iVOD / 150503

Field Value
IVOD_ID 150503
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/150503
日期 2024-03-27
會議資料.會議代碼 委員會-11-1-36-9
會議資料.會議代碼:str 第11屆第1會期司法及法制委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.委員會代碼:str[0] 司法及法制委員會
會議資料.標題 第11屆第1會期司法及法制委員會第9次全體委員會議
影片種類 Clip
開始時間 2024-03-27T11:46:01+08:00
結束時間 2024-03-27T11:52:59+08:00
影片長度 00:06:58
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8fc09d97f3151fdfefd524cef45293a56e9ac27f41e17f3cf8ba9b0039caa7a6cc0bfe413a39fb5b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 11:46:01 - 11:52:59
會議時間 2024-03-27T09:00:00+08:00
會議名稱 立法院第11屆第1會期司法及法制委員會第9次全體委員會議(事由:一、邀請行政院人事行政總處人事長及行政院相關機關(含事業單位)列席就「政府機關推動人事服務數位轉型」進行專題報告,並備質詢。 二、審查及處理113年度中央政府總預算關於行政院人事行政總處及所屬主管預算凍結項目共8案。 【其中7案如經院會復議,則不予審查、處理】)
gazette.lineno 924
gazette.blocks[0][0] 鄭天財Sra Kacaw委員:(11時46分)主席、各位委員。有請人事長。
gazette.blocks[1][0] 蘇人事長俊榮:委員早。
gazette.blocks[2][0] 鄭天財Sra Kacaw委員:人事長好、辛苦了。我已經不只一次提了,蔡總統的原住民族就業政策,現在已經快八年了,要保障上萬「新的」工作機會、開創永續的原住民族經濟發展。政府要負擔保障原住民就業之責,人事行政總處就是其中之一。我們看公務人員特種考試,公務人員特種考試很久很久了,已經幾十年了,原民特考這幾年逐年減少,錄取人數更是逐年減少。如果相較於107年當時的一個考試規則,尤其是民國95年公務人員原民特考的附表十,這個附表現在已經沒有了。為什麼要特別要把這個列出來?你看看,當時有列在這個表裡面會進用原住民特考的有司法院、內政部、教育部、交通部、法務部、財政部、經濟部、外交部、衛生福利部、農委會、勞動部、僑委會、人事行政總處、主計總處、海巡署、退輔會、文化部還有各縣市政府,所以當時中央各部會都會進用。之前我質詢過,人事行政總處有一年有進用,後來又沒有進用,這幾年有進用嗎?
gazette.blocks[3][0] 蘇人事長俊榮:有,我們現在有從原民會挖了一個非常優秀的原住民同仁過來。
gazette.blocks[4][0] 鄭天財Sra Kacaw委員:我講的是特考,不是……
gazette.blocks[5][0] 蘇人事長俊榮:沒有。
gazette.blocks[6][0] 鄭天財Sra Kacaw委員:對啊,之前有列,所以這個部分是這樣。就以原民會的人事室來講,過去人事室主任是原住民,而且是原住民族裡面人口最少的邵族去擔任主任,都是在省府時代透過原住民行政特考所培養出來的,現在他退休很多年了。
gazette.blocks[7][0] 蘇人事長俊榮:我跟委員補充一下,人總今年沒有提原住民的特考,可是我們整個人事體系的總共提了三位。
gazette.blocks[8][0] 鄭天財Sra Kacaw委員:這個一條鞭,三位太少了,所以這個部分……
gazette.blocks[9][0] 蘇人事長俊榮:會再加強,會再加強。
gazette.blocks[10][0] 鄭天財Sra Kacaw委員:不只是要這樣,因為所有各部會提報有兩個管道,以中央部會來講都是人事單位。人事室、人事處在負責的,都是一條鞭的。它要提報到高考、普考還是要提報到原住民族行政特考,就是人事單位在負責,所以這個部分要去協調。我為什麼要特別列?就是這幾年各部會都不提,你們想想看,當時連外交部都提、僑委會都提,我那時候當副主委,我就拜託人事行政總處去指定、指示各部會的人事處。因為你們都是一條鞭,所以各部會一定要主動才有辦法去增加或是維持,但是目前是遞減,這個部分人事長可以請同仁來協調各部會的人事處嗎?
