IVOD_ID |
149017 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/149017 |
日期 |
2023-12-13 |
會議資料.會議代碼 |
委員會-10-8-26-14 |
會議資料.會議代碼:str |
第10屆第8會期社會福利及衛生環境委員會第14次全體委員會議 |
會議資料.屆 |
10 |
會議資料.會期 |
8 |
會議資料.會次 |
14 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
26 |
會議資料.委員會代碼:str[0] |
社會福利及衛生環境委員會 |
會議資料.標題 |
第10屆第8會期社會福利及衛生環境委員會第14次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2023-12-13T11:01:26+08:00 |
結束時間 |
2023-12-13T11:12:24+08:00 |
影片長度 |
00:10:58 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/fcca7cb692a387d63c5fcf9d8669f912ab799385851b1dc2c986728e607a0322c53c89e6150c5b455ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
邱泰源 |
委員發言時間 |
11:01:26 - 11:12:24 |
會議時間 |
2023-12-13T09:00:00+08:00 |
會議名稱 |
立法院第10屆第8會期社會福利及衛生環境委員會第14次全體委員會議(事由:審查
一、委員劉世芳等16人擬具「勞工退休金條例第二十三條及第五十八條條文修正草案」案。
二、委員謝衣鳯等16人擬具「勞工退休金條例第二十五條條文修正草案」案。
三、委員溫玉霞等21人擬具「勞工退休金條例第十七條之一及第二十三條條文修正草案」案。
四、委員陳明文等17人擬具「勞工退休金條例第三十三條條文修正草案」案。
五、委員高嘉瑜等17人擬具「勞工退休金條例部分條文修正草案」案。
六、委員張廖萬堅等22人擬具「勞工退休金條例第十四條、第十四條之一及第五十八條條文修正草案」案。
七、委員郭國文等18人擬具「勞工退休金條例第十四條、第二十三條及第三十三條條文修正草案」案。
八、委員廖國棟等17人擬具「勞工退休金條例第二十三條條文修正草案」案。
九、委員賴士葆等21人擬具「勞工退休金條例第十四條、第十四條之一及第三十四條條文修正草案」案。
十、委員楊瓊瓔等22人擬具「勞工退休金條例部分條文修正草案」案。
十一、委員李貴敏等17人擬具「勞工退休金條例第二十四條之二條文修正草案」案。
十二、委員邱泰源等18人擬具「勞工退休金條例第五十六條之四及第五十八條條文修正草案」案。
十三、台灣民眾黨黨團擬具「勞工退休金條例第十四條、第三十九條及第五十八條條文修正草案」案。
十四、台灣民眾黨黨團擬具「勞工退休金條例第十四條條文修正草案」案。
十五、委員陳明文等21人擬具「勞工退休金條例第十四條條文修正草案」案。) |
gazette.lineno |
667 |
gazette.blocks[0][0] |
邱委員泰源:(11時1分)謝謝召委。主席,請部長。 |
gazette.blocks[1][0] |
主席:請部長。 |
gazette.blocks[2][0] |
許部長銘春:委員好。 |
gazette.blocks[3][0] |
邱委員泰源:部長,有關今天的主題,我們都很關心勞工的福利,很多委員也都提了很多的見解,我想對於我們未來在修正不管是政策或規定等各方面應該有大的幫助,我都很願意跟大家一起來共同努力。有一些另外的主題可能我們以前也關心,現在我再請教一下。 |
gazette.blocks[3][1] |
我想勞動力的穩定還是未來臺灣要一直去注意的事情,這樣才能跟人比拚嘛!看起來勞動力來源問題的解決應該有四個方向啦,這個我們以前有討論過嘛! |
gazette.blocks[4][0] |
許部長銘春:對。 |
gazette.blocks[5][0] |
邱委員泰源:第一個是生育率提高,這個還有在拚嗎? |
gazette.blocks[6][0] |
許部長銘春:有,這個我們現在就是各部會努力啦,國家跟你一起養,希望能提高生育率。 |
gazette.blocks[7][0] |
邱委員泰源:好。第二個就是促進中高齡及高齡就業,這個等一下我再請教。 |
gazette.blocks[8][0] |
許部長銘春:是。 |
gazette.blocks[9][0] |
邱委員泰源:再來是怎麼樣讓可能想要或者動機有沒有都可以的勞動人口來彌補我們現在職場上所需要的,第四個則是剛剛林為洲委員也有提到的擔心及各方面等等,這個我們都會謹慎來進行,我想這幾個方向是大家過去一直在討論跟努力的。 |
gazette.blocks[9][1] |
我們來看一下資料,資料顯示與其他國家相比,我們的退休平均年齡好像比較早,不曉得你們那邊有沒有相關統計?再回來工作的就業率好像也比較低,部長,你們從過去到現在這段時間的打拚有沒有碰到什麼困難? |
gazette.blocks[10][0] |
許部長銘春:困難就是說,第一個我是覺得以雇主的刻板印象,對於中高齡、高齡的就業者,或者是二度就業的婦女,會認為他們在體力或各方面可能會不足,所以這個部分我們要花很多時間去做溝通,其實這些人都還是壯世代啦,希望大家能夠讓這些壯世代的人有工作的機會,我們現在覺得比較困難的是這個部分。至於其他在技能或專業上有不足的,這個倒是沒有問題,勞動部的職訓資源都會全力來幫忙。 |
gazette.blocks[10][1] |
另外,我們也有給雇主獎助、給勞工獎勵,希望他們能夠重返職場或續留職場,目的就是希望能夠讓整個中高齡、高齡者等壯世代的勞參率能夠提高。 |
gazette.blocks[11][0] |
邱委員泰源:好,其實以前為了長照的照顧,我們大概20年前曾經在雲林那邊推動,讓那些65歲、70歲等還沒有到75歲的退休者來照顧75歲以上的老人啦,不過那個時候是用志工的方式啦,也真的在媒介喔,很努力在媒介,後來可能也沒有延續,但這也是創造了一些模式啦,後續可能不一定有延續,但總是有創造一些模式出來。他山之石可以攻錯,我個人的感覺啦,聽說日本好像有滿多年紀比較大的人都出來做那種他們可能做得了的工作,甚至是在餐飲業的服務。 |
gazette.blocks[12][0] |
許部長銘春:對,服務業的部分。 |
gazette.blocks[13][0] |
邱委員泰源:當然可能很多人希望在餐飲業服務的人是比較年輕一點,但是有些餐飲我覺得只要有人來把它處理好就好了。 |
gazette.blocks[14][0] |
許部長銘春:對。 |
gazette.blocks[15][0] |
邱委員泰源:這個部分我們能不能去瞭解一下日本是怎麼做的,或是其他國家是怎麼做的? |
gazette.blocks[16][0] |
許部長銘春:這個部分當然就是說,可能傳統上他們就比較善用這些中高齡、高齡等銀髮族的人力啦,我們現在也在鼓勵雇主,看看是不是可以參考日本的經驗,因為我們現在勞動力短缺嘛,希望這些雇主能夠,畢竟中高齡、壯世代是一個很重要的勞動力來源啊,其實這些人的服務也會讓我們覺得比較有溫度、比較親切,所以我們現在也是鼓勵雇主來進用啦,也獎勵這些中高齡、高齡者進到像剛剛委員所講的餐飲業的服務職場,現在也有一些成果啦,譬如說有些新開的飯店,我們就會去幫它媒合,就是我們進場去幫它媒合這些中高齡或高齡者,讓他們在勞動力的來源上能夠更迅速地去獲得填補。 |
gazette.blocks[17][0] |
邱委員泰源:好,我想我們有在做,當然就要一直持續去檢討成果,看怎麼樣有精進的策略嘛,這可能要不斷的努力啦! |
gazette.blocks[18][0] |
許部長銘春:對、對。 |
gazette.blocks[19][0] |
邱委員泰源:這樣才能改變文化,改變大家的心態嘛。當然在體能方面也是一個問題,但是這個部分我相信只要媒合適當的…… |
gazette.blocks[20][0] |
許部長銘春:體能部分當然沒有問題,我們也在跟雇主溝通,其實我們可以有專家進去幫它做職務再設計,讓整個流程更適合這些壯世代的工作者。再來就是我們有輔具,輔具的部分是只要聘用這些壯世代勞工,每人每年有10萬塊的輔具費用可以來補助,這個都可以減輕他們在工作上譬如說要搬重或者各種不便,這個部分我們也一直在做一些宣導讓雇主知道。 |
gazette.blocks[21][0] |
邱委員泰源:我們以前在推這個計畫、法案的時候,當然我們也擔心這可能會搶到年輕人的位置,可是畢竟還是有很多人是不能陷在那個困境的,像沒錢的怎麼辦?很多啊,像我們在弄健保也是很痛苦啊,我想國家、政府還有醫界也都很頭痛啊,但總是要創造它的價值,不能說就卡死在那裡,當然這可能要靠我們的智慧嘛,我想對於這個部分,很多政策不是不能做,而是怎麼把它做得好,這個部分可能…… |
gazette.blocks[22][0] |
許部長銘春:是,我們現在其實是整體缺工啦,所以不會有那種去搶青年人工作的問題。 |
gazette.blocks[23][0] |
邱委員泰源:部長,我請教你,你覺得我們現在的年輕人都跑去哪邊工作?好像很多行業都缺人力,年輕人都在家裡,還是他們家裡有錢都不用出來工作?你們有沒有去統計一下? |
gazette.blocks[24][0] |
許部長銘春:其實很多都到服務業、批發零售業那邊去啦。 |
gazette.blocks[25][0] |
邱委員泰源:批發零售業?有需要那麼多人喔?你們有去瞭解現在的年輕人都跑去哪裡工作嗎? |
gazette.blocks[26][0] |
許部長銘春:是,就是…… |
gazette.blocks[27][0] |
邱委員泰源:還是現在年輕人的心態是覺得沒關係,我們以前求個職業就是想要求穩定、能夠長久,是不是大家現在的心態因時代所趨及潮流而改變了?那我們也要跟著時代來考慮一下啊! |
gazette.blocks[28][0] |
許部長銘春:是,那個…… |
gazette.blocks[29][0] |
邱委員泰源:不然我們政策走我們的,結果跟現代的年輕人沒辦法結合也是…… |
gazette.blocks[30][0] |
許部長銘春:大概有七成的年輕人喜歡在服務業啦,大概有七成的年輕人,畢業後或剛畢業的年輕人喜歡在服務業啦,但是我們現在其實也有投資青年就業方案,希望把它導向重點產業…… |
gazette.blocks[31][0] |
邱委員泰源:這個將來當然也可以從教育,如果覺得哪些從小時候就要來教育,其實也可以結合教育來處理,對文化的形成會比較好。 |
gazette.blocks[32][0] |
許部長銘春:對,也是,對對對,是。 |
gazette.blocks[33][0] |
邱委員泰源:看下一張,最近我們也開始關心女性國人,很多人因為小孩子稍微大了,會想說不知道哪裡可以有所發揮,不曉得勞動部對這個部分、這個主題的看法怎麼樣? |
gazette.blocks[34][0] |
許部長銘春:我們今年9月1號有一個婦女再就業計畫,為期3年的計畫,預計3年內希望增加14萬名的女性勞動力,這個計畫包括給女性,因為他可能離開職場一段時間了,他可以針對自己過去所具備的專業技能還需要再提升的,他可以提出自主訓練計畫,我們會給他獎勵;另外就是他如果重返職場穩定就業3個月,我們也會給他最高3萬元的獎勵,因為工時調整…… |
gazette.blocks[35][0] |
邱委員泰源:部長,有這個計畫嘛? |
gazette.blocks[36][0] |
許部長銘春:有有有。 |
gazette.blocks[37][0] |
邱委員泰源:做的情況你再跟我講一下。 |
gazette.blocks[38][0] |
許部長銘春:好。 |
gazette.blocks[39][0] |
邱委員泰源:我們可以後續再來追蹤好了,因為我後面還有主題…… |
gazette.blocks[40][0] |
許部長銘春:是是是。好。 |
gazette.blocks[41][0] |
邱委員泰源:接下來這也是醫療院所比較困擾的,醫療院所不一樣的是什麼呢?就是你來看病,我一定要先救你,把你收來住院,加護病房出來後還要住院,結果搞半天搞了一個月,把命救起來,哇,沒錢給付,這個部分勞動部有什麼看法?簡單講一下就好。 |
gazette.blocks[42][0] |
許部長銘春:這個部分我們未來會,這部分行政院跨部會已經有討論了,未來會有一些方向出來;另外,在勞動部這邊,我們未來就是會針對來源國的仲介,要求他要負連帶責任。 |
gazette.blocks[43][0] |
邱委員泰源:這個當然是一個方法,但是不一定是好方法,還是可以再討論,這個主題也請勞動部把後來的進展也給我們一下好了。 |
gazette.blocks[44][0] |
許部長銘春:好。OK。 |
gazette.blocks[45][0] |
