iVOD / 150375

Field Value
IVOD_ID 150375
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/150375
日期 2024-03-25
會議資料.會議代碼 委員會-11-1-26-8
會議資料.會議代碼:str 第11屆第1會期社會福利及衛生環境委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第1會期社會福利及衛生環境委員會第8次全體委員會議
影片種類 Clip
開始時間 2024-03-25T12:02:24+08:00
結束時間 2024-03-25T12:09:49+08:00
影片長度 00:07:25
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b2b855ee35a005bd0dd74dce529aa44e5559e54a1be29d3f8ba9b0039caa7a61ee19b822c4e652d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 12:02:24 - 12:09:49
會議時間 2024-03-25T09:00:00+08:00
會議名稱 立法院第11屆第1會期社會福利及衛生環境委員會第8次全體委員會議(事由:一、邀請勞動部部長就「事業單位應加強安全衛生管理制度、作業流程及必要教育訓練,並落實職場防災管理」進行專題報告,並備質詢。 二、處理中華民國113年度中央政府總預算有關勞動部主管預算凍結案21案(含報告事項20案及討論事項1案)。 【專題報告及討論事項綜合詢答】)
gazette.lineno 945
gazette.blocks[0][0] 賴委員士葆:(12時2分)謝謝主席以及各位先進。有請許部長。
gazette.blocks[1][0] 主席:請許部長。
gazette.blocks[2][0] 許部長銘春:委員好。
gazette.blocks[3][0] 賴委員士葆:你好,我比較關心勞保外面的數字,大家很擔心的一點,關於2028年勞保會破產,假如都按照現況走向,勞保的潛在負債高達12兆元之多,這兩個數字你要不要回應一下?
gazette.blocks[4][0] 許部長銘春:報告委員,這個……
gazette.blocks[5][0] 賴委員士葆:2028年勞保會破產,對不對?
gazette.blocks[6][0] 許部長銘春:2028年勞保基金用罄的說法是根據上一次的精算報告,精算報告是每三年精算一次,今年還會再精算,到年底才會知道大概實際的狀況會是怎樣,這都是一些參考,讓我們面對勞保財務的問題看怎麼樣處理,而潛藏的負債也是根據現在相關的資料……
gazette.blocks[7][0] 賴委員士葆:這兩個數字都對吧?這兩個都是已經講過好幾次的數字了……
gazette.blocks[8][0] 許部長銘春:是。
gazette.blocks[9][0] 賴委員士葆:都講過好幾次了,所以這個數字是對的,對不對?請問政府要撥補給勞保多少錢?
gazette.blocks[10][0] 許部長銘春:到目前為止一共2,670億元。
gazette.blocks[11][0] 賴委員士葆:去年的撥補金額是多少?
gazette.blocks[12][0] 許部長銘春:去年是550億元。
gazette.blocks[13][0] 賴委員士葆:500多億元嘛!
gazette.blocks[14][0] 許部長銘春:550億元,公務預算是450億元,特別預算是100億元,所以去年是550億元;今年的公務預算是1,200億元,特別預算是100億元,所以今年是1,300億元;從109年到現在,五年以來撥補總編列的預算是2,670億元。
gazette.blocks[15][0] 賴委員士葆:這樣可以撐多久?我就問你一個比較白話的問題,政府要每年撥補勞保多少錢才能讓勞保不會在2028年破產?這樣比較簡單。
gazette.blocks[16][0] 許部長銘春:報告委員,因為……
gazette.blocks[17][0] 賴委員士葆:沒辦法計算?
gazette.blocks[18][0] 許部長銘春:報告委員,如果我們……
gazette.blocks[19][0] 賴委員士葆:請按照現在來講。
gazette.blocks[20][0] 許部長銘春:如果按照今年的撥補預算1,300億元而言,撥補1,300億元,可以到122年。
gazette.blocks[21][0] 賴委員士葆:就到2023年而已?
gazette.blocks[22][0] 許部長銘春:不是。
gazette.blocks[23][0] 賴委員士葆:112年是2023年。
gazette.blocks[24][0] 許部長銘春:122年。
gazette.blocks[25][0] 賴委員士葆:122年就是2033年,所以能再拖五年,確定喔?今天這個是全國都在看的數字,所以每年要給你撥補多少?問你這個數字,你一直沒有回答我,希望每年能撥補多少?最少有500億元?最好是1,000億元?更好是2,000億元?你不這樣說更快!