gazette.blocks[11][0] 蘇人事長俊榮:有,我會積極努力來做,除了提報缺額以外,委員很在乎的原住民同仁在人事機關的這一種升遷的路徑,事實上目前臺東跟宜蘭的副處長也都是具原住民身分。
gazette.blocks[12][0] 鄭天財Sra Kacaw委員:要繼續努力。好,接下來是原住民族博物館,原住民族已經等待超過八年以上了。因為時間的關係我就不一個一個來談,就看最後一個部分,有一個公文就是說,原民會有函報給國發會有關原住民族博物館的一個籌備處的文,你們到現在還沒有同意,是不是可以請人事行政總處這邊來支持?就是原住民族博物館的籌備處。
gazette.blocks[13][0] 蘇人事長俊榮:在今年的2月2號的時候監察院有約詢,我們有請原民會提供一些相關的資料,會盡力來支持。
gazette.blocks[14][0] 鄭天財Sra Kacaw委員:因為111年的時候,原民會有答復說他們有提報國立原住民族博物館籌備處的暫行組織規程給行政院,行政院交給人事行政總處,這個部分要積極的來處理。
gazette.blocks[15][0] 蘇人事長俊榮:好,謝謝。
gazette.blocks[16][0] 鄭天財Sra Kacaw委員:主動請原民會再提報一次,好不好?
gazette.blocks[17][0] 蘇人事長俊榮:好,好,謝謝。
gazette.blocks[18][0] 主席(吳委員宗憲代):好,謝謝。接下來請游顥委員、游顥委員、游顥委員不在。
gazette.blocks[18][1] 請蘇清泉委員、蘇清泉委員、蘇清泉委員不在。
gazette.blocks[18][2] 請楊瓊瓔委員、楊瓊瓔委員、楊瓊瓔委員不在。
gazette.blocks[18][3] 請鄭正鈐委員、鄭正鈐委員、鄭正鈐委員不在。
gazette.blocks[18][4] 請林德福委員、林德福委員、林德福委員不在。
gazette.blocks[18][5] 目前所有登記發言委員均已發言完畢,詢答結束,委員質詢時若要求提供相關資料或以書面答復者,請相關機關儘速送交個別委員及本會。現在休息,休息後我們再繼續處理預算解凍案。
gazette.blocks[18][6] 休息(11時54分)
gazette.blocks[18][7] 繼續開會(11時57分)
gazette.agenda.page_end 210
gazette.agenda.meet_id 委員會-11-1-36-9
gazette.agenda.speakers[0] 鍾佳濱
gazette.agenda.speakers[1] 黃國昌
gazette.agenda.speakers[2] 沈發惠
gazette.agenda.speakers[3] 陳俊宇
gazette.agenda.speakers[4] 林思銘
gazette.agenda.speakers[5] 羅智強
gazette.agenda.speakers[6] 莊瑞雄
gazette.agenda.speakers[7] 吳思瑤
gazette.agenda.speakers[8] 翁曉玲
gazette.agenda.speakers[9] 謝龍介
gazette.agenda.speakers[10] 傅崐萁
gazette.agenda.speakers[11] 吳宗憲
gazette.agenda.speakers[12] 鄭天財Sra Kacaw
gazette.agenda.page_start 151
gazette.agenda.meetingDate[0] 2024-03-27
gazette.agenda.gazette_id 1132001
gazette.agenda.agenda_lcidc_ids[0] 1132001_00008
gazette.agenda.meet_name 立法院第11屆第1會期司法及法制委員會第9次全體委員會議紀錄
gazette.agenda.content 一、邀請行政院人事行政總處人事長及行政院相關機關(含事業單位)列席就「政府機關推動人 事服務數位轉型」進行專題報告,並備質詢;二、審查及處理113年度中央政府總預算關於行政 院人事行政總處及所屬主管預算凍結項目共7案
gazette.agenda.agenda_id 1132001_00017
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 6.76409375
transcript.pyannote[0].end 8.99159375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 12.56909375
transcript.pyannote[1].end 15.58971875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 19.52159375
transcript.pyannote[2].end 22.23846875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 22.94721875
transcript.pyannote[3].end 26.60909375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 27.26721875
transcript.pyannote[4].end 31.70534375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 32.21159375
transcript.pyannote[5].end 33.73034375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 34.47284375
transcript.pyannote[6].end 40.32846875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 40.95284375
transcript.pyannote[7].end 45.72846875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 46.21784375
transcript.pyannote[8].end 50.30159375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 50.92596875
transcript.pyannote[9].end 53.86221875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 54.35159375
transcript.pyannote[10].end 60.98346875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 61.87784375
transcript.pyannote[11].end 62.82284375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 63.00846875
transcript.pyannote[12].end 63.02534375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 63.05909375
transcript.pyannote[13].end 64.10534375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 64.99971875
transcript.pyannote[14].end 65.74221875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 66.94034375
transcript.pyannote[15].end 68.40846875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 69.18471875
transcript.pyannote[16].end 69.60659375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 70.02846875
transcript.pyannote[17].end 71.53034375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 72.49221875
transcript.pyannote[18].end 74.16284375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 76.45784375
transcript.pyannote[19].end 78.83721875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 79.64721875
transcript.pyannote[20].end 80.99721875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 82.00971875
transcript.pyannote[21].end 85.40159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 86.07659375
