iVOD / 150623

Field Value
IVOD_ID 150623
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/150623
日期 2024-03-28
會議資料.會議代碼 委員會-11-1-26-9
會議資料.會議代碼:str 第11屆第1會期社會福利及衛生環境委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第1會期社會福利及衛生環境委員會第9次全體委員會議
影片種類 Clip
開始時間 2024-03-28T11:43:22+08:00
結束時間 2024-03-28T11:50:59+08:00
影片長度 00:07:37
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8fc09d97f3151fdf3e87393ab48b8fbab83f090e56da198af8ba9b0039caa7a683b6116c1c0933fe5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 11:43:22 - 11:50:59
會議時間 2024-03-28T09:00:00+08:00
會議名稱 立法院第11屆第1會期社會福利及衛生環境委員會第9次全體委員會議(事由:一、邀請衛生福利部部長就「社會安全網缺失檢討及具體改進作法」進行專題報告,並備質詢。 二、邀請衛生福利部部長、教育部次長就「出養童遭虐致死事件檢討會議要求新北市政府、臺北市政府及兒童福利聯盟所提供之檢討報告」進行專題報告,並備質詢。 三、處理中華民國113年度中央政府總預算決議有關衛生福利部主管預算凍結案18案(報告事項)。【第18案,如經復議則不予處理】 【專題報告綜合詢答】 【3月27日及28日二天一次會】)
gazette.lineno 1553
gazette.blocks[0][0] 鄭天財Sra Kacaw委員:(11時43分)主席、各位委員。有請部長,還有教育部次長。
gazette.blocks[1][0] 主席:請薛部長,請林次長。
gazette.blocks[2][0] 薛部長瑞元:委員好。
gazette.blocks[3][0] 鄭天財Sra Kacaw委員:部長辛苦了,還有次長,今天看了你們的報告,比上次的好很多了,有比較詳細的、相關的檢討跟相關的因應。教育部這邊作為一個主管機關,真的你們要,不是爾後,現在就要去,針對兒盟這樣的一個機構、財團法人,直接就要去好好的檢討,尤其是過去沒有去注意到的地方。像它的監察人從 110年到現在就沒有,類似像這樣的對不對,次長,不是說爾後,現在就要好好地去檢視,然後該有的作為就應該要有所作為。
gazette.blocks[4][0] 林次長明裕:有,我們也令它即時的補選監察人,那一般如果沒有監察人、是屬於基金規模比較小……
gazette.blocks[5][0] 鄭天財Sra Kacaw委員:我只是舉例子,但是這是一個嚴重的兒童死亡案件,然後這些相關的制度、社工員的訪視各方面都有很多需要檢討的地方,包括保母的選擇,保母是最重要的,對不對?這個選擇顯然有問題嘛!對保母的選擇就不對了,一開始就沒有搞清楚嘛!所以這個部分要請教育部好好的針對這個事件,該有怎麼樣的處分,就依法來辦理,請次長回座。
gazette.blocks[5][1] 好,部長,今天我們來看這個資料,臺灣真的是一個很可悲的地方,我每次參加婚禮,除了祝福之外,我就是拜託他們多多的生孩子,你看我們的嬰兒出生數確實像是在溜滑梯,但是我們對孩童的協助,尤其是對脆弱家庭的協助,真的是非常非常的不足,所以才發生這樣的事情,我們新生兒、嬰兒的死亡數真的是很多。我剛剛有講過,今天衛福部的檢討報告比上次的內容有增進很多了,現在關於兒童、少年的最佳利益這個部分,因為我是原住民,我對這個最佳利益的考量交給民間機構一直是有意見的,譬如說,原住民的孩子要被出養是不是符合他的最佳利益,不能只看收養人是不是很有錢,你知道嗎?有時候是看這個族群的關係,也會有族群的因素,但是從來就欠缺這個部分,我們也沒辦法,因為那個都是要送到法院,由法院去看,我們也不能怪法官,因為他沒有時間,他也沒有那個能力,所以只好按照這個,所以這個制度要怎麼樣去強化是很重要的,兒少的最佳利益是一個關鍵。
gazette.blocks[6][0] 薛部長瑞元:對。
gazette.blocks[7][0] 鄭天財Sra Kacaw委員:另外,剛剛我談到的保母,我們常常從媒體報導或網路上看到孩童或老人家被虐待的影片,所以保母真的很重要,包括保母的選擇、保母的教育,然後還有社工員的選擇、社工員的教育,我就談社工員好了,社工師很難考,我認識的人都考不上社工師,但是他們在社工界非常棒,他能考上也要祝福他,但是不只是所謂的教育訓練,更重要的是他那個社工的角色要怎麼樣能夠落實在所有的工作上,請部長回應一下。
gazette.blocks[8][0] 薛部長瑞元:謝謝委員的質詢,這個部分包括社工,現在社工是不限於社工師,其他沒有考上執照但是有一定資格的人還是可以當社工人員。
gazette.blocks[9][0] 鄭天財Sra Kacaw委員:我知道。
gazette.blocks[10][0] 薛部長瑞元:包括我們的社工人員,包括我們的保母,其實大部分都是好的,我們現在主要在處理的就是怎麼樣預防一些不好的,能夠讓他不會惡意的去做這類的事情,其實我們從這一個案子得到的教訓是這樣子,所以我們必須先肯定大部分的保母都是好人,都是有好好做事的,重點是在制度上面要怎麼樣能夠把這些不好的排除,或者縱然他進來了,讓他也不敢做壞事。
gazette.blocks[11][0] 鄭天財Sra Kacaw委員:好,繼續加油,謝謝。
gazette.blocks[12][0] 薛部長瑞元:好,謝謝。
gazette.blocks[13][0] 主席:謝謝鄭天財委員,接下來請徐巧芯委員發言。
gazette.agenda.page_end 526
gazette.agenda.meet_id 委員會-11-1-26-9
gazette.agenda.speakers[0] 黃秀芳
gazette.agenda.speakers[1] 蘇清泉
gazette.agenda.speakers[2] 林月琴
gazette.agenda.speakers[3] 陳昭姿
gazette.agenda.speakers[4] 林淑芬
gazette.agenda.speakers[5] 陳菁徽
gazette.agenda.speakers[6] 王育敏
gazette.agenda.speakers[7] 廖偉翔
gazette.agenda.speakers[8] 涂權吉
gazette.agenda.speakers[9] 王正旭
gazette.agenda.speakers[10] 盧縣一
gazette.agenda.speakers[11] 郭昱晴
gazette.agenda.speakers[12] 鄭天財Sra Kacaw
gazette.agenda.speakers[13] 徐巧芯
gazette.agenda.speakers[14] 羅智強
gazette.agenda.speakers[15] 洪孟楷
gazette.agenda.speakers[16] 李彥秀
gazette.agenda.speakers[17] 李坤城
gazette.agenda.speakers[18] 陳培瑜
gazette.agenda.speakers[19] 張雅琳
gazette.agenda.speakers[20] 陳瑩
gazette.agenda.speakers[21] 劉建國
gazette.agenda.speakers[22] 黃珊珊
gazette.agenda.speakers[23] 楊曜
gazette.agenda.speakers[24] 邱鎮軍
gazette.agenda.speakers[25] 張啓楷
gazette.agenda.speakers[26] 陳冠廷
gazette.agenda.page_start 355
gazette.agenda.meetingDate[0] 2024-03-28
gazette.agenda.gazette_id 1132102
gazette.agenda.agenda_lcidc_ids[0] 1132102_00004
gazette.agenda.meet_name 立法院第11屆第1會期社會福利及衛生環境委員會第9次全體委員會議紀錄
gazette.agenda.content 一、邀請衛生福利部部長就「社會安全網缺失檢討及具體改進作法」進行專題報告,並備質詢; 二、邀請衛生福利部部長、教育部次長就「出養童遭虐致死事件檢討會議要求新北市政府、臺北 市政府及兒童福利聯盟所提供之檢討報告」進行專題報告,並備質詢;三、處理中華民國113年 度中央政府總預算決議有關衛生福利部主管預算凍結案 18 案(報告事項)。【專題報告綜合詢 答】
gazette.agenda.agenda_id 1132102_00002
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 25.07346875
transcript.pyannote[0].end 29.46096875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 29.54534375
