iVOD / 150744

Field Value
IVOD_ID 150744
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/150744
日期 2024-04-01
會議資料.會議代碼 委員會-11-1-20-6
會議資料.會議代碼:str 第11屆第1會期財政委員會第6次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 6
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第6次全體委員會議
影片種類 Clip
開始時間 2024-04-01T09:23:42+08:00
結束時間 2024-04-01T09:35:01+08:00
影片長度 00:11:19
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/01d093d00f1a07c07757cab43e946578ee14ad7ded5d841af8ba9b0039caa7a64ecdb07f450427e85ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林德福
委員發言時間 09:23:42 - 09:35:01
會議時間 2024-04-01T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第6次全體委員會議(事由:邀請財政部莊部長翠雲、金融監督管理委員會黃主任委員天牧、內政部、國家發展委員會就「如何積極推動金融業投注國內公共建設,並達成社宅百萬戶之政策目標」進行專題報告,並備質詢。 【4月1日及3日二天一次會】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 1.22909375
transcript.pyannote[0].end 1.78596875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 2.10659375
transcript.pyannote[1].end 2.76471875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 3.11909375
transcript.pyannote[2].end 16.38284375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 16.77096875
transcript.pyannote[3].end 26.67659375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 26.81159375
transcript.pyannote[4].end 27.57096875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 28.19534375
transcript.pyannote[5].end 33.46034375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 34.16909375
transcript.pyannote[6].end 40.93596875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 40.26096875
transcript.pyannote[7].end 40.95284375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 40.95284375
transcript.pyannote[8].end 41.02034375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 41.02034375
transcript.pyannote[9].end 41.86409375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 41.86409375
transcript.pyannote[10].end 42.28596875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 42.80909375
transcript.pyannote[11].end 45.69471875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 46.33596875
transcript.pyannote[12].end 48.56346875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 48.78284375
transcript.pyannote[13].end 49.35659375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 49.35659375
transcript.pyannote[14].end 49.59284375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 49.74471875
transcript.pyannote[15].end 52.09034375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 52.34346875
transcript.pyannote[16].end 54.97596875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 55.24596875
transcript.pyannote[17].end 60.20721875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 60.64596875
transcript.pyannote[18].end 63.64971875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 63.64971875
transcript.pyannote[19].end 63.71721875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 64.08846875
transcript.pyannote[20].end 64.10534375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 64.10534375
transcript.pyannote[21].end 64.96596875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 64.96596875
transcript.pyannote[22].end 76.74471875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 76.82909375
transcript.pyannote[23].end 77.97659375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 78.71909375
transcript.pyannote[24].end 82.46534375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 83.17409375
transcript.pyannote[25].end 85.90784375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 91.59471875
transcript.pyannote[26].end 97.45034375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 97.78784375
transcript.pyannote[27].end 103.23846875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 103.59284375
transcript.pyannote[28].end 112.90784375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 113.26221875
transcript.pyannote[29].end 120.82221875
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 121.51409375
transcript.pyannote[30].end 139.45221875
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 139.62096875
transcript.pyannote[31].end 146.92784375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 147.11346875
transcript.pyannote[32].end 148.48034375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 148.86846875
transcript.pyannote[33].end 156.93471875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 156.34409375
transcript.pyannote[34].end 157.00221875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 157.37346875
transcript.pyannote[35].end 165.45659375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 165.91221875
transcript.pyannote[36].end 168.27471875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 168.64596875
transcript.pyannote[37].end 169.43909375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 169.91159375
transcript.pyannote[38].end 171.81846875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 172.08846875
transcript.pyannote[39].end 172.83096875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 172.10534375
transcript.pyannote[40].end 172.76346875
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 172.98284375
transcript.pyannote[41].end 177.25221875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 177.50534375
transcript.pyannote[42].end 180.82971875
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 181.01534375
transcript.pyannote[43].end 190.49909375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 190.76909375