邱委員泰源:針對這個問題大家共同再來思考,好不好? |
gazette.blocks[46][0] |
許部長銘春:好。謝謝委員。 |
gazette.blocks[47][0] |
邱委員泰源:感謝大家。謝謝主席。 |
gazette.blocks[48][0] |
主席:謝謝召委。下一位請洪申翰委員。 |
gazette.agenda.page_end |
392 |
gazette.agenda.meet_id |
委員會-10-8-26-14 |
gazette.agenda.speakers[0] |
吳欣盈 |
gazette.agenda.speakers[1] |
吳玉琴 |
gazette.agenda.speakers[2] |
蘇巧慧 |
gazette.agenda.speakers[3] |
賴惠員 |
gazette.agenda.speakers[4] |
張育美 |
gazette.agenda.speakers[5] |
陳瑩 |
gazette.agenda.speakers[6] |
徐志榮 |
gazette.agenda.speakers[7] |
陳椒華 |
gazette.agenda.speakers[8] |
黃秀芳 |
gazette.agenda.speakers[9] |
王婉諭 |
gazette.agenda.speakers[10] |
林為洲 |
gazette.agenda.speakers[11] |
邱泰源 |
gazette.agenda.speakers[12] |
洪申翰 |
gazette.agenda.speakers[13] |
陳培瑜 |
gazette.agenda.speakers[14] |
楊曜 |
gazette.agenda.speakers[15] |
莊競程 |
gazette.agenda.page_start |
343 |
gazette.agenda.meetingDate[0] |
2023-12-13 |
gazette.agenda.gazette_id |
1130201 |
gazette.agenda.agenda_lcidc_ids[0] |
1130201_00006 |
gazette.agenda.meet_name |
立法院第10屆第8會期社會福利及衛生環境委員會第14次全體委員會議紀錄 |
gazette.agenda.content |
審查 一、委員劉世芳等16人擬具「勞工退休金條例第二十三條及第五十八條條文修正草案」
案;二、委員謝衣鳯等16人擬具「勞工退休金條例第二十五條條文修正草案」案;三、委員溫玉
霞等21人擬具「勞工退休金條例第十七條之一及第二十三條條文修正草案」案;四、委員陳明文
等17人擬具「勞工退休金條例第三十三條條文修正草案」案;五、委員高嘉瑜等17人擬具「勞工
退休金條例部分條文修正草案」案;六、委員張廖萬堅等22人擬具「勞工退休金條例第十四條、
第十四條之一及第五十八條條文修正草案」案;七、委員郭國文等18人擬具「勞工退休金條例第
十四條、第二十三條及第三十三條條文修正草案」案;八、委員廖國棟等17人擬具「勞工退休金
條例第二十三條條文修正草案」案;九、委員賴士葆等21人擬具「勞工退休金條例第十四條、第
十四條之一及第三十四條條文修正草案」案;十、委員楊瓊瓔等22人擬具「勞工退休金條例部分
條文修正草案」案;十一、委員李貴敏等17人擬具「勞工退休金條例第二十四條之二條文修正草
案」案;十二、委員邱泰源等18人擬具「勞工退休金條例第五十六條之四及第五十八條條文修正
草案」案;十三、台灣民眾黨黨團擬具「勞工退休金條例第十四條、第三十九條及第五十八條條
文修正草案」案;十四、台灣民眾黨黨團擬具「勞工退休金條例第十四條條文修正草案」案;十
五、委員陳明文等21人擬具「勞工退休金條例第十四條條文修正草案」案 |
gazette.agenda.agenda_id |
1130201_00005 |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
2.57909375 |
transcript.pyannote[0].end |
4.06409375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
4.24971875 |
transcript.pyannote[1].end |
4.95846875 |
transcript.pyannote[2].speaker |
SPEAKER_02 |
transcript.pyannote[2].start |
5.65034375 |
transcript.pyannote[2].end |
6.40971875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
9.90284375 |
transcript.pyannote[3].end |
11.92784375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
12.14721875 |
transcript.pyannote[4].end |
17.09159375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
18.01971875 |
transcript.pyannote[5].end |
18.59346875 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
19.62284375 |
transcript.pyannote[6].end |
22.81221875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
23.68971875 |
transcript.pyannote[7].end |
26.17034375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
26.92971875 |
transcript.pyannote[8].end |
39.75471875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
40.90221875 |
transcript.pyannote[9].end |
43.70346875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
43.99034375 |
transcript.pyannote[10].end |
46.55534375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
46.52159375 |
transcript.pyannote[11].end |
47.04471875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
47.31471875 |
transcript.pyannote[12].end |
49.30596875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
49.30596875 |
transcript.pyannote[13].end |
49.60971875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
50.25096875 |
transcript.pyannote[14].end |
56.47784375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
56.20784375 |
transcript.pyannote[15].end |
56.41034375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
57.23721875 |
transcript.pyannote[16].end |
58.94159375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
59.63346875 |
transcript.pyannote[17].end |
61.99596875 |
transcript.pyannote[18].speaker |
SPEAKER_02 |
transcript.pyannote[18].start |
64.10534375 |
transcript.pyannote[18].end |
65.15159375 |
transcript.pyannote[19].speaker |
SPEAKER_02 |
transcript.pyannote[19].start |
65.52284375 |
transcript.pyannote[19].end |
68.00346875 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
68.00346875 |
transcript.pyannote[20].end |
68.69534375 |
transcript.pyannote[21].speaker |
SPEAKER_02 |
transcript.pyannote[21].start |
68.42534375 |
transcript.pyannote[21].end |
70.02846875 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
70.28159375 |
transcript.pyannote[22].end |
71.80034375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
70.63596875 |
transcript.pyannote[23].end |
75.17534375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
75.31034375 |
transcript.pyannote[24].end |
75.71534375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
75.74909375 |
transcript.pyannote[25].end |
79.02284375 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
79.41096875 |
transcript.pyannote[26].end |
83.39346875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
83.96721875 |
transcript.pyannote[27].end |
99.01971875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
100.55534375 |
transcript.pyannote[28].end |
105.17909375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
106.46159375 |
transcript.pyannote[29].end |
107.49096875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
108.90846875 |
transcript.pyannote[30].end |
116.14784375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
117.00846875 |
transcript.pyannote[31].end |
117.78471875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
118.05471875 |
transcript.pyannote[32].end |
122.20596875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
123.13409375 |
transcript.pyannote[33].end |
127.11659375 |
transcript.pyannote[34].speaker |
SPEAKER_02 |
transcript.pyannote[34].start |
128.68596875 |
transcript.pyannote[34].end |
