iVOD / 149274

Field Value
IVOD_ID 149274
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/149274
日期 2024-03-04
會議資料.會議代碼 委員會-11-1-20-2
會議資料.會議代碼:str 第11屆第1會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2024-03-04T11:45:32+08:00
結束時間 2024-03-04T11:58:29+08:00
影片長度 00:12:57
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ad9f873b941d2ddd414923b6cac2fe60e0c93a942a018238f8ba9b0039caa7a6f1150b2f0eab0c655ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:45:32 - 11:58:29
會議時間 2024-03-04T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第2次全體委員會議(事由:邀請金融監督管理委員會黃主任委員天牧率所屬機關首長暨中央存款保險股份有限公司、監管相關機構有關之財團法人、臺灣證券交易所股份有限公司、臺灣期貨交易所股份有限公司、臺灣集中保管結算所股份有限公司等董事長、總經理列席業務報告,並備質詢。 【3月4日及7日二天一次會】)
gazette.lineno 690
gazette.blocks[0][0] 王委員世堅:(11時45分)謝謝主席,我請金管會黃主委跟銀行局長、保險局長。
gazette.blocks[1][0] 主席:有請銀行局莊局長。
gazette.blocks[2][0] 黃主任委員天牧:是,委員你好。
gazette.blocks[3][0] 主席:還有保險局局長。
gazette.blocks[4][0] 王委員世堅:各位午安。黃主委,你學有專精,我也跟你初步談過,我先不跟你談,我倒是想先看看銀行局長、保險局長的廬山真面目。古有羅賓漢、廖添丁劫富濟貧,今有銀行局、保險局劫貧濟富,莫名其妙!銀行應該善盡保護存款戶,他們要善盡這個職責才對,結果不是!銀行局、保險局竟然任令這些銀行金控公司、保險公司他們,我不客氣講四個字,「監守自盜」!用客戶的資料、個資,搜刮這些菜籃族、上班族、小資族、媽媽班,搜刮他們辛苦的血汗錢,要他們買基金,所謂幫他們理財,基金、債券大賺手續費!我不曉得銀行局、保險局你們到底管理得怎麼樣,我待會一一跟你們講一些例子,看看你們是怎麼幹這個事情的,任令他們搜刮辛苦的小老百姓!
gazette.blocks[4][1] 這幾年來社會財富兩極化,那麼有錢的越有錢就算了,多數的市民不但因為兩極化的結果,大家的財富縮水不打緊,這幾年疫情的關係又通貨膨脹,小市民過的生活是非常地辛苦,結果你看看這些金控公司,這14家金控公司除了不長進的新光以外,另外13家賺了3,652億,3,652億哦!最多的賺六百多億,平均下來,平均大概都賺百億以上,天啊!他們大賺數百億啊!我想保險局跟銀行局你們很清楚嘛!光是這些手續費占他們的收入,去年手續費2,598億,2,600億之多,天啊!
gazette.blocks[4][2] 好,那你們管理得怎麼樣?好好地管理大家沒話講,照說銷售這些金融產品,最重要的是產品條件、風險說明,結果呢?我光舉這幾年,在你們的資料裡面,光2019到2023年,被檢舉金融商品的爭議有1,390件之多,1,390件哦!這在金融消費者保護法裡面很清楚,要充分揭露風險,那麼不充分揭露風險的話,有爭議的話,要處罰款耶!30萬以上到1,000萬耶!結果你們處得怎麼樣?兩位局長聽好哦!金融商品說明爭議這樣子經過評議以後,申訴人有理由的,被你們精挑細選篩檢之後說他有理由的也有97件,結果連1件都沒有送到金管會去裁處,這個是你們的評議委員會評議出來的,1,390件說至少這97件有重大爭議,結果連1件都沒有經過你們金管會裁處。