transcript.pyannote[1].end 31.46909375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 34.15221875
transcript.pyannote[2].end 34.64159375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 35.35034375
transcript.pyannote[3].end 36.91971875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 37.62846875
transcript.pyannote[4].end 38.37096875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 39.67034375
transcript.pyannote[5].end 40.81784375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 41.72909375
transcript.pyannote[6].end 43.14659375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 44.22659375
transcript.pyannote[7].end 45.42471875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 46.01534375
transcript.pyannote[8].end 48.34409375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 48.52971875
transcript.pyannote[9].end 52.20846875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 52.56284375
transcript.pyannote[10].end 54.89159375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 55.60034375
transcript.pyannote[11].end 55.83659375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 57.00096875
transcript.pyannote[12].end 58.43534375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 59.17784375
transcript.pyannote[13].end 61.13534375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 62.94096875
transcript.pyannote[14].end 63.85221875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 66.58596875
transcript.pyannote[15].end 67.59846875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 67.85159375
transcript.pyannote[16].end 69.53909375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 70.83846875
transcript.pyannote[17].end 71.53034375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 72.18846875
transcript.pyannote[18].end 72.47534375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 73.03221875
transcript.pyannote[19].end 73.55534375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 74.28096875
transcript.pyannote[20].end 75.52971875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 75.88409375
transcript.pyannote[21].end 76.64346875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 77.97659375
transcript.pyannote[22].end 80.82846875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 81.73971875
transcript.pyannote[23].end 83.96721875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 84.70971875
transcript.pyannote[24].end 86.21159375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 86.49846875
transcript.pyannote[25].end 88.70909375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 89.68784375
transcript.pyannote[26].end 90.83534375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 91.25721875
transcript.pyannote[27].end 91.71284375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 93.87284375
transcript.pyannote[28].end 94.93596875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 95.81346875
transcript.pyannote[29].end 99.08721875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 100.03221875
transcript.pyannote[30].end 103.69409375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 104.11596875
transcript.pyannote[31].end 105.26346875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 106.07346875
transcript.pyannote[32].end 117.46409375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 113.00909375
transcript.pyannote[33].end 114.08909375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 114.98346875
transcript.pyannote[34].end 115.03409375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 115.28721875
transcript.pyannote[35].end 115.33784375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 118.34159375
transcript.pyannote[36].end 120.29909375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 120.94034375
transcript.pyannote[37].end 121.90221875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 122.57721875
transcript.pyannote[38].end 123.47159375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 124.58534375
