IVOD_ID |
150364 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/150364 |
日期 |
2024-03-25 |
會議資料.會議代碼 |
委員會-11-1-23-5 |
會議資料.會議代碼:str |
第11屆第1會期交通委員會第5次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
5 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
23 |
會議資料.委員會代碼:str[0] |
交通委員會 |
會議資料.標題 |
第11屆第1會期交通委員會第5次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-03-25T11:26:29+08:00 |
結束時間 |
2024-03-25T11:34:50+08:00 |
影片長度 |
00:08:21 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3b2b855ee35a005b50a4509a85c7b907cabe2e38d5d7efe9f8ba9b0039caa7a66bb25b9b7bcb84b15ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
許智傑 |
委員發言時間 |
11:26:29 - 11:34:50 |
會議時間 |
2024-03-25T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期交通委員會第5次全體委員會議(事由:審查委員傅崐萁等33人擬具「花東快速公路建設特別條例草案」案。【詢答及處理】【3月25日及27日二天一次會】) |
gazette.lineno |
620 |
gazette.blocks[0][0] |
許委員智傑:(11時26分)謝謝主席。請部長。 |
gazette.blocks[1][0] |
王部長國材:許委員好。 |
gazette.blocks[2][0] |
許委員智傑:部長辛苦了,剛才俊憲委員問到的,正好我也有一些疑問,就是目前大型車民間自己裝的輔助系統,我們補助的有三型,然後交通部推動大型車整合八項主動預警輔助系統現在完成的狀況,這兩個看起來跟實際防範車禍的效率好像還有一大段的距離,這個部分是不是交通部有什麼規劃? |
gazette.blocks[3][0] |
王部長國材:的確一開始的補助是比較被動式的,被動式就是駕駛自己看螢幕,那現在開始就是…… |
gazette.blocks[4][0] |
許委員智傑:前面這三型其實都是民間自己裝的,我們有補助4,000元跟補助1,000元,這個是前面這三型。 |
gazette.blocks[5][0] |
王部長國材:這比較是被動式,是要自己看螢幕。 |
gazette.blocks[6][0] |
許委員智傑:對,你看第一項,第一項98.82%算是很高,因為你們補助比較多錢啦。 |
gazette.blocks[7][0] |
林司長福山:跟委員報告,前面三型當時補助就是法規強制全部都要安裝,所以在法規強制實施之前先補助,這個是現在每一部車都要有的,剛剛…… |
gazette.blocks[8][0] |
許委員智傑:這個是第一型,第一型98%,第二型跟第三型沒有啊! |
gazette.blocks[9][0] |
林司長福山:第二型跟第三型的功能是含括在第一型裡面,等於說它是比……第一型是最基本的,如果業者要裝比較好的,基本上也是…… |
gazette.blocks[10][0] |
許委員智傑:因為第一型是自己要看螢幕,第二型會有雷達警示系統主動告知有狀況嘛。 |
gazette.blocks[11][0] |
林司長福山:對。 |
gazette.blocks[12][0] |
許委員智傑:所以第一型,司機要自己開車,還要自己看螢幕有時候不小心……至少第二型它有通知。 |
gazette.blocks[13][0] |
林司長福山:對。 |
gazette.blocks[14][0] |
許委員智傑:所以第二型就可以減少很多車禍,因為大型車輛現在的車禍案件連續五年都超過一萬人,這個狀況其實是蠻嚴重的,真的是需要去避免。所以剛剛俊憲也提到就是說…… |
gazette.blocks[14][1] |
現在大型車大概有多少輛? |
gazette.blocks[15][0] |
林司長福山:跟委員報告,如果說把大貨車、大客車加進來大概是十七、八萬輛。 |
gazette.blocks[16][0] |
許委員智傑:十七、八萬嘛,交通部推的這八項主動預警輔助系統是前面三型的功能都有包括進來對不對? |
gazette.blocks[17][0] |
林司長福山:對,前面三型的部分只能算是一項功能,其他部分的話…… |
gazette.blocks[18][0] |
許委員智傑:還有增加其他的,這三型基本款的都包括在這八項裡面對不對? |
gazette.blocks[19][0] |
林司長福山:是。 |
gazette.blocks[20][0] |
許委員智傑:所以你看,112年我們預計要裝2,400輛,今年三月底想要完成800輛,結果到現在只裝了241輛,這個數據對不對? |
gazette.blocks[21][0] |
林司長福山:是,大概到3月24號是到262輛,這個是更新的數字。 |
gazette.blocks[22][0] |
許委員智傑:262輛,好,沒關係。這個數據比例差非常的多,交通部花了3.3億研發,如果把這18萬輛通通裝了,因為當時研發再加上安裝,多了一些研發的經費對不對,現在如果純粹安裝,這18萬輛大概要多少錢? |
gazette.blocks[23][0] |
林司長福山:跟委員報告,前面2,400輛跟3.3億的部分當時就是希望3.3億補助三家業者來開發,完成系統之後每一家可以安裝800輛。 |
gazette.blocks[24][0] |
許委員智傑:因為當時是包括研發嘛,對不對? |
gazette.blocks[25][0] |
林司長福山:因為只有一家廠商來投標,所以後來的預算從3.3億調整成1.3億。 |
gazette.blocks[26][0] |
許委員智傑:多少? |
gazette.blocks[27][0] |
林司長福山:1.3億。 |
gazette.blocks[28][0] |
許委員智傑:2,400輛1.3億? |
gazette.blocks[29][0] |
林司長福山:800輛。 |
gazette.blocks[30][0] |
許委員智傑:800輛1.3億。 |
gazette.blocks[31][0] |
林司長福山:對。 |
gazette.blocks[32][0] |
許委員智傑:所以這個18萬輛要多少錢? |
gazette.blocks[33][0] |
林司長福山:跟委員報告,這800輛的部分是現在在做系統測試的研發,假設這個系統是OK的、具有成效效應,未來會把這一個標準轉換成產業的標準。轉換成標準後國內有興趣的業者都可以去投入生產,如果按照這個八合一,要去補助18萬輛的話…… |
gazette.blocks[34][0] |
許委員智傑:不用講這麼仔細,現在如果18萬輛八項通通要安裝大概要多少錢? |
gazette.blocks[35][0] |
林司長福山:初步算起來應該將近18億,因為這一套系統大概十萬多。 |
gazette.blocks[36][0] |
許委員智傑:18億對不對?好。 |
gazette.blocks[36][1] |
部長你認為這可有價值? |
gazette.blocks[37][0] |
王部長國材:有啊!有,我覺得主動式……,的確過去被動式有時候會自己沒看到,而且八合一的想法是說,因為以後要裝很多裝置進去。 |
gazette.blocks[38][0] |
許委員智傑:對。 |
gazette.blocks[39][0] |
王部長國材:如果這樣,大家都在那邊拉線…… |
gazette.blocks[40][0] |
許委員智傑:所以新的主動預警八項算是蠻好的。 |
gazette.blocks[41][0] |
王部長國材:對,就把它整合。 |
gazette.blocks[42][0] |
許委員智傑:現在已經完成了,研發完成了嘛。 |
gazette.blocks[43][0] |
王部長國材:是。 |
gazette.blocks[44][0] |
許委員智傑:測試、試用也OK,所以現在在安裝這800輛。 |
gazette.blocks[45][0] |
王部長國材:車輛一直做安裝,現在開始安裝。 |
gazette.blocks[46][0] |
許委員智傑:現在在做800輛,其實這五年每一年車禍死傷都超過一萬人,這一萬人的死傷會造成多少的家庭破碎?如果每一年18億,這一萬的死傷變成一百好了,應該是很值得。所以現在我語重心長的跟交通部呼籲,要花這18億的錢,有很多錢都已經在花了,這樣可以讓大型車都全面安裝。尤其大型車在調頭轉彎時常常發生車禍,車輪撞倒壓到人時那真的是慘不忍睹啦!所以如果我要求全部安裝,交通部現在的規劃可不可行?或者是大概多久可以完成,可以有一個進度的推估? |