gazette.blocks[4][3] 那金管會裁處了什麼?有啦!你們公開的資料說銀行業金融商品說明爭議被裁罰的結果這麼多年來有3件,一年賺手續費2,600億,這3件總共罰款多少?從800萬、1,800萬到3,000萬,罰不到6,000萬,所以我覺得你們真的莫名其妙,很明顯地你們在袒護這些金控公司、這些銀行,包括袒護這些壽險公司,很清楚嘛!這就是典型的劫貧濟富!所以我想看看你們兩個的廬山真面目,沒想到你們長得是這麼斯文,所以外表往往是騙人的。
gazette.blocks[4][4] 好啦!我們再講到這些手續費,去年2,598億的手續費裡面,前5名就占了一半,前5名這5家我姑且就不把名字講出來,這些都是在金控業、銀行業裡面,也是我們消費大眾存款戶大家都覺得很有爭議的啦!怪怪的啦!覺得這幾家金控跟銀行都怪怪的!結果在你們銀行局的眼中他們是乖寶寶,天啊!這幾家,我剛剛講光手續費2,600億,結果四、五年下來你裁罰3件,裁罰加起來總計不到6,000萬,這個金額對我剛剛講的,光去年大賺3,652億的這13家金控而言,那是不痛不癢!那麼金控公司不只幹這些事耶!他們培養的一些理專、專員,當然有的也是學有專精,很認真沒有錯啦!竟然也是一群害群之馬,理專還會A錢,還會挪用資金,天啊!結果好不容易你們查到冰山的一角,查到挪用資金,A錢10億,10億哦!好不容易,也是你們三拖、四拖,三堂會審之後,欸!輕輕地就罰8,700萬,就這樣子結案。其他的理專A錢跟挪用資金,我相信還有,只是你們就是比較遲鈍,所以我搞不懂。我總結一句就是這麼多年來,金管會主導下的銀行局、保險局,你們裁罰金融業逐年減少、逐年減少,過去幾年,2019年也不過4年前,總計你們各項裁罰加起來還有3億,一直到去年只剩1億,只剩1億!我不懂為什麼,調皮搗蛋的這些金控公司跟銀行們突然之間變成乖寶寶嗎?變得那麼好嗎?我不相信,至少多數的存款戶是不相信。
gazette.blocks[4][5] 那麼我再講金融消費者保護法裡面講的,應該告知產品風險跟產品條件這個部分,只有「告」沒有「知」!我們訪問了一些菜籃族、上班族們,他們遇到共同的問題就是理專經常都是一句話,說:「主管要求例行公事,等一下我去準備資料,這個放給你看」,放那一段就叫做告知。那一段影片我普遍問起來,針對告知風險都已經要簽字了,才給他放一下這個不到1分鐘的短影片,58秒!就是我講的,只有「告」沒有「知」。
gazette.blocks[4][6] 好啦!不好意思,主席是不是再容我2分鐘講另外一個問題?還有哦!保險局不要在旁邊高興,這不是只講金控公司跟銀行而已哦!壽險業也一樣啊!壽險業每年收取我們社會大眾超過2兆以上的保險費收入,多的時候3兆,結果他們現在有這麼多的收入,他們的野心一樣還在,他們還販賣投資型保單,投資型保單也是出了一些問題,我今天因為時間關係,改天再跟你保險局談。
gazette.blocks[4][7] 我最後要談一個問題,就是你們金融罰的那些錢竟然進到哪裡?進到你們的小金庫,金融管理基金會啦!叫做金融監督基金會還是金融管理基金會,還在一個小金庫,不受國會監督,然後你們出國啦!所謂的考察啦!教育訓練啦!什麼一大堆,所以主席,我強烈建議金管會,對於這樣子的小金庫,我跟你講,任何公家的花費「必也正名乎」,要光明磊落嘛!你要出國接受再教育,你要考察,正式地編預算!不要搞一個罰金收入,把這個當成一個基金,當成你們的小金庫,這以後都會被人家講:「哦!原來罰這一些去當你們的私房錢」,這是不對的!任何一毛錢的花費該花要花,但是從國家預算下去編列,可不可以?主委,可不可以?
gazette.blocks[5][0] 主席:王委員……
gazette.blocks[6][0] 黃主任委員天牧:報告委員,可能有些訊息我會後向您報告,那個罰款是歸國庫的,那個基金是根據組織條例,它定期每年從金融業的營業費用中、收入中去歸一定的比例。我跟您報告,絕對沒有小金庫,我們罰款其實是歸國庫的。
gazette.blocks[7][0] 王委員世堅:沒有小金庫,但是你罰款是進到那裡嘛!不是嗎?
gazette.blocks[8][0] 黃主任委員天牧:沒有、沒有,不到那個基金帳戶裡面去。
gazette.blocks[9][0] 王委員世堅:沒有到基金帳戶?
gazette.blocks[10][0] 黃主任委員天牧:是歸國庫的。
gazette.blocks[11][0] 王委員世堅:好,那你把這一個……
gazette.blocks[12][0] 黃主任委員天牧:我會後再請……
gazette.blocks[13][0] 王委員世堅:我知道這是一個小金庫啦!
gazette.blocks[14][0] 主席:主委會後給王委員說明一下,好不好?