transcript.pyannote[39].end 127.09971875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 128.28096875
transcript.pyannote[40].end 129.90096875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 130.37346875
transcript.pyannote[41].end 133.25909375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 133.93409375
transcript.pyannote[42].end 134.28846875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 134.60909375
transcript.pyannote[43].end 135.50346875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 136.68471875
transcript.pyannote[44].end 137.47784375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 139.78971875
transcript.pyannote[45].end 140.97096875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 141.83159375
transcript.pyannote[46].end 142.21971875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 143.08034375
transcript.pyannote[47].end 144.81846875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 145.10534375
transcript.pyannote[48].end 146.53971875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 146.79284375
transcript.pyannote[49].end 150.40409375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 151.33221875
transcript.pyannote[50].end 153.55971875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 153.81284375
transcript.pyannote[51].end 155.09534375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 155.50034375
transcript.pyannote[52].end 155.87159375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 156.71534375
transcript.pyannote[53].end 157.84596875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 158.77409375
transcript.pyannote[54].end 164.07284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 164.47784375
transcript.pyannote[55].end 165.87846875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 168.54471875
transcript.pyannote[56].end 169.82721875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 171.10971875
transcript.pyannote[57].end 172.64534375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 173.11784375
transcript.pyannote[58].end 174.04596875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 174.51846875
transcript.pyannote[59].end 175.32846875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 176.23971875
transcript.pyannote[60].end 177.52221875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 178.43346875
transcript.pyannote[61].end 179.73284375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 181.53846875
transcript.pyannote[62].end 183.24284375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 184.06971875
transcript.pyannote[63].end 184.96409375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 185.18346875
transcript.pyannote[64].end 187.27596875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 188.28846875
transcript.pyannote[65].end 189.79034375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 190.34721875
transcript.pyannote[66].end 193.28346875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 194.85284375
transcript.pyannote[67].end 195.10596875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 195.88221875
transcript.pyannote[68].end 196.87784375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 198.19409375
transcript.pyannote[69].end 199.37534375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 201.90659375
transcript.pyannote[70].end 203.88096875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 205.33221875
transcript.pyannote[71].end 207.93096875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 208.84221875
transcript.pyannote[72].end 210.85034375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 212.08221875
transcript.pyannote[73].end 217.41471875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 217.63409375
transcript.pyannote[74].end 221.02596875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 221.21159375
transcript.pyannote[75].end 221.53221875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 222.39284375
transcript.pyannote[76].end 223.08471875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 223.65846875