gazette.blocks[47][0] |
王部長國材:跟委員報告,現在800輛就是看它實施的成效怎麼樣,如果好的話,我們願意爭取另外一筆預算來全面安裝。 |
gazette.blocks[48][0] |
許委員智傑:對,我的意思就是這樣,因為本來是研發加安裝嘛,那現在其實真的是……因為我算一算不是很多錢啦,花這18億可以讓每年一萬人的車禍減少,假設這一套系統有效的話…… |
gazette.blocks[49][0] |
王部長國材:非常有效。 |
gazette.blocks[50][0] |
許委員智傑:我們沒辦法要求100%,但一萬個變一百個有可能啦,這樣就減少很多,幾乎可以把所有大型車的車禍減少掉。我覺得這真的是相當重要,請交通部是不是研議一個規劃,大概什麼時候可以給我,就是安裝之後、測試成功進度大概什麼時候?什麼時候可以編列預算?18萬輛的大型車何時全部安裝完成,是不是寫一個規劃報告給我? |
gazette.blocks[51][0] |
王部長國材:就是給一個書面資料答復您,這樣好不好? |
gazette.blocks[52][0] |
許委員智傑:OK,希望交通部努力減少國人車禍的死傷。 |
gazette.blocks[53][0] |
王部長國材:好,謝謝。 |
gazette.blocks[54][0] |
主席:好,謝謝許智傑委員。 |
gazette.blocks[54][1] |
下一位請鄭天財委員發言。 |
gazette.agenda.page_end |
472 |
gazette.agenda.meet_id |
委員會-11-1-23-5 |
gazette.agenda.speakers[0] |
陳雪生 |
gazette.agenda.speakers[1] |
傅崐萁 |
gazette.agenda.speakers[2] |
李昆澤 |
gazette.agenda.speakers[3] |
廖先翔 |
gazette.agenda.speakers[4] |
黃健豪 |
gazette.agenda.speakers[5] |
游顥 |
gazette.agenda.speakers[6] |
徐富癸 |
gazette.agenda.speakers[7] |
林國成 |
gazette.agenda.speakers[8] |
魯明哲 |
gazette.agenda.speakers[9] |
蔡其昌 |
gazette.agenda.speakers[10] |
陳素月 |
gazette.agenda.speakers[11] |
何欣純 |
gazette.agenda.speakers[12] |
林俊憲 |
gazette.agenda.speakers[13] |
邱若華 |
gazette.agenda.speakers[14] |
許智傑 |
gazette.agenda.speakers[15] |
鄭天財Sra Kacaw |
gazette.agenda.speakers[16] |
吳宗憲 |
gazette.agenda.speakers[17] |
王鴻薇 |
gazette.agenda.speakers[18] |
高金素梅 |
gazette.agenda.speakers[19] |
羅智強 |
gazette.agenda.speakers[20] |
洪孟楷 |
gazette.agenda.speakers[21] |
黃建賓 |
gazette.agenda.speakers[22] |
吳思瑤 |
gazette.agenda.speakers[23] |
張啓楷 |
gazette.agenda.speakers[24] |
林沛祥 |
gazette.agenda.speakers[25] |
林憶君 |
gazette.agenda.speakers[26] |
陳冠廷 |
gazette.agenda.speakers[27] |
黃仁 |
gazette.agenda.speakers[28] |
劉建國 |
gazette.agenda.speakers[29] |
陳俊宇 |
gazette.agenda.page_start |
403 |
gazette.agenda.meetingDate[0] |
2024-03-25 |
gazette.agenda.gazette_id |
1131901 |
gazette.agenda.agenda_lcidc_ids[0] |
1131901_00006 |
gazette.agenda.meet_name |
立法院第11屆第1會期交通委員會第5次全體委員會議紀錄 |
gazette.agenda.content |
審查委員傅崐萁等33人擬具「花東快速公路建設特別條例草案」案 |
gazette.agenda.agenda_id |
1131901_00005 |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
5.61659375 |
transcript.pyannote[0].end |
11.08409375 |
transcript.pyannote[1].speaker |
SPEAKER_03 |
transcript.pyannote[1].start |
9.48096875 |
transcript.pyannote[1].end |
10.12221875 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
15.72471875 |
transcript.pyannote[2].end |
17.26034375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
17.71596875 |
transcript.pyannote[3].end |
19.21784375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
19.31909375 |
transcript.pyannote[4].end |
21.41159375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
22.13721875 |
transcript.pyannote[5].end |
22.94721875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
23.25096875 |
transcript.pyannote[6].end |
25.27596875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
25.66409375 |
transcript.pyannote[7].end |
26.44034375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
27.28409375 |
transcript.pyannote[8].end |
28.22909375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
29.03909375 |
transcript.pyannote[9].end |
29.95034375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
32.39721875 |
transcript.pyannote[10].end |
35.95784375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
36.83534375 |
transcript.pyannote[11].end |
38.35409375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
38.75909375 |
transcript.pyannote[12].end |
43.68659375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
44.68221875 |
transcript.pyannote[13].end |
46.67346875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
47.58471875 |
transcript.pyannote[14].end |
50.52096875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
51.26346875 |
transcript.pyannote[15].end |
53.33909375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
53.69346875 |