129.02346875 |
transcript.pyannote[35].speaker |
SPEAKER_02 |
transcript.pyannote[35].start |
129.49596875 |
transcript.pyannote[35].end |
133.05659375 |
transcript.pyannote[36].speaker |
SPEAKER_02 |
transcript.pyannote[36].start |
133.56284375 |
transcript.pyannote[36].end |
137.52846875 |
transcript.pyannote[37].speaker |
SPEAKER_02 |
transcript.pyannote[37].start |
138.10221875 |
transcript.pyannote[37].end |
141.74721875 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
142.16909375 |
transcript.pyannote[38].end |
142.55721875 |
transcript.pyannote[39].speaker |
SPEAKER_02 |
transcript.pyannote[39].start |
142.57409375 |
transcript.pyannote[39].end |
144.86909375 |
transcript.pyannote[40].speaker |
SPEAKER_02 |
transcript.pyannote[40].start |
145.49346875 |
transcript.pyannote[40].end |
151.11284375 |
transcript.pyannote[41].speaker |
SPEAKER_02 |
transcript.pyannote[41].start |
151.80471875 |
transcript.pyannote[41].end |
155.70284375 |
transcript.pyannote[42].speaker |
SPEAKER_02 |
transcript.pyannote[42].start |
156.41159375 |
transcript.pyannote[42].end |
173.92784375 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
174.26534375 |
transcript.pyannote[43].end |
174.63659375 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
174.95721875 |
transcript.pyannote[44].end |
177.77534375 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
178.51784375 |
transcript.pyannote[45].end |
179.71596875 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
179.95221875 |
transcript.pyannote[46].end |
180.47534375 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
180.57659375 |
transcript.pyannote[47].end |
184.08659375 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
184.57596875 |
transcript.pyannote[48].end |
187.19159375 |
transcript.pyannote[49].speaker |
SPEAKER_02 |
transcript.pyannote[49].start |
187.54596875 |
transcript.pyannote[49].end |
187.83284375 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
188.17034375 |
transcript.pyannote[50].end |
190.53284375 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
190.85346875 |
transcript.pyannote[51].end |
192.35534375 |
transcript.pyannote[52].speaker |
SPEAKER_02 |
transcript.pyannote[52].start |
192.84471875 |
transcript.pyannote[52].end |
197.02971875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
197.89034375 |
transcript.pyannote[53].end |
199.99971875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
200.65784375 |
transcript.pyannote[54].end |
206.44596875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
207.15471875 |
transcript.pyannote[55].end |
210.07409375 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
209.95596875 |
transcript.pyannote[56].end |
210.29346875 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
210.17534375 |
transcript.pyannote[57].end |
219.43971875 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
217.34721875 |
transcript.pyannote[58].end |
217.88721875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
220.30034375 |
transcript.pyannote[59].end |
226.10534375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
226.47659375 |
transcript.pyannote[60].end |
231.06659375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
231.06659375 |
transcript.pyannote[61].end |
231.42096875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
231.10034375 |
transcript.pyannote[62].end |
231.11721875 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
231.15096875 |
transcript.pyannote[63].end |
231.16784375 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
231.35346875 |
transcript.pyannote[64].end |
233.54721875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
233.90159375 |
transcript.pyannote[65].end |
237.61409375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
238.40721875 |
transcript.pyannote[66].end |
239.35221875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
240.12846875 |
transcript.pyannote[67].end |
240.70221875 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
241.49534375 |
transcript.pyannote[68].end |
243.72284375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
244.36409375 |
transcript.pyannote[69].end |
245.76471875 |
transcript.pyannote[70].speaker |
SPEAKER_02 |
transcript.pyannote[70].start |
245.76471875 |
transcript.pyannote[70].end |
246.18659375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
246.22034375 |
transcript.pyannote[71].end |
247.16534375 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
247.31721875 |
transcript.pyannote[72].end |
248.70096875 |
transcript.pyannote[73].speaker |
SPEAKER_02 |
transcript.pyannote[73].start |
248.70096875 |
transcript.pyannote[73].end |
249.07221875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
249.84846875 |
transcript.pyannote[74].end |
254.30346875 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
250.30409375 |
transcript.pyannote[75].end |
251.95784375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
251.95784375 |
transcript.pyannote[76].end |
251.97471875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
254.72534375 |
transcript.pyannote[77].end |
257.00346875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
257.37471875 |
transcript.pyannote[78].end |
258.97784375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
258.40409375 |
transcript.pyannote[79].end |
259.60221875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
260.20971875 |
transcript.pyannote[80].end |
260.49659375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
260.27721875 |
transcript.pyannote[81].end |
265.39034375 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
263.95596875 |
transcript.pyannote[82].end |
