IVOD_ID |
150375 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/150375 |
日期 |
2024-03-25 |
會議資料.會議代碼 |
委員會-11-1-26-8 |
會議資料.會議代碼:str |
第11屆第1會期社會福利及衛生環境委員會第8次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
8 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第11屆第1會期社會福利及衛生環境委員會第8次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-03-25T12:02:24+08:00 |
結束時間 |
2024-03-25T12:09:49+08:00 |
影片長度 |
00:07:25 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b2b855ee35a005bd0dd74dce529aa44e5559e54a1be29d3f8ba9b0039caa7a61ee19b822c4e652d5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
賴士葆 |
委員發言時間 |
12:02:24 - 12:09:49 |
會議時間 |
2024-03-25T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期社會福利及衛生環境委員會第8次全體委員會議(事由:一、邀請勞動部部長就「事業單位應加強安全衛生管理制度、作業流程及必要教育訓練,並落實職場防災管理」進行專題報告,並備質詢。
二、處理中華民國113年度中央政府總預算有關勞動部主管預算凍結案21案(含報告事項20案及討論事項1案)。
【專題報告及討論事項綜合詢答】) |
gazette.lineno |
945 |
gazette.blocks[0][0] |
賴委員士葆:(12時2分)謝謝主席以及各位先進。有請許部長。 |
gazette.blocks[1][0] |
主席:請許部長。 |
gazette.blocks[2][0] |
許部長銘春:委員好。 |
gazette.blocks[3][0] |
賴委員士葆:你好,我比較關心勞保外面的數字,大家很擔心的一點,關於2028年勞保會破產,假如都按照現況走向,勞保的潛在負債高達12兆元之多,這兩個數字你要不要回應一下? |
gazette.blocks[4][0] |
許部長銘春:報告委員,這個…… |
gazette.blocks[5][0] |
賴委員士葆:2028年勞保會破產,對不對? |
gazette.blocks[6][0] |
許部長銘春:2028年勞保基金用罄的說法是根據上一次的精算報告,精算報告是每三年精算一次,今年還會再精算,到年底才會知道大概實際的狀況會是怎樣,這都是一些參考,讓我們面對勞保財務的問題看怎麼樣處理,而潛藏的負債也是根據現在相關的資料…… |
gazette.blocks[7][0] |
賴委員士葆:這兩個數字都對吧?這兩個都是已經講過好幾次的數字了…… |
gazette.blocks[8][0] |
許部長銘春:是。 |
gazette.blocks[9][0] |
賴委員士葆:都講過好幾次了,所以這個數字是對的,對不對?請問政府要撥補給勞保多少錢? |
gazette.blocks[10][0] |
許部長銘春:到目前為止一共2,670億元。 |
gazette.blocks[11][0] |
賴委員士葆:去年的撥補金額是多少? |
gazette.blocks[12][0] |
許部長銘春:去年是550億元。 |
gazette.blocks[13][0] |
賴委員士葆:500多億元嘛! |
gazette.blocks[14][0] |
許部長銘春:550億元,公務預算是450億元,特別預算是100億元,所以去年是550億元;今年的公務預算是1,200億元,特別預算是100億元,所以今年是1,300億元;從109年到現在,五年以來撥補總編列的預算是2,670億元。 |
gazette.blocks[15][0] |
賴委員士葆:這樣可以撐多久?我就問你一個比較白話的問題,政府要每年撥補勞保多少錢才能讓勞保不會在2028年破產?這樣比較簡單。 |
gazette.blocks[16][0] |
許部長銘春:報告委員,因為…… |
gazette.blocks[17][0] |
賴委員士葆:沒辦法計算? |
gazette.blocks[18][0] |
許部長銘春:報告委員,如果我們…… |
gazette.blocks[19][0] |
賴委員士葆:請按照現在來講。 |
gazette.blocks[20][0] |
許部長銘春:如果按照今年的撥補預算1,300億元而言,撥補1,300億元,可以到122年。 |
gazette.blocks[21][0] |
賴委員士葆:就到2023年而已? |
gazette.blocks[22][0] |
許部長銘春:不是。 |
gazette.blocks[23][0] |
賴委員士葆:112年是2023年。 |
gazette.blocks[24][0] |
許部長銘春:122年。 |
gazette.blocks[25][0] |
賴委員士葆:122年就是2033年,所以能再拖五年,確定喔?今天這個是全國都在看的數字,所以每年要給你撥補多少?問你這個數字,你一直沒有回答我,希望每年能撥補多少?最少有500億元?最好是1,000億元?更好是2,000億元?你不這樣說更快! |
gazette.blocks[26][0] |
許部長銘春:報告委員,因為勞保的撥補對財務的穩定是有幫助的,如果政府的財政許可,能夠多撥補,我想會讓勞工更安心。 |
gazette.blocks[27][0] |
賴委員士葆:你心裡總要有數字嘛!你身為勞動部的部長,應該說最少政府每年應該撥補多少金額的預算,上一屆我們就曾計算過…… |
gazette.blocks[28][0] |
許部長銘春:是。 |
gazette.blocks[29][0] |
賴委員士葆:其實每年給你們1,000億元可能都還不夠,所以給你們500億元,就是拖延一下而已。 |
gazette.blocks[30][0] |
許部長銘春:我之前也說過,如果財政許可,至少要不低於1,000億元啦!如果能夠像…… |
gazette.blocks[31][0] |
賴委員士葆:至少要1,000億元啦! |
gazette.blocks[32][0] |
許部長銘春:對,至少要1,000億元啦! |
gazette.blocks[33][0] |
賴委員士葆:本席已經做球給你,你還不敢說,請你大聲說出來,最少要1,000億元。陳建仁院長主持年金改革時說勞保要一起改,結果勞保到現在還是不敢改革,就算給你們1,000億元還是不夠,基金都快破產了,怎麼敢改革呢?所以這一塊根本就不敢改,只好拚命找公教人員開刀,結果就變成這樣。第二個,本席想請問你,下一次工資調漲是什麼時候?下一次審議會什麼時候召開? |
gazette.blocks[34][0] |
許部長銘春:最低工資嗎? |
gazette.blocks[35][0] |
賴委員士葆:對。 |
gazette.blocks[36][0] |
許部長銘春:今年第三季,通常都是七、八、九這三個月。 |
gazette.blocks[37][0] |
賴委員士葆:本席看了相關資料,你們說要把CPI納入考慮,本席覺得這樣還不夠。 |
gazette.blocks[38][0] |
許部長銘春:CPI是法定項目,這是大院通過的應參採數據,一定要考慮CPI,其他得參採的數據還有10項。 |
gazette.blocks[39][0] |
賴委員士葆:不是啦!最後還是由你們決定,你們心裡應該有個數字…… |
gazette.blocks[40][0] |
許部長銘春:委員,我們最低工資審議會是合議制,由勞資政學的委員一起開會決定。 |
gazette.blocks[41][0] |
賴委員士葆:但是你們要有立場啊!你們代表勞工啊!請問你,現在勞工的平均薪資是多少? |
gazette.blocks[42][0] |
許部長銘春:全國平均嗎? |
gazette.blocks[43][0] |
賴委員士葆:對,全國。 |
gazette.blocks[44][0] |
許部長銘春:大概是四萬多元。 |
gazette.blocks[45][0] |
賴委員士葆:剛才說58,000元,現在說四萬多元。多少? |
gazette.blocks[46][0] |
許部長銘春:主計總處的數字有一些base不太一樣。 |
gazette.blocks[47][0] |
賴委員士葆:你要背起來,隨時有人會問你這個數字。 |
gazette.blocks[48][0] |
許部長銘春:我記得經常性的是四萬多元啦…… |