transcript.pyannote[16].end |
55.90409375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
56.81534375 |
transcript.pyannote[17].end |
59.22846875 |
transcript.pyannote[18].speaker |
SPEAKER_03 |
transcript.pyannote[18].start |
59.95409375 |
transcript.pyannote[18].end |
60.42659375 |
transcript.pyannote[19].speaker |
SPEAKER_03 |
transcript.pyannote[19].start |
60.62909375 |
transcript.pyannote[19].end |
65.45534375 |
transcript.pyannote[20].speaker |
SPEAKER_03 |
transcript.pyannote[20].start |
65.70846875 |
transcript.pyannote[20].end |
67.09221875 |
transcript.pyannote[21].speaker |
SPEAKER_03 |
transcript.pyannote[21].start |
67.49721875 |
transcript.pyannote[21].end |
69.35346875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
68.89784375 |
transcript.pyannote[22].end |
72.37409375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
73.01534375 |
transcript.pyannote[23].end |
75.58034375 |
transcript.pyannote[24].speaker |
SPEAKER_03 |
transcript.pyannote[24].start |
75.58034375 |
transcript.pyannote[24].end |
76.44096875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
75.61409375 |
transcript.pyannote[25].end |
75.64784375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
75.91784375 |
transcript.pyannote[26].end |
77.57159375 |
transcript.pyannote[27].speaker |
SPEAKER_03 |
transcript.pyannote[27].start |
77.13284375 |
transcript.pyannote[27].end |
81.35159375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
78.71909375 |
transcript.pyannote[28].end |
79.12409375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
80.42346875 |
transcript.pyannote[29].end |
82.70159375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
82.97159375 |
transcript.pyannote[30].end |
85.03034375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
85.13159375 |
transcript.pyannote[31].end |
86.51534375 |
transcript.pyannote[32].speaker |
SPEAKER_03 |
transcript.pyannote[32].start |
86.51534375 |
transcript.pyannote[32].end |
86.61659375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
87.24096875 |
transcript.pyannote[33].end |
87.88221875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
88.33784375 |
transcript.pyannote[34].end |
89.62034375 |
transcript.pyannote[35].speaker |
SPEAKER_02 |
transcript.pyannote[35].start |
90.54846875 |
transcript.pyannote[35].end |
106.15784375 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
106.37721875 |
transcript.pyannote[36].end |
107.23784375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
106.83284375 |
transcript.pyannote[37].end |
112.53659375 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
108.18284375 |
transcript.pyannote[38].end |
108.79034375 |
transcript.pyannote[39].speaker |
SPEAKER_02 |
transcript.pyannote[39].start |
109.14471875 |
transcript.pyannote[39].end |
109.60034375 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
110.22471875 |
transcript.pyannote[40].end |
110.59596875 |
transcript.pyannote[41].speaker |
SPEAKER_02 |
transcript.pyannote[41].start |
112.75596875 |
transcript.pyannote[41].end |
113.05971875 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
113.32971875 |
transcript.pyannote[42].end |
124.63596875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
124.63596875 |
transcript.pyannote[43].end |
126.71159375 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
124.99034375 |
transcript.pyannote[44].end |
125.32784375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
126.88034375 |
transcript.pyannote[45].end |
127.20096875 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
127.33596875 |
transcript.pyannote[46].end |
130.22159375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
130.62659375 |
transcript.pyannote[47].end |
131.52096875 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
131.77409375 |
transcript.pyannote[48].end |
132.02721875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
132.60096875 |
transcript.pyannote[49].end |
133.02284375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