gazette.blocks[26][0] 許部長銘春:報告委員,因為勞保的撥補對財務的穩定是有幫助的,如果政府的財政許可,能夠多撥補,我想會讓勞工更安心。
gazette.blocks[27][0] 賴委員士葆:你心裡總要有數字嘛!你身為勞動部的部長,應該說最少政府每年應該撥補多少金額的預算,上一屆我們就曾計算過……
gazette.blocks[28][0] 許部長銘春:是。
gazette.blocks[29][0] 賴委員士葆:其實每年給你們1,000億元可能都還不夠,所以給你們500億元,就是拖延一下而已。
gazette.blocks[30][0] 許部長銘春:我之前也說過,如果財政許可,至少要不低於1,000億元啦!如果能夠像……
gazette.blocks[31][0] 賴委員士葆:至少要1,000億元啦!
gazette.blocks[32][0] 許部長銘春:對,至少要1,000億元啦!
gazette.blocks[33][0] 賴委員士葆:本席已經做球給你,你還不敢說,請你大聲說出來,最少要1,000億元。陳建仁院長主持年金改革時說勞保要一起改,結果勞保到現在還是不敢改革,就算給你們1,000億元還是不夠,基金都快破產了,怎麼敢改革呢?所以這一塊根本就不敢改,只好拚命找公教人員開刀,結果就變成這樣。第二個,本席想請問你,下一次工資調漲是什麼時候?下一次審議會什麼時候召開?
gazette.blocks[34][0] 許部長銘春:最低工資嗎?
gazette.blocks[35][0] 賴委員士葆:對。
gazette.blocks[36][0] 許部長銘春:今年第三季,通常都是七、八、九這三個月。
gazette.blocks[37][0] 賴委員士葆:本席看了相關資料,你們說要把CPI納入考慮,本席覺得這樣還不夠。
gazette.blocks[38][0] 許部長銘春:CPI是法定項目,這是大院通過的應參採數據,一定要考慮CPI,其他得參採的數據還有10項。
gazette.blocks[39][0] 賴委員士葆:不是啦!最後還是由你們決定,你們心裡應該有個數字……
gazette.blocks[40][0] 許部長銘春:委員,我們最低工資審議會是合議制,由勞資政學的委員一起開會決定。
gazette.blocks[41][0] 賴委員士葆:但是你們要有立場啊!你們代表勞工啊!請問你,現在勞工的平均薪資是多少?
gazette.blocks[42][0] 許部長銘春:全國平均嗎?
gazette.blocks[43][0] 賴委員士葆:對,全國。
gazette.blocks[44][0] 許部長銘春:大概是四萬多元。
gazette.blocks[45][0] 賴委員士葆:剛才說58,000元,現在說四萬多元。多少?
gazette.blocks[46][0] 許部長銘春:主計總處的數字有一些base不太一樣。
gazette.blocks[47][0] 賴委員士葆:你要背起來,隨時有人會問你這個數字。
gazette.blocks[48][0] 許部長銘春:我記得經常性的是四萬多元啦……
gazette.blocks[49][0] 賴委員士葆:一般經常性的是包括獎金等等……
gazette.blocks[50][0] 許部長銘春:如果加上這些,平均大概是五萬八千多元。
gazette.blocks[51][0] 賴委員士葆:你確定?我跟你講,三分之二的勞工薪資是低於平均薪資的,這是第一個要告訴你的數字。第二個數字,一般來說,要看這個國家、社會對勞工照顧到什麼程度,有一個指標很重要,就是資本家、企業賺的錢分多少給勞工,臺灣這幾年平均45%,就是給勞工的部分是45%,歐盟、日本、韓國都超過50%。
gazette.blocks[51][1] 許部長,本席發言的時間到了,請你簡短回答,你身為勞動部部長,如何爭取讓企業賺的錢多撥一點給勞工?這比什麼都重要。本席剛才說了,就全世界排名來看,我們的排名靠後,每賺10元,給勞工的部分不到5元,只有4.5元,歐盟超過50%,美國當然不用說,美國、日本、韓國都是超過50%。我們低於50%,這是一個很重要的指標,部長一定要想辦法捍衛我們勞工的薪資……
gazette.blocks[52][0] 許部長銘春:是,一定。
gazette.blocks[53][0] 賴委員士葆:這樣修最低工資法才有意義,否則的話,有的薪水這麼高,有的這麼低,平均起來很高,事實上,你們可以去問問平均領多少,有三分之二的勞工都領不到平均薪資,這個數字給你,請你謹記在心。
gazette.blocks[54][0] 許部長銘春:好的,是,謝謝。
gazette.blocks[55][0] 主席:謝謝賴士葆委員。
gazette.blocks[55][1] 做以下宣告,我們中午不休息,因為後面還有很多委員要發言。部長,剛才在質詢台上來不及說明的,請會後再向委員說明。
gazette.blocks[56][0] 許部長銘春:好的。
gazette.blocks[57][0] 主席:大家不用客氣,可以用餐。
gazette.blocks[57][1] 接下來請陳培瑜委員。
gazette.agenda.page_end 148
gazette.agenda.meet_id 委員會-11-1-26-8
gazette.agenda.speakers[0] 黃秀芳
gazette.agenda.speakers[1] 陳昭姿
gazette.agenda.speakers[2] 陳菁徽
gazette.agenda.speakers[3] 林月琴
gazette.agenda.speakers[4] 邱鎮軍
gazette.agenda.speakers[5] 廖偉翔
gazette.agenda.speakers[6] 蘇清泉
gazette.agenda.speakers[7] 王育敏
gazette.agenda.speakers[8] 盧縣一
gazette.agenda.speakers[9] 涂權吉
gazette.agenda.speakers[10] 王正旭
gazette.agenda.speakers[11] 林淑芬
gazette.agenda.speakers[12] 林德福
gazette.agenda.speakers[13] 黃國昌
gazette.agenda.speakers[14] 賴士葆
gazette.agenda.speakers[15] 陳培瑜
gazette.agenda.speakers[16] 楊瓊瓔
gazette.agenda.speakers[17] 羅智強
gazette.agenda.speakers[18] 洪孟楷
gazette.agenda.speakers[19] 牛煦庭
gazette.agenda.speakers[20] 陳瑩
gazette.agenda.speakers[21] 劉建國
gazette.agenda.speakers[22] 楊曜
gazette.agenda.speakers[23] 徐巧芯
gazette.agenda.speakers[24] 葉元之
gazette.agenda.page_start 1
gazette.agenda.meetingDate[0] 2024-03-25
gazette.agenda.gazette_id 1131901
gazette.agenda.agenda_lcidc_ids[0] 1131901_00002
gazette.agenda.meet_name 立法院第11屆第1會期社會福利及衛生環境委員會第8次全體委員會議紀錄
gazette.agenda.content 一、邀請勞動部部長就「事業單位應加強安全衛生管理制度、作業流程及必要教育訓練,並落實 職場防災管理」進行專題報告,並備質詢;二、處理中華民國113年度中央政府總預算有關勞動 部主管預算凍結案21案(含報告事項20案及討論事項1案)
gazette.agenda.agenda_id 1131901_00001
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 5.95409375
transcript.pyannote[0].end 7.05096875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 7.97909375
transcript.pyannote[1].end 8.87346875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 9.44721875
transcript.pyannote[2].end 10.72971875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 11.26971875
transcript.pyannote[3].end 12.09659375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 16.43346875
transcript.pyannote[4].end 16.92284375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 17.32784375
transcript.pyannote[5].end 17.66534375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 18.62721875
transcript.pyannote[6].end 19.72409375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 19.97721875
transcript.pyannote[7].end 20.63534375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 21.66471875
transcript.pyannote[8].end 22.42409375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 23.06534375
transcript.pyannote[9].end 24.39846875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 25.22534375
transcript.pyannote[10].end 26.60909375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 27.08159375
transcript.pyannote[11].end 29.30909375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 29.98409375
transcript.pyannote[12].end 30.94596875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 31.46909375
transcript.pyannote[13].end 32.09346875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 32.80221875