gazette.blocks[49][0] |
賴委員士葆:一般經常性的是包括獎金等等…… |
gazette.blocks[50][0] |
許部長銘春:如果加上這些,平均大概是五萬八千多元。 |
gazette.blocks[51][0] |
賴委員士葆:你確定?我跟你講,三分之二的勞工薪資是低於平均薪資的,這是第一個要告訴你的數字。第二個數字,一般來說,要看這個國家、社會對勞工照顧到什麼程度,有一個指標很重要,就是資本家、企業賺的錢分多少給勞工,臺灣這幾年平均45%,就是給勞工的部分是45%,歐盟、日本、韓國都超過50%。 |
gazette.blocks[51][1] |
許部長,本席發言的時間到了,請你簡短回答,你身為勞動部部長,如何爭取讓企業賺的錢多撥一點給勞工?這比什麼都重要。本席剛才說了,就全世界排名來看,我們的排名靠後,每賺10元,給勞工的部分不到5元,只有4.5元,歐盟超過50%,美國當然不用說,美國、日本、韓國都是超過50%。我們低於50%,這是一個很重要的指標,部長一定要想辦法捍衛我們勞工的薪資…… |
gazette.blocks[52][0] |
許部長銘春:是,一定。 |
gazette.blocks[53][0] |
賴委員士葆:這樣修最低工資法才有意義,否則的話,有的薪水這麼高,有的這麼低,平均起來很高,事實上,你們可以去問問平均領多少,有三分之二的勞工都領不到平均薪資,這個數字給你,請你謹記在心。 |
gazette.blocks[54][0] |
許部長銘春:好的,是,謝謝。 |
gazette.blocks[55][0] |
主席:謝謝賴士葆委員。 |
gazette.blocks[55][1] |
做以下宣告,我們中午不休息,因為後面還有很多委員要發言。部長,剛才在質詢台上來不及說明的,請會後再向委員說明。 |
gazette.blocks[56][0] |
許部長銘春:好的。 |
gazette.blocks[57][0] |
主席:大家不用客氣,可以用餐。 |
gazette.blocks[57][1] |
接下來請陳培瑜委員。 |
gazette.agenda.page_end |
148 |
gazette.agenda.meet_id |
委員會-11-1-26-8 |
gazette.agenda.speakers[0] |
黃秀芳 |
gazette.agenda.speakers[1] |
陳昭姿 |
gazette.agenda.speakers[2] |
陳菁徽 |
gazette.agenda.speakers[3] |
林月琴 |
gazette.agenda.speakers[4] |
邱鎮軍 |
gazette.agenda.speakers[5] |
廖偉翔 |
gazette.agenda.speakers[6] |
蘇清泉 |
gazette.agenda.speakers[7] |
王育敏 |
gazette.agenda.speakers[8] |
盧縣一 |
gazette.agenda.speakers[9] |
涂權吉 |
gazette.agenda.speakers[10] |
王正旭 |
gazette.agenda.speakers[11] |
林淑芬 |
gazette.agenda.speakers[12] |
林德福 |
gazette.agenda.speakers[13] |
黃國昌 |
gazette.agenda.speakers[14] |
賴士葆 |
gazette.agenda.speakers[15] |
陳培瑜 |
gazette.agenda.speakers[16] |
楊瓊瓔 |
gazette.agenda.speakers[17] |
羅智強 |
gazette.agenda.speakers[18] |
洪孟楷 |
gazette.agenda.speakers[19] |
牛煦庭 |
gazette.agenda.speakers[20] |
陳瑩 |
gazette.agenda.speakers[21] |
劉建國 |
gazette.agenda.speakers[22] |
楊曜 |
gazette.agenda.speakers[23] |
徐巧芯 |
gazette.agenda.speakers[24] |
葉元之 |
gazette.agenda.page_start |
1 |
gazette.agenda.meetingDate[0] |
2024-03-25 |
gazette.agenda.gazette_id |
1131901 |
gazette.agenda.agenda_lcidc_ids[0] |
1131901_00002 |
gazette.agenda.meet_name |
立法院第11屆第1會期社會福利及衛生環境委員會第8次全體委員會議紀錄 |
gazette.agenda.content |
一、邀請勞動部部長就「事業單位應加強安全衛生管理制度、作業流程及必要教育訓練,並落實
職場防災管理」進行專題報告,並備質詢;二、處理中華民國113年度中央政府總預算有關勞動
部主管預算凍結案21案(含報告事項20案及討論事項1案) |
gazette.agenda.agenda_id |
1131901_00001 |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
5.95409375 |
transcript.pyannote[0].end |
7.05096875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
7.97909375 |
transcript.pyannote[1].end |
8.87346875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
9.44721875 |
transcript.pyannote[2].end |
10.72971875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
11.26971875 |
transcript.pyannote[3].end |
12.09659375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
16.43346875 |
transcript.pyannote[4].end |
16.92284375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
17.32784375 |
transcript.pyannote[5].end |
17.66534375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
18.62721875 |
transcript.pyannote[6].end |
19.72409375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
19.97721875 |
transcript.pyannote[7].end |
20.63534375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
21.66471875 |
transcript.pyannote[8].end |
22.42409375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
23.06534375 |
transcript.pyannote[9].end |
24.39846875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
25.22534375 |
transcript.pyannote[10].end |
26.60909375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
27.08159375 |
transcript.pyannote[11].end |
29.30909375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
29.98409375 |
transcript.pyannote[12].end |
30.94596875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
31.46909375 |
transcript.pyannote[13].end |
32.09346875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
32.80221875 |
transcript.pyannote[14].end |
34.77659375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