133.14096875 |
transcript.pyannote[50].end |
139.31721875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
139.51971875 |
transcript.pyannote[51].end |
139.87409375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
140.11034375 |
transcript.pyannote[52].end |
146.03346875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
146.57346875 |
transcript.pyannote[53].end |
148.32846875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
149.32409375 |
transcript.pyannote[54].end |
151.39971875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
151.73721875 |
transcript.pyannote[55].end |
153.81284375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
153.93096875 |
transcript.pyannote[56].end |
157.93034375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
159.01034375 |
transcript.pyannote[57].end |
160.25909375 |
transcript.pyannote[58].speaker |
SPEAKER_02 |
transcript.pyannote[58].start |
161.00159375 |
transcript.pyannote[58].end |
168.44346875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
168.34221875 |
transcript.pyannote[59].end |
173.79284375 |
transcript.pyannote[60].speaker |
SPEAKER_02 |
transcript.pyannote[60].start |
169.55721875 |
transcript.pyannote[60].end |
169.67534375 |
transcript.pyannote[61].speaker |
SPEAKER_02 |
transcript.pyannote[61].start |
169.69221875 |
transcript.pyannote[61].end |
169.70909375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
174.67034375 |
transcript.pyannote[62].end |
178.23096875 |
transcript.pyannote[63].speaker |
SPEAKER_02 |
transcript.pyannote[63].start |
178.72034375 |
transcript.pyannote[63].end |
186.01034375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
185.48721875 |
transcript.pyannote[64].end |
190.58346875 |
transcript.pyannote[65].speaker |
SPEAKER_02 |
transcript.pyannote[65].start |
190.16159375 |
transcript.pyannote[65].end |
190.17846875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
190.17846875 |
transcript.pyannote[66].end |
190.95471875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
190.95471875 |
transcript.pyannote[67].end |
195.03846875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
196.54034375 |
transcript.pyannote[68].end |
198.56534375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
199.18971875 |
transcript.pyannote[69].end |
200.48909375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
201.51846875 |
transcript.pyannote[70].end |
204.04971875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
205.60221875 |
transcript.pyannote[71].end |
207.49221875 |
transcript.pyannote[72].speaker |
SPEAKER_02 |
transcript.pyannote[72].start |
208.08284375 |
transcript.pyannote[72].end |
208.53846875 |
transcript.pyannote[73].speaker |
SPEAKER_02 |
transcript.pyannote[73].start |
208.99409375 |
transcript.pyannote[73].end |
215.77784375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
214.42784375 |
transcript.pyannote[74].end |
214.86659375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
215.71034375 |
transcript.pyannote[75].end |
221.36346875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
222.24096875 |
transcript.pyannote[76].end |
225.53159375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
226.18971875 |
transcript.pyannote[77].end |
231.65721875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
232.16346875 |
transcript.pyannote[78].end |
237.90096875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
238.30596875 |
transcript.pyannote[79].end |
239.36909375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
239.79096875 |
transcript.pyannote[80].end |
240.70221875 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
241.14096875 |
transcript.pyannote[81].end |
255.53534375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
251.04659375 |
transcript.pyannote[82].end |
251.38409375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
254.96159375 |
transcript.pyannote[83].end |
257.30721875 |
transcript.pyannote[84].speaker |
SPEAKER_02 |
transcript.pyannote[84].start |