gazette.blocks[15][0] 王委員世堅:我知道這是個小金庫,好不好?會後你給我這一部分的答復。
gazette.blocks[16][0] 黃主任委員天牧:不好意思,可能我們沒有跟您報告清楚,很抱歉,我們再跟您報告,謝謝。
gazette.blocks[17][0] 王委員世堅:好,謝謝。
gazette.blocks[18][0] 主席:謝謝王世堅委員的質詢。
gazette.blocks[19][0] 王委員世堅:謝謝主席。
gazette.blocks[20][0] 主席:接著請李彥秀委員質詢。
gazette.agenda.page_end 322
gazette.agenda.meet_id 委員會-11-1-20-2
gazette.agenda.speakers[0] 郭國文
gazette.agenda.speakers[1] 吳秉叡
gazette.agenda.speakers[2] 林德福
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 賴惠員
gazette.agenda.speakers[5] 王鴻薇
gazette.agenda.speakers[6] 陳玉珍
gazette.agenda.speakers[7] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[8] 顏寬恒
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 李坤城
gazette.agenda.speakers[11] 王世堅
gazette.agenda.speakers[12] 李彥秀
gazette.agenda.speakers[13] 謝衣鳯
gazette.agenda.speakers[14] 葛如鈞
gazette.agenda.speakers[15] 邱志偉
gazette.agenda.speakers[16] 黃國昌
gazette.agenda.speakers[17] 林楚茵
gazette.agenda.speakers[18] 羅明才
gazette.agenda.speakers[19] 楊瓊瓔
gazette.agenda.page_start 269
gazette.agenda.meetingDate[0] 2024-03-04
gazette.agenda.gazette_id 1130701
gazette.agenda.agenda_lcidc_ids[0] 1130701_00006
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第2次全體委員會議紀錄
gazette.agenda.content 邀請金融監督管理委員會黃主任委員天牧率所屬機關首長暨中央存款保險股份有限公司、監管相 關機構有關之財團法人、臺灣證券交易所股份有限公司、臺灣期貨交易所股份有限公司、臺灣集 中保管結算所股份有限公司等董事長、總經理列席業務報告,並備質詢
gazette.agenda.agenda_id 1130701_00005
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.61721875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 0.26721875
transcript.pyannote[1].end 1.27971875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 2.79846875
transcript.pyannote[2].end 4.04721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 8.87346875
transcript.pyannote[3].end 9.59909375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 10.12221875
transcript.pyannote[4].end 11.11784375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 11.74221875
transcript.pyannote[5].end 12.40034375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 13.24409375
transcript.pyannote[6].end 15.53909375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 15.77534375
transcript.pyannote[7].end 17.54721875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 17.74971875
transcript.pyannote[8].end 23.20034375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 25.44471875
transcript.pyannote[9].end 26.08596875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 27.50346875
transcript.pyannote[10].end 32.81909375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 33.02159375
transcript.pyannote[11].end 35.06346875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 35.83971875
transcript.pyannote[12].end 38.62409375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 40.42971875
transcript.pyannote[13].end 41.45909375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 44.12534375
transcript.pyannote[14].end 45.03659375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 45.28971875
transcript.pyannote[15].end 46.67346875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 47.70284375
transcript.pyannote[16].end 48.39471875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 49.32284375
transcript.pyannote[17].end 50.21721875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 51.17909375
transcript.pyannote[18].end 51.68534375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 52.73159375
transcript.pyannote[19].end 54.31784375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 54.90846875
transcript.pyannote[20].end 56.37659375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 57.00096875
transcript.pyannote[21].end 57.25409375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 57.76034375
transcript.pyannote[22].end 60.61221875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 61.10159375
transcript.pyannote[23].end 62.56971875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 63.95346875
transcript.pyannote[24].end 64.59471875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 64.88159375
transcript.pyannote[25].end 66.70409375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 67.58159375
transcript.pyannote[26].end 68.67846875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 70.70346875
transcript.pyannote[27].end 73.45409375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 73.47096875
transcript.pyannote[28].end 75.25971875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 76.20471875
transcript.pyannote[29].end 77.72346875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 78.82034375
transcript.pyannote[30].end 79.44471875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 79.91721875
transcript.pyannote[31].end 81.48659375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 83.47784375
transcript.pyannote[32].end 84.18659375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 86.14409375
transcript.pyannote[33].end 86.98784375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 88.65846875
transcript.pyannote[34].end 89.50221875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 90.02534375
transcript.pyannote[35].end 91.07159375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 91.22346875
transcript.pyannote[36].end 101.77034375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 103.28909375