transcript.pyannote[77].end 225.86909375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 226.52721875
transcript.pyannote[78].end 227.89409375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 228.28221875
transcript.pyannote[79].end 230.52659375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 231.08346875
transcript.pyannote[80].end 232.51784375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 233.54721875
transcript.pyannote[81].end 234.86346875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 235.62284375
transcript.pyannote[82].end 236.88846875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 237.69846875
transcript.pyannote[83].end 238.91346875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 242.67659375
transcript.pyannote[84].end 243.55409375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 244.09409375
transcript.pyannote[85].end 244.38096875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 245.03909375
transcript.pyannote[86].end 248.31284375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 249.84846875
transcript.pyannote[87].end 251.62034375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 252.73409375
transcript.pyannote[88].end 253.76346875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 254.67471875
transcript.pyannote[89].end 256.53096875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 257.27346875
transcript.pyannote[90].end 258.20159375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 259.23096875
transcript.pyannote[91].end 261.82971875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 262.82534375
transcript.pyannote[92].end 263.06159375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 263.75346875
transcript.pyannote[93].end 265.82909375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 266.90909375
transcript.pyannote[94].end 267.09471875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 268.00596875
transcript.pyannote[95].end 269.40659375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 270.63846875
transcript.pyannote[96].end 272.79846875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 274.60409375
transcript.pyannote[97].end 275.07659375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 275.93721875
transcript.pyannote[98].end 276.39284375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 277.37159375
transcript.pyannote[99].end 278.51909375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 278.94096875
transcript.pyannote[100].end 279.78471875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 280.17284375
transcript.pyannote[101].end 283.04159375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 283.42971875
transcript.pyannote[102].end 283.80096875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 284.40846875
transcript.pyannote[103].end 285.82596875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 286.33221875
transcript.pyannote[104].end 288.86346875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 286.39971875
transcript.pyannote[105].end 287.00721875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 289.65659375
transcript.pyannote[106].end 291.85034375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 293.03159375
transcript.pyannote[107].end 294.60096875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 295.73159375
transcript.pyannote[108].end 297.13221875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 297.85784375
transcript.pyannote[109].end 300.22034375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 300.70971875
transcript.pyannote[110].end 302.11034375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 303.19034375
transcript.pyannote[111].end 303.49409375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 304.35471875
transcript.pyannote[112].end 305.95784375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 306.27846875
transcript.pyannote[113].end 307.69596875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 308.64096875
transcript.pyannote[114].end 309.63659375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 310.32846875