35.35034375 |
transcript.pyannote[15].end |
37.79721875 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
38.87721875 |
transcript.pyannote[16].end |
40.48034375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
41.29034375 |
transcript.pyannote[17].end |
43.26471875 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
43.97346875 |
transcript.pyannote[18].end |
43.99034375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
43.99034375 |
transcript.pyannote[19].end |
45.10409375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
45.32346875 |
transcript.pyannote[20].end |
60.57846875 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
58.92471875 |
transcript.pyannote[21].end |
59.19471875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
60.66284375 |
transcript.pyannote[22].end |
67.00784375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
67.49721875 |
transcript.pyannote[23].end |
84.05159375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
79.03971875 |
transcript.pyannote[24].end |
80.65971875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
82.00971875 |
transcript.pyannote[25].end |
83.15721875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
83.54534375 |
transcript.pyannote[26].end |
90.43034375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
90.85221875 |
transcript.pyannote[27].end |
91.32471875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
91.32471875 |
transcript.pyannote[28].end |
91.34159375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
92.48909375 |
transcript.pyannote[29].end |
96.15096875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
96.79221875 |
transcript.pyannote[30].end |
99.32346875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
99.69471875 |
transcript.pyannote[31].end |
105.68534375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
106.10721875 |
transcript.pyannote[32].end |
118.03784375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
118.44284375 |
transcript.pyannote[33].end |
119.79284375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
120.21471875 |
transcript.pyannote[34].end |
122.32409375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
122.32409375 |
transcript.pyannote[35].end |
122.34096875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
122.83034375 |
transcript.pyannote[36].end |
122.96534375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
122.96534375 |
transcript.pyannote[37].end |
123.53909375 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
123.65721875 |
transcript.pyannote[38].end |
123.67409375 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
123.67409375 |
transcript.pyannote[39].end |
123.69096875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
123.69096875 |
transcript.pyannote[40].end |
124.60221875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
124.92284375 |
transcript.pyannote[41].end |
126.82971875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
127.62284375 |
transcript.pyannote[42].end |
131.23409375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
131.58846875 |
transcript.pyannote[43].end |
132.01034375 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
132.24659375 |
transcript.pyannote[44].end |
134.40659375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
135.68909375 |
transcript.pyannote[45].end |
136.29659375 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
136.56659375 |
transcript.pyannote[46].end |
136.95471875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
136.95471875 |
transcript.pyannote[47].end |
136.97159375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
137.17409375 |
transcript.pyannote[48].end |
137.20784375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
137.20784375 |
transcript.pyannote[49].end |
138.03471875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
138.03471875 |
transcript.pyannote[50].end |