transcript.pyannote[22].end 86.51534375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 87.12284375
transcript.pyannote[23].end 89.53596875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 90.09284375
transcript.pyannote[24].end 91.57784375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 92.69159375
transcript.pyannote[25].end 93.82221875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 93.92346875
transcript.pyannote[26].end 95.29034375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 96.26909375
transcript.pyannote[27].end 97.28159375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 97.53471875
transcript.pyannote[28].end 99.17159375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 100.09971875
transcript.pyannote[29].end 102.54659375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 102.69846875
transcript.pyannote[30].end 103.52534375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 104.89221875
transcript.pyannote[31].end 106.02284375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 106.76534375
transcript.pyannote[32].end 108.70596875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 109.43159375
transcript.pyannote[33].end 110.41034375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 110.59596875
transcript.pyannote[34].end 111.47346875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 112.13159375
transcript.pyannote[35].end 113.16096875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 114.52784375
transcript.pyannote[36].end 120.43409375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 121.22721875
transcript.pyannote[37].end 126.23909375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 126.98159375
transcript.pyannote[38].end 128.73659375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 130.10346875
transcript.pyannote[39].end 131.41971875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 131.67284375
transcript.pyannote[40].end 133.37721875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 133.98471875
transcript.pyannote[41].end 135.03096875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 136.16159375
transcript.pyannote[42].end 137.14034375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 137.71409375
transcript.pyannote[43].end 139.03034375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 139.97534375
transcript.pyannote[44].end 140.97096875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 142.00034375
transcript.pyannote[45].end 143.55284375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 144.10971875
transcript.pyannote[46].end 145.71284375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 146.15159375
transcript.pyannote[47].end 147.28221875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 147.75471875
transcript.pyannote[48].end 148.96971875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 149.57721875
transcript.pyannote[49].end 150.89346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 151.90596875
transcript.pyannote[50].end 152.53034375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 152.69909375
transcript.pyannote[51].end 160.78221875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 160.47846875
transcript.pyannote[52].end 160.83284375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 160.83284375
transcript.pyannote[53].end 160.91721875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 161.49096875
transcript.pyannote[54].end 162.73971875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 163.75221875
transcript.pyannote[55].end 163.97159375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 163.97159375
transcript.pyannote[56].end 164.14034375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 164.14034375
transcript.pyannote[57].end 164.17409375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 164.17409375
transcript.pyannote[58].end 164.20784375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 164.20784375
transcript.pyannote[59].end 164.30909375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 164.30909375
transcript.pyannote[60].end 165.57471875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 166.33409375
transcript.pyannote[61].end 166.50284375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 166.50284375