transcript.pyannote[37].end 103.98096875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 105.01034375
transcript.pyannote[38].end 106.37721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 107.18721875
transcript.pyannote[39].end 112.01346875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 112.73909375
transcript.pyannote[40].end 114.71346875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 115.21971875
transcript.pyannote[41].end 116.85659375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 117.80159375
transcript.pyannote[42].end 119.50596875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 119.62409375
transcript.pyannote[43].end 123.35346875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 124.66971875
transcript.pyannote[44].end 125.39534375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 126.18846875
transcript.pyannote[45].end 128.12909375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 129.12471875
transcript.pyannote[46].end 130.35659375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 131.38596875
transcript.pyannote[47].end 133.51221875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 134.38971875
transcript.pyannote[48].end 143.89034375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 144.86909375
transcript.pyannote[49].end 147.65346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 148.44659375
transcript.pyannote[50].end 150.94409375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 151.46721875
transcript.pyannote[51].end 154.01534375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 154.79159375
transcript.pyannote[52].end 157.67721875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 158.33534375
transcript.pyannote[53].end 159.68534375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 160.91721875
transcript.pyannote[54].end 168.19034375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 168.79784375
transcript.pyannote[55].end 169.42221875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 171.26159375
transcript.pyannote[56].end 173.45534375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 174.58596875
transcript.pyannote[57].end 174.73784375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 175.81784375
transcript.pyannote[58].end 177.96096875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 178.21409375
transcript.pyannote[59].end 179.83409375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 180.96471875
transcript.pyannote[60].end 183.05721875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 184.99784375
transcript.pyannote[61].end 185.38596875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 185.68971875
transcript.pyannote[62].end 186.61784375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 187.39409375
transcript.pyannote[63].end 194.48159375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 195.07221875
transcript.pyannote[64].end 195.76409375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 199.10534375
transcript.pyannote[65].end 200.57346875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 200.96159375
transcript.pyannote[66].end 202.51409375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 203.84721875
transcript.pyannote[67].end 204.08346875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 206.59784375
transcript.pyannote[68].end 211.77846875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 212.55471875
transcript.pyannote[69].end 213.70221875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 214.39409375
transcript.pyannote[70].end 214.90034375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 215.44034375
transcript.pyannote[71].end 217.88721875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 218.34284375
transcript.pyannote[72].end 219.35534375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 220.31721875
transcript.pyannote[73].end 222.49409375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 223.47284375
transcript.pyannote[74].end 226.52721875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 227.23596875
transcript.pyannote[75].end 229.54784375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 230.93159375
transcript.pyannote[76].end 232.23096875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 233.22659375
transcript.pyannote[77].end 236.28096875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 237.19221875
transcript.pyannote[78].end 239.31846875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 240.87096875
transcript.pyannote[79].end 244.31346875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 245.34284375
transcript.pyannote[80].end 246.49034375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 247.60409375
transcript.pyannote[81].end 249.67971875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 250.43909375
transcript.pyannote[82].end 251.78909375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 253.39221875
transcript.pyannote[83].end 255.36659375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 256.93596875
transcript.pyannote[84].end 258.30284375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 259.36596875
transcript.pyannote[85].end 266.57159375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 267.21284375
transcript.pyannote[86].end 267.75284375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 268.74846875