138.16971875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
138.16971875 |
transcript.pyannote[51].end |
138.25409375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
138.25409375 |
transcript.pyannote[52].end |
138.28784375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
139.94159375 |
transcript.pyannote[53].end |
140.56596875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
141.56159375 |
transcript.pyannote[54].end |
150.13409375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
144.07596875 |
transcript.pyannote[55].end |
145.88159375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
147.70409375 |
transcript.pyannote[56].end |
148.15971875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
151.06221875 |
transcript.pyannote[57].end |
152.27721875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
154.35284375 |
transcript.pyannote[58].end |
155.77034375 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
156.58034375 |
transcript.pyannote[59].end |
160.96784375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
160.96784375 |
transcript.pyannote[60].end |
161.11971875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
161.11971875 |
transcript.pyannote[61].end |
161.13659375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
161.44034375 |
transcript.pyannote[62].end |
161.49096875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
161.49096875 |
transcript.pyannote[63].end |
162.03096875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
162.03096875 |
transcript.pyannote[64].end |
162.04784375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
162.04784375 |
transcript.pyannote[65].end |
162.09846875 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
162.09846875 |
transcript.pyannote[66].end |
162.33471875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
162.72284375 |
transcript.pyannote[67].end |
162.85784375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
162.85784375 |
transcript.pyannote[68].end |
166.21596875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
163.43159375 |
transcript.pyannote[69].end |
164.08971875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
166.99221875 |
transcript.pyannote[70].end |
167.54909375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
168.49409375 |
transcript.pyannote[71].end |
171.07596875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
171.83534375 |
transcript.pyannote[72].end |
174.55221875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
174.55221875 |
transcript.pyannote[73].end |
174.77159375 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
174.77159375 |
transcript.pyannote[74].end |
176.42534375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
176.42534375 |
transcript.pyannote[75].end |
177.23534375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
177.42096875 |
transcript.pyannote[76].end |
180.64409375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
181.15034375 |
transcript.pyannote[77].end |
181.20096875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
181.20096875 |
transcript.pyannote[78].end |
196.47284375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
195.49409375 |
transcript.pyannote[79].end |
196.43909375 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
196.47284375 |
transcript.pyannote[80].end |
196.82721875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
196.82721875 |
transcript.pyannote[81].end |
197.06346875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
197.06346875 |
transcript.pyannote[82].end |
197.38409375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
197.38409375 |
transcript.pyannote[83].end |
197.41784375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
197.41784375 |
transcript.pyannote[84].end |
197.56971875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
197.56971875 |
transcript.pyannote[85].end |