transcript.pyannote[62].end 167.65034375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 168.13971875
transcript.pyannote[63].end 169.67534375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 170.13096875
transcript.pyannote[64].end 171.64971875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 172.81409375
transcript.pyannote[65].end 174.02909375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 174.18096875
transcript.pyannote[66].end 175.58159375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 176.67846875
transcript.pyannote[67].end 177.96096875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 178.33221875
transcript.pyannote[68].end 180.03659375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 180.34034375
transcript.pyannote[69].end 181.15034375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 181.50471875
transcript.pyannote[70].end 182.21346875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 182.95596875
transcript.pyannote[71].end 183.61409375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 183.98534375
transcript.pyannote[72].end 186.46596875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 187.00596875
transcript.pyannote[73].end 189.13221875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 189.80721875
transcript.pyannote[74].end 194.71784375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 195.02159375
transcript.pyannote[75].end 196.38846875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 196.38846875
transcript.pyannote[76].end 196.54034375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 196.54034375
transcript.pyannote[77].end 198.02534375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 198.02534375
transcript.pyannote[78].end 211.76159375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 212.41971875
transcript.pyannote[79].end 215.96346875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 215.96346875
transcript.pyannote[80].end 216.16596875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 216.16596875
transcript.pyannote[81].end 216.19971875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 216.19971875
transcript.pyannote[82].end 216.21659375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 216.52034375
transcript.pyannote[83].end 217.66784375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 218.46096875
transcript.pyannote[84].end 218.98409375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 219.79409375
transcript.pyannote[85].end 221.11034375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 221.90346875
transcript.pyannote[86].end 222.81471875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 224.13096875
transcript.pyannote[87].end 225.54846875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 226.47659375
transcript.pyannote[88].end 227.69159375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 228.43409375
transcript.pyannote[89].end 229.17659375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 229.91909375
transcript.pyannote[90].end 231.06659375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 231.53909375
transcript.pyannote[91].end 232.95659375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 232.97346875
transcript.pyannote[92].end 233.02409375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 233.29409375
transcript.pyannote[93].end 235.67346875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 236.56784375
transcript.pyannote[94].end 237.63096875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 238.17096875
transcript.pyannote[95].end 239.31846875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 240.24659375
transcript.pyannote[96].end 241.37721875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 241.93409375
transcript.pyannote[97].end 243.50346875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 244.46534375
transcript.pyannote[98].end 246.25409375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 246.74346875
transcript.pyannote[99].end 248.27909375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 248.46471875
transcript.pyannote[100].end 250.28721875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 250.43909375
transcript.pyannote[101].end 252.37971875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 253.32471875