transcript.pyannote[87].end 273.62534375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 274.80659375
transcript.pyannote[88].end 275.58284375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 276.69659375
transcript.pyannote[89].end 278.14784375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 279.64971875
transcript.pyannote[90].end 281.26971875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 281.64096875
transcript.pyannote[91].end 282.80534375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 284.23971875
transcript.pyannote[92].end 284.71221875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 285.06659375
transcript.pyannote[93].end 287.32784375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 287.73284375
transcript.pyannote[94].end 295.17471875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 295.61346875
transcript.pyannote[95].end 296.74409375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 297.26721875
transcript.pyannote[96].end 298.24596875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 299.93346875
transcript.pyannote[97].end 301.51971875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 302.19471875
transcript.pyannote[98].end 303.73034375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 304.20284375
transcript.pyannote[99].end 304.64159375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 305.04659375
transcript.pyannote[100].end 306.46409375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 306.78471875
transcript.pyannote[101].end 307.34159375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 307.83096875
transcript.pyannote[102].end 310.17659375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 310.80096875
transcript.pyannote[103].end 311.81346875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 312.58971875
transcript.pyannote[104].end 313.01159375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 314.12534375
transcript.pyannote[105].end 315.59346875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 316.69034375
transcript.pyannote[106].end 317.11221875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 317.80409375
transcript.pyannote[107].end 318.85034375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 319.08659375
transcript.pyannote[108].end 320.62221875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 321.17909375
transcript.pyannote[109].end 323.67659375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 325.06034375
transcript.pyannote[110].end 326.03909375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 327.10221875
transcript.pyannote[111].end 328.57034375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 329.38034375
transcript.pyannote[112].end 330.34221875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 333.07596875
transcript.pyannote[113].end 340.31534375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 340.51784375
transcript.pyannote[114].end 343.55534375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 344.78721875
transcript.pyannote[115].end 345.69846875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 346.44096875
transcript.pyannote[116].end 349.17471875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 354.62534375
transcript.pyannote[117].end 356.85284375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 359.56971875
transcript.pyannote[118].end 361.61159375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 362.05034375
transcript.pyannote[119].end 363.87284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 364.75034375
transcript.pyannote[120].end 365.91471875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 367.16346875
transcript.pyannote[121].end 367.51784375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 368.22659375
transcript.pyannote[122].end 368.66534375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 369.49221875
transcript.pyannote[123].end 371.78721875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 372.58034375
transcript.pyannote[124].end 378.57096875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 379.88721875
transcript.pyannote[125].end 383.21159375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 384.08909375
transcript.pyannote[126].end 385.77659375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 385.87784375
transcript.pyannote[127].end 388.47659375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 389.13471875
transcript.pyannote[128].end 394.95659375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 396.32346875
transcript.pyannote[129].end 399.74909375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 401.50409375
transcript.pyannote[130].end 402.46596875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 402.78659375
transcript.pyannote[131].end 403.47846875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 404.38971875
transcript.pyannote[132].end 406.16159375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 407.35971875
transcript.pyannote[133].end 407.76471875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 409.97534375
transcript.pyannote[134].end 411.07221875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 411.37596875
transcript.pyannote[135].end 411.54471875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 412.06784375