197.92409375 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
197.92409375 |
transcript.pyannote[86].end |
200.03346875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
200.21909375 |
transcript.pyannote[87].end |
206.37846875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
206.37846875 |
transcript.pyannote[88].end |
206.68221875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
206.68221875 |
transcript.pyannote[89].end |
208.80846875 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
210.61409375 |
transcript.pyannote[90].end |
216.77346875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
215.94659375 |
transcript.pyannote[91].end |
216.41909375 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
216.77346875 |
transcript.pyannote[92].end |
216.82409375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
217.06034375 |
transcript.pyannote[93].end |
226.17284375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
223.55721875 |
transcript.pyannote[94].end |
224.67096875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
224.82284375 |
transcript.pyannote[95].end |
226.20659375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
226.20659375 |
transcript.pyannote[96].end |
226.27409375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
226.27409375 |
transcript.pyannote[97].end |
229.98659375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
231.06659375 |
transcript.pyannote[98].end |
231.70784375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
232.75409375 |
transcript.pyannote[99].end |
233.91846875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
234.12096875 |
transcript.pyannote[100].end |
234.61034375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
234.99846875 |
transcript.pyannote[101].end |
235.35284375 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
235.92659375 |
transcript.pyannote[102].end |
237.90096875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
239.60534375 |
transcript.pyannote[103].end |
243.14909375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
243.57096875 |
transcript.pyannote[104].end |
247.38471875 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
247.82346875 |
transcript.pyannote[105].end |
250.16909375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
250.70909375 |
transcript.pyannote[106].end |
253.13909375 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
253.39221875 |
transcript.pyannote[107].end |
256.37909375 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
256.96971875 |
transcript.pyannote[108].end |
259.45034375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
259.45034375 |
transcript.pyannote[109].end |
259.46721875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
260.36159375 |
transcript.pyannote[110].end |
261.47534375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
261.81284375 |
transcript.pyannote[111].end |
274.84034375 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
269.45721875 |
transcript.pyannote[112].end |
270.30096875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
275.39721875 |
transcript.pyannote[113].end |
275.97096875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
275.43096875 |
transcript.pyannote[114].end |
288.79596875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
289.08284375 |
transcript.pyannote[115].end |
291.79971875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
292.22159375 |
transcript.pyannote[116].end |
295.57971875 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
295.95096875 |
transcript.pyannote[117].end |
301.31721875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
300.03471875 |
transcript.pyannote[118].end |
301.80659375 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
301.80659375 |
transcript.pyannote[119].end |
301.95846875 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
301.95846875 |
transcript.pyannote[120].end |
301.97534375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