256.61534375 |
transcript.pyannote[84].end |
264.19221875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
264.37784375 |
transcript.pyannote[85].end |
264.86721875 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
264.52971875 |
transcript.pyannote[86].end |
264.61409375 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
265.18784375 |
transcript.pyannote[87].end |
265.96409375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
265.96409375 |
transcript.pyannote[88].end |
266.77409375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
265.99784375 |
transcript.pyannote[89].end |
266.21721875 |
transcript.pyannote[90].speaker |
SPEAKER_02 |
transcript.pyannote[90].start |
266.26784375 |
transcript.pyannote[90].end |
267.02721875 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
267.11159375 |
transcript.pyannote[91].end |
267.63471875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
267.70221875 |
transcript.pyannote[92].end |
269.50784375 |
transcript.pyannote[93].speaker |
SPEAKER_02 |
transcript.pyannote[93].start |
269.65971875 |
transcript.pyannote[93].end |
270.55409375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
271.07721875 |
transcript.pyannote[94].end |
271.76909375 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
271.75221875 |
transcript.pyannote[95].end |
272.07284375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
272.08971875 |
transcript.pyannote[96].end |
272.96721875 |
transcript.pyannote[97].speaker |
SPEAKER_02 |
transcript.pyannote[97].start |
272.29221875 |
transcript.pyannote[97].end |
272.52846875 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
272.95034375 |
transcript.pyannote[98].end |
273.38909375 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
273.57471875 |
transcript.pyannote[99].end |
273.62534375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
273.62534375 |
transcript.pyannote[100].end |
275.70096875 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
273.69284375 |
transcript.pyannote[101].end |
274.23284375 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
275.51534375 |
transcript.pyannote[102].end |
284.54346875 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
284.64471875 |
transcript.pyannote[103].end |
302.98784375 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
302.53221875 |
transcript.pyannote[104].end |
306.32909375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
306.54846875 |
transcript.pyannote[105].end |
307.52721875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
307.99971875 |
transcript.pyannote[106].end |
310.00784375 |
transcript.pyannote[107].speaker |
SPEAKER_02 |
transcript.pyannote[107].start |
310.00784375 |
transcript.pyannote[107].end |
311.03721875 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
311.47596875 |
transcript.pyannote[108].end |
316.79159375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
314.74971875 |
transcript.pyannote[109].end |
316.42034375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
316.79159375 |
transcript.pyannote[110].end |
318.58034375 |
transcript.pyannote[111].speaker |
SPEAKER_03 |
transcript.pyannote[111].start |
319.03596875 |
transcript.pyannote[111].end |
323.03534375 |
transcript.pyannote[112].speaker |
SPEAKER_03 |
transcript.pyannote[112].start |
323.27159375 |
transcript.pyannote[112].end |
323.30534375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
323.30534375 |
transcript.pyannote[113].end |
323.33909375 |
transcript.pyannote[114].speaker |
SPEAKER_03 |
transcript.pyannote[114].start |
323.33909375 |
transcript.pyannote[114].end |
324.79034375 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
323.40659375 |
transcript.pyannote[115].end |
323.42346875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
324.90846875 |
transcript.pyannote[116].end |
325.21221875 |
transcript.pyannote[117].speaker |
SPEAKER_03 |
transcript.pyannote[117].start |
325.36409375 |
transcript.pyannote[117].end |