transcript.pyannote[115].end 312.74159375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 313.53471875
transcript.pyannote[116].end 314.29409375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 314.63159375
transcript.pyannote[117].end 314.98596875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 315.27284375
transcript.pyannote[118].end 316.21784375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 316.65659375
transcript.pyannote[119].end 318.10784375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 318.93471875
transcript.pyannote[120].end 321.11159375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 322.25909375
transcript.pyannote[121].end 323.79471875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 324.35159375
transcript.pyannote[122].end 328.03034375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 328.23284375
transcript.pyannote[123].end 328.65471875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 329.59971875
transcript.pyannote[124].end 333.32909375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 334.22346875
transcript.pyannote[125].end 336.19784375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 336.58596875
transcript.pyannote[126].end 336.90659375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 337.88534375
transcript.pyannote[127].end 339.53909375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 340.41659375
transcript.pyannote[128].end 341.90159375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 342.35721875
transcript.pyannote[129].end 343.55534375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 344.29784375
transcript.pyannote[130].end 346.13721875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 346.87971875
transcript.pyannote[131].end 348.26346875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 349.52909375
transcript.pyannote[132].end 350.81159375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 353.57909375
transcript.pyannote[133].end 354.35534375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 354.74346875
transcript.pyannote[134].end 355.99221875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 357.27471875
transcript.pyannote[135].end 357.57846875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 358.67534375
transcript.pyannote[136].end 360.85221875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 362.21909375
transcript.pyannote[137].end 363.88971875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 364.41284375
transcript.pyannote[138].end 365.40846875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 366.70784375
transcript.pyannote[139].end 366.99471875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 367.28159375
transcript.pyannote[140].end 373.12034375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 373.66034375
transcript.pyannote[141].end 374.62221875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 375.53346875
transcript.pyannote[142].end 375.92159375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 376.91721875
transcript.pyannote[143].end 380.03909375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 381.15284375
transcript.pyannote[144].end 385.11846875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 385.28721875
transcript.pyannote[145].end 386.95784375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 387.98721875
transcript.pyannote[146].end 389.13471875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 389.50596875
transcript.pyannote[147].end 391.78409375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 394.07909375
transcript.pyannote[148].end 396.89721875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 396.66096875
transcript.pyannote[149].end 401.41971875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 401.79096875
transcript.pyannote[150].end 402.43221875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 402.61784375
transcript.pyannote[151].end 411.54471875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 407.66346875
transcript.pyannote[152].end 408.43971875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 412.23659375