transcript.pyannote[136].end 413.02971875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 413.50221875
transcript.pyannote[137].end 415.40909375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 416.94471875
transcript.pyannote[138].end 417.73784375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 417.90659375
transcript.pyannote[139].end 425.24721875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 426.46221875
transcript.pyannote[140].end 426.71534375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 428.06534375
transcript.pyannote[141].end 428.60534375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 429.46596875
transcript.pyannote[142].end 430.25909375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 431.13659375
transcript.pyannote[143].end 431.59221875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 433.17846875
transcript.pyannote[144].end 433.88721875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 434.98409375
transcript.pyannote[145].end 435.43971875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 437.41409375
transcript.pyannote[146].end 438.19034375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 438.52784375
transcript.pyannote[147].end 441.02534375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 442.13909375
transcript.pyannote[148].end 443.62409375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 444.28221875
transcript.pyannote[149].end 446.83034375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 447.35346875
transcript.pyannote[150].end 448.68659375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 450.49221875
transcript.pyannote[151].end 451.23471875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 452.41596875
transcript.pyannote[152].end 453.20909375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 453.36096875
transcript.pyannote[153].end 453.69846875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 454.00221875
transcript.pyannote[154].end 456.78659375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 457.63034375
transcript.pyannote[155].end 458.30534375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 459.23346875
transcript.pyannote[156].end 460.76909375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 461.41034375
transcript.pyannote[157].end 467.58659375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 468.07596875
transcript.pyannote[158].end 469.71284375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 470.32034375
transcript.pyannote[159].end 474.10034375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 475.33221875
transcript.pyannote[160].end 476.12534375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 477.28971875
transcript.pyannote[161].end 478.69034375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 479.60159375
transcript.pyannote[162].end 482.84159375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 483.39846875
transcript.pyannote[163].end 484.17471875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 484.68096875
transcript.pyannote[164].end 485.65971875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 486.62159375
transcript.pyannote[165].end 487.38096875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 488.30909375
transcript.pyannote[166].end 489.16971875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 489.99659375
transcript.pyannote[167].end 495.54846875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 496.44284375
transcript.pyannote[168].end 497.48909375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 498.18096875
transcript.pyannote[169].end 499.10909375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 500.72909375
transcript.pyannote[170].end 502.66971875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 503.47971875
transcript.pyannote[171].end 503.90159375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 504.20534375
transcript.pyannote[172].end 510.14534375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 510.43221875
transcript.pyannote[173].end 511.39409375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 511.76534375
transcript.pyannote[174].end 512.74409375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 512.94659375
transcript.pyannote[175].end 513.52034375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 514.02659375
transcript.pyannote[176].end 514.71846875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 515.59596875
transcript.pyannote[177].end 517.16534375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 518.39721875
transcript.pyannote[178].end 520.79346875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 521.16471875
transcript.pyannote[179].end 525.95721875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 526.27784375
transcript.pyannote[180].end 529.06221875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 530.53034375
transcript.pyannote[181].end 532.85909375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 533.90534375
transcript.pyannote[182].end 542.20784375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 543.49034375
transcript.pyannote[183].end 544.33409375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 545.00909375
transcript.pyannote[184].end 545.98784375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 546.51096875