transcript.pyannote[14].end 34.77659375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 35.35034375
transcript.pyannote[15].end 37.79721875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 38.87721875
transcript.pyannote[16].end 40.48034375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 41.29034375
transcript.pyannote[17].end 43.26471875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 43.97346875
transcript.pyannote[18].end 43.99034375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 43.99034375
transcript.pyannote[19].end 45.10409375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 45.32346875
transcript.pyannote[20].end 60.57846875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 58.92471875
transcript.pyannote[21].end 59.19471875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 60.66284375
transcript.pyannote[22].end 67.00784375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 67.49721875
transcript.pyannote[23].end 84.05159375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 79.03971875
transcript.pyannote[24].end 80.65971875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 82.00971875
transcript.pyannote[25].end 83.15721875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 83.54534375
transcript.pyannote[26].end 90.43034375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 90.85221875
transcript.pyannote[27].end 91.32471875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 91.32471875
transcript.pyannote[28].end 91.34159375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 92.48909375
transcript.pyannote[29].end 96.15096875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 96.79221875
transcript.pyannote[30].end 99.32346875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 99.69471875
transcript.pyannote[31].end 105.68534375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 106.10721875
transcript.pyannote[32].end 118.03784375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 118.44284375
transcript.pyannote[33].end 119.79284375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 120.21471875
transcript.pyannote[34].end 122.32409375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 122.32409375
transcript.pyannote[35].end 122.34096875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 122.83034375
transcript.pyannote[36].end 122.96534375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 122.96534375
transcript.pyannote[37].end 123.53909375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 123.65721875
transcript.pyannote[38].end 123.67409375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 123.67409375
transcript.pyannote[39].end 123.69096875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 123.69096875
transcript.pyannote[40].end 124.60221875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 124.92284375
transcript.pyannote[41].end 126.82971875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 127.62284375
transcript.pyannote[42].end 131.23409375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 131.58846875
transcript.pyannote[43].end 132.01034375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 132.24659375
transcript.pyannote[44].end 134.40659375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 135.68909375
transcript.pyannote[45].end 136.29659375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 136.56659375
transcript.pyannote[46].end 136.95471875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 136.95471875
transcript.pyannote[47].end 136.97159375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 137.17409375
transcript.pyannote[48].end 137.20784375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 137.20784375
transcript.pyannote[49].end 138.03471875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 138.03471875
transcript.pyannote[50].end 138.16971875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 138.16971875
transcript.pyannote[51].end 138.25409375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 138.25409375
transcript.pyannote[52].end 138.28784375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 139.94159375
transcript.pyannote[53].end 140.56596875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 141.56159375
transcript.pyannote[54].end 150.13409375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 144.07596875
transcript.pyannote[55].end 145.88159375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 147.70409375
transcript.pyannote[56].end 148.15971875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 151.06221875
transcript.pyannote[57].end 152.27721875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 154.35284375
transcript.pyannote[58].end 155.77034375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 156.58034375
transcript.pyannote[59].end 160.96784375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 160.96784375
transcript.pyannote[60].end 161.11971875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 161.11971875