264.29346875 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
265.54221875 |
transcript.pyannote[83].end |
265.81221875 |
transcript.pyannote[84].speaker |
SPEAKER_02 |
transcript.pyannote[84].start |
266.31846875 |
transcript.pyannote[84].end |
269.69346875 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
270.33471875 |
transcript.pyannote[85].end |
270.77346875 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
271.12784375 |
transcript.pyannote[86].end |
273.54096875 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
273.97971875 |
transcript.pyannote[87].end |
276.49409375 |
transcript.pyannote[88].speaker |
SPEAKER_02 |
transcript.pyannote[88].start |
276.76409375 |
transcript.pyannote[88].end |
280.61159375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
281.13471875 |
transcript.pyannote[89].end |
282.45096875 |
transcript.pyannote[90].speaker |
SPEAKER_02 |
transcript.pyannote[90].start |
282.94034375 |
transcript.pyannote[90].end |
284.35784375 |
transcript.pyannote[91].speaker |
SPEAKER_02 |
transcript.pyannote[91].start |
284.67846875 |
transcript.pyannote[91].end |
290.12909375 |
transcript.pyannote[92].speaker |
SPEAKER_02 |
transcript.pyannote[92].start |
290.44971875 |
transcript.pyannote[92].end |
290.88846875 |
transcript.pyannote[93].speaker |
SPEAKER_02 |
transcript.pyannote[93].start |
292.54221875 |
transcript.pyannote[93].end |
296.40659375 |
transcript.pyannote[94].speaker |
SPEAKER_02 |
transcript.pyannote[94].start |
296.89596875 |
transcript.pyannote[94].end |
302.58284375 |
transcript.pyannote[95].speaker |
SPEAKER_02 |
transcript.pyannote[95].start |
302.88659375 |
transcript.pyannote[95].end |
304.59096875 |
transcript.pyannote[96].speaker |
SPEAKER_02 |
transcript.pyannote[96].start |
304.81034375 |
transcript.pyannote[96].end |
306.16034375 |
transcript.pyannote[97].speaker |
SPEAKER_02 |
transcript.pyannote[97].start |
306.48096875 |
transcript.pyannote[97].end |
314.36159375 |
transcript.pyannote[98].speaker |
SPEAKER_02 |
transcript.pyannote[98].start |
314.93534375 |
transcript.pyannote[98].end |
317.55096875 |
transcript.pyannote[99].speaker |
SPEAKER_02 |
transcript.pyannote[99].start |
317.65221875 |
transcript.pyannote[99].end |
318.81659375 |
transcript.pyannote[100].speaker |
SPEAKER_02 |
transcript.pyannote[100].start |
318.88409375 |
transcript.pyannote[100].end |
319.28909375 |
transcript.pyannote[101].speaker |
SPEAKER_02 |
transcript.pyannote[101].start |
319.54221875 |
transcript.pyannote[101].end |
321.39846875 |
transcript.pyannote[102].speaker |
SPEAKER_02 |
transcript.pyannote[102].start |
321.97221875 |
transcript.pyannote[102].end |
323.22096875 |
transcript.pyannote[103].speaker |
SPEAKER_02 |
transcript.pyannote[103].start |
323.72721875 |
transcript.pyannote[103].end |
327.43971875 |
transcript.pyannote[104].speaker |
SPEAKER_02 |
transcript.pyannote[104].start |
327.64221875 |
transcript.pyannote[104].end |
328.28346875 |
transcript.pyannote[105].speaker |
SPEAKER_02 |
transcript.pyannote[105].start |
328.48596875 |
transcript.pyannote[105].end |
331.11846875 |
transcript.pyannote[106].speaker |
SPEAKER_02 |
transcript.pyannote[106].start |
331.42221875 |
transcript.pyannote[106].end |
336.06284375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
337.53096875 |
transcript.pyannote[107].end |
342.93096875 |
transcript.pyannote[108].speaker |
SPEAKER_02 |
transcript.pyannote[108].start |
340.65284375 |
transcript.pyannote[108].end |
341.58096875 |
transcript.pyannote[109].speaker |
SPEAKER_02 |
transcript.pyannote[109].start |
342.00284375 |
transcript.pyannote[109].end |
342.76221875 |
transcript.pyannote[110].speaker |
SPEAKER_02 |
transcript.pyannote[110].start |
342.77909375 |
transcript.pyannote[110].end |
343.63971875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
343.72409375 |
transcript.pyannote[111].end |
345.22596875 |
transcript.pyannote[112].speaker |
SPEAKER_02 |
transcript.pyannote[112].start |
345.14159375 |
transcript.pyannote[112].end |
345.73221875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
345.78284375 |
transcript.pyannote[113].end |
345.79971875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
345.81659375 |
transcript.pyannote[114].end |
347.68971875 |
transcript.pyannote[115].speaker |
SPEAKER_02 |
transcript.pyannote[115].start |
345.96846875 |
transcript.pyannote[115].end |
346.44096875 |
transcript.pyannote[116].speaker |
SPEAKER_02 |
transcript.pyannote[116].start |
347.80784375 |
transcript.pyannote[116].end |
348.11159375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
348.11159375 |
transcript.pyannote[117].end |
356.19471875 |
transcript.pyannote[118].speaker |
SPEAKER_02 |
transcript.pyannote[118].start |
355.01346875 |
transcript.pyannote[118].end |
355.51971875 |
transcript.pyannote[119].speaker |
SPEAKER_02 |
transcript.pyannote[119].start |
357.07221875 |
transcript.pyannote[119].end |
367.70346875 |
transcript.pyannote[120].speaker |
SPEAKER_02 |
transcript.pyannote[120].start |
367.78784375 |
transcript.pyannote[120].end |
369.81284375 |
transcript.pyannote[121].speaker |
SPEAKER_02 |
transcript.pyannote[121].start |
370.06596875 |
transcript.pyannote[121].end |
372.83346875 |
transcript.pyannote[122].speaker |
SPEAKER_02 |
transcript.pyannote[122].start |
373.39034375 |
transcript.pyannote[122].end |
377.76096875 |
transcript.pyannote[123].speaker |
SPEAKER_02 |
transcript.pyannote[123].start |
377.94659375 |
transcript.pyannote[123].end |
380.05596875 |
transcript.pyannote[124].speaker |
SPEAKER_02 |
transcript.pyannote[124].start |
380.15721875 |
transcript.pyannote[124].end |