transcript.pyannote[44].end 195.12284375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 195.37596875
transcript.pyannote[45].end 195.39284375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 195.39284375
transcript.pyannote[46].end 195.40971875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 195.40971875
transcript.pyannote[47].end 195.78096875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 196.05096875
transcript.pyannote[48].end 202.48034375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 202.93596875
transcript.pyannote[49].end 217.39784375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 217.68471875
transcript.pyannote[50].end 219.16971875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 219.54096875
transcript.pyannote[51].end 219.55784375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 219.55784375
transcript.pyannote[52].end 228.11346875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 228.33284375
transcript.pyannote[53].end 247.73909375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 247.78971875
transcript.pyannote[54].end 254.70846875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 255.02909375
transcript.pyannote[55].end 264.74909375
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 255.06284375
transcript.pyannote[56].end 255.34971875
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 264.74909375
transcript.pyannote[57].end 296.49096875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 281.55659375
transcript.pyannote[58].end 283.39596875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 290.46659375
transcript.pyannote[59].end 291.14159375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 296.44034375
transcript.pyannote[60].end 298.88721875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 299.22471875
transcript.pyannote[61].end 299.98409375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 300.01784375
transcript.pyannote[62].end 300.38909375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 300.38909375
transcript.pyannote[63].end 300.77721875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 303.34221875
transcript.pyannote[64].end 303.73034375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 305.97471875
transcript.pyannote[65].end 335.91096875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 336.23159375
transcript.pyannote[66].end 338.74596875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 339.20159375
transcript.pyannote[67].end 343.62284375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 344.38221875
transcript.pyannote[68].end 345.88409375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 346.66034375
transcript.pyannote[69].end 355.68846875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 356.07659375
transcript.pyannote[70].end 357.22409375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 357.35909375
transcript.pyannote[71].end 365.83034375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 363.26534375
transcript.pyannote[72].end 363.83909375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 365.83034375
transcript.pyannote[73].end 369.27284375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 369.74534375
transcript.pyannote[74].end 373.45784375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 373.45784375
transcript.pyannote[75].end 394.39971875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 393.55596875
transcript.pyannote[76].end 400.10346875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 401.48721875
transcript.pyannote[77].end 409.99221875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 410.05971875
transcript.pyannote[78].end 410.14409375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 410.17784375
transcript.pyannote[79].end 424.03221875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 424.03221875
transcript.pyannote[80].end 431.64284375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 432.63846875
transcript.pyannote[81].end 435.62534375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 436.62096875
transcript.pyannote[82].end 455.75721875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 456.09471875
transcript.pyannote[83].end 475.43346875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 475.61909375
transcript.pyannote[84].end 478.45409375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 478.77471875
transcript.pyannote[85].end 480.90096875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 481.81221875
transcript.pyannote[86].end 497.72534375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 497.72534375
transcript.pyannote[87].end 509.20034375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 509.35221875
transcript.pyannote[88].end 515.66346875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 516.23721875
transcript.pyannote[89].end 519.37596875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 519.59534375
transcript.pyannote[90].end 520.33784375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 520.91159375
transcript.pyannote[91].end 540.90846875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 540.90846875
transcript.pyannote[92].end 545.24534375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 545.61659375
transcript.pyannote[93].end 564.02721875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 564.16221875
transcript.pyannote[94].end 595.75221875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 596.17409375