transcript.pyannote[61].end 161.13659375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 161.44034375
transcript.pyannote[62].end 161.49096875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 161.49096875
transcript.pyannote[63].end 162.03096875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 162.03096875
transcript.pyannote[64].end 162.04784375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 162.04784375
transcript.pyannote[65].end 162.09846875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 162.09846875
transcript.pyannote[66].end 162.33471875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 162.72284375
transcript.pyannote[67].end 162.85784375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 162.85784375
transcript.pyannote[68].end 166.21596875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 163.43159375
transcript.pyannote[69].end 164.08971875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 166.99221875
transcript.pyannote[70].end 167.54909375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 168.49409375
transcript.pyannote[71].end 171.07596875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 171.83534375
transcript.pyannote[72].end 174.55221875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 174.55221875
transcript.pyannote[73].end 174.77159375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 174.77159375
transcript.pyannote[74].end 176.42534375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 176.42534375
transcript.pyannote[75].end 177.23534375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 177.42096875
transcript.pyannote[76].end 180.64409375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 181.15034375
transcript.pyannote[77].end 181.20096875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 181.20096875
transcript.pyannote[78].end 196.47284375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 195.49409375
transcript.pyannote[79].end 196.43909375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 196.47284375
transcript.pyannote[80].end 196.82721875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 196.82721875
transcript.pyannote[81].end 197.06346875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 197.06346875
transcript.pyannote[82].end 197.38409375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 197.38409375
transcript.pyannote[83].end 197.41784375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 197.41784375
transcript.pyannote[84].end 197.56971875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 197.56971875
transcript.pyannote[85].end 197.92409375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 197.92409375
transcript.pyannote[86].end 200.03346875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 200.21909375
transcript.pyannote[87].end 206.37846875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 206.37846875
transcript.pyannote[88].end 206.68221875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 206.68221875
transcript.pyannote[89].end 208.80846875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 210.61409375
transcript.pyannote[90].end 216.77346875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 215.94659375
transcript.pyannote[91].end 216.41909375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 216.77346875
transcript.pyannote[92].end 216.82409375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 217.06034375
transcript.pyannote[93].end 226.17284375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 223.55721875
transcript.pyannote[94].end 224.67096875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 224.82284375
transcript.pyannote[95].end 226.20659375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 226.20659375
transcript.pyannote[96].end 226.27409375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 226.27409375
transcript.pyannote[97].end 229.98659375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 231.06659375
transcript.pyannote[98].end 231.70784375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 232.75409375
transcript.pyannote[99].end 233.91846875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 234.12096875
transcript.pyannote[100].end 234.61034375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 234.99846875
transcript.pyannote[101].end 235.35284375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 235.92659375
transcript.pyannote[102].end 237.90096875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 239.60534375
transcript.pyannote[103].end 243.14909375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 243.57096875
transcript.pyannote[104].end 247.38471875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 247.82346875
transcript.pyannote[105].end 250.16909375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 250.70909375
transcript.pyannote[106].end 253.13909375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 253.39221875