383.65034375 |
transcript.pyannote[125].speaker |
SPEAKER_02 |
transcript.pyannote[125].start |
383.93721875 |
transcript.pyannote[125].end |
388.45971875 |
transcript.pyannote[126].speaker |
SPEAKER_02 |
transcript.pyannote[126].start |
388.51034375 |
transcript.pyannote[126].end |
393.97784375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
394.73721875 |
transcript.pyannote[127].end |
398.21346875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
398.65221875 |
transcript.pyannote[128].end |
401.67284375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
401.67284375 |
transcript.pyannote[129].end |
402.02721875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
402.16221875 |
transcript.pyannote[130].end |
404.13659375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
404.94659375 |
transcript.pyannote[131].end |
405.23346875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
405.84096875 |
transcript.pyannote[132].end |
409.84034375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
410.29596875 |
transcript.pyannote[133].end |
414.04221875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
415.08846875 |
transcript.pyannote[134].end |
419.12159375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
419.12159375 |
transcript.pyannote[135].end |
419.30721875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
419.30721875 |
transcript.pyannote[136].end |
419.32409375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
419.34096875 |
transcript.pyannote[137].end |
419.50971875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
419.83034375 |
transcript.pyannote[138].end |
429.22971875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
424.06596875 |
transcript.pyannote[139].end |
425.21346875 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
429.22971875 |
transcript.pyannote[140].end |
429.75284375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
429.24659375 |
transcript.pyannote[141].end |
429.26346875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
430.05659375 |
transcript.pyannote[142].end |
431.81159375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
432.14909375 |
transcript.pyannote[143].end |
435.22034375 |
transcript.pyannote[144].speaker |
SPEAKER_02 |
transcript.pyannote[144].start |
435.22034375 |
transcript.pyannote[144].end |
435.74346875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
436.06409375 |
transcript.pyannote[145].end |
437.09346875 |
transcript.pyannote[146].speaker |
SPEAKER_02 |
transcript.pyannote[146].start |
436.26659375 |
transcript.pyannote[146].end |
439.72596875 |
transcript.pyannote[147].speaker |
SPEAKER_02 |
transcript.pyannote[147].start |
439.97909375 |
transcript.pyannote[147].end |
442.49346875 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
441.83534375 |
transcript.pyannote[148].end |
444.87284375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
445.51409375 |
transcript.pyannote[149].end |
447.20159375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
448.36596875 |
transcript.pyannote[150].end |
451.72409375 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
452.14596875 |
transcript.pyannote[151].end |
452.29784375 |
transcript.pyannote[152].speaker |
SPEAKER_02 |
transcript.pyannote[152].start |
452.29784375 |
transcript.pyannote[152].end |
452.58471875 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
452.58471875 |
transcript.pyannote[153].end |
452.60159375 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
453.15846875 |
transcript.pyannote[154].end |
456.88784375 |
transcript.pyannote[155].speaker |
SPEAKER_02 |
transcript.pyannote[155].start |
453.19221875 |
transcript.pyannote[155].end |
453.78284375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
457.56284375 |
transcript.pyannote[156].end |
459.33471875 |
transcript.pyannote[157].speaker |
SPEAKER_02 |
transcript.pyannote[157].start |
460.31346875 |
transcript.pyannote[157].end |
461.89971875 |
transcript.pyannote[158].speaker |
SPEAKER_02 |
transcript.pyannote[158].start |
462.50721875 |
transcript.pyannote[158].end |
464.76846875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
465.00471875 |
transcript.pyannote[159].end |
465.27471875 |
transcript.pyannote[160].speaker |
SPEAKER_02 |
transcript.pyannote[160].start |
465.32534375 |
transcript.pyannote[160].end |
465.69659375 |
transcript.pyannote[161].speaker |
SPEAKER_02 |
transcript.pyannote[161].start |
465.83159375 |
transcript.pyannote[161].end |
466.96221875 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
467.50221875 |
transcript.pyannote[162].end |
468.49784375 |
transcript.pyannote[163].speaker |
SPEAKER_02 |
transcript.pyannote[163].start |
468.49784375 |
transcript.pyannote[163].end |
468.51471875 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
468.51471875 |
transcript.pyannote[164].end |
468.54846875 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
468.68346875 |
transcript.pyannote[165].end |
469.79721875 |
transcript.pyannote[166].speaker |
SPEAKER_02 |
transcript.pyannote[166].start |
470.52284375 |
transcript.pyannote[166].end |
471.26534375 |
transcript.pyannote[167].speaker |
SPEAKER_02 |
transcript.pyannote[167].start |
471.61971875 |
transcript.pyannote[167].end |
472.21034375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
471.88971875 |
transcript.pyannote[168].end |
474.62346875 |
transcript.pyannote[169].speaker |
SPEAKER_02 |
transcript.pyannote[169].start |
474.77534375 |
transcript.pyannote[169].end |
475.07909375 |
transcript.pyannote[170].speaker |
SPEAKER_02 |
transcript.pyannote[170].start |
476.26034375 |
transcript.pyannote[170].end |