transcript.pyannote[95].end 596.86596875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 597.06846875
transcript.pyannote[96].end 600.15659375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 600.52784375
transcript.pyannote[97].end 604.91534375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 605.16846875
transcript.pyannote[98].end 621.57096875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 622.16159375
transcript.pyannote[99].end 628.18596875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 628.48971875
transcript.pyannote[100].end 631.08846875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 631.22346875
transcript.pyannote[101].end 632.70846875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 633.02909375
transcript.pyannote[102].end 635.03721875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 635.03721875
transcript.pyannote[103].end 635.07096875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 635.07096875
transcript.pyannote[104].end 635.77971875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 635.77971875
transcript.pyannote[105].end 639.79596875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 639.94784375
transcript.pyannote[106].end 641.17971875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 641.71971875
transcript.pyannote[107].end 644.09909375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 644.94284375
transcript.pyannote[108].end 650.30909375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 648.62159375
transcript.pyannote[109].end 651.74346875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 652.23284375
transcript.pyannote[110].end 652.55346875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 652.97534375
transcript.pyannote[111].end 656.78909375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 653.05971875
transcript.pyannote[112].end 655.30409375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 657.97034375
transcript.pyannote[113].end 658.88159375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 659.21909375
transcript.pyannote[114].end 667.03221875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 666.35721875
transcript.pyannote[115].end 671.97659375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 671.97659375
transcript.pyannote[116].end 672.04409375
transcript.whisperx[0].start 3.361
transcript.whisperx[0].end 17.965
transcript.whisperx[0].text 兩年前住都中心為確保如期達成中央6.9萬戶直接興建社宅的任務委由台灣銀行籌辦4,119億元的社宅連帶案對於今年底要達成20萬戶的社宅目標並且這個下階段社宅2032年要達到100萬戶的目標請問
transcript.whisperx[1].start 28.268
transcript.whisperx[1].end 44.85
transcript.whisperx[1].text 今年底的二十萬戶設宅部分民間金融業到底有沒有參與?各位報告當然經建設宅因為主要都是靠資金融通所以說當然我們都有民間有沒有參與嗎?你是指資金的面還是?對阿資金阿
transcript.whisperx[2].start 46.48
transcript.whisperx[2].end 63.487
transcript.whisperx[2].text 就是跟銀行融資啊當然有啊有喔未來要達到百萬戶的社宅這個的規劃目標你認為到底有沒有吸引公民營的這些金融業者參與籌辦整個社宅興建年代案的誘因啊
transcript.whisperx[3].start 64.287
transcript.whisperx[3].end 85.744
transcript.whisperx[3].text 報告委員其實兩年前我們跟台銀那個八個行庫的連單案實質上所有行庫都非常積極非常樂意的來支持我們那當然現在民間的銀行這個部分參與的比較少啦比較少對啊這個部分你要有誘因啊你沒有誘因他們怎麼會參與對不對那個莊部長你也上來好不好
transcript.whisperx[4].start 91.653
transcript.whisperx[4].end 104.203
transcript.whisperx[4].text 委員好部長簽約投資公共建設金額年三年突破1800億元那請問部長要引導金融業投入國內的公共建設你認為有哪些條件是需要考量的
transcript.whisperx[5].start 121.79
transcript.whisperx[5].end 147.727
transcript.whisperx[5].text 市委員報告金融業要投資到公共建設如同剛剛黃主委已經提到第一個金融業他必須要考量這個收益性安全性以及流動性因為錢都來自存款戶跟保險戶這是金融業在投資有關公共建設的時候他必須考慮的因素那當然我們的促餐有一些案件他其實是也符合這樣的一個相關條件比如說像民生的公用事業下水道的
transcript.whisperx[6].start 148.905
transcript.whisperx[6].end 177.032
transcript.whisperx[6].text 湖水道的建設或者是說物流中心以及焚化爐等等這些都是具有一個吸引金融業來投資的一個部長以這幾年這個民間參與的績效來看你認為哪些國家的國內的公共建設類別啊對這些吸引金融業投注啊是具有比較大的吸引力也就是說他要符合剛剛我們所講的幾個特性就是安全性
transcript.whisperx[7].start 177.552
transcript.whisperx[7].end 177.812
transcript.whisperx[7].text 主席
transcript.whisperx[8].start 195.41
transcript.whisperx[8].end 218.424
transcript.whisperx[8].text 部長,111年底新增出倉法擴大民間參與公共建設的類別新增綠營、影視營、資源循環再利用等設施及數位建設請問以金融業投資來說你認為能不能成為吸引力的選項
transcript.whisperx[9].start 219.946
transcript.whisperx[9].end 227.679
transcript.whisperx[9].text 我覺得是應該是有的因為這些建設也第一個也是重要的國家的一些重要建設比如說像綠能建設數位建設
transcript.whisperx[10].start 228.393
transcript.whisperx[10].end 254.597
transcript.whisperx[10].text 都是國家非常重要的一個建設因為其實初三法修正以後其實我們還增加了一個所謂有償取得公共服務的一個機制也就是說民間機構投注到我們的初三的公共建設裡面提供一個優質服務以後政府是以購買公共服務的方式來支付金額這個部分對於它的一個收益性跟流動性其實安全性都是有相當大的一個助力
transcript.whisperx[11].start 255.577
transcript.whisperx[11].end 271.746
transcript.whisperx[11].text 另外你認為政府會不會考量提供更多這些租稅優惠來作為吸引金融業投注國內公共建設的誘因呢?跟委員報告在出產法裡面本身就有相關的租稅優惠它只要是屬於重大公共建設範圍的話
transcript.whisperx[12].start 273.027
transcript.whisperx[12].end 273.427
transcript.whisperx[12].text 您們兩個請回去 請金管會黃主委
transcript.whisperx[13].start 303.397
transcript.whisperx[13].end 303.417
transcript.whisperx[13].text 諸位
transcript.whisperx[14].start 305.981
transcript.whisperx[14].end 306.041
transcript.whisperx[14].text 主席
transcript.whisperx[15].start 336.382
transcript.whisperx[15].end 336.843
transcript.whisperx[15].text 各位委員報告
transcript.whisperx[16].start 346.698
transcript.whisperx[16].end 347.219
transcript.whisperx[16].text 對阿就目前的狀況來看齁
transcript.whisperx[17].start 370.181
transcript.whisperx[17].end 393.859
transcript.whisperx[17].text 這個成效是不是有達到預期?您認為呢?報告委員其實這個要看共幾面的情況就是我們其實在公共建設方面法規制度做了很多放寬包括參與公共建設董事監察員的比例都提高了可是看起來要有一個足夠讓保險業願意去投資的標底適當的期間跟報酬率才會促成兩倍的
transcript.whisperx[18].start 394.46
transcript.whisperx[18].end 399.806
transcript.whisperx[18].text 這是主要的誘因嗎?如果不如預期那到底問題出在哪裡?是不是有其他配套的方案?