transcript.pyannote[107].end 256.37909375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 256.96971875
transcript.pyannote[108].end 259.45034375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 259.45034375
transcript.pyannote[109].end 259.46721875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 260.36159375
transcript.pyannote[110].end 261.47534375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 261.81284375
transcript.pyannote[111].end 274.84034375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 269.45721875
transcript.pyannote[112].end 270.30096875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 275.39721875
transcript.pyannote[113].end 275.97096875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 275.43096875
transcript.pyannote[114].end 288.79596875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 289.08284375
transcript.pyannote[115].end 291.79971875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 292.22159375
transcript.pyannote[116].end 295.57971875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 295.95096875
transcript.pyannote[117].end 301.31721875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 300.03471875
transcript.pyannote[118].end 301.80659375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 301.80659375
transcript.pyannote[119].end 301.95846875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 301.95846875
transcript.pyannote[120].end 301.97534375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 301.97534375
transcript.pyannote[121].end 302.02596875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 302.02596875
transcript.pyannote[122].end 303.13971875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 303.13971875
transcript.pyannote[123].end 303.17346875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 303.51096875
transcript.pyannote[124].end 303.59534375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 303.59534375
transcript.pyannote[125].end 306.24471875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 306.24471875
transcript.pyannote[126].end 306.26159375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 307.39221875
transcript.pyannote[127].end 308.53971875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 308.53971875
transcript.pyannote[128].end 308.57346875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 308.82659375
transcript.pyannote[129].end 308.84346875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 308.84346875
transcript.pyannote[130].end 309.02909375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 309.02909375
transcript.pyannote[131].end 309.21471875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 309.23159375
transcript.pyannote[132].end 312.10034375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 313.12971875
transcript.pyannote[133].end 315.03659375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 315.30659375
transcript.pyannote[134].end 318.22596875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 315.76221875
transcript.pyannote[135].end 316.63971875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 317.01096875
transcript.pyannote[136].end 317.50034375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 318.78284375
transcript.pyannote[137].end 319.28909375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 320.04846875
transcript.pyannote[138].end 335.16846875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 324.09846875
transcript.pyannote[139].end 325.06034375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 325.78596875
transcript.pyannote[140].end 327.18659375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 329.75159375
transcript.pyannote[141].end 334.18971875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 335.03346875
transcript.pyannote[142].end 335.15159375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 335.16846875
transcript.pyannote[143].end 335.20221875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 335.20221875
transcript.pyannote[144].end 335.21909375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 335.21909375
transcript.pyannote[145].end 335.23596875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 335.23596875
transcript.pyannote[146].end 335.30346875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 336.56909375
transcript.pyannote[147].end 341.46284375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 341.95221875
transcript.pyannote[148].end 344.82096875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 345.25971875
transcript.pyannote[149].end 346.37346875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 347.08221875
transcript.pyannote[150].end 347.41971875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 347.67284375
transcript.pyannote[151].end 349.22534375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 350.11971875
transcript.pyannote[152].end 353.02221875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 353.52846875