478.23471875 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
476.42909375 |
transcript.pyannote[171].end |
476.74971875 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
477.52596875 |
transcript.pyannote[172].end |
483.71909375 |
transcript.pyannote[173].speaker |
SPEAKER_02 |
transcript.pyannote[173].start |
479.23034375 |
transcript.pyannote[173].end |
480.64784375 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
480.64784375 |
transcript.pyannote[174].end |
480.68159375 |
transcript.pyannote[175].speaker |
SPEAKER_02 |
transcript.pyannote[175].start |
483.14534375 |
transcript.pyannote[175].end |
483.16221875 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
483.16221875 |
transcript.pyannote[176].end |
483.66846875 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
483.71909375 |
transcript.pyannote[177].end |
484.00596875 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
484.00596875 |
transcript.pyannote[178].end |
485.52471875 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
484.02284375 |
transcript.pyannote[179].end |
484.52909375 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
485.64284375 |
transcript.pyannote[180].end |
486.06471875 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
485.72721875 |
transcript.pyannote[181].end |
488.29221875 |
transcript.pyannote[182].speaker |
SPEAKER_02 |
transcript.pyannote[182].start |
486.06471875 |
transcript.pyannote[182].end |
486.08159375 |
transcript.pyannote[183].speaker |
SPEAKER_02 |
transcript.pyannote[183].start |
488.17409375 |
transcript.pyannote[183].end |
488.68034375 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
488.37659375 |
transcript.pyannote[184].end |
490.73909375 |
transcript.pyannote[185].speaker |
SPEAKER_02 |
transcript.pyannote[185].start |
489.81096875 |
transcript.pyannote[185].end |
490.18221875 |
transcript.pyannote[186].speaker |
SPEAKER_02 |
transcript.pyannote[186].start |
491.16096875 |
transcript.pyannote[186].end |
491.54909375 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
492.22409375 |
transcript.pyannote[187].end |
494.97471875 |
transcript.pyannote[188].speaker |
SPEAKER_02 |
transcript.pyannote[188].start |
492.27471875 |
transcript.pyannote[188].end |
492.88221875 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
495.64971875 |
transcript.pyannote[189].end |
497.25284375 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
497.55659375 |
transcript.pyannote[190].end |
499.61534375 |
transcript.pyannote[191].speaker |
SPEAKER_02 |
transcript.pyannote[191].start |
499.83471875 |
transcript.pyannote[191].end |
509.52096875 |
transcript.pyannote[192].speaker |
SPEAKER_00 |
transcript.pyannote[192].start |
502.83846875 |
transcript.pyannote[192].end |
503.20971875 |
transcript.pyannote[193].speaker |
SPEAKER_00 |
transcript.pyannote[193].start |
503.54721875 |
transcript.pyannote[193].end |
503.88471875 |
transcript.pyannote[194].speaker |
SPEAKER_00 |
transcript.pyannote[194].start |
505.36971875 |
transcript.pyannote[194].end |
505.55534375 |
transcript.pyannote[195].speaker |
SPEAKER_02 |
transcript.pyannote[195].start |
509.87534375 |
transcript.pyannote[195].end |
513.68909375 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
511.76534375 |
transcript.pyannote[196].end |
519.17346875 |
transcript.pyannote[197].speaker |
SPEAKER_02 |
transcript.pyannote[197].start |
514.80284375 |
transcript.pyannote[197].end |
515.56221875 |
transcript.pyannote[198].speaker |
SPEAKER_02 |
transcript.pyannote[198].start |
518.19471875 |
transcript.pyannote[198].end |
519.52784375 |
transcript.pyannote[199].speaker |
SPEAKER_00 |
transcript.pyannote[199].start |
520.01721875 |
transcript.pyannote[199].end |
521.48534375 |
transcript.pyannote[200].speaker |
SPEAKER_02 |
transcript.pyannote[200].start |
521.09721875 |
transcript.pyannote[200].end |
521.95784375 |
transcript.pyannote[201].speaker |
SPEAKER_00 |
transcript.pyannote[201].start |
521.82284375 |
transcript.pyannote[201].end |
524.21909375 |
transcript.pyannote[202].speaker |
SPEAKER_02 |
transcript.pyannote[202].start |
524.38784375 |
transcript.pyannote[202].end |
524.80971875 |
transcript.pyannote[203].speaker |
SPEAKER_00 |
transcript.pyannote[203].start |
524.77596875 |
transcript.pyannote[203].end |
526.69971875 |
transcript.pyannote[204].speaker |
SPEAKER_02 |
transcript.pyannote[204].start |
525.73784375 |
transcript.pyannote[204].end |
525.99096875 |
transcript.pyannote[205].speaker |
SPEAKER_00 |
transcript.pyannote[205].start |
527.64471875 |
transcript.pyannote[205].end |
531.17159375 |
transcript.pyannote[206].speaker |
SPEAKER_00 |
transcript.pyannote[206].start |
531.57659375 |
transcript.pyannote[206].end |
533.07846875 |
transcript.pyannote[207].speaker |
SPEAKER_00 |
transcript.pyannote[207].start |
534.05721875 |
transcript.pyannote[207].end |
534.36096875 |
transcript.pyannote[208].speaker |
SPEAKER_00 |
transcript.pyannote[208].start |
534.96846875 |
transcript.pyannote[208].end |
536.13284375 |
transcript.pyannote[209].speaker |
SPEAKER_00 |
transcript.pyannote[209].start |
536.35221875 |
transcript.pyannote[209].end |
537.60096875 |
transcript.pyannote[210].speaker |
SPEAKER_00 |
transcript.pyannote[210].start |
537.87096875 |
transcript.pyannote[210].end |
539.92971875 |
transcript.pyannote[211].speaker |
SPEAKER_00 |
transcript.pyannote[211].start |
540.75659375 |
transcript.pyannote[211].end |
542.29221875 |
transcript.pyannote[212].speaker |
SPEAKER_00 |
transcript.pyannote[212].start |
542.79846875 |
transcript.pyannote[212].end |
543.82784375 |
transcript.pyannote[213].speaker |
SPEAKER_00 |
transcript.pyannote[213].start |
