 411.27471875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 409.95846875
transcript.pyannote[125].end 413.85659375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 414.21096875
transcript.pyannote[126].end 415.81409375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 416.62409375
transcript.pyannote[127].end 421.29846875
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 421.85534375
transcript.pyannote[128].end 422.69909375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 422.96909375
transcript.pyannote[129].end 428.47034375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 429.06096875
transcript.pyannote[130].end 433.09409375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 433.49909375
transcript.pyannote[131].end 434.22471875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 434.41034375
transcript.pyannote[132].end 435.03471875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 435.50721875
transcript.pyannote[133].end 437.16096875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 437.43096875
transcript.pyannote[134].end 438.73034375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 438.84846875
transcript.pyannote[135].end 439.62471875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 440.55284375
transcript.pyannote[136].end 441.63284375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 442.12221875
transcript.pyannote[137].end 443.18534375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 443.60721875
transcript.pyannote[138].end 444.28221875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 444.46784375
transcript.pyannote[139].end 445.71659375
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 447.48846875
transcript.pyannote[140].end 449.20971875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 449.59784375
transcript.pyannote[141].end 452.44971875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 453.10784375
transcript.pyannote[142].end 454.62659375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 454.72784375
transcript.pyannote[143].end 455.31846875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 455.80784375
transcript.pyannote[144].end 472.07534375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 473.37471875
transcript.pyannote[145].end 477.82971875
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 478.57221875
transcript.pyannote[146].end 495.31221875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 495.93659375
transcript.pyannote[147].end 500.66159375
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 501.58971875
transcript.pyannote[148].end 510.12846875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 510.41534375
transcript.pyannote[149].end 515.49471875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 515.98409375
transcript.pyannote[150].end 516.32159375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 516.96284375
transcript.pyannote[151].end 520.62471875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 520.97909375
transcript.pyannote[152].end 524.74221875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 525.13034375
transcript.pyannote[153].end 533.02784375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 533.53409375
transcript.pyannote[154].end 540.99284375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 540.99284375
transcript.pyannote[155].end 541.21221875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 541.21221875
transcript.pyannote[156].end 558.47534375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 541.22909375
transcript.pyannote[157].end 541.26284375
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 559.48784375
transcript.pyannote[158].end 564.82034375
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 565.12409375
transcript.pyannote[159].end 574.25346875
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 574.65846875