transcript.pyannote[153].end 357.07221875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 357.54471875
transcript.pyannote[154].end 359.87346875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 360.66659375
transcript.pyannote[155].end 361.88159375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 362.47221875
transcript.pyannote[156].end 364.44659375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 365.69534375
transcript.pyannote[157].end 366.33659375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 367.02846875
transcript.pyannote[158].end 367.97346875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 368.29409375
transcript.pyannote[159].end 369.03659375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 369.88034375
transcript.pyannote[160].end 371.29784375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 373.03596875
transcript.pyannote[161].end 377.57534375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 378.75659375
transcript.pyannote[162].end 379.31346875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 380.15721875
transcript.pyannote[163].end 381.03471875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 381.77721875
transcript.pyannote[164].end 383.49846875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 384.10596875
transcript.pyannote[165].end 384.24096875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 384.24096875
transcript.pyannote[166].end 386.13096875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 386.51909375
transcript.pyannote[167].end 388.00409375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 389.62409375
transcript.pyannote[168].end 389.99534375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 390.60284375
transcript.pyannote[169].end 391.96971875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 392.35784375
transcript.pyannote[170].end 393.64034375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 394.31534375
transcript.pyannote[171].end 396.44159375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 397.31909375
transcript.pyannote[172].end 399.71534375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 400.52534375
transcript.pyannote[173].end 402.51659375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 402.61784375
transcript.pyannote[174].end 405.70596875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 406.58346875
transcript.pyannote[175].end 408.11909375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 408.16971875
transcript.pyannote[176].end 410.88659375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 410.92034375
transcript.pyannote[177].end 411.57846875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 412.08471875
transcript.pyannote[178].end 417.94034375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 418.42971875
transcript.pyannote[179].end 427.40721875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 428.03159375
transcript.pyannote[180].end 429.36471875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 429.75284375
transcript.pyannote[181].end 434.83221875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 435.42284375
transcript.pyannote[182].end 436.21596875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 436.82346875
transcript.pyannote[183].end 440.41784375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 440.56971875
transcript.pyannote[184].end 441.12659375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 441.34596875
transcript.pyannote[185].end 443.13471875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 443.13471875
transcript.pyannote[186].end 443.33721875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 443.33721875
transcript.pyannote[187].end 443.43846875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 444.14721875
transcript.pyannote[188].end 444.48471875
transcript.whisperx[0].start 6.471
transcript.whisperx[0].end 11.857
transcript.whisperx[0].text 謝謝主席以及各位先進有請許部長請許部長委員好你好我比較關心這個
transcript.whisperx[1].start 22.141
transcript.whisperx[1].end 37.196
transcript.whisperx[1].text 勞保外面的數字啊都大家很擔心了一點說2028年會破產假如都按照現在現況走的話勞保的潛在負債
transcript.whisperx[2].start 39.429
transcript.whisperx[2].end 57.669
transcript.whisperx[2].text 12兆之多這兩個數字你要不要回應一下報告委員這個2028破產對不對這個2028基金用期是根據上一次的這個精算報告我們精算報告是每三年精算一次今年還會再精算
transcript.whisperx[3].start 61.653
transcript.whisperx[3].end 68.099
transcript.whisperx[3].text 這個到年底才會知道大概實際的狀況會是怎樣那這個都是一個參考讓我們對於說勞保財務的要去面對要看怎麼樣來處理那那個潛藏的負債就是也是根據現在的相關的資料是
transcript.whisperx[4].start 79.11
transcript.whisperx[4].end 83.633
transcript.whisperx[4].text 這兩個數字都對保這兩個數字都是講好幾次啦都講好幾次了這數字是對的對不對請問你政府撥保給勞保要撥補給勞保好多錢
transcript.whisperx[5].start 92.52
transcript.whisperx[5].end 119.622
transcript.whisperx[5].text 到目前為止一共兩千六百七十億去年多少去年是五百五五百多嗎五百五公務預算四百五特別預算一百所以去年是五百五那今年呢公務預算一千二加上特別預算一百所以今年是一千三那這從109到現在這五年撥補了總編列的預算是二六七零兩千六百七十億元
transcript.whisperx[6].start 120.663
transcript.whisperx[6].end 123.866
transcript.whisperx[6].text 政府要每年撥補勞保多少錢,讓勞保不會在2028年破產?