transcript.pyannote[153].end 416.99534375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 418.29471875
transcript.pyannote[154].end 423.74534375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 424.36971875
transcript.pyannote[155].end 424.63971875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 425.07846875
transcript.pyannote[156].end 433.75221875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 434.02221875
transcript.pyannote[157].end 434.46096875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 434.62971875
transcript.pyannote[158].end 437.88659375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 438.03846875
transcript.pyannote[159].end 440.31659375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 440.56971875
transcript.pyannote[160].end 446.79659375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 447.15096875
transcript.pyannote[161].end 451.43721875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 451.63971875
transcript.pyannote[162].end 451.70721875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 452.12909375
transcript.pyannote[163].end 454.76159375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 455.36909375
transcript.pyannote[164].end 457.29284375
transcript.whisperx[0].start 25.301
transcript.whisperx[0].end 47.817
transcript.whisperx[0].text 主席、各位委員有請部長還有教育部次長請薛部長、請林次長委員好部長辛苦了還有次長今天看了你們的報告比上次好很多
transcript.whisperx[1].start 48.666
transcript.whisperx[1].end 73.138
transcript.whisperx[1].text 有比較詳細的相關的這些檢討跟相關的因應那教育部這邊作為一個主管機關真的你們要不是噁後現在就要去針對兒童這樣的一個機構財團法人
transcript.whisperx[2].start 78.552
transcript.whisperx[2].end 104.984
transcript.whisperx[2].text 直接就要去好好地去檢討過去沒有去注意到像他的監察人從110年到現在就沒有類似像這樣對不對那個次長不是說噁後現在就要去好好地去檢視然後該有的作為就應該要有所作為有 我也認他
transcript.whisperx[3].start 106.404
transcript.whisperx[3].end 135.177
transcript.whisperx[3].text 及死的補選監察人那一般如果沒有監察人是屬於基金規模比較小的我只是舉例子啦但是以這個案對兒童的這樣的一個嚴重的死亡案件然後相關的這些制度社工員的訪視各方面都是很多需要檢討的包括那個保母的
transcript.whisperx[4].start 136.738
transcript.whisperx[4].end 165.549
transcript.whisperx[4].text 的選擇保姆最重要啊對不對這選擇顯然有問題嘛但是合作的合作選擇的就不對了嘛一開始就沒有搞清楚嘛所以這部分要請教一部好好的去針對這個事件然後要做應該該有怎麼樣的處分就該有怎麼樣的就依法依法來辦理請那個次長回頭
transcript.whisperx[5].start 168.581
transcript.whisperx[5].end 196.682
transcript.whisperx[5].text 好部長那今天這個資料我們看這個臺灣真的是一個很可悲的地方每次我參加結婚的我都拜託我除了祝福之外就是拜託多多多的生孩子你看我們的嬰兒出生數確實是在溜滑梯但是我們的
transcript.whisperx[6].start 198.217
transcript.whisperx[6].end 206.484
transcript.whisperx[6].text 新北市政府、臺北市政府及兒童福利聯盟所提供之檢討報告
transcript.whisperx[7].start 223.9
transcript.whisperx[7].end 251.443
transcript.whisperx[7].text 衛福部的檢討報告裡面我剛剛有講過這個比上次的所有的內容都增進很多了那現在就是說這個最佳利益兒童、少年的最佳利益這個部分因為我是原住民
transcript.whisperx[8].start 252.779
transcript.whisperx[8].end 276.23
transcript.whisperx[8].text 我對這個最佳利益的考量交給這個民間的機構我一直是有意見的比如說原住民的孩子要被出養是不是最佳利益不能只看他有沒有很有錢啊你知道嗎所以
transcript.whisperx[9].start 277.786
transcript.whisperx[9].end 301.474
transcript.whisperx[9].text 有時候是這個族群的關係也會有希望有族群的因素但是從來就欠缺這個部分我們也沒辦法因為那個都要送到法院啊所以要送到法院法院就看我們也不能怪法官啊他也沒時間他也沒有這個那個能力只好按照這個
transcript.whisperx[10].start 304.403
transcript.whisperx[10].end 306.383
transcript.whisperx[10].text 進行專題報告進行專題報告進行專題報告進行專題報告進行專題報告
transcript.whisperx[11].start 337.985
transcript.whisperx[11].end 360.572
transcript.whisperx[11].text 所以這個保姆很重要所以保姆的選擇保姆的教育然後社工研的選擇社工研的教育我就談社工研好了社工研啊社工師很難考啊我認識的人都考不上社工師啊
transcript.whisperx[12].start 362.247
transcript.whisperx[12].end 389.942
transcript.whisperx[12].text 但是他們在社工界非常棒所以這個教育訓練他能考上祝福他但是相關的教育訓練尤其那個那個不是所謂的教育訓練更重要的是他那個社工的角色的能夠怎麼樣能夠落實在這個所有的工作上這個是一個因為時間的關係這個
transcript.whisperx[13].start 397.832
transcript.whisperx[13].end 417.105
transcript.whisperx[13].text 謝謝委員的質詢這一個部分包括社工現在社工是不限於社工師其他沒有考上製造但是他一定資格的還是可以當社工人員包括我們的社工人員包括我們的保母其實大部分都是好的
transcript.whisperx[14].start 419.02
transcript.whisperx[14].end 423.585
transcript.whisperx[14].text 我們現在只是在處理的就是怎麼樣預防一些不好的
transcript.whisperx[15].start 425.234
transcript.whisperx[15].end 451.189
transcript.whisperx[15].text 能夠讓他不會有這種惡意的去做這些這類的事情其實我們這一個案子得到的教訓是這樣子所以我們必須先肯定大部分的都是好人都是好好做事的就是在制度上面怎麼樣讓他能夠把這一些不好的排除或者撞了他進來他也不敢做壞事
transcript.whisperx[16].start 453.118
transcript.whisperx[16].end 456.885
transcript.whisperx[16].text 好 繼續加油好 謝謝謝謝鄭天才委員