328.03034375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
325.61721875 |
transcript.pyannote[118].end |
325.83659375 |
transcript.pyannote[119].speaker |
SPEAKER_03 |
transcript.pyannote[119].start |
328.08096875 |
transcript.pyannote[119].end |
331.13534375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
331.13534375 |
transcript.pyannote[120].end |
331.27034375 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
331.27034375 |
transcript.pyannote[121].end |
331.30409375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
331.30409375 |
transcript.pyannote[122].end |
331.37159375 |
transcript.pyannote[123].speaker |
SPEAKER_03 |
transcript.pyannote[123].start |
331.37159375 |
transcript.pyannote[123].end |
331.40534375 |
transcript.pyannote[124].speaker |
SPEAKER_03 |
transcript.pyannote[124].start |
331.48971875 |
transcript.pyannote[124].end |
333.85221875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
332.99159375 |
transcript.pyannote[125].end |
335.55659375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
336.13034375 |
transcript.pyannote[126].end |
338.30721875 |
transcript.pyannote[127].speaker |
SPEAKER_03 |
transcript.pyannote[127].start |
338.17221875 |
transcript.pyannote[127].end |
339.33659375 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
339.30284375 |
transcript.pyannote[128].end |
341.04096875 |
transcript.pyannote[129].speaker |
SPEAKER_03 |
transcript.pyannote[129].start |
340.78784375 |
transcript.pyannote[129].end |
341.54721875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
341.37846875 |
transcript.pyannote[130].end |
345.39471875 |
transcript.pyannote[131].speaker |
SPEAKER_03 |
transcript.pyannote[131].start |
342.59346875 |
transcript.pyannote[131].end |
343.13346875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
345.96846875 |
transcript.pyannote[132].end |
348.38159375 |
transcript.pyannote[133].speaker |
SPEAKER_03 |
transcript.pyannote[133].start |
346.13721875 |
transcript.pyannote[133].end |
346.33971875 |
transcript.pyannote[134].speaker |
SPEAKER_03 |
transcript.pyannote[134].start |
347.84159375 |
transcript.pyannote[134].end |
350.69346875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
349.57971875 |
transcript.pyannote[135].end |
357.02159375 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
358.48971875 |
transcript.pyannote[136].end |
359.90721875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
360.51471875 |
transcript.pyannote[137].end |
362.18534375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
364.83471875 |
transcript.pyannote[138].end |
365.74596875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
366.67409375 |
transcript.pyannote[139].end |
367.75409375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
368.58096875 |
transcript.pyannote[140].end |
369.23909375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
369.64409375 |
transcript.pyannote[141].end |
370.96034375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
370.97721875 |
transcript.pyannote[142].end |
371.02784375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
371.11221875 |
transcript.pyannote[143].end |
372.17534375 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
372.61409375 |
transcript.pyannote[144].end |
373.62659375 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
374.04846875 |
transcript.pyannote[145].end |
375.38159375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
377.05221875 |
transcript.pyannote[146].end |
378.16596875 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
379.12784375 |
transcript.pyannote[147].end |
383.16096875 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
384.67971875 |
transcript.pyannote[148].end |
386.28284375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
387.21096875 |
transcript.pyannote[149].end |
388.61159375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
389.40471875 |
transcript.pyannote[150].end |
392.57721875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