transcript.whisperx[7].start 141.587
transcript.whisperx[7].end 166.585
transcript.whisperx[7].text 如果我們都目前吼,報告委員,如果我們按照現在來講現在如果按照今年的一千三吼,要報一千三的話是到一百二十二年吼就二零二十二而已吼不是捏一百二十二年是二零二十二一百二十二那就是二零一九一二零三三所以托五年確定喔
transcript.whisperx[8].start 168.55
transcript.whisperx[8].end 170.477
transcript.whisperx[8].text 今天這個是全國都在看那個數字
transcript.whisperx[9].start 171.912
transcript.whisperx[9].end 197.508
transcript.whisperx[9].text 所以就每年要給你補多少嘛就是問你這個數字你一直沒有回答我希望每年補多少最少500最好1000更好2000你不要這樣說那麼快不是 報告委我們當然勞保的撥補我們希望就是因為他的撥補是對財務的穩定是有幫助的啦如果說政府的財政許可能夠多撥補我想會讓勞工更安心啊你心裡總要有數字嘛你這個身為勞動部的部長
transcript.whisperx[10].start 200.37
transcript.whisperx[10].end 208.518
transcript.whisperx[10].text 你應該說我最少政府應該給我每年多少以前我們就算過上一屆我們就算過其實每年給你1000億可能都要不夠
transcript.whisperx[11].start 210.66
transcript.whisperx[11].end 211.18
transcript.whisperx[11].text 陳建仁院長主持年輕改革
transcript.whisperx[12].start 239.79
transcript.whisperx[12].end 242.233
transcript.whisperx[12].text 二、處理中華民國11案及討論二、處理中華民國11案及討論二、處理中華民國11案及討論二、處理中華民國11案及討論
transcript.whisperx[13].start 260.891
transcript.whisperx[13].end 273.908
transcript.whisperx[13].text 審議會什麼時候開?下一次最低工資是不是?今年的第三季第三季喔通常我們就是7、8、9這三個月我看了一下這個相關的資料你們說要把CPA納入來考慮
transcript.whisperx[14].start 275.61
transcript.whisperx[14].end 286.405
transcript.whisperx[14].text CPI是法定的喔我們大院通過的就是說因採採的數據一定要考慮CPI那其他得採採的數據還有10項這些最後還是你們決定
transcript.whisperx[15].start 292.453
transcript.whisperx[15].end 306.144
transcript.whisperx[15].text 應該先有個數字出來委員 那個和 那我們最低公司審議會是一個合一制啦就勞資政協的委員但是你要有個立場啊 你代表勞工啊你現在講說 請問一下 勞工現在平均薪資多少勞工的平均薪資多少平均啊 你說全國的 剛剛大概4萬多啊5萬8 現在講4萬多
transcript.whisperx[16].start 320.34
transcript.whisperx[16].end 333.293
transcript.whisperx[16].text 主計處的數字有一些背詞不太一樣你要背起來這個數字經常信的是4萬多啦一般那種經常信的是包括一些的獎金包括大概5萬8千多啦
transcript.whisperx[17].start 336.618
transcript.whisperx[17].end 363.689
transcript.whisperx[17].text 平均啊我跟你講三分之二的勞工是低於平均薪資的第一個數字告訴你第二個數字我要告訴你一般來講說這個國家這個社會我們對勞工到底照顧到什麼程度有一個指標很重要就企業賺的錢分多少給資本家多少給勞工
transcript.whisperx[18].start 365.742
transcript.whisperx[18].end 368.845
transcript.whisperx[18].text 台灣呢這幾年平均45%就是給勞工的45%歐盟都超過50%日本超過50%韓國超過50%許部長我的時間到囉這個我就請你很簡短的講你身為勞動部的部長你如何的爭取
transcript.whisperx[19].start 390.694
transcript.whisperx[19].end 401.619
transcript.whisperx[19].text 讓企業賺的錢多一點給勞工這個比什麼都重要我剛剛講了全世界大家在排我們是排在後面的我們賺的錢賺10塊錢給勞工不到5塊錢只有4塊半
transcript.whisperx[20].start 406.642
transcript.whisperx[20].end 427.083
transcript.whisperx[20].text 歐盟都超過50%的美國當然不用講美國、日本、韓國都是超過50%我們低於50%這是一個很重要的指標我覺得部長你一定要想辦法是捍衛我們勞工的薪資你這樣子的話最低工資法修起來才有意義否則的話
transcript.whisperx[21].start 428.445
transcript.whisperx[21].end 429.125
transcript.whisperx[21].text 二、處理中華民國111例