transcript.pyannote[185].end 549.98721875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 551.38784375
transcript.pyannote[186].end 553.42971875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 554.44221875
transcript.pyannote[187].end 555.42096875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 556.12971875
transcript.pyannote[188].end 556.82159375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 557.95221875
transcript.pyannote[189].end 560.26409375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 561.09096875
transcript.pyannote[190].end 561.52971875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 562.59284375
transcript.pyannote[191].end 563.97659375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 564.06096875
transcript.pyannote[192].end 565.88346875
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 566.64284375
transcript.pyannote[193].end 572.95409375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 574.00034375
transcript.pyannote[194].end 576.02534375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 578.28659375
transcript.pyannote[195].end 582.91034375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 583.14659375
transcript.pyannote[196].end 583.99034375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 585.40784375
transcript.pyannote[197].end 595.53284375
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 596.37659375
transcript.pyannote[198].end 598.41846875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 599.14409375
transcript.pyannote[199].end 601.15221875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 601.92846875
transcript.pyannote[200].end 604.34159375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 605.55659375
transcript.pyannote[201].end 607.86846875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 608.47596875
transcript.pyannote[202].end 613.06596875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 613.94346875
transcript.pyannote[203].end 616.44096875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 617.20034375
transcript.pyannote[204].end 625.63784375
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 626.29596875
transcript.pyannote[205].end 628.96221875
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 629.24909375
transcript.pyannote[206].end 634.48034375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 636.69096875
transcript.pyannote[207].end 637.85534375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 638.54721875
transcript.pyannote[208].end 640.01534375
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 640.42034375
transcript.pyannote[209].end 641.70284375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 642.10784375
transcript.pyannote[210].end 643.47471875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 643.74471875
transcript.pyannote[211].end 643.91346875
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 645.26346875
transcript.pyannote[212].end 646.88346875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 647.77784375
transcript.pyannote[213].end 669.79971875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 671.43659375
transcript.pyannote[214].end 673.64721875
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 674.87909375
transcript.pyannote[215].end 690.60659375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 690.79221875
transcript.pyannote[216].end 695.70284375
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 696.37784375
transcript.pyannote[217].end 700.79909375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 701.15346875
transcript.pyannote[218].end 704.32596875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 704.79846875
transcript.pyannote[219].end 710.87346875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 711.27846875
transcript.pyannote[220].end 726.17909375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 726.95534375
transcript.pyannote[221].end 728.47409375
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 729.19971875
transcript.pyannote[222].end 730.21221875
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 730.49909375
transcript.pyannote[223].end 755.03534375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 730.53284375
transcript.pyannote[224].end 731.08971875
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 747.08721875
transcript.pyannote[225].end 748.30221875
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 748.58909375
transcript.pyannote[226].end 749.46659375
transcript.pyannote[227].speaker SPEAKER_00
transcript.pyannote[227].start 753.16221875
transcript.pyannote[227].end 754.27596875
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 755.76096875
transcript.pyannote[228].end 771.45471875
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 756.30096875
transcript.pyannote[229].end 762.83159375
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 763.20284375
transcript.pyannote[230].end 763.69221875
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 764.80596875
transcript.pyannote[231].end 764.92409375
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 765.32909375
transcript.pyannote[232].end 765.58221875
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 766.25721875
transcript.pyannote[233].end 769.73346875
transcript.whisperx[0].start 1.241