transcript.pyannote[102].end 254.10096875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 254.18534375
transcript.pyannote[103].end 255.26534375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 255.99096875
transcript.pyannote[104].end 257.37471875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 258.48846875
transcript.pyannote[105].end 259.80471875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 261.52596875
transcript.pyannote[106].end 263.63534375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 264.12471875
transcript.pyannote[107].end 267.01034375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 267.58409375
transcript.pyannote[108].end 270.26721875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 271.49909375
transcript.pyannote[109].end 275.49846875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 275.93721875
transcript.pyannote[110].end 277.54034375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 277.69221875
transcript.pyannote[111].end 280.27409375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 280.74659375
transcript.pyannote[112].end 281.99534375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 282.97409375
transcript.pyannote[113].end 283.68284375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 283.88534375
transcript.pyannote[114].end 286.88909375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 287.49659375
transcript.pyannote[115].end 289.57221875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 290.17971875
transcript.pyannote[116].end 292.03596875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 292.64346875
transcript.pyannote[117].end 293.43659375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 293.43659375
transcript.pyannote[118].end 293.95971875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 293.95971875
transcript.pyannote[119].end 293.99346875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 294.36471875
transcript.pyannote[120].end 318.83346875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 318.63096875
transcript.pyannote[121].end 319.77846875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 320.45346875
transcript.pyannote[122].end 322.52909375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 323.17034375
transcript.pyannote[123].end 324.58784375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 325.60034375
transcript.pyannote[124].end 329.39721875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 329.90346875
transcript.pyannote[125].end 336.97409375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 338.49284375
transcript.pyannote[126].end 338.99909375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 341.59784375
transcript.pyannote[127].end 341.86784375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 342.57659375
transcript.pyannote[128].end 342.69471875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 343.75784375
transcript.pyannote[129].end 345.39471875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 346.17096875
transcript.pyannote[130].end 347.75721875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 348.44909375
transcript.pyannote[131].end 351.60471875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 352.17846875
transcript.pyannote[132].end 353.24159375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 353.69721875
transcript.pyannote[133].end 356.66721875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 357.35909375
transcript.pyannote[134].end 363.53534375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 364.22721875
transcript.pyannote[135].end 367.29846875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 368.04096875
transcript.pyannote[136].end 370.82534375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 375.87096875
transcript.pyannote[137].end 375.88784375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 375.88784375
transcript.pyannote[138].end 376.44471875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 376.73159375
transcript.pyannote[139].end 377.37284375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 377.57534375
transcript.pyannote[140].end 389.10096875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 390.40034375