transcript.whisperx[19].start 401.533
transcript.whisperx[19].end 401.693
transcript.whisperx[19].text 主委
transcript.whisperx[20].start 424.917
transcript.whisperx[20].end 435.285
transcript.whisperx[20].text 風險係數下調後保險業持有的投資部位算出的風險資本也會減少有助拉高RBC主要
transcript.whisperx[21].start 436.69
transcript.whisperx[21].end 457.23
transcript.whisperx[21].text 目的是為了增強保險業投資國內公共建設的誘因至於業者是不是會加碼投資公共建設保險局也表示還是取決於業者對投資回報的風險等面向來做一個綜合考量主委財政部今年初統計2023年
transcript.whisperx[22].start 460.292
transcript.whisperx[22].end 480.638
transcript.whisperx[22].text 這個授權資金投入公共建設僅簽約兩個案子差不多合計的金額112.7億建樹還是4年來最少而且金額是創5年來最低媒體報導表示主要是保險業對收益率
transcript.whisperx[23].start 481.874
transcript.whisperx[23].end 497.086
transcript.whisperx[23].text 要求高,再加上防疫保單的後遺症請問主委以保險業目前的生態你認為國內公共建設有沒有足夠收益率的誘因能夠吸引這些保險業的資金投資嗎?
transcript.whisperx[24].start 498.067
transcript.whisperx[24].end 498.507
transcript.whisperx[24].text 經歷這幾年獲利不如預期
transcript.whisperx[25].start 520.953
transcript.whisperx[25].end 544.923
transcript.whisperx[25].text 如2026年初就要接軌負債會計這個IFRS17和新清償能力指標ICS請問加碼投資國內公共建設你認為對保險業營運是不是有好的一個營運選項的考量其實委員在我們今天報告中特別有提到去年年底
transcript.whisperx[26].start 545.703
transcript.whisperx[26].end 545.723
transcript.whisperx[26].text 這樣齁?是。
transcript.whisperx[27].start 564.181
transcript.whisperx[27].end 568.383
transcript.whisperx[27].text 主委,上個禮拜公布2024年二月保險業獲利淨值和匯兌成本一月受選業大賺318億元那二月略降到211億元月減超33%累積兩個月賺了529億元
transcript.whisperx[28].start 584.169
transcript.whisperx[28].end 603.611
transcript.whisperx[28].text 已經比去年同期虧轉盈媒體報導今年前兩個月新台幣貶值授權業有較多匯兌的利益再加上台股兩個月漲到一萬八千多點二月漲到一萬八千多點三月初漲到超過兩萬點
transcript.whisperx[29].start 605.293
transcript.whisperx[29].end 620.427
transcript.whisperx[29].text 那有助授權業從股票實現資本利得來支撐獲利第一季獲利可能不錯的表現那請問主委你認為年初保險業的獲利是不是可以說是來自景氣互輸的反饋
transcript.whisperx[30].start 622.809
transcript.whisperx[30].end 640.562
transcript.whisperx[30].text 其實委員您是專家您剛提的那幾點就是原因了匯率的問題股市它的資本利得的這個收得那但是這個情況未來會不會延續我們不清楚對於台股投資人提醒八個字注意風險省慎選股對保險業也適用嗎你認為
transcript.whisperx[31].start 644.98
transcript.whisperx[31].end 667.965
transcript.whisperx[31].text 我想對任何金融業都是要注意風險風險關鍵很重要那可不可以適用就是注意風險省慎選股我覺得金融業要如履薄冰如林森淵今年應該風險有很多我們要注意的地方這樣喔好謝謝謝謝委員好謝謝林德福委員質詢接著我們請吳秉樂委員質詢
transcript.whisperx[32].start 677.5
transcript.whisperx[32].end 678.695
transcript.whisperx[32].text 響鐘