transcript.whisperx[0].end 22.92
transcript.whisperx[0].text 黃主委你學有專精我也跟你初步談過我先不跟你談我倒是想先看看銀行局長保險局長的廬山真面目這個
transcript.whisperx[1].start 27.557
transcript.whisperx[1].end 38.359
transcript.whisperx[1].text 股有羅賓漢、廖天丁、傑富、濟平均有銀行局、保險局、傑平、濟富莫名其妙銀行應該善盡保護存款戶他們
transcript.whisperx[2].start 52.782
transcript.whisperx[2].end 80.719
transcript.whisperx[2].text 要善盡這個職責才對結果不是銀行局、保險局竟然任命這些銀行、金融公司、保險公司他們我不客氣講四個字堅守制度用客戶的資料各自收刮
transcript.whisperx[3].start 83.73
transcript.whisperx[3].end 111.886
transcript.whisperx[3].text 這些蔡蘭族、上班族、小資族、媽媽班收掛他們辛苦的血換錢要他們買基金所謂幫他們理財基金債券大賺手續費然後我不曉得銀行局、保險局你們到底管理的怎麼樣我待會意義跟你們講一些例子
transcript.whisperx[4].start 112.799
transcript.whisperx[4].end 132.012
transcript.whisperx[4].text 看看你們是怎麼幹這個事情的任命他們收刮辛苦的小老百姓這幾年來社會財富兩極化那麼有錢的越有錢就算啦多數的市民不但因為兩極化的結果
transcript.whisperx[5].start 134.811
transcript.whisperx[5].end 155.999
transcript.whisperx[5].text 財富大家縮水不打緊這幾年疫情的關係又通貨膨脹小市民過的生活是非常的辛苦結果你看看這些金控公司這14家金控公司啊除了那個不漲進的星光以外另外13家賺了3652億
transcript.whisperx[6].start 161.513
transcript.whisperx[6].end 182.163
transcript.whisperx[6].text 3650億喔 最多的佔600多億平均下來平均都大概賺百億以上啦天啊 他們大賺數百億啊欸 我想保險局跟銀行局你們很清楚嘛光是這些手續費
transcript.whisperx[7].start 185.783
transcript.whisperx[7].end 194.025
transcript.whisperx[7].text 他們的收入一年、去年啦!手續費2598億、2600億之多!天啊!好啦!那你們管理得怎麼樣?好好的管理大家沒話講!照說銷售這些金融產品最重要產品條件、風險說明
transcript.whisperx[8].start 213.048
transcript.whisperx[8].end 238.653
transcript.whisperx[8].text 結果呢?結果我光舉這幾年你們的資料裡面光2019到2023年被檢舉金融商品的爭議1390件之多1390件喔那這在金融消費者保護法裡面很清楚啊要充分揭露風險
transcript.whisperx[9].start 240.916
transcript.whisperx[9].end 267.588
transcript.whisperx[9].text 那麼不充分揭露風險的話有爭議的話要處罰款30萬以上到1000萬結果你們處的怎麼樣那個兩位局長你聽好金融商品說明爭議這樣子經過評議以後山宿人有理由的有理由的站了
transcript.whisperx[10].start 268.786
transcript.whisperx[10].end 291.971
transcript.whisperx[10].text 被你們精挑細選篩檢之後說他有理由的也有97件結果啊連一件連一件都沒有送到金管會去採取這個是你們的評議委員會他們評議出來的1390件說至少這97件有重大爭議結果連一件都沒有
transcript.whisperx[11].start 300.36
transcript.whisperx[11].end 320.331
transcript.whisperx[11].text 經過你們金管會採取那金管會採取了什麼有啦你們公開的資料說銀行業金融商品說明爭議被裁罰的結果這麼多年來三件一年賺手續費2600億這三件總共罰款多少從800萬1800萬到3000萬
transcript.whisperx[12].start 329.457
transcript.whisperx[12].end 330.238
transcript.whisperx[12].text 所以我想看看你們兩個如山正面目啊
transcript.whisperx[13].start 359.602
transcript.whisperx[13].end 383.04
transcript.whisperx[13].text 沒想到你們長得是這麼斯文啦齁所以外表往往是騙人的啦外表往往是騙人的好啦我們再講到說這些手續費去年啦2598億的手續費裡面前五名就佔了一半前五名這五家我姑且就不把名字講出來啦
transcript.whisperx[14].start 384.304
transcript.whisperx[14].end 406
transcript.whisperx[14].text 這些都是在金控業、銀行業裡面也是我們消費大眾存款戶大家都覺得很有爭議的啦怪怪的啦覺得這幾家金控跟銀行都怪怪的結果在你們銀行局的眼中啊他們是乖寶寶天啊
transcript.whisperx[15].start 410.777
transcript.whisperx[15].end 415.52
transcript.whisperx[15].text 這幾家我剛剛講的啊光手續費2600億結果這麼多年四五年下來你財閥三屆財閥加起來總計不到6000萬這個金額啊對我剛剛講
transcript.whisperx[16].start 437.472
transcript.whisperx[16].end 457.711
transcript.whisperx[16].text 去年大賺3652億的這13家金控而言那是不痛不癢不痛不癢那麼銀行不只金控公司不只幹這些事他們
transcript.whisperx[17].start 459.281
transcript.whisperx[17].end 483.453
transcript.whisperx[17].text 培養的一些理專專員啦當然這些有的也是都學有專精很認真沒有錯啦還竟然也是一群害群之嘛理專還會A錢還會挪用資金天啊結果好不容易你們查到冰山的一角查到挪用資金A錢10億10億喔
transcript.whisperx[18].start 488.359
transcript.whisperx[18].end 516.96
transcript.whisperx[18].text 好不容易也是你們三拖四拖三堂會審之後輕輕的就罰八千七百萬就這樣子結案其他的禮專A群跟挪用資金我相信還有還有只是你們就是比較遲鈍比較遲鈍所以我搞不懂那麼我總結一句就是說
transcript.whisperx[19].start 518.982
transcript.whisperx[19].end 528.846
transcript.whisperx[19].text 這麼多年來金管會你們主導下的銀行局、保險局你們財閥金融業逐年減少逐年減少過去幾年2019年也不過4年前總計你們還財閥各項財閥加起來還有3億一直到去年只剩1億
transcript.whisperx[20].start 543.53
transcript.whisperx[20].end 561.187
transcript.whisperx[20].text 只剩1億我不懂為什麼調皮搗蛋的這些金控公司跟銀行們突然之間變成乖寶寶嗎?變得那麼好嗎?我不相信至少多數的存款公司不相信那麼
transcript.whisperx[21].start 562.622
transcript.whisperx[21].end 581.823
transcript.whisperx[21].text 我在講金融消費者保護法裡面講的應該告知產品風險跟產品條件這個部分只有告沒有知我們訪問了一些蔡蘭族上班族們他們遇到的共同的問題就是說這個
transcript.whisperx[22].start 585.438
transcript.whisperx[22].end 610.735
transcript.whisperx[22].text 都是啊 理專經常都是一句話就是說 主管要求例行公事 例行公事等一下我去準備資料 這個放給你看 放那一段就叫做告知那一段影片我普遍問起來 這個針對告知風險都已經要簽字了才給他放一下這個大概不到一分鐘的一個短影片 58秒 58秒
transcript.whisperx[23].start 613.988
transcript.whisperx[23].end 633.689
transcript.whisperx[23].text 就我講的只有告沒有知好啦不好意思主席是不是在讓我講我講另外一個問題齁那還有喔保險局不要在旁邊高興這不是只講金控公司跟銀行而已喔受險業一樣啊受險業每年收取我們社會大眾超過
transcript.whisperx[24].start 636.718
transcript.whisperx[24].end 646.419
transcript.whisperx[24].text 多的時候3兆都超過2兆以上的保險費收入了結果他們現在這麼多的收入還
transcript.whisperx[25].start 647.813
transcript.whisperx[25].end 669.632
transcript.whisperx[25].text 他們野心還是一樣還在他們還販賣投資型保單投資型保單這些也是出了一些問題我今天時間關係改天再跟你保險局談我最後要談一個問題就是說你們金融啊你們罰的那些錢啊竟然進到哪裡進到你們的小金庫金融管理基金會啦
transcript.whisperx[26].start 674.929
transcript.whisperx[26].end 695.471
transcript.whisperx[26].text 叫做金融監督機、金融管理機還在一個小金庫不受國會監督然後你們出國啦所謂的考察啦教育訓練啦什麼一大堆所以主席我強烈建立金管會這樣子的小金庫我跟你講任何公家的花費必也正名乎
transcript.whisperx[27].start 696.445
transcript.whisperx[27].end 717.779
transcript.whisperx[27].text 我們光明磊落嘛你要出國接受再教育你要考察正式的編預算不要搞一個罰金收入把這個當成一個基金當成你們的小金庫最後都會被人家講人家罰這一些啊這個罰去當你們的私房錢
transcript.whisperx[28].start 718.819
transcript.whisperx[28].end 746.458
transcript.whisperx[28].text 這是不對的任何一毛錢的花費該花要花但是從國家預算下去編列可不可以局長可不可以那個那個主委報告報告委員可能有些訊息我會後跟您報告那個罰款是歸國庫的沒有那個基金是根據組織條例他定期每年從金融業的營業營業的費用中收入中歸一定的比例我跟您報告絕對沒有小金庫
transcript.whisperx[29].start 748.419
transcript.whisperx[29].end 767.855
transcript.whisperx[29].text 其實是歸國庫的。但是你罰款是進到那裡嗎?不是嗎?沒有沒有,不到那個基金帳戶裡面去。沒有到基金帳戶。是歸國庫的。好,那你把這個帳戶,我知道這個是一個小金庫了。我知道這個是一個小金庫了。不好意思,可能我沒有給您報告清楚,很抱歉。我們再給您報告,謝謝。謝謝王世堅委員的質詢。謝謝主席。接著我們請李彥秀委員質詢。