transcript.pyannote[160].end 580.05846875
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 580.49721875
transcript.pyannote[161].end 585.12096875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 585.28971875
transcript.pyannote[162].end 595.78596875
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 597.20346875
transcript.pyannote[163].end 603.49784375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 602.24909375
transcript.pyannote[164].end 602.46846875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 602.53596875
transcript.pyannote[165].end 610.04534375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 610.45034375
transcript.pyannote[166].end 611.02409375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 611.26034375
transcript.pyannote[167].end 612.55971875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 613.25159375
transcript.pyannote[168].end 613.62284375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 614.36534375
transcript.pyannote[169].end 614.98971875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 615.46221875
transcript.pyannote[170].end 618.93846875
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 619.30971875
transcript.pyannote[171].end 632.26971875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 632.86034375
transcript.pyannote[172].end 636.20159375
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 636.94409375
transcript.pyannote[173].end 649.06034375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 648.84096875
transcript.pyannote[174].end 654.57846875
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 655.33784375
transcript.pyannote[175].end 657.70034375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 657.70034375
transcript.pyannote[176].end 663.62346875
transcript.whisperx[0].start 0.491
transcript.whisperx[0].end 6.626
transcript.whisperx[0].text 內政部華次長國家發展局副主委高副主委
transcript.whisperx[1].start 12.88
transcript.whisperx[1].end 35.12
transcript.whisperx[1].text 羅委員好市長好我想請教一下這個國人最關心的就是年輕人的一個就業的機會另外一個是居住的問題我想請問一下20歲到30歲就是剛出社會的年輕人大概有多少比例自己擁有自己的住宅
transcript.whisperx[2].start 37.005
transcript.whisperx[2].end 62.454
transcript.whisperx[2].text 這可能我要再查一下比例當然相對起來低很多跟一般民眾當然很低啦當然全國的住宅自由率現階段已經將近九成在全世界來講是非常非常高的一個國家是 所以我們特別從這個數字知道我們最關心的就是年輕人因為年輕人在台灣住不起生不起養不起
transcript.whisperx[3].start 63.633
transcript.whisperx[3].end 79.344
transcript.whisperx[3].text 這個是國安的重大危機啊所以我們要來大力的來支持年輕人多多來幫助他們另外一個數字是30歲到40歲有沒有統計過年輕人自有自購房屋的比率是多少
transcript.whisperx[4].start 82.012
transcript.whisperx[4].end 97.629
transcript.whisperx[4].text 其實一般來講我剛剛提到全國的自有率是大概將近9成嘛那年紀越高的自有率相對起來就會越高啦那20、30、30、40它的比例我們再查一下再跟委員報告好嗎
transcript.whisperx[5].start 98.129
transcript.whisperx[5].end 113.278
transcript.whisperx[5].text 是你剛剛說90%以上事實上這不是我們關係的數字啊因為你說張忠謀也好郭台銘也好他有10個房子20個房子不是是所有的家庭台灣所有的家庭有將近9成是擁有自由住宅
transcript.whisperx[6].start 114.058
transcript.whisperx[6].end 141.287
transcript.whisperx[6].text 對,所以我們現在最擔心的就是那10%可是往下延伸來推的話20歲到40歲他那個數字是會明顯偏高的不是10%可能啦,但是他的父母可能還有不少房子啦那父母是父母的啊天下有很多的年輕人啊自己還是要支持起立啊當然當然,大家都要努力所以我們今天講說居住爭議百萬的社宅現在距離目標還差多少
transcript.whisperx[7].start 143.22
transcript.whisperx[7].end 167.252
transcript.whisperx[7].text 到今年底的8020萬戶我們會達標我們看到整個數字讓人很擔心比如說租房子很多年輕人北上在雙北、在桃園、在基隆他們有一個工作很不容易可是微薄的薪資光是要付房租就付不起現在請問一下最近租金有沒有飆漲
transcript.whisperx[8].start 169.686
transcript.whisperx[8].end 194.028
transcript.whisperx[8].text 當然租金持續上漲這是一個常態那最近幾年租金上漲的幅度是稍微比過去高一些當然主席總署的資料一年是2.6個百分點其實也還沒有到飆漲但是確實比過去漲幅來得高一些一個年輕人如果在台北市平均的薪資如果是三萬八那請問他租一個房子要花多少錢
transcript.whisperx[9].start 196.263
transcript.whisperx[9].end 223.808
transcript.whisperx[9].text 臺北的房價當然市中心區跟郊區市中心區市中心區當然一坪一般來講現在可能一坪要到1700到2000塊左右所以住一個房子要多少錢當然就是說你有沒有必要住在市中心區的問題因為你住到內湖北投甚至在新北跟你住到大安那個租金可能是倍數的一個差別所以市長年輕的時間就是金錢當然他能
transcript.whisperx[10].start 224.724
transcript.whisperx[10].end 241.269
transcript.whisperx[10].text 主宰離工作環境越近的地方.他越有更多的時間.充裕的時間.是.所以這也是我們特別今天.因為有TPAS的協助.其實現在政府很多元的在協助年輕人.好.那如果說年輕人會樂於.