393.40409375 |
transcript.pyannote[151].end |
394.50096875 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
394.60221875 |
transcript.pyannote[152].end |
398.17971875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
398.61846875 |
transcript.pyannote[153].end |
398.85471875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
399.25971875 |
transcript.pyannote[154].end |
402.95534375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
403.54596875 |
transcript.pyannote[155].end |
404.81159375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
405.16596875 |
transcript.pyannote[156].end |
407.59596875 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
408.08534375 |
transcript.pyannote[157].end |
409.58721875 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
409.95846875 |
transcript.pyannote[158].end |
411.56159375 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
412.35471875 |
transcript.pyannote[159].end |
414.58221875 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
415.25721875 |
transcript.pyannote[160].end |
416.50596875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
416.94471875 |
transcript.pyannote[161].end |
418.86846875 |
transcript.pyannote[162].speaker |
SPEAKER_03 |
transcript.pyannote[162].start |
419.77971875 |
transcript.pyannote[162].end |
433.33034375 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
433.36409375 |
transcript.pyannote[163].end |
442.22346875 |
transcript.pyannote[164].speaker |
SPEAKER_03 |
transcript.pyannote[164].start |
434.29221875 |
transcript.pyannote[164].end |
434.84909375 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
438.74721875 |
transcript.pyannote[165].end |
439.00034375 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
443.59034375 |
transcript.pyannote[166].end |
449.22659375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
449.39534375 |
transcript.pyannote[167].end |
452.09534375 |
transcript.pyannote[168].speaker |
SPEAKER_03 |
transcript.pyannote[168].start |
451.84221875 |
transcript.pyannote[168].end |
452.48346875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
452.44971875 |
transcript.pyannote[169].end |
455.82471875 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
456.51659375 |
transcript.pyannote[170].end |
458.64284375 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
458.86221875 |
transcript.pyannote[171].end |
462.62534375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
463.14846875 |
transcript.pyannote[172].end |
467.62034375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
468.07596875 |
transcript.pyannote[173].end |
468.85221875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
469.52721875 |
transcript.pyannote[174].end |
486.03096875 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
486.25034375 |
transcript.pyannote[175].end |
488.51159375 |
transcript.pyannote[176].speaker |
SPEAKER_03 |
transcript.pyannote[176].start |
488.71409375 |
transcript.pyannote[176].end |
489.30471875 |
transcript.pyannote[177].speaker |
SPEAKER_03 |
transcript.pyannote[177].start |
489.60846875 |
transcript.pyannote[177].end |
493.15221875 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
491.95409375 |
transcript.pyannote[178].end |
499.24409375 |
transcript.pyannote[179].speaker |
SPEAKER_03 |
transcript.pyannote[179].start |
498.26534375 |
transcript.pyannote[179].end |
498.65346875 |
transcript.pyannote[180].speaker |
SPEAKER_03 |
transcript.pyannote[180].start |
501.01596875 |
transcript.pyannote[180].end |
501.65721875 |
transcript.whisperx[0].start |
6.343 |
transcript.whisperx[0].end |
29.351 |
transcript.whisperx[0].text |
謝謝主席。我們還是請部長。部長辛苦啦。辛苦。那個剛軍縣委員有問到的話。正好我有一些疑問。就是說目前我們這個大型車 |
transcript.whisperx[1].start |
32.475 |
transcript.whisperx[1].end |
58.596 |
transcript.whisperx[1].text |
有民間自己裝的我們補助的有3型嘛然後呢這個我們交通部推動的大型車整合這8項主動預警輔助系統現在的完成的狀況這兩個看起來就是跟實際上在防範車禍的機會好像效率還有一大段的距離這個部分是不是交通部有什麼規劃 |
transcript.whisperx[2].start |
60.695 |
transcript.whisperx[2].end |
86.273 |