301.97534375 |
transcript.pyannote[121].end |
302.02596875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
302.02596875 |
transcript.pyannote[122].end |
303.13971875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
303.13971875 |
transcript.pyannote[123].end |
303.17346875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
303.51096875 |
transcript.pyannote[124].end |
303.59534375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
303.59534375 |
transcript.pyannote[125].end |
306.24471875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
306.24471875 |
transcript.pyannote[126].end |
306.26159375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
307.39221875 |
transcript.pyannote[127].end |
308.53971875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
308.53971875 |
transcript.pyannote[128].end |
308.57346875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
308.82659375 |
transcript.pyannote[129].end |
308.84346875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
308.84346875 |
transcript.pyannote[130].end |
309.02909375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
309.02909375 |
transcript.pyannote[131].end |
309.21471875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
309.23159375 |
transcript.pyannote[132].end |
312.10034375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
313.12971875 |
transcript.pyannote[133].end |
315.03659375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
315.30659375 |
transcript.pyannote[134].end |
318.22596875 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
315.76221875 |
transcript.pyannote[135].end |
316.63971875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
317.01096875 |
transcript.pyannote[136].end |
317.50034375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
318.78284375 |
transcript.pyannote[137].end |
319.28909375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
320.04846875 |
transcript.pyannote[138].end |
335.16846875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
324.09846875 |
transcript.pyannote[139].end |
325.06034375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
325.78596875 |
transcript.pyannote[140].end |
327.18659375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
329.75159375 |
transcript.pyannote[141].end |
334.18971875 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
335.03346875 |
transcript.pyannote[142].end |
335.15159375 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
335.16846875 |
transcript.pyannote[143].end |
335.20221875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
335.20221875 |
transcript.pyannote[144].end |
335.21909375 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
335.21909375 |
transcript.pyannote[145].end |
335.23596875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
335.23596875 |
transcript.pyannote[146].end |
335.30346875 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
336.56909375 |
transcript.pyannote[147].end |
341.46284375 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
341.95221875 |
transcript.pyannote[148].end |
344.82096875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
345.25971875 |
transcript.pyannote[149].end |
346.37346875 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
347.08221875 |
transcript.pyannote[150].end |
347.41971875 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
347.67284375 |
transcript.pyannote[151].end |
349.22534375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
350.11971875 |
transcript.pyannote[152].end |
353.02221875 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
353.52846875 |
transcript.pyannote[153].end |
357.07221875 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
357.54471875 |
transcript.pyannote[154].end |
359.87346875 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
360.66659375 |
transcript.pyannote[155].end |
361.88159375 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