transcript.whisperx[11].start 244.127
transcript.whisperx[11].end 264.563
transcript.whisperx[11].text 感到政府的支持是開心的是滿意的那你就不要蓋了啊不是這樣啦當然我們都知道現在年輕人確實比我們年輕的時候辛苦很多那這個壓力我們都看到所以說拼了命我們在蓋我們拼了命所以說像租金補貼50萬戶你還是趕不上那個進度所以租金補貼50萬戶今年也會達標租金補貼50萬戶今年也會達標你們感覺市長你是覺得是缺錢還是缺人
transcript.whisperx[12].start 269.767
transcript.whisperx[12].end 272.609
transcript.whisperx[12].text 其實台灣很有錢有錢的資金吶包括這個超額儲蓄你知道手上大概超過多少
transcript.whisperx[13].start 291.088
transcript.whisperx[13].end 308.861
transcript.whisperx[13].text 請國會副主任這數據應該都有吧?這最近幾年大概每年大概都有3兆左右的套額儲蓄那你知道保險業的資金總資金有多少?好像30多億35兆30多兆
transcript.whisperx[14].start 312.425
transcript.whisperx[14].end 334.067
transcript.whisperx[14].text 因為國內有很多的資金很多投資的管道又不多所以之前很多業者根本反映兩件事情就是這些那麼多的閒置的資金可不可以開創一些好的投資管道讓他們回來在台灣投資
transcript.whisperx[15].start 335.228
transcript.whisperx[15].end 348.269
transcript.whisperx[15].text 第二個這些業者比較關心的問題就是保金保貸光是這些會員就有38萬人還有不包括同仁他們都是面臨一個問題加薪的問題
transcript.whisperx[16].start 349.522
transcript.whisperx[16].end 370.308
transcript.whisperx[16].text 怎麼照顧員工來加薪這應該要有個良性的循環所以不曉得高副主委你們怎麼樣有效把這些資金面引導到正確的方向比如說新加坡好了為什麼新加坡的主屋他做得很成功難道你們不能比照辦理嗎
transcript.whisperx[17].start 372.244
transcript.whisperx[17].end 390.794
transcript.whisperx[17].text 響鐘。響鐘。
transcript.whisperx[18].start 390.794
transcript.whisperx[18].end 392.015
transcript.whisperx[18].text 主席可不可以請金管會
transcript.whisperx[19].start 414.275
transcript.whisperx[19].end 433.857
transcript.whisperx[19].text 主委有請黃天牧主委還有財政部吧財政部莊部長財政部莊部長莊委長你好事實上我們在立法院這裡開會常常聽不到業者的聲音所以我們也希望說能多多一些交流多多來溝通
transcript.whisperx[20].start 435.58
transcript.whisperx[20].end 454.219
transcript.whisperx[20].text 主委對於這些產業是採取一個積極關心、輔導的立場還是不希望他們成長?作為一個監理機關要關心但是也保持距離這是必然的
transcript.whisperx[21].start 456.208
transcript.whisperx[21].end 471.881
transcript.whisperx[21].text 剛剛提到的就是海外的這些資金啊怎麼樣有效的引導回來剛剛高副主委也講如何有效把這些資金引導回來台灣這是很重要的事情啊保險法需要做什麼樣的修改
transcript.whisperx[22].start 473.407
transcript.whisperx[22].end 474.007
transcript.whisperx[22].text 主委,您的立場是會多多來照顧這些所有的產業嗎?
transcript.whisperx[23].start 501.633
transcript.whisperx[23].end 502.574
transcript.whisperx[23].text 國內大概就是保守有餘
transcript.whisperx[24].start 521.072
transcript.whisperx[24].end 532.723
transcript.whisperx[24].text 我希望主委能多多參考新加坡的做法他們不論是監體機關也好或是政府單位也好常常跟民間的業者有良性的溝通
transcript.whisperx[25].start 533.604
transcript.whisperx[25].end 558.28
transcript.whisperx[25].text 當然在溝通的同時也應該多聊聊怎麼樣來幫助員工提高他們的薪資過去新加坡所有的平均包括金融業的薪資從大概15年前到現在已經成長了大概兩倍多主委為什麼國內的員工國內認真打拚的這些年輕人薪水都漲不上去呢
transcript.whisperx[26].start 559.817
transcript.whisperx[26].end 583.709
transcript.whisperx[26].text 委員如果這分兩方面如果是上市位公司的部分我們透過用英的機制透過公開揭露讓上市位公司有獲利的能夠提升他的員工的薪水如果是金融業的話其實金融業的待遇相對來講我們這幾年都有獲利我想大家看到其實也都有增加的所以我想不同的上市位公司跟金融業兩個不同的方法
transcript.whisperx[27].start 585.33
transcript.whisperx[27].end 613.338
transcript.whisperx[27].text 主委我們需要力道能大一點因為這個薪資的上漲永遠追不上物價的上漲人民還是苦哈哈是我想另外我們有金融總會也定期會跟業者去做溝通的另外這有關00940這個高股息的ETF的投資今天一掛上市以後就
transcript.whisperx[28].start 614.44
transcript.whisperx[28].end 622.523
transcript.whisperx[28].text 下跌,將會不會影響到40萬個投資人的權益?所以是不是現在有持股的投資人不要急著賣?
transcript.whisperx[29].start 637.117
transcript.whisperx[29].end 638.338
transcript.whisperx[29].text 謝謝羅明才召委的質詢請接著我們請王宏威委員質詢