transcript.pyannote[141].end 392.29034375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 392.69534375
transcript.pyannote[142].end 394.34909375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 394.66971875
transcript.pyannote[143].end 396.37409375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 397.11659375
transcript.pyannote[144].end 397.97721875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 398.31471875
transcript.pyannote[145].end 403.32659375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 403.64721875
transcript.pyannote[146].end 407.25846875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 408.06846875
transcript.pyannote[147].end 415.30784375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 412.48971875
transcript.pyannote[148].end 413.06346875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 414.41346875
transcript.pyannote[149].end 414.91971875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 414.97034375
transcript.pyannote[150].end 415.27409375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 415.30784375
transcript.pyannote[151].end 416.18534375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 416.18534375
transcript.pyannote[152].end 417.24846875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 416.25284375
transcript.pyannote[153].end 416.75909375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 417.58596875
transcript.pyannote[154].end 418.07534375
transcript.whisperx[0].start 6.766
transcript.whisperx[0].end 33.432
transcript.whisperx[0].text 好,我們請政委員天才主席,各位委員,有請人事長委員長,人事長好,辛苦了我看這個,我已經不只一次提了這個蔡總統的一個原住民族就業的政策現在已經這個快8年了
transcript.whisperx[1].start 34.52
transcript.whisperx[1].end 60.648
transcript.whisperx[1].text 要保障上萬新的工作機會開創永續的原住民族經濟發展政府要負擔保障原住民就業之責人事行政總處其中之一公務令特種考試公務令特種考試很久很久了已經幾十年了
transcript.whisperx[2].start 61.926
transcript.whisperx[2].end 80.757
transcript.whisperx[2].text 我們看這個嚴明特考這幾年了逐年減少這個入企人數更是逐年減少如果我們去相較於這個107年107年這是一個當時的一個考試規則好尤其是民國95年民國95年的
transcript.whisperx[3].start 93.105
transcript.whisperx[3].end 120.214
transcript.whisperx[3].text 公務人員移民特考的副表10這個副表現在已經沒有了當時為什麼要特別要把這個列出來的你看看當時有列在這個表裡面的有司法院他會禁用員住民特考內政部、教育部、交通部、法務部、財政部、經濟部、外交部、衛生福利部
transcript.whisperx[4].start 121.277
transcript.whisperx[4].end 140.667
transcript.whisperx[4].text 啊、農委會、勞動部、僑委會、人事行政總處、主計總處、海巡署、退府會、文化部、各縣市政府。所以當時啊、中央各部會都會禁用
transcript.whisperx[5].start 142.305
transcript.whisperx[5].end 171.088
transcript.whisperx[5].text 這個之前我質詢過人事行政總處有一年有禁用後來又沒有禁用這幾年有禁用嗎?有有我們現在有有從人民會挖了一個非常優秀的原住民同仁過來不是我講的是特考不是不是沒有對啊之前有喔有列喔所以這個部分是這樣
transcript.whisperx[6].start 172.864
transcript.whisperx[6].end 181.958
transcript.whisperx[6].text 由我們就以這個園民會的人事室來講啊過去人事室主任是原住民哦而且是
transcript.whisperx[7].start 183.064
transcript.whisperx[7].end 211.283
transcript.whisperx[7].text 超原住民族裡面人口最少的少族去擔任主任喔那個都是在神父時代啊所培養的透過原住民行政特考所培養出來的現在他退休很多年了我跟委員補充一下齁人總今年沒有提原住民的特考可是我們整個人事體系的總共提了3位3位?對有提3位這個一條邊3位是太少了齁
transcript.whisperx[8].start 212.672
transcript.whisperx[8].end 239.077
transcript.whisperx[8].text 所以這個部會在加獎啦會在加獎對不只是要這樣因為所有各部會要提報有兩個管道嘛以中央部會來講一個你要都是人事單位啊人事室人事處在負責的嘛都是你一條邊的他要提報到高考補考
transcript.whisperx[9].start 240.445
transcript.whisperx[9].end 259.46
transcript.whisperx[9].text 還是要提報到嚴重民主行政特考就是人事單位在負責所以這個部分要去協調為什麼要特別列這個就是這幾年各部會都不提當時很 你們想想看連外交部都提喲僑委會都提喲
transcript.whisperx[10].start 261.527
transcript.whisperx[10].end 282.244
transcript.whisperx[10].text 議員議員議員議員議員
transcript.whisperx[11].start 282.978
transcript.whisperx[11].end 294.206
transcript.whisperx[11].text 議員議員議員議員
transcript.whisperx[12].start 294.423
transcript.whisperx[12].end 296.964
transcript.whisperx[12].text 接下來這個博物館
transcript.whisperx[13].start 323.263
transcript.whisperx[13].end 336.559
transcript.whisperx[13].text 原住民族博物館原住民族已經等待超過8年以上了那因為時間的關係我就不繼續一個一個來談我就看最後一個部分這個
transcript.whisperx[14].start 343.838
transcript.whisperx[14].end 369.617
transcript.whisperx[14].text 有一個文號就是說這個顏明會顏明會有含報給這個國發會就是有關原住民族博物館的一個籌備處籌備處的這個你們到現在還沒有寫同意是不是可以請人事行政總處這邊來支持就是原住民族博物館的籌備處
transcript.whisperx[15].start 378.02
transcript.whisperx[15].end 395.511
transcript.whisperx[15].text 我們在今年的2月2號的時候監察院有約詢那我們有請園民會提供一些相關的資料我們會盡力來支持因為111年的時候園民會有答覆就是說他們有提報這個
transcript.whisperx[16].start 399.127
transcript.whisperx[16].end 408.276
transcript.whisperx[16].text 國立原住民族博物館籌備處的暫行組織規程報給行政院,行政院交給人事行政總處,這個部分要積極的來處理。