544.67159375 |
transcript.pyannote[213].end |
550.10534375 |
transcript.pyannote[214].speaker |
SPEAKER_02 |
transcript.pyannote[214].start |
550.39221875 |
transcript.pyannote[214].end |
554.20596875 |
transcript.pyannote[215].speaker |
SPEAKER_02 |
transcript.pyannote[215].start |
554.64471875 |
transcript.pyannote[215].end |
555.16784375 |
transcript.pyannote[216].speaker |
SPEAKER_02 |
transcript.pyannote[216].start |
555.65721875 |
transcript.pyannote[216].end |
557.68221875 |
transcript.pyannote[217].speaker |
SPEAKER_02 |
transcript.pyannote[217].start |
558.15471875 |
transcript.pyannote[217].end |
562.13721875 |
transcript.pyannote[218].speaker |
SPEAKER_02 |
transcript.pyannote[218].start |
562.64346875 |
transcript.pyannote[218].end |
564.06096875 |
transcript.pyannote[219].speaker |
SPEAKER_02 |
transcript.pyannote[219].start |
564.33096875 |
transcript.pyannote[219].end |
565.30971875 |
transcript.pyannote[220].speaker |
SPEAKER_02 |
transcript.pyannote[220].start |
565.73159375 |
transcript.pyannote[220].end |
568.16159375 |
transcript.pyannote[221].speaker |
SPEAKER_02 |
transcript.pyannote[221].start |
568.51596875 |
transcript.pyannote[221].end |
569.57909375 |
transcript.pyannote[222].speaker |
SPEAKER_02 |
transcript.pyannote[222].start |
569.95034375 |
transcript.pyannote[222].end |
573.86534375 |
transcript.pyannote[223].speaker |
SPEAKER_02 |
transcript.pyannote[223].start |
574.28721875 |
transcript.pyannote[223].end |
577.03784375 |
transcript.pyannote[224].speaker |
SPEAKER_02 |
transcript.pyannote[224].start |
577.29096875 |
transcript.pyannote[224].end |
580.21034375 |
transcript.pyannote[225].speaker |
SPEAKER_02 |
transcript.pyannote[225].start |
580.69971875 |
transcript.pyannote[225].end |
582.72471875 |
transcript.pyannote[226].speaker |
SPEAKER_02 |
transcript.pyannote[226].start |
583.18034375 |
transcript.pyannote[226].end |
587.31471875 |
transcript.pyannote[227].speaker |
SPEAKER_00 |
transcript.pyannote[227].start |
587.06159375 |
transcript.pyannote[227].end |
587.19659375 |
transcript.pyannote[228].speaker |
SPEAKER_00 |
transcript.pyannote[228].start |
587.31471875 |
transcript.pyannote[228].end |
587.34846875 |
transcript.pyannote[229].speaker |
SPEAKER_00 |
transcript.pyannote[229].start |
587.55096875 |
transcript.pyannote[229].end |
599.12721875 |
transcript.pyannote[230].speaker |
SPEAKER_02 |
transcript.pyannote[230].start |
588.64784375 |
transcript.pyannote[230].end |
589.67721875 |
transcript.pyannote[231].speaker |
SPEAKER_02 |
transcript.pyannote[231].start |
591.88784375 |
transcript.pyannote[231].end |
592.79909375 |
transcript.pyannote[232].speaker |
SPEAKER_02 |
transcript.pyannote[232].start |
594.79034375 |
transcript.pyannote[232].end |
595.04346875 |
transcript.pyannote[233].speaker |
SPEAKER_01 |
transcript.pyannote[233].start |
595.04346875 |
transcript.pyannote[233].end |
595.06034375 |
transcript.pyannote[234].speaker |
SPEAKER_01 |
transcript.pyannote[234].start |
595.75221875 |
transcript.pyannote[234].end |
596.66346875 |
transcript.pyannote[235].speaker |
SPEAKER_01 |
transcript.pyannote[235].start |
599.02596875 |
transcript.pyannote[235].end |
599.41409375 |
transcript.pyannote[236].speaker |
SPEAKER_00 |
transcript.pyannote[236].start |
599.29596875 |
transcript.pyannote[236].end |
605.87721875 |
transcript.pyannote[237].speaker |
SPEAKER_00 |
transcript.pyannote[237].start |
606.13034375 |
transcript.pyannote[237].end |
607.98659375 |
transcript.pyannote[238].speaker |
SPEAKER_01 |
transcript.pyannote[238].start |
608.07096875 |
transcript.pyannote[238].end |
608.50971875 |
transcript.pyannote[239].speaker |
SPEAKER_00 |
transcript.pyannote[239].start |
608.35784375 |
transcript.pyannote[239].end |
615.22596875 |
transcript.pyannote[240].speaker |
SPEAKER_01 |
transcript.pyannote[240].start |
615.41159375 |
transcript.pyannote[240].end |
615.90096875 |
transcript.pyannote[241].speaker |
SPEAKER_00 |
transcript.pyannote[241].start |
615.88409375 |
transcript.pyannote[241].end |
616.89659375 |
transcript.pyannote[242].speaker |
SPEAKER_00 |
transcript.pyannote[242].start |
617.33534375 |
transcript.pyannote[242].end |
619.78221875 |
transcript.pyannote[243].speaker |
SPEAKER_02 |
transcript.pyannote[243].start |
620.01846875 |
transcript.pyannote[243].end |
623.15721875 |
transcript.pyannote[244].speaker |
SPEAKER_02 |
transcript.pyannote[244].start |
623.86596875 |
transcript.pyannote[244].end |
627.93284375 |
transcript.pyannote[245].speaker |
SPEAKER_02 |
transcript.pyannote[245].start |
628.52346875 |
transcript.pyannote[245].end |
629.87346875 |
transcript.pyannote[246].speaker |
SPEAKER_02 |
transcript.pyannote[246].start |
630.14346875 |
transcript.pyannote[246].end |
635.83034375 |
transcript.pyannote[247].speaker |
SPEAKER_02 |
transcript.pyannote[247].start |
636.20159375 |
transcript.pyannote[247].end |
638.12534375 |
transcript.pyannote[248].speaker |
SPEAKER_00 |
transcript.pyannote[248].start |
638.36159375 |
transcript.pyannote[248].end |
638.51346875 |
transcript.pyannote[249].speaker |
SPEAKER_00 |
transcript.pyannote[249].start |
639.23909375 |
transcript.pyannote[249].end |
648.97596875 |
transcript.pyannote[250].speaker |
SPEAKER_01 |
transcript.pyannote[250].start |
648.97596875 |
transcript.pyannote[250].end |
649.43159375 |
transcript.pyannote[251].speaker |
SPEAKER_00 |
transcript.pyannote[251].start |
649.38096875 |
transcript.pyannote[251].end |
653.59971875 |
transcript.pyannote[252].speaker |
SPEAKER_01 |
transcript.pyannote[252].start |
653.80221875 |
transcript.pyannote[252].end |
655.77659375 |
transcript.pyannote[253].speaker |
SPEAKER_00 |