transcript.whisperx[2].text |
的確一開始的補助是比較被動式的被動式就是駕駛自己看螢幕那現在開始就是前面這三型其實都是民間自己裝的吧那我們有補助4千跟補助1千嘛對對對這個是前面這三型這比較是被動式對你要自己看螢幕啦對 所以第一行的是因為你看第一行90倍點2%正確啦因為你們有補比較多錢啦 |
transcript.whisperx[3].start |
90.592 |
transcript.whisperx[3].end |
112.365 |
transcript.whisperx[3].text |
跟委員報告一下前面三行當時補助就是法規要強制全部都要安裝所以在這個法規強制實施之前先補助所以這個是現在每一部車都要有的那是第一行啊第一行98%那第二行跟第三行沒有啊 |
transcript.whisperx[4].start |
113.446 |
transcript.whisperx[4].end |
129.685 |
transcript.whisperx[4].text |
第二型跟第三型的功能是含括在這個第一型裡面等於說它是比第一型是最基本的然後如果說這個業者要裝比較好的那基本上也是對因為第一型你要自己看螢幕嘛第二型它會有雷達警示系統告訴你說有狀況嘛 |
transcript.whisperx[5].start |
132.699 |
transcript.whisperx[5].end |
159.923 |
transcript.whisperx[5].text |
所以第一型你和司機要是自己開車要自己開檸檬有時候不小心那你至少第二型他有通知嘛那所以第二型就可以減少很多因為我們現在看就是大型車輛現在的車禍的案件連續5年都超過1萬人這個狀況其實是蠻嚴重的那我們真的是要怎麼樣去避免所以剛剛郡縣也提到就是說我們現在大型車現在大概有多少輛 |
transcript.whisperx[6].start |
161.055 |
transcript.whisperx[6].end |
177.526 |
transcript.whisperx[6].text |
跟我們報告一下如果說把大貨車架進來跟大客車的話大概這個就是十七八萬輛十七八萬嘛那你看喔我們交通部推的這八項主動預警輔助系統這個是包括前面三行的功能都有包括進來嘛對不對 |
transcript.whisperx[7].start |
179.146 |
transcript.whisperx[7].end |
194.571 |
transcript.whisperx[7].text |
對 然後還有就是說前面三型的部分只能算就是一項功能啦那其他的部分的話還有增加其他的就這三型的基本款的他都包括在這8項裡面嘛對不對所以你看我們112年預計要裝2400輛然後呢今年3月底想要完成800輛所以到現在只裝了241輛這個是不是這個數據對不對 |
transcript.whisperx[8].start |
209.181 |
transcript.whisperx[8].end |
223.681 |
transcript.whisperx[8].text |
是大概到3月24日是到262這個是更新的這個數字262好沒關係你看喔這個數據比例差非常的多那我們交通部花了3.3億研發啦 |
transcript.whisperx[9].start |
226.457 |
transcript.whisperx[9].end |
236.873 |
transcript.whisperx[9].text |
那如果說我們把這18萬輛通通裝的因為當時研發再加上安裝多了一些研發的經費嘛對不對那現在如果純粹安裝這18萬輛大概要多少錢 |
transcript.whisperx[10].start |
241.512 |
transcript.whisperx[10].end |
261.158 |
transcript.whisperx[10].text |
跟委員報告一下前面那個2400輛跟3.3億的部分當時就是大概就是希望說3.3億來補助3家業者來開發到完成系統之後每一家可以這個安裝這個800輛所以對啦因為當時是包括研發嘛對不對那後來這個因為只有一家廠商來投標所以後來預算從3.3調整成這一個1.3億多少1.3億1.3億對對那2400輛1.3億800輛 |
transcript.whisperx[11].start |
271.121 |
transcript.whisperx[11].end |
274.845 |
transcript.whisperx[11].text |
8百輛 1.3億所以如果18萬輛要多少錢?跟委員報告一下因為這一個8百輛的部分那個是現在在做系統測試的研發那如果說假設這個就是說這個系統這個是OK的話 |
transcript.whisperx[12].start |
287.378 |
transcript.whisperx[12].end |
301.848 |
transcript.whisperx[12].text |
那這是具有成效的一個效應的話未來會把這一個標準轉換成產業的標準那轉換成產業標準那國內有興趣的業者都可以去投入生產那如果說按照這個八合一要去補助18萬輛的話 |
transcript.whisperx[13].start |
303.049 |
transcript.whisperx[13].end |
303.169 |
transcript.whisperx[13].text |
拜託給我結單 |
transcript.whisperx[14].start |
320.183 |
transcript.whisperx[14].end |
345.044 |
transcript.whisperx[14].text |
我覺得主動式的確在過去被動式有說自己沒看到所以主動式是而且他這次821是這樣他的想法是說因為我以後要裝很多裝置進去每個人都要在那裡勤洗所以說這個新的這個主動疫情八項的這個算是蠻好的嘛對就把它整合阿現在已經完成了嘛是是是研發完成了嘛那測試試用也OK吧 |
transcript.whisperx[15].start |
346.121 |
transcript.whisperx[15].end |
356.469 |
transcript.whisperx[15].text |
所以現在在安裝這800輛嘛對不對現在在做800輛嘛那其實你看喔五年每一年死傷都超過一萬人這一萬人的死傷會造成多少的家庭那如果是10百億啦10百億可以每一年這10萬的死傷的啦變成100好了啦 |
transcript.whisperx[16].start |
377.373 |
transcript.whisperx[16].end |
388.121 |
transcript.whisperx[16].text |
應該是很值得。所以我現在就是說要很語重心長的跟交通部呼籲,十八開這個錢,很多錢都在開了啦。這可以讓大型車全面安裝齁。 |
transcript.whisperx[17].start |
393.459 |
transcript.whisperx[17].end |
418.656 |
transcript.whisperx[17].text |
那把這個大型車尤其是燈頭外角啦,齁,那疊疊恰好,那弄到高過,齁,那真的是,你真的是不堪入目啦,齁那所以這個部分如果我要全部安裝,那交通部現在的規劃可不可行,或者是大概多久可以完成,我們可以有一個進度的推估 |
transcript.whisperx[18].start |
419.827 |
transcript.whisperx[18].end |
441.792 |
transcript.whisperx[18].text |
市長跟委員報告我想如果現在是2400輛800輛800輛就是看它實質的成效怎麼樣如果好的話我們應該來爭取另外一筆預算來來全面安裝對我的意思就是這樣就是說現在因為本來是研發加安裝嘛那現在其實真的是我因為我算一算不是很多錢啊 |
transcript.whisperx[19].start |
443.703 |
transcript.whisperx[19].end |
467.223 |
transcript.whisperx[19].text |
花這18億可以讓每年一萬個車禍一萬人的車禍可以減少我們假設這一套系統有效的話我們如果沒辦法說一百%啦你別說一萬個變一百個啦有可能啦但是你就減很多幾乎把所有的大型車的車禍可以減少掉所以我覺得這個真的是相當重要那請交通部是不是研議一個規劃 |
transcript.whisperx[20].start |
469.885 |
transcript.whisperx[20].end |
487.382 |
transcript.whisperx[20].text |
大概什麼時候可以給我一個規劃就是說我們這樣子的一個完安裝之後測試成功進度大概什麼時候那我大概什麼時候可以編列預算然後我可以把這個18萬的大型車全部安裝完產是不是可以寫一個規劃報告給我 |
transcript.whisperx[21].start |
488.752 |
transcript.whisperx[21].end |
489.894 |
transcript.whisperx[21].text |
希望我們交通部努力減少國人車禍的死傷 |