362.47221875 |
transcript.pyannote[156].end |
364.44659375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
365.69534375 |
transcript.pyannote[157].end |
366.33659375 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
367.02846875 |
transcript.pyannote[158].end |
367.97346875 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
368.29409375 |
transcript.pyannote[159].end |
369.03659375 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
369.88034375 |
transcript.pyannote[160].end |
371.29784375 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
373.03596875 |
transcript.pyannote[161].end |
377.57534375 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
378.75659375 |
transcript.pyannote[162].end |
379.31346875 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
380.15721875 |
transcript.pyannote[163].end |
381.03471875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
381.77721875 |
transcript.pyannote[164].end |
383.49846875 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
384.10596875 |
transcript.pyannote[165].end |
384.24096875 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
384.24096875 |
transcript.pyannote[166].end |
386.13096875 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
386.51909375 |
transcript.pyannote[167].end |
388.00409375 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
389.62409375 |
transcript.pyannote[168].end |
389.99534375 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
390.60284375 |
transcript.pyannote[169].end |
391.96971875 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
392.35784375 |
transcript.pyannote[170].end |
393.64034375 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
394.31534375 |
transcript.pyannote[171].end |
396.44159375 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
397.31909375 |
transcript.pyannote[172].end |
399.71534375 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
400.52534375 |
transcript.pyannote[173].end |
402.51659375 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
402.61784375 |
transcript.pyannote[174].end |
405.70596875 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
406.58346875 |
transcript.pyannote[175].end |
408.11909375 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
408.16971875 |
transcript.pyannote[176].end |
410.88659375 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
410.92034375 |
transcript.pyannote[177].end |
411.57846875 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
412.08471875 |
transcript.pyannote[178].end |
417.94034375 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
418.42971875 |
transcript.pyannote[179].end |
427.40721875 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
428.03159375 |
transcript.pyannote[180].end |
429.36471875 |
transcript.pyannote[181].speaker |
SPEAKER_01 |
transcript.pyannote[181].start |
429.75284375 |
transcript.pyannote[181].end |
434.83221875 |
transcript.pyannote[182].speaker |
SPEAKER_01 |
transcript.pyannote[182].start |
435.42284375 |
transcript.pyannote[182].end |
436.21596875 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
436.82346875 |
transcript.pyannote[183].end |
440.41784375 |
transcript.pyannote[184].speaker |
SPEAKER_01 |
transcript.pyannote[184].start |
440.56971875 |
transcript.pyannote[184].end |
441.12659375 |
transcript.pyannote[185].speaker |
SPEAKER_01 |
transcript.pyannote[185].start |
441.34596875 |
transcript.pyannote[185].end |
443.13471875 |
transcript.pyannote[186].speaker |
SPEAKER_00 |
transcript.pyannote[186].start |
443.13471875 |
transcript.pyannote[186].end |
443.33721875 |
transcript.pyannote[187].speaker |
SPEAKER_01 |
transcript.pyannote[187].start |
443.33721875 |
transcript.pyannote[187].end |
443.43846875 |
transcript.pyannote[188].speaker |
SPEAKER_01 |
transcript.pyannote[188].start |
444.14721875 |
transcript.pyannote[188].end |
444.48471875 |