transcript.pyannote[253].start |
653.92034375 |
transcript.pyannote[253].end |
655.67534375 |
transcript.pyannote[254].speaker |
SPEAKER_00 |
transcript.pyannote[254].start |
656.70471875 |
transcript.pyannote[254].end |
657.36284375 |
transcript.whisperx[0].start |
3.148 |
transcript.whisperx[0].end |
25.733 |
transcript.whisperx[0].text |
謝謝召委、主席。我們請部長。請部長。部長,我想今天的主題,我們都在關心勞工的福利,那很多委員也都提了很多的見解。我想對於我們未來再修正,不管是政策 |
transcript.whisperx[1].start |
27.254 |
transcript.whisperx[1].end |
55.363 |
transcript.whisperx[1].text |
規定各方面應該有大的幫助。」那我想我都很願意跟大家一起來共同努力。那有一些另外的主題可能我們以前也關心。那現在我再請教一下我們看下一張。那我想勞動力的穩定還是未來齁。我們那個臺灣要一直去注意的事情。這才可以驚人而已。當然大概有,看起來是有來源應該有四個方向。這個我們以前有討論過。 |
transcript.whisperx[2].start |
57.361 |
transcript.whisperx[2].end |
82.186 |
transcript.whisperx[2].text |
生育率提高,這要你拼嗎?有,這個就是我們現在就是各部會努力啦,國家跟你一起養,希望提高生育率。好,好,好,那第二就是那個促進中高齡、高齡就業,這等一下再請教。是。那怎麼樣讓可能想要或者動機有沒有都可以的勞動人口來 |
transcript.whisperx[3].start |
84.059 |
transcript.whisperx[3].end |
107.085 |
transcript.whisperx[3].text |
以彌補我們現在職場上所需要的當然第四個當然剛剛韋哲偉也有提到的擔心各方面這個我們都會謹慎來進行這個我想這幾個方向是大家過去一直在討論跟努力的看下一張好了我想我們看起來來看一下資料好像我們的一個 |
transcript.whisperx[4].start |
109.062 |
transcript.whisperx[4].end |
132.645 |
transcript.whisperx[4].text |
六十五、或者是我們退休平均年齡好像比較早,比其他國家,不曉得你們那邊有沒有統計。那好像再回來工作的就業率會比較低。啊這保證你們過去我們拍片這段時間到現在有沒有碰到什麼困難?困難就是說第一個我是覺得我們可能雇主齁 |
transcript.whisperx[5].start |
133.615 |
transcript.whisperx[5].end |
135.796 |
transcript.whisperx[5].text |
兩人擬具:「勞工退休金條例第三條及第五十八條條文修正草案:立法院第14次全體委員會議 |
transcript.whisperx[6].start |
156.425 |
transcript.whisperx[6].end |
158.626 |
transcript.whisperx[6].text |
及第五十八條條文修正草案。」案。 |
transcript.whisperx[7].start |
178.564 |
transcript.whisperx[7].end |
183.665 |
transcript.whisperx[7].text |
二、委員謝衣鳯等21人擬具:「勞工退休金條例第三條及第五十八條條文修正草案案。」案。 |
transcript.whisperx[8].start |
207.216 |
transcript.whisperx[8].end |
225.315 |
transcript.whisperx[8].text |
其中六十五歲及七十…退休的啦,不是七十五歲來照顧七十五歲醫療的老人不過那個時候是用志工,也真的在媒介,很努力在媒介,當然後來也可能也沒有延續,這都是創造一些模式 |
transcript.whisperx[9].start |
226.618 |
transcript.whisperx[9].end |
253.973 |
transcript.whisperx[9].text |
那後續當然可能也不一定有延續,但是總是有創造一些模式出來。那他山之子可以工作啦,欸我們現在發現我個人的感覺好像聽說日本比較蠻多齁,很多年紀比較大的,欸都出來去做一種可能他們做得了的,甚至在餐飲內的服務。可能很多人在餐飲內服務是希望年輕一點的,但是 |
transcript.whisperx[10].start |
254.787 |
transcript.whisperx[10].end |
279.877 |
transcript.whisperx[10].text |
三、委員有些餐飲我覺得只要有人來處理好就好了。我們還不可以了解日本是怎麼做的?還是其他國家是怎麼做的?這個部分當然就是說他們可能傳統上他們其實善用這些中高齡、高齡、銀髮族的人力那我們也現在也在鼓勵雇主就是說 |
transcript.whisperx[11].start |
281.195 |
transcript.whisperx[11].end |
283.016 |
transcript.whisperx[11].text |
及第五十八條條文修正草案。」案。 |
transcript.whisperx[12].start |
292.534 |
transcript.whisperx[12].end |
313.841 |
transcript.whisperx[12].text |
第二十三條及第五十八條條文修正草案:立法院第十八條及第五十八條條文修正草案:立法院第十八條及第五十八條條文修正草案:立法院第十八條及第五十八條條文修正草案:立法院第十八條及第五十八條條文修正草案:立法院第十八條及第五十八條條文修正草案:立法院第十八條及第五十八條條文修正草案:立法院第十八條及第五十八條條文修正草案:立法院第十八條及第五十八條條文修正草案:立法院第十八條及第五十 |
transcript.whisperx[13].start |
322.303 |
transcript.whisperx[13].end |
347.348 |
transcript.whisperx[13].text |
則是我們進場去幫那些中高齡或高齡者,讓他們在這個勞動力的來源上能夠更迅速的去獲得填補。我想我們有在做,那當然就一直檢討成果跟看怎麼樣有精進的策略。這可能要不斷的努力,才能改變文化。 |
transcript.whisperx[14].start |
348.237 |
transcript.whisperx[14].end |
350.959 |
transcript.whisperx[14].text |
兩人擬具:「勞工退休金條例第三條及第五十八條條文修正草案案。」案。 |
transcript.whisperx[15].start |
373.453 |
transcript.whisperx[15].end |
396.485 |
transcript.whisperx[15].text |
福具每年喔每個人每年齁你只要拼用這些壯士代勞工每人每年有十萬塊的福具的的費用齁可以來補助你那這個都可以減輕他們在工作上齁比如說要搬重啦齁或者各種不便的齁那這個部分我們也一直在做一些宣導讓戶主知道我們以前在推這個計畫的時候齁那個法案的時候當然 |
transcript.whisperx[16].start |
398.732 |
transcript.whisperx[16].end |
418.835 |
transcript.whisperx[16].text |
我們也擔心說會去搶年輕人的位子,可是畢竟還是有很多人不能說現在那種困境,像沒錢了怎麼辦?很多啊,像我們在弄健保也是很痛苦啊。我想國家政府還有醫界也都很頭痛啊。 |
transcript.whisperx[17].start |
421.381 |
transcript.whisperx[17].end |
446.938 |
transcript.whisperx[17].text |
總是要創造它的價值,不能就是卡死在那裡,當然來創造我們的智慧。我想這個部分,很多政策不是不能做,而是怎麼把它做得好。我們現在其實是整體的缺工,所以不會有說去搶青年人工作的問題。部長我請教你,你覺得我們現在有年輕人都跑去哪邊工作? |
transcript.whisperx[18].start |
448.387 |
transcript.whisperx[18].end |
473.67 |
transcript.whisperx[18].text |
好像很多人都在缺人力,都在家裡,家裡有錢都不用出來工作,你們有沒有去統計一下?其實很多都到服務業批發零售那邊去啦,批發零售業。批發零售業,有需要那麼多人喔?原來了解年輕人都早就在做行為。 |
transcript.whisperx[19].start |
476.317 |
transcript.whisperx[19].end |
479.558 |
transcript.whisperx[19].text |
三、委員劉世芳等16人擬具:「勞工退休金條例第十八條之一 |
transcript.whisperx[20].start |
495.995 |
transcript.whisperx[20].end |
505.45 |
transcript.whisperx[20].text |
現在的年輕人沒辦法結合我們大概七成的年輕人喜歡在服務業我們大概有七成的年輕人畢業以後的年輕人喜歡在服務業 |
transcript.whisperx[21].start |
509.96 |
transcript.whisperx[21].end |
510.28 |
transcript.whisperx[21].text |
二、委員李姓格倫 |
transcript.whisperx[22].start |
535.014 |
transcript.whisperx[22].end |
549.808 |
transcript.whisperx[22].text |
那個...很多人都...他小孩子也長...也稍微大了齁...想說不然退休可以發揮一下這樣齁...啊這個部分不曉得我們勞動部這個部分對這個主題的看法怎麼樣? |
transcript.whisperx[23].start |
550.601 |
transcript.whisperx[23].end |
569.017 |
transcript.whisperx[23].text |
對,我們現在有一個,我們今天9月1號就是有一個婦女再就業計劃,三年的計劃,預計是說大概三年內希望增加14萬名的女性勞動力,那這個計劃包括說給這個女性,因為她可能離開職場一段時間了,那她可以 |
transcript.whisperx[24].start |
570.378 |
transcript.whisperx[24].end |
586.753 |
transcript.whisperx[24].text |
對自己過去具備的專業技能還需要再提升的他可以提出自主訓練計畫我們會給他獎勵另外就是說他如果重返職場穩定就業三個月我們也會給他最高三萬元的獎勵 |
transcript.whisperx[25].start |
587.634 |
transcript.whisperx[25].end |
596.821 |
transcript.whisperx[25].text |
第二十五條及第五十八條條文修正草案:立法院第十八條及第五十八條條文修正草案:立法院第十八條及第五十八條條文修正草案:立法院第十八條及第五十八條條文 |
transcript.whisperx[26].start |
617.395 |
transcript.whisperx[26].end |
620.596 |
transcript.whisperx[26].text |
第二十三條及第五十八條條文修正草案:立法院第14次全體委員會議第15次全體委員會議第16次全體委員會議 |
transcript.whisperx[27].start |
640.362 |
transcript.whisperx[27].end |
655.436 |
transcript.whisperx[27].text |
這個當然是一個方法,但是不一定是好方法,還是可以再討論。那這個主題也請勞動部把後來的進展也給我們一下好了。當然在針對這個問題大家共同再來思考。好不好?好,感謝大家。好,謝謝主席。 |