transcript.whisperx[0].start |
6.471 |
transcript.whisperx[0].end |
11.857 |
transcript.whisperx[0].text |
謝謝主席以及各位先進有請許部長請許部長委員好你好我比較關心這個 |
transcript.whisperx[1].start |
22.141 |
transcript.whisperx[1].end |
37.196 |
transcript.whisperx[1].text |
勞保外面的數字啊都大家很擔心了一點說2028年會破產假如都按照現在現況走的話勞保的潛在負債 |
transcript.whisperx[2].start |
39.429 |
transcript.whisperx[2].end |
57.669 |
transcript.whisperx[2].text |
12兆之多這兩個數字你要不要回應一下報告委員這個2028破產對不對這個2028基金用期是根據上一次的這個精算報告我們精算報告是每三年精算一次今年還會再精算 |
transcript.whisperx[3].start |
61.653 |
transcript.whisperx[3].end |
68.099 |
transcript.whisperx[3].text |
這個到年底才會知道大概實際的狀況會是怎樣那這個都是一個參考讓我們對於說勞保財務的要去面對要看怎麼樣來處理那那個潛藏的負債就是也是根據現在的相關的資料是 |
transcript.whisperx[4].start |
79.11 |
transcript.whisperx[4].end |
83.633 |
transcript.whisperx[4].text |
這兩個數字都對保這兩個數字都是講好幾次啦都講好幾次了這數字是對的對不對請問你政府撥保給勞保要撥補給勞保好多錢 |
transcript.whisperx[5].start |
92.52 |
transcript.whisperx[5].end |
119.622 |
transcript.whisperx[5].text |
到目前為止一共兩千六百七十億去年多少去年是五百五五百多嗎五百五公務預算四百五特別預算一百所以去年是五百五那今年呢公務預算一千二加上特別預算一百所以今年是一千三那這從109到現在這五年撥補了總編列的預算是二六七零兩千六百七十億元 |
transcript.whisperx[6].start |
120.663 |
transcript.whisperx[6].end |
123.866 |
transcript.whisperx[6].text |
政府要每年撥補勞保多少錢,讓勞保不會在2028年破產? |
transcript.whisperx[7].start |
141.587 |
transcript.whisperx[7].end |
166.585 |
transcript.whisperx[7].text |
如果我們都目前吼,報告委員,如果我們按照現在來講現在如果按照今年的一千三吼,要報一千三的話是到一百二十二年吼就二零二十二而已吼不是捏一百二十二年是二零二十二一百二十二那就是二零一九一二零三三所以托五年確定喔 |
transcript.whisperx[8].start |
168.55 |
transcript.whisperx[8].end |
170.477 |
transcript.whisperx[8].text |
今天這個是全國都在看那個數字 |
transcript.whisperx[9].start |
171.912 |
transcript.whisperx[9].end |
197.508 |
transcript.whisperx[9].text |
所以就每年要給你補多少嘛就是問你這個數字你一直沒有回答我希望每年補多少最少500最好1000更好2000你不要這樣說那麼快不是 報告委我們當然勞保的撥補我們希望就是因為他的撥補是對財務的穩定是有幫助的啦如果說政府的財政許可能夠多撥補我想會讓勞工更安心啊你心裡總要有數字嘛你這個身為勞動部的部長 |
transcript.whisperx[10].start |
200.37 |
transcript.whisperx[10].end |
208.518 |
transcript.whisperx[10].text |
你應該說我最少政府應該給我每年多少以前我們就算過上一屆我們就算過其實每年給你1000億可能都要不夠 |
transcript.whisperx[11].start |
210.66 |
transcript.whisperx[11].end |
211.18 |
transcript.whisperx[11].text |
陳建仁院長主持年輕改革 |
transcript.whisperx[12].start |
239.79 |
transcript.whisperx[12].end |
242.233 |
transcript.whisperx[12].text |
二、處理中華民國11案及討論二、處理中華民國11案及討論二、處理中華民國11案及討論二、處理中華民國11案及討論 |
transcript.whisperx[13].start |
260.891 |
transcript.whisperx[13].end |
273.908 |
transcript.whisperx[13].text |
審議會什麼時候開?下一次最低工資是不是?今年的第三季第三季喔通常我們就是7、8、9這三個月我看了一下這個相關的資料你們說要把CPA納入來考慮 |
transcript.whisperx[14].start |
275.61 |
transcript.whisperx[14].end |
286.405 |
transcript.whisperx[14].text |
CPI是法定的喔我們大院通過的就是說因採採的數據一定要考慮CPI那其他得採採的數據還有10項這些最後還是你們決定 |
transcript.whisperx[15].start |
292.453 |
transcript.whisperx[15].end |
306.144 |
transcript.whisperx[15].text |
應該先有個數字出來委員 那個和 那我們最低公司審議會是一個合一制啦就勞資政協的委員但是你要有個立場啊 你代表勞工啊你現在講說 請問一下 勞工現在平均薪資多少勞工的平均薪資多少平均啊 你說全國的 剛剛大概4萬多啊5萬8 現在講4萬多 |
transcript.whisperx[16].start |
320.34 |
transcript.whisperx[16].end |
333.293 |
transcript.whisperx[16].text |
主計處的數字有一些背詞不太一樣你要背起來這個數字經常信的是4萬多啦一般那種經常信的是包括一些的獎金包括大概5萬8千多啦 |
transcript.whisperx[17].start |
336.618 |
transcript.whisperx[17].end |
363.689 |
transcript.whisperx[17].text |
平均啊我跟你講三分之二的勞工是低於平均薪資的第一個數字告訴你第二個數字我要告訴你一般來講說這個國家這個社會我們對勞工到底照顧到什麼程度有一個指標很重要就企業賺的錢分多少給資本家多少給勞工 |
transcript.whisperx[18].start |
365.742 |
transcript.whisperx[18].end |
368.845 |
transcript.whisperx[18].text |
台灣呢這幾年平均45%就是給勞工的45%歐盟都超過50%日本超過50%韓國超過50%許部長我的時間到囉這個我就請你很簡短的講你身為勞動部的部長你如何的爭取 |
transcript.whisperx[19].start |
390.694 |
transcript.whisperx[19].end |
401.619 |
transcript.whisperx[19].text |
讓企業賺的錢多一點給勞工這個比什麼都重要我剛剛講了全世界大家在排我們是排在後面的我們賺的錢賺10塊錢給勞工不到5塊錢只有4塊半 |
transcript.whisperx[20].start |
406.642 |
transcript.whisperx[20].end |
427.083 |
transcript.whisperx[20].text |
歐盟都超過50%的美國當然不用講美國、日本、韓國都是超過50%我們低於50%這是一個很重要的指標我覺得部長你一定要想辦法是捍衛我們勞工的薪資你這樣子的話最低工資法修起來才有意義否則的話 |
transcript.whisperx[21].start |
428.445 |
transcript.whisperx[21].end |
429.125 |
transcript.whisperx[21].text |
二、處理